
3-Phase PMSM Development Kit with
MPC5744P
Featuring Motor Control Application Tuning (MCAT) Tool

by: NXP Semiconductors

1 Introduction

This application note describes the design of a 3-phase Permanent Magnet
Synchronous Motor (PMSM) vector control drive with 3-shunt current sensing
and resolver position sensing. The design is targeted for automotive motor
control (MC) applications.

The proposed design exhibits the suitability and advantages of the MPC5744P
microcontroller for motor control applications. It serves as an example of a
PMSM control design using the NXP 32-bit MCU built on the Power
Architecture™ technology. It meets the highest functional safety standards for
automotive and industrial functional safety applications.

System features:

• Modular software concept of a 3-phase PMSM speed Field Oriented
Control (FOC) approach.

• Motor phase currents sensing with three shunts

• Rotor position and speed measurement using resolver transducer.

• Application control user interface through FreeMASTER and MCAT tool.

2 System concept

The proposed system, Figure 1. on page 2, is designed to drive the 3-phase PMSM with a resolver sensor. The concept meets
the following specifications:

• Targets the MPC5744P microcontroller [1, 2]

• Runs on the MPC5744P Motor Controller Board (CB) with a PCI-Express MC interface [3]

• Runs on the 3-phase Low Voltage Power Stage board with a PCI-Express MC interface [4]

• Incorporates a control technique with:

— Vector control of a 3-phase PMSM with resolver sensor

— Cascade control structure with current and speed closed loop control

— Bi-directional speed operation

— Start-up with a rotor alignment procedure

Contents

1 Introduction..1

2 System concept................................... 1

3 PMSM field-oriented control............... 2

4 MPC5744P – development kit
configuration..................................... 8

5 MPC5744P – MCU configuration.......10

6 Software design................................. 24

7 Application control user interface... 33

8 References... 39

9 Revision history.................................39

NXP Semiconductors Document Number: AN12017

Application Note Rev. 1, August, 2018

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/ultra-reliable-mpc574xp-mcu-for-automotive-industrial-safety-applications:MPC574xP?utm_medium=AN-2021

— 100 ms sampling period of all analog quantities (currents, DC-bus voltage, resolver)

— 20 kHz switching frequency of PWM

• FreeMASTER project for real-time debugging and data visualization [5]

— Graphical control page to control the motor (motor start/stop, speed setup)

— Application faults monitoring and visualization

• MCAT tool, AN4642 [6, 7]

— Debugging and tuning the MC applications

— Export the static configuration of MC application to a header file

• DC-Bus over-voltage and under-voltage, over-current, overload, and start-up fail protection

• Included software provides the option for single or dual motor control

Figure 1. 3-phase PMSM Development Kit with MPC5744P

3 PMSM field-oriented control

This section covers the following sub-sections:

• Fundamental principle of PMSM FOC

• PMSM model in quadrature phase synchronous reference frame

• Phase current measurement

• Resolver signal processing

3.1 Fundamental principle of PMSM FOC
High-performance motor control is characterized by smooth rotation over the entire speed range of the motor, full torque control
at zero speed, and fast acceleration/deceleration. To achieve such control, vector control techniques are used for PMSMs. The

PMSM field-oriented control

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
2 NXP Semiconductors

vector control techniques are usually also referred to as field-oriented control. The FOC concept is based on an efficient torque
control requirement, which is essential for achieving high control dynamics. Analogous to standard DC machines, AC machines
develop maximal torque when the armature current vector is perpendicular to the flux linkage vector. Therefore, if only the
fundamental harmonic of stator-mmf is considered, the torque Te developed by an AC machine, in vector notation, is given by:

Equation 1

where pp is the number of motor pole-pairs,

is the stator current vector and

represents the vector of the stator flux. Constant 3/2 indicates a non-power invariant form of transformation used.

In the case of DC machines, the requirement of having the rotor flux vector perpendicular to the stator current vector is satisfied
by the mechanical commutator. Because there is no such mechanical commutator in AC machines, the functionality of the
commutator has to be substituted electrically, by enhanced current control. This therefore implies orientation of the stator current
vector in such a way so as to isolate the component of stator current magnetizing the machine (flux component) from the torque
producing component. This can be accomplished by decomposing the current vector into two components projected in the
reference frame, often called the dq frame, which rotates synchronously with the rotor. It has become standard to position the dq
reference frame to have the d-axis aligned with the position of the rotor flux vector, so that current in the d-axis alters the amplitude
of the rotor flux linkage vector. That requires the reference frame position to be updated such that the d-axis is always aligned
with the rotor flux axis. Because the rotor flux axis is locked to the rotor position, for PMSM machines, a mechanical position
transducer can be used to measure the rotor position and hence position of the rotor flux axis. Having the reference frame phase
set so that the d-axis is aligned with the rotor flux axis, the current in the q-axis represents solely the torque producing current
component. Setting the reference frame speed to be synchronous with the rotor flux axis speed results in both d and q axis current
components having DC values. This implies utilization of simple current controllers to control the demanded torque and
magnetizing flux of the machine, simplifying the control structure design.

