
External Use

TM

How To Demystify

Simultaneous Multi-Threading

FTF-ACC-F1259

J U N E . 2 0 1 5

John West | Systems Architect

TM

External Use 1 #FTF2015

Intro

• What will you learn?

• Why are we here?

Objective: At the end of this course, you will be able to :

1) Understand terminology used in multithreading

2) Understand different types of multithreading and their pro’s and con’s

3) Know why FSL has moved forward with simultaneous multithreading

(SMT)

TM

External Use 2 #FTF2015

Agenda

• Terminology

• Differences between Multiple Issue and Multiple

Threaded

• Blocked multithreading

• Simultaneous multithreading (SMT)

• Review of current architecture and automotive code

• How SMT helps improve performance

TM

External Use 3 #FTF2015

Terminology

TM

External Use 4 #FTF2015

Definition of Terms

• Single Issue Core

− A single issue core can issue a maximum of one assembly instruction on

every clock.

• Dual Issue Core (Multiple Issue)

− A dual issue core can issue a maximum of two assembly instructions per

clock.

− There are restrictions on what can be dual issued, however typically

most instructions can be.

− FSL automotive cores in 90nm, 55nm, and 28nm are dual issue core.

 Future cores maybe more than dual issue (many issue).

TM

External Use 5 #FTF2015

What Can Dual Issue?

• The following pairs can dual issue on e200zX-SMT core

Branch Ld/st Scalar

Integer

Scalar

Mul

Scalar

Float

Vector

Integer

Vector

Mul

Vector

Float

Branch


1
      

Ld/st
      

Scalar

Integer
       

Scalar

Mul
      

Scalar

Float
      

Vector

Integer
       

Vector

Mul
     

Vector

Float
     

1Interthread branches only

TM

External Use 6 #FTF2015

Definition of Terms (cont)

• What is a thread

− A thread is a sequence of programmed instructions that can be

controlled by a scheduler, usually an Operating System (OS).

 Could be an entire application (i.e. complete engine control application)

 Could be a time task (i.e. 10ms, 20ms, etc)

 An interrupt service routine

 Could be as simple as one software routine (i.e. table lookup)

− All automotive applications already have thread(s)

• Multithreading

− System that contains multiple threads and a means of controlling and

executing the threads

TM

External Use 7 #FTF2015

Types of multithreading cores

• Blocked multithreading

− Simplest type of multithreading. One thread runs until it is blocked by an

event (often a long latency memory access). The processor will switch to

the next thread and run that until it is blocked or completed.

− Context and register set is shared amongst all threads and a context

switch must be performed to run the next thread.

− This is not a good solution for automotive application due to context

switch time and stalling important tasks can cause missing real-time

events.

This is NOT the type of multithreading FSL is implementing

TM

External Use 8 #FTF2015

Types of multithreading cores (cont)

• Simultaneous multithreading

− An advanced type of multithreading that’s allows multiple threads to run

at the same time. One thread does not cause other threads to stall by

taking ownership of shared resources.

− Each thread has it’s own register set and context so there is no costly

context switch.

− This allows for better utilization of core resources when running cache

unfriendly branchy automotive code.

This is the type of multithreading FSL is implementing.

TM

External Use 9 #FTF2015

D
u

a
l
Is

s
u

e

P
o

s
s
ib

le

S
in

g
le

 I
s
s
u
e

Implementation of blocking multithreading

s
ta

ll

e
x
e

c
u

ti
o

n

R0

R31

PC

LK

..

..

..

R0

R31

PC

LK

..

..

..

R0

R31

PC

LK

..

..

..

e
x
e

c
u

ti
o

n

1

2

s
ta

ll

s
ta

ll

S
in

g
le

 I
s
s
u

e

R0

R31

PC

LK

..

..

..

R0

R31

PC

LK

..

..

..