Figure 3. on page 4 shows the basic structure of the vector control algorithm for the PMSM. To perform vector control, perform
these steps:

• Measure and obtain the motor states, variables and quantities. For example: phase voltages, currents, rotor speed, and
position.

• Transform quantities into the two-phase system (αβ) using a Clarke transformation.

• Transform stator currents (αβ) into the dq reference frame using a Park transformation.

Also keep in mind:

• The stator current torque (isq) and flux (isd) producing components are separately controlled.

• The output stator voltage space vector is calculated using the decoupling block.

• The stator voltage space vector is transformed by an inverse Park transformation back from the d, q reference frame into
the two-phase system fixed with the stator.

• The output 3-phase voltage is generated using a space vector modulation.

To be able to decompose currents into torque and flux producing components (isq , isd), position of the motor-magnetizing flux
has to be known. This requires accurate sensing of the rotor position and velocity. Incremental encoders or resolvers attached to
the rotor are naturally used as position transducers for vector control drives.

PMSM field-oriented control

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 3

Figure 3. FOC motor phase currents transformations

3.2 PMSM model in quadrature phase synchronous reference
frame

Quadrature phase model in synchronous reference frame is very popular for FOC structures because both controllable quantities,
current and voltage, are DC values. This allows the use of only simple controllers to force the machine currents into the defined
states. Furthermore, full decoupling of the machine flux and torque can be achieved, which allows dynamic torque, speed, and
position control.

The equations describing voltages in the 3-phase windings of a permanent magnet synchronous machine can be written in matrix
form as follows:

Equation 2

where the total linkage flux in each phase is given as:

Equation 3

where:

• Laa, Lbb, and Lcc are stator phase self inductances

• Lab = Lba, Lbc= Lcb, and Lca = Lac are mutual inductance between respective stator phases

• the term

represents the magnetic flux generated by the rotor permanent magnets

•

is the electrical rotor angle

PMSM field-oriented control

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
4 NXP Semiconductors

d

q

e

frame stator coordinates
dq frame rotor coordinates

e

iS

iSd

iSq

iS

iS

torque
component

flux
component

PM

Figure 4. Orientation of stator (stationary) and rotor (rotational) reference frames, with current components
transformed into both frames

The voltage equation of the quadrature phase synchronous reference frame model can be obtained by transforming the 3-phase
voltage equations (Equation 2, Equation 3) into a 2-phase rotational frame which is aligned and rotates synchronously with the
rotor as shown in Figure 4. on page 5 above. Such transformation, after some mathematical corrections, yields the following set
of equations:

Equation 4

Above equation represents a non-linear cross dependent system, with cross-coupling terms in both d and q axis and back-EMF
voltage component in the q-axis. When FOC is employed, both cross-coupling terms shall be compensated to allow independent
control of current d and q components. Design of the controllers is then governed by following pair of equations, derived from
Equation 4 after compensation:

Equation 5

which describes the model of the plant for d and q current loop. Both equations are structurally identical, therefore the same
approach of controller design can be adopted for both d and q controllers. The only difference is in values of d and q axis
inductances, which results in different gains of the controllers. Considering closed loop feedback control of a plant model as in
either equation, using standard PI controllers, then the controller proportional and integral gains can be derived, using a pole-
placement method, as follows:

Equation 6

PMSM field-oriented control

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 5

where

represents Natural Frequency [rad s-1] and

is the Damping Factor [-] of the current control loop. To calculate the parameters of current PI controllers an MCAT tool con be
used.

3.3 Phase current measurement
The following figure shows how the 3-phase voltage source inverter uses three shunt resistors (R38, R39, and R40) placed in
each of the inverter legs as phase current sensors. Stator phase current flows through the shunt resistor, producing a voltage
drop which is interfaced to the AD converter of the microcontroller.

Figure 5. 3-phase low-voltage inverter with shunt resistors for current measurement

An operational amplifier and input signal filtering circuit provide the conditional circuitry and adjust the shunt voltage drops to fit
into the ADC input voltage range.

The phase current sampling technique is a critical issue for detection of phase current differences and for acquiring full 3-phase
information of stator current by its reconstruction. Phase current flowing through shunt resistors produces a voltage drop which
needs to be appropriately sampled by the AD converter when low-side transistors are switched on. The current cannot be
measured by the current shunt resistors at an arbitrary moment. This is because the current flows through the shunt resistor only
when the bottom transistor of the respective inverter leg is switched on. Therefore, considering the diagram depicted in Figure 5.
on page 6, phase A current is measured using the R38 shunt resistor and can be sampled only when the transistor Q4 is switched
on. Correspondingly, the current in phase B can be measured only if the transistor Q5 is switched on, and the current in phase C
can be measured only if the transistor Q6 is switched on. To get an actual instant of current sensing, voltage waveform analysis
has to be performed. Generated duty cycles phase A, phase B, and phase C of two different PWM periods are depicted in Figure
6. on page 7. These phase voltage waveforms correspond to a center-aligned PWM with sine-wave modulation. As seen in
first PWM period, the best sampling instant of phase current is in the middle of the PWM period, where all bottom transistors are
switched on.

However, not all three currents can be measured at an arbitrary voltage shape. The second PWM period shows a case when the
bottom transistor of phase A is on for a very short time. If the on time is shorter than a certain critical time, dependent on the
hardware design, the current cannot be correctly measured.

PMSM field-oriented control

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
6 NXP Semiconductors

Figure 6. Generated phase duty-cycles in different PWM periods

In standard motor operation, where the supplied voltage is generated using the space vector modulation, the sampling instant of
phase current takes place in the middle of the PWM period in which all bottom transistors are switched on. If the modulation index
of applied Space Vector Modulation (SVM) technique increases, there is an instant when one of the bottom transistors is switched
on for a very short time instance. Therefore, only two currents are measured and the third one is calculated from equation:

Equation 7

Therefore, a minimum on time of the low-side switch is required for 3-phase current reconstruction.

3.4 Resolver signal processing
Different sensor type might require different approach to evaluate the speed and position of the motor. The NXP approach for
resolver systems utilizes an Angle Tracking Observer (ATO), Figure 7. on page 8, which is based on the Phase Lock Loop
technique. The ATO input is a position error between the position given by the sensor and estimated ATO position. The PI controller
in the ATO loop minimizes the input error by adjustment of a control variable, in this case the control variable is equivalent to a
motor speed. Integration of the speed leads to the estimated position.

PMSM field-oriented control

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 7

Figure 7. ATO for resolver systems

The ATO for resolver system is characterized by the position error calculation. The observer error corresponds to the following
formula:

Equation 8

The coefficients of ATO PI controller, Integrator and filter can be tuned by MCAT tool. The ATO function is a member of the motor
control SW library [8] and is available as AMCLIB_TrackObsrv function.

4 MPC5744P – development kit configuration

MPC5744P development kit is designed to control the PMSM motor equipped with the resolver position sensor. Development kit
consists of two hardware boards, the first one is the controller board and the second one is the low voltage 3-phase power stage.

The power stage cannot be powered without the controller board when Brake Resistor is populated. The absence

of controller board makes the BRAKE_GATE signal high, and a large current flows through the

BRAKE_RESISTOR. This creates a considerable burn hazard, as the resistor will dissipate enough heat to harm

on contact.

 NOTE

4.1 Controller board
The MPC5744P controller board is intended to control two PMSM motors and therefore it has two PCI-Express 4-edge connectors
as the motor control interface. Single PMSM development kit, Figure 1. on page 2, is configured to utilize the PCIe connector J1.

The controller board does not contain any of motor control peripheries; all of them are located on the power stage

board. The only communication and debug interfaces are part of the controller board.

 NOTE

Following table shows the jumper configuration linked with the PCI-Express motor control interface.

MPC5744P – development kit configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
8 NXP Semiconductors

Table 1. MPC5744P controller board jumper configuration

Jumper Interface Function Jumper settings

J2

J3

J4

MCRGM_ABS1

MCRGM_ABS2

MCRGM_FAB

Single Chip Mode configuration open

open

1-2 close

J12 SBC SBC configured in debug mode close

J26 SINE-WAVE Resolver excitation from SW_GEN (not
used)

PCIe connector J1

PCIe connector J200

1-2 close

2-3 close

For description and explanation of all jumpers on the controller board look for the MPC5744P Motor Controller Board User Manual
[3].

4.2 3-phase power stage board
It is a part of NXP motor control development tool series that can be used to supply a wide range of 3-phase AC motors such as
PMSM, BLDC or ACIM motors. Low voltage power stage operates up to 50 V in the DC-Bus, being able to deliver and measure
current up to 20 A (default setting is 10 A).

The power stage key parts:

• 3-phase MOSFET H-bridge with shunt resistors for current measurement and intelligent pre-driver MC33937 for 3-phase
MC applications

• Operational amplifiers and signal filtering to adjust measured voltage signals into the ADC input voltage range

— 3-phase current sensing

— DC-bus current sensing

— DC-bus voltage sensing

— Back-EMF voltage sensing

• Motor control peripheries

— J8 – Resolver connector with resolver excitation and signal processing circuitry

— JP1 – Encoder/Hall interface

• Motor Control interface

— J14 – PCI-Express connector

• PWM Braking Interface

— J2 – BRAKE_RESISTOR jumper, ensure resistor is removed if not using PWM braking to avoid burn hazard

Table 2 shows the Power Stage board jumper configuration to meet the PMSM FOC application requirements.

MPC5744P – development kit configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 9

Table 2. 3-phase LV power stage board jumper configuration

Jumper Interface Function Setting

J2 BRAKE_RESIS
TOR

PWM BRAKING.