Penalty time

in switching

the threads

as it needs

to save and

restore

No

Penalty

time as

each

thread

have

own

register

sets

s
ta

ll

Thread 0 Thread 1 Z9 Thread 0 Z9 Thread 1

S
in

g
le

Is
s
u

e

D
u

a
l

Is
s
u

e

P
o

s
s
ib

le

S
in

g
le

Is
s
u

e

Thread execution is mutually exclusive Thread execution is not mutually exclusive

Resolution of

a stall

causes other

thread to

immediately

return to

single issue

Stall occurs

due to

change in

flow or

load/store

TM

External Use 10 #FTF2015

Why SMT?

TM

External Use 11 #FTF2015

Why multithreading?

• One multithreaded core has look and feel of two single threaded cores from user

model view

• Works very well for cache unfriendly code (automotive code very cache unfriendly)

• Optimize for performance/mW

• Same or better single-threaded performance as a single threaded core

• Reduce the number of cores required at the SoC level, reducing area and power

consumption

• Expandable to >2 threads in the future

• Allows more efficient use the CPU resources

• Simplified core platform/xbar implementation

TM

External Use 12 #FTF2015

Core Capabilities

• A dual issue core is capable of executing up to two instructions per clock.

• Program flow, data dependencies, interrupts, branches, etc determine how

many instructions can be executed each clock.

• Automotive code is typically cache unfriendly, heavily branched

(approximately every 4-6 instructions), interrupts often, and can contain

many data dependencies.

− This results in a high number of zero and single issue cycles.

• Performance is a direct result of combination of zero, single, dual issue

cycles.

• Freescale goal with z200zX-SMT core family is to maximize the number of

dual issue cycles, increase number of single issue cycles, and minimize

number of zero issue cycles.

TM

External Use 13 #FTF2015

Amroth – Complete Automotive Application

• High percentage of single cycle integer
instructions

• Code profile does not contain floating
point code

• No SIMD instructions used

• Very low usage of mul and div

• Very flat code profile (lots of branches)

• Verified as representative of actual
application by customers.

Instruction Count Percent

Integer

Fast (1 cycle) 17746725 47.6

mul 669030 1.8

div 138406 0.4

Memory

Load 7895236 21.2

Store 4125896 11.1

Branches

Conditional 5206232 14.0

Unconditional 1520876 4.1

Total 37302401 100

TM

External Use 14 #FTF2015

Automotive Code Characteristics

• Flat nature of the code makes limited use of small caches

− Cache lookup performed on every clock even when waiting for fetches

from flash. Results in high current consumption for L1 cache

• Core speed is faster than flash access speed resulting in high % of

memory stall cycles (zero instructions being issued)

• Limited dual issue effectiveness due to change-of-flow frequency

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

00
00

01
5c

00
00

c1
9e

00
00

e0
f2

00
00

fed
4

00
01

49
a6

00
01

67
e4

00
01

a9
da

00
01

dc
80

00
01

ea
f6

00
02

00
86

00
02

0c
d6

00
02

21
7c

00
02

2fa
a

00
02

4b
b4

00
02

6d
a0

00
02

7f5
4

00
02

b8
58

00
02

d1
30

00
02

e4
dc

00
03

16
90

00
03

27
04

00
03

3d
9c

00
03

5fb
a

00
03

74
0c

00
03

94
be

00
03

dd
40

00
04

03
c4

00
04

21
5e

00
04

40
3c

00
04

5b
3a

00
04

7c
c4

00
04

8e
dc

00
04

9e
74

TM

External Use 15 #FTF2015

Measured Core Platform Performance Data

• Zero instructions issued indicates core is stalled

waiting for memory access and/or data dependency to

resolve

• A single thread has less chance to dual issue due to

branch frequency

• Two threads greatly reduces the cycles with 0-inst

issued

• Two threads allows both threads to single issue

simultaneously, resulting in more dual issues per cycle

and the resulting increased performance

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

zero single dual

type of issue

PWT1 – CP Platform
16K I-, 16K D- L1 $

no L2

z7 z9

TM

External Use 16 #FTF2015

e200zX-SMT cores offer large performance/gate increase

• A single e200zX-SMT core approaches 2x the performance of a z7
core at the incremental size cost of 1.25x at same clock frequency.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Size DMIPS/MHz Coremark/MHz PWT1 [IPC]