Controlled by BRAKE_GATE signal

Remove resistor if
not using PWM
braking in
application

J5 Resolver

Sin-Cos

Resolver S4 output enters operational amplifier (default)

DC offset compare value (not implemented)

1-2 closed

2-3

J6 Resolver

Sin-Cos

Resolver S3 output enters operational amplifier (default)

DC offset compare value (not implemented)

1-2 closed

2-3

J7 Resolver Resolver excitation – square signal (default)

Resolver excitation – SWG source

2-3 closed

1-2

J9 DC-bus Current
measurement

By an external operational amplifier

By a MC33937

1-2 closed

2-3

J10 Overcurrent
threshold
reference

+5V DC

V_ref

1-2

2-3 closed

J11 Over Current
fault

External comparator (default)

MC33937 output

1-2 closed

2-3

J16 Zero-Cross Zero-cross detection

Zero-cross signal from MC33937

Encoder / Hall sensors - PhA

2-3

1-2

J17 Zero-Cross Zero-cross detection

Zero-cross signal from MC33937

Encoder / Hall sensors - PhB

2-3

1-2

J18 Zero-Cross Zero-cross detection

Zero-cross signal from MC33937

Encoder / Hall sensors

2-3

1-2

Even if the example development kit does not contain the PMSM motor with an encoder sensor, the example

software offers the possibility to add the encoder software routine for position and speed processing and evaluation.

 NOTE

5 MPC5744P – MCU configuration

The PMSM FOC framework application software and hardware configured for single or dual PMSM application. It is designed to
meet the following hardware configuration and technical specifications:

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
10 NXP Semiconductors

• Speed FOC control with resolver sensor

• Current control loop runs at 10 kHz frequency

• Speed control loop runs at 1 kHz frequency

• Data acquisition sampling period 100 µs

• PWM output switching frequency is 20 kHz

For each motor, the PMSM FOC framework application software requires periodic measurements of a set of process values.
These process values are acquired through processor peripheral modules allocated for each motor as follows:

Table 3. Peripheral Table for Motor 1 (J1 PCI-e connector)

Process Variable Peripheral

Phase A Current

Phase B Current

Phase C Current

ADC0/1 channel 11

ADC0/1 channel 12

ADC0/1 channel 13

DC-bus Voltage ADC0/1 channel 14

DC-bus Current ADC0/1 channel 1

Resolver Sine

Resolver Cosine

ADC0 channel 0

ADC1 channel 1

Encoder Phase A

Encoder Phase B

eTimer0 channel 0

eTimer0 channel 1

Table 4. Peripheral Table for Motor 2 (J200 PCI-e connector)

[JG1] Process Variable Peripheral

Phase A Current

Phase B Current

Phase C Current

ADC2/3 channel 0

ADC2/3 channel 1

ADC1/3 channel 4

DC-bus Voltage ADC1/3 channel 5

DC-bus Current ADC1/3 channel 7

Resolver Sine

Resolver Cosine

ADC2 channel 2

ADC3 channel 3

Encoder Phase A

Encoder Phase B

eTimer1 channel 0

eTimer1 channel 1

In this application, the FOC framework utilizes a resolver to evaluate the speed and position of the motor. For each motor, a
resolver excitation signal must be generated by the controller board to excite the resolver windings and allow for shaft angle
encoding. These signals are generated for each motor by the following peripherals:

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 11

Table 5. Resolver Excitation Signal Peripheral Table

Motor Peripheral

Motor 1 (J1 PCI-e connector) eTimer0 channel 5

Motor 2 (J200 PCI-e connector) eTimer1 channel 5

The motor driver peripherals used to provide the 3-phase PWM outputs to each motor are the following:

Table 6. 3-Phase PWM output for Motor 2

Process Variable Peripheral

Phase A FlexPWM_1 submodule 0 A

FlexPWM_1 submodule 0 B

Phase B FlexPWM_1 submodule 1 A

FlexPWM_1 submodule 1 B

Phase C FlexPWM_1 submodule 2 A

FlexPWM_1 submodule 2 B

Table 7. 3-Phase PWM output for Motor 1

Process Variable Peripheral

Phase A FlexPWM_0 submodule 0 A

FlexPWM_0 submodule 0 B

Phase B FlexPWM_0 submodule 1 A

FlexPWM_0 submodule 1 B

Phase C FlexPWM_0 submodule 2 A

FlexPWM_0 submodule 2 B

The FOC application framework requires that the processor synchronize the sampling of process variables with the resolver
excitation signal and the PWM Master Reload Signal. The processor module in charge of this is the Scheduler Unit (SU) of the
processor’s Cross Triggering Unit module (CTU). A CTU is assigned to each motor as follows:

Table 8. CTU Module Allocation

Motor CTU Module

Motor 1 CTU_0

Motor 2 CTU_1

5.1 MPC5744P configuration file
The static configuration of the MPC5744P device is stored in an external header file MPC5744P_appconfig.h. The configuration
file includes defines to configure registers of following MCU modules and peripheries:

• Interrupts; ISR source, name and its priority

• System Integration Unit Lite2 (SIUL2)

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
12 NXP Semiconductors

• Pulse Width Modulator (FlexPWM)

• Cross-Triggering Unit (CTU)

• Analog-to-Digital Converter (ADC)

• Enhanced Motor Control Timer (eTimer)

• Deserial Serial Peripheral Interface (DSPI)

• Periodic Interrupt Timer (PIT)

5.2 Pulse width modulator module (FlexPWM)
The MPC5744P Clock Generation Module (MC_CGM) is configured to generate a clock signal of 160 MHz on the MOTC_CLK
bus. The Pulse Width Modulator module (FlexPWM) is clocked from the MOTC_CLK, therefore it is placed behind the IPS Bus
Clock Sync Bridge.

The MPC5744P device contains four PWM channels, each of which is configured to control a single half-bridge power stage. Two
modules are included on 257 MAPBGA package, while only one module is present on the 144 LQFP package. Targeted
MPC5744P Control Drive board is based on 257 MAPBGA device and therefore each of the FlexPWM modules can be used to
control 3-phase PMSM. FlexPWM_0 is routed to motor control PCI-Express interface J1 and FlexPWM_1 is routed to motor control
PCI-Express interface J200. Both FlexPWM modules can be synchronized using the Master Reload Signal (MRS), as shown in
Figure 12. on page 23.

For 3-phase motor control application submodules #0, #1 and #2 are configured.

5.2.1 FlexPWM general settings
Output Enable Register (FlexPWM0_OUTEN)

PWMA / PWMB Output Enable for submodules #0, #1 and #2

• #define FlexPWM0_OUTEN 0x0770

• #define FLexPWM1_OUTEN 0x0770

Mask Register (FlexPWM0_MASK)

PWMA / PWMB Output Mask Enable for submodules #0, #1 and #2

• #define FlexPWM0_MASK 0x0770

• #define FlexPWM1_MASK 0x0770

Master Control Register (FlexPWM0_MCTRL)

PWM Generator Clock Enabled for submodules #0, #1 and #2,

PWM23 selected to generate complementary PWM pair

• #define FlexPWM0_MCTRL 0x0700

• #define FlexPWM1_MCTRL 0x0700

Fault Control Register (FlexPWMn_FCTRL)

Two FlexPWM0 FAULT pins are used to monitor the over-current and over-voltage. These faults are read and evaluated in the
software periodic routine thus there is no need the CPU to generate the interrupt by the FAULTx pins.

• Level indicating Fault: logic 0 for submodules #0 and #1

• Fault clearing: Manual

• Fault mode: Safe mode

• Fault interrupt request: Disabled

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 13

• #define FlexPWM0_FCTRL 0xC0F0

• #define FlexPWM1_FCTRL 0xC0F0

The defines to configure the general settings of FlexPWM module are stored in the MPC5744P_appconfig.h file.

5.2.2 FlexPWM SUBmodule settings
For Motor 1, the FlexPWM_0 submodule #0 is configured to run as a master and to generate MRS and counter synchronization
signal (master sync) for other submodules in FlexPWM module 0. Similarly, the FlexPWM_1 submodule #0 is configured to run
as a master and to generate MRS and counter synchronization signal (master sync) for other submodules in FlexPWM_1. The
MRS signal for both FlexPWM modules is generated every second opportunity of submodule #0, VAL1 compare, that is, full cycle
reload. All double buffered registers, including compare registers VAL2, VAL3, VAL4, and VAL5 are updated on the occurrence
of MRS, therefore new PWM duty cycles are updated every two PWM periods.

FlexPWM modulo counting, for generation of center-aligned PWM signals, is achieved by setting VAL0 register to zero and INIT
register to negative value of VAL1. When PWM clock of 160MHz, required PWM output 20 kHz and PWM reload period 100μs,
then INIT, VAL0, and VAL1 registers of submodules 0, 1, and 2 are set as follows:

• INIT = -160000000/20000/2 = - 4000 DEC = 0xF060

• VAL0 = 0 DEC

• VAL1 = - INIT - 1 = 3999 DEC = 0x F9F

Reload frequency of FlexPWM_0 and FlexPWM_1 submodules 0, 1, and 2 is set to “Every two opportunities“, and “Full-cycle
reload” is enabled. Because submodule #0 is a master that generates MRS signal, reload of double buffered registers of
submodule #0 is done on Local Reload. Submodules 1 and 2 are slaves, therefore reload of their double buffered registers is
done on Master Reload, broadcast from submodule #0. PWM clock frequency of 160 MHz is achieved by setting the prescaler to
zero.

• #define FlexPWM0_SUBn_CTRL1 0x1400 (where n=0,1,2)

• #define FlexPWM1_SUBn_CTRL1 0x1400 (where n=0,1,2)

Similarly, submodules #0 counter is initialized on Local Sync event, while submodules 1 and 2 on Master Sync event again are
broadcast from submodule #0. Because some registers are double buffered on occurrence of FORCE OUT signal, all submodules
of FlexPWM_0 and FlexPWM_1 have as force source selected Local Reload event. All PWM channels are used to drive a 3-
phase DC/AC inverter, therefore each PWM pair is driven in complementary mode, with dead-time automatically added on each
rising edge of the respective PWM signal.