z7

z9

TM

External Use 17 #FTF2015

Simultaneous multithreading (SMT) optimized for cache

unfriendly auto code

• Zero instructions issued indicates core is stalled

waiting for memory access and/or data dependency to

resolve

• A single thread has less chance to dual issue due to

branch frequency

• Two threads greatly reduces the cycles with 0-inst

issued

• Two threads allows both threads to single issue

simultaneously, resulting in more dual issues per cycle

and the resulting increased performance 0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

PWT-Ave PWT-low PWT -high SMT

P
e
rf

o
rm

a
n

c
e

Powertrain Customer Data

Instruction Issuing
55nm Cores (z4, z7) vs. Next Gen

(e200zX-SMT)

PWT-Ave PWT-Low PWT-high SMT

zero issue 73 75 68 55

single issue 15 14 18 20

dual issue 12 11 14 25

PowerTrain Customer Instruction Issue Profiles

TM

External Use 18 #FTF2015

Power Architecture e200zX Pipeline Comparisons

e200z7
single threaded

Fetch DE

EX1

Fetch

EX0 EX2

WBRR

EX3

Fetch

EX3

EX1EX0 EX2 EX3EX3

e200z9
multithreaded

Fetch

EX1

Fetch

EX0 EX2 WBRRDE

EX1EX0 EX2 WBRRDE

EX3EX3

EX3EX3

Fetch

Pipe Stages:

Fx: Fetch from memory stages

Dx: Instruction Decode

RR: Register Read

Ex: Instruction execute stages

WB: Write Back to registers

TM

External Use 19 #FTF2015

Power of SMT

TM

External Use 20 #FTF2015

Power of multithreading with automotive code

• Single threaded code profile

− mostly zero issue stall cycles

− Very few dual issue

− Very few single issue

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Issue Slots

P
ro

c
e

s
s
o

r
C

y
c
le

s
Green is thread0

Blue is thread1

Blank is unused slot

TM

External Use 21 #FTF2015

Power of multithreading with automotive code

• Single threaded code profile

− mostly zero issue stall cycles

− Very few dual issue

− Very few single issue

• Each thread runs

sequentially under utilizing

CPU resources.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Issue Slots

P
ro

c
e

s
s
o

r
C

y
c
le

s
Green is thread0

Blue is thread1

Blank is unused slot

TM

External Use 22 #FTF2015

Power of multithreading with automotive code

• SMT code profile

− allows code to run

simultaneously drastically

reducing over cycle count

− Utilizes more of CPU

resources

− With no other changes to SoC

there is a significant increase

in overall performance

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Issue Slots

P
ro

c
e

s
s
o

r
C

y
c
le

s

Green is thread0

Blue is thread1

Blank is unused slot

Single threaded

SMT

TM

External Use 23 #FTF2015

Power of multithreading with automotive code

• With enhancements in

memory and platform

subsystem can maximize the

SMT benefits.

• Potential for enormous

performance increases with

minimal size and power

increase.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Issue Slots

P
ro

c
e

s
s
o

r
C

y
c
le

s

Green is thread0

Blue is thread1

Blank is unused slot

Single threaded

SMT SMT with platform

and memory

subsystem

enhancements

TM

External Use 24 #FTF2015

Simultaneous Multithreading

Summary

Automotive code is already multithreaded
Interrupts, multiple cores

SMT core maximizes performance/gate
Better utilization of CPU resources, non-blocking parallelism, optimized for
automotive code profiles

Huge potential for further enhancements
Enhanced switch fabric, reduced memory latencies, advanced bus protocols

TM

External Use 25 #FTF2015

Q&A

TM

© 2015 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