• #define FlexPWM0_SUB0_CTRL2 0xC0A0

• #define FlexPWM0_SUBn_CTRL2 0xC2AE (where n=1,2)

• #define FlexPWM1_SUB0_CTRL2 0xC0A0

• #define FlexPWM1_SUBn_CTRL2 0xC2AE (where n=1,2)

MC33937 FET pre-driver inverts the polarity of PWM signals for top transistors (active low logic) so PWM A output polarity in all
submodules is set as Inverted. Therefore, the output of PWM A of each submodule is set to logic one during the fault state as
well.

• #define FlexPWM0_SUBn_OCTRL 0x0410 (where n=0,1,2)

• #define FlexPWM1_SUBn_OCTRL 0x0410 (where n=0,1,2)

FlexPWM modules include a Fault Protection logic, which can control any combination of PWM output pins and automatically
disable PWM outputs during a fault state. Faults are generated by a logic one or zero (depends on the Fault Level settings in
FCTRL) on any of the FAULTx pins. To enable mapping of all fault pins, fault disable mapping registers (DISMAP) of all submodules
must be enabled.

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
14 NXP Semiconductors

5.3 Cross-Triggering Unit (CTU)
The MPC5744P CTU is clocked from the MOTC_CLK clock signal of 160MHz on the bus. Two modules of CTU are included on
257 MAPBGA package, while the only one module is present on the 144 LQFP package. Targeted MPC5744P Control Drive board
is based on 257 MAPBGA device and therefore each of the CTU modules can be used to schedule the state variables acquisition
from both MC PCI-Express interfaces with respect to PWM cycle.

For dual PMSM control, two CTU modules are used on the 257 MAPBGA package:

• CTU_0

• CTU_1.

The MRS signal generated from the FlexPWM_0 0 and FlexPWM_1 module is internally routed to the CTU_0 and CTU_1 module
respectively. The MRS signal is selected using the input selection register Trigger Generator Subunit Input Selection Register
(TGSISR) as the source of master reload signal for CTU.

• #define CTU0_TGSISR 0x00000001

• #define CTU1_TGSISR 0x00000001

This signal is used to reload trigger compare registers (TnCR) and to reload the TGS counter with the value stored in the TGS
counter reload register. Because the MRS signal is generated every two PWM periods, the CTU counter can count up to value
of 16000DEC considering the initial value is set to zero.

• #define CTU0_TGSCCR 0x3E80

• #define CTU1_TGSCCR 0x3E80

The TGS counter register is used to compare the current counter value with the values of trigger compare registers. When the
two values are the same, an event is generated. TGS is configured in triggered mode. If Toggle Mode for external trigger enabled,
then:

• #define CTU0_TGSCR 0x0100

• #define CTU1_TGSCR 0x0100

Following TnCR trigger compare registers are used in the application for trigger events:

• #define CTU0_T0CR 0x00A0

• #define CTU0_T1CR 0x1D4C

• #define CTU0_T2CR 0x3C8C

• #define CTU1_T0CR 0x00A0

• #define CTU1_T1CR 0x1D4C

• #define CTU1_T2CR 0x3C8C

Until the TGS is responsible to generate triggers, the CTU Scheduler subunit (SU) is responsible for generation of ADC commands
or triggers to on chip logic such as timers.

Any of trigger events from TGS can be associated with each of the SU outputs. This is implemented by the Trigger Handler block.
The group of first four trigger outputs is configured as:

• #define CTU0_THCR1 0x00424261

• #define CTU1_THCR1 0x00505061

Since eTimer_0 is used for Motor 1 and eTimer_1 is used for Motor 2, it is important to specify the correct triggers

in the Trigger Handler block for each of the CTU modules.

 NOTE

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 15

Trigger event outputs are generated by the CTU SU according to the occurred trigger event. The list of trigger events outputs for
a given FOC application is as follows:

• For Motor 1:

— CTU0_T0CR – generates the ADC command event output synchronized with respect to PWM period. It is used for
motor phase currents, DC-bus voltage and resolver outputs measurement.

— CTU0_T1CR – is associated with eTimer_0 event output to generate the rising edge of the square signal for resolver
excitation.

— CTU0_T2CR – is associated with eTimer_0 event output to generate the falling edge of the square signal for resolver
excitation.

• For Motor 2:

— CTU1_T0CR – generates the ADC command event output synchronized with respect to PWM period. It is used for
motor phase currents, DC-bus voltage and resolver outputs measurement.

— CTU1_T1CR – is associated with eTimer_1 event output to generate the rising edge of the square signal for resolver
excitation.

— CTU1_T2CR – is associated with eTimer_1 event output to generate the falling edge of the square signal for resolver
excitation.

A 10 kHz square signal is filtered to a sine-wave form and processed by conditional resolver circuit to feed the resolver input
excitation winding. Triggers T1 and T2 are therefore set to toggle the eTimer_0 output at 10 kHz frequency respecting the formula:
MOTC_CLK/(2(T2CR-T1CR)) = 10 kHz. The process to align the T1 and T2 with respect to PWM period is shown in CTU triggers,
ADC conversion and interrupt timing on page 19.

The SU uses a Commands List, to select the command to send to the ADC when a trigger event occurs. Each ADC command
sent by the CTU into the ADC specifies:

• Whether the actual command is the first command of a new stream of consecutive commands or not

• Whether an End Of Conversion (EOC) interrupt is issued when conversion specified by the command is finished

• Which channels are to be converted for both ADC modules

• The target FIFO register for storing the conversion results

Because the trigger compare register for trigger T0CR is set to a small number (A0 HEX), it generates the ADC start of conversion
request almost at the beginning of each PWM reload cycle. When a T0CR trigger event occurs, the ADC command selected by
the index value T0_INDEX in command list control registers CLCR1 is sent to the ADC.

For Motor 1 - At each T0CR trigger event, four ADC commands are executed in a stream. The first command in a stream specifies
two phase currents to be sampled simultaneously (all phase current signals are routed to pins shared between both ADC modules).
The second command specifies that the DC Bus Voltage be sampled, as well as the third phase current. The third command
specifies the resolver sine and cosine feedback signals to be sampled, and the fourth command specifies that the DC Bus current
be sampled.

For Motor 2 - At each T0CR trigger event, five ADC commands are executed in a stream. The first command in a stream specifies
two phase currents to be sampled simultaneously (all phase current signals are routed to pins shared between ADC1/ADC3 and
ADC2/3). The second command specifies that the DC Bus Voltage be sampled. The third command specifies that the third phase
current be sampled. The fourth command specifies that the resolver sine and cosine feedback signals be sampled, and the fifth
command specifies that the DC Bus Current be sampled.

The index pointer to the ADC command list T0_INDEX is updated according to the sector in which the actual output voltage vector
resides, calculated by the space vector modulation of the FOC algorithm. There are six sectors within the output voltage hexagon
of the inverter, therefore six different ADC command sequences are selected for one full revolution of the voltage vector. This
technique is necessary when the phase current measurement is done using three shunt resistors placed in the bottom side of
each inverter leg. Because the shunt resistor is placed at the bottom side of the inverter leg, the phase current can be measured
only when bottom transistor is switched on. Because the sum of the three currents in the motor windings is zero, only two currents
are measured and the third is calculated. Which phases are measured and which are calculated changes according to the voltage

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
16 NXP Semiconductors

vector angle, that is, the phases with the largest PWM on-pulse on the bottom transistors are selected to get the best current
information.

ADC Command list:

• For Motor 1

Table 9. ADC command list for Motor 1

ADC cmd. First cmd. Interrupt
cmd.

Conversi
on Type

ADC A CH ADC B CH ADC A
Signal

ADC B
Signal

CLRx #define

0 x dual 11 12 I_phA I_phB 0 0x618B

1 dual 13 14 I_phC Udc_bus 1 0x21CD

2 dual 0 0 R_sin R_cos 2 0x2000

3 x dual 15 1 - Idc_bus 3 0xA02F

• For Motor 2

Table 10. ADC command list for Motor 2

ADC cmd. First cmd. Interrupt
cmd.

Conversi
on Type

ADC A CH ADC B CH ADC A
Signal

ADC B
Signal

CLRx #define

0 x dual 0 1 I_phA I_phB 0 0x6020

1 dual 6 5 - Udc_bus 1 0x20A6

2 dual 9 4 - I_phC 2 0x2089

3 dual 2 3 R_sin R_cos 3 0x2062

4 x dual 8 7 - Idc_bus 4 0xA0E8

Motor 2 requires an extra CTU-ADC command because CTU_1 can only interface with ADC2 and ADC3, but some

process variables are tied to shared channels between ADC1 and ADC3. Thus, instead of sampling ADC1 and

ADC3 simultaneously, CTU_1 must sample ADC3 twice. This is why Udc_bus and I_phC are on separate

commands for Motor 2 unlike Motor 1 where they are sampled simultaneously.

 NOTE

5.4 Enhanced Motor Control Timer (eTimer)
The eTimer modules are used for resolver excitation square signal generation and can be used for decoding two square-wave
signals from the encoder sensor.

5.4.1 Resolver excitation
As discussed in section Cross-Triggering Unit (CTU) on page 15, the sequence of the trigger events T1 and T2 generated by
TGS is associated with eTimer0 and eTimer1 output events generated by the Scheduler Subunit (SU).

The eTimer0 and eTimer1 modules are then used as generators of the square wave signal for the resolver excitation. By enabling
the output bit (OEN) the OFLAG output signal is driven on the external pin. For Motor 1, the controller board design utilizes channel
5 of the eTimer0 module. For Motor 2, channel 5 of eTimer1 is used. eTimer_0 and eTimer_1 (using channel 5) are then configured
as follows:

• Counting mode - Edge of secondary source triggers primary count till compare

• Count direction - Count Up

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 17

• Primary source - IP Bus clock divide by 1 prescaler

• Count stop mode - Count Repeatedly

• Count length - Count Until Compare then Reinitialize

• Secondary source - AUX #0, which is an output signal from CTU ETIMER 0_TRG event output

— #define eTimer0_CTRL1_CH5 0xD848

— #define eTimer1_CTRL1_CH5 0xD848

• Polarity of secondary source - True

• Compare mode - Use COMP1 when counting up and COMP2 when counting up

• Output mode - Toggle OFLAG on successful compare with COMP1 and/or COMP2

• COMP1 = 0x0

• COMP2 = 0x0

• LOAD = 0x0

• Direction of the channel pin - Output – OFLAG

— #define eTimer0_CTRL2_CH5 0x8403

— #define eTimer1_CTRL2_CH5 0x8403

5.4.2 Encoder decoding
This section describes how to configure the eTimer for decoding the square signals from encoder sensor. Even if the PMSM motor
in the MPC5744P Kit is not equipped with this type of sensor, the encoder connector is available on the power stage board and
therefore the setting and decoding routines are available in the example software.

The goal is to decode two ninety-degree shifted square-wave signals. The eTimer counter value then represents the information
about the actual rotor position. The quadrature count mode increases the precision four time by counting up or down all rising
and falling edges of the encoder square signals.

The hardware design of the controller board utilizes the eTimer_0 and eTimer_1 modules with encoder Phase A and Phase B
connected to channel 0 and 1 respectively.

The eTimer_0 module and eTimer_1 module, channel 0 is then configured as follows:

• Counting mode - Quadrature count mode, uses primary and secondary sources

• Count direction - Count Up

• Primary source - Counter #0 input

• Secondary source - Counter #1 input

• Count stop mode - Count Repeatedly

• Count length - Count Until Compare then Reinitialize

— #define eTimer0_CTRL1_CH0 0x8041

— #define eTimer1_CTRL1_CH0 0x8041

• Preload control for CNTR

— Load CNTR with CMPLD1 upon successful compare with COMP2

— Load CNTR with CMPLD2 upon successful compare with COMP1

• Compare mode - Use COMP1 when counting up and COMP2 when counting down

— #define eTimer0_CCCTRL_CH0 0xDE00

— #define eTimer1_CCCTRL_CH0 0xDE00

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
18 NXP Semiconductors

The compare registers of eTimer0 channel #0 are set according to the number of encoder pulses per one mechanical revolution.
As an example, the encoder sensor with 1024 pulses is used. In quadrature mode, it means the encoder capability of position
recognition with a precision that is four times higher than the number of pulses in the application, the maximum numbers of edges
is 4096.

The compare registers and comparator load registers are calculated as follows:

• COMP1 = 4096/2 - 1 = 2047 DEC (0x07FF HEX)

• COMP2 = -4096/2 = -2048 DEC (0xF800 HEX)

— #define eTimer0_COMP1_CH0 0x07FF

— #define eTimer0_COMP2_CH0 0xF800

— #define eTimer0_CMPLD1_CH0 0x07FF

— #define eTimer0_CMPLD2_CH0 0XF800

— #define eTimer1_COMP1_CH0 0x07FF

— #define eTimer1_COMP2_CH0 0xF800

— #define eTimer1_CMPLD1_CH0 0x07FF

— #define eTimer1_CMPLD2_CH0 0XF800

5.5 CTU triggers, ADC conversion and interrupt timing
Configuration of FlexPWM0/FlexPWM1, CTU0/CTU1, and eTimer0/eTimer1 peripheral modules, as described in the above
sections, results in a sequence of triggers/events that are explained in the following timing diagrams.

The timing of the CTU triggers linked with the resolver signal generation and processing is shown in the following figure.

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 19

T1CR T1CR T2CR

ADC
sampling

ADC
sampling

Excitation 10kHz signal
-generated square-wave
-filtered sine-wave

eTimer0 ETC[5]

Resolver feedback “sin”
signal

ADC0 – CH[0]

Resolver feedback “cos”
signal

ADC1 – CH[0]

“sin” envelope

“cos” envelope

Detail view TnCR[DEC]

Phase shift

time

MRS MRS

T2CRT2CR
T0CR T0CR

Figure 9. An envelope extractor of resolver feedback signals

As described earlier, triggers T1 and T2 are used to generate the square-wave excitation signal. This signal is then processed by
a 3rd order Sallen-Key low-pass filter. The cut-off frequency of the filter is 10 kHz (precision may vary according to the tolerance
of the RC components in the filter). Proposed solution results to a sine-wave signal that is directly used for feeding the resolver
excitation winding. However, the low-pass filter makes the sine-wave signal phase-shifted to the origin square-wave signal. This
phenomenon has to be taken into the consideration when CTU trigger compare registers T1CR and T2CR are set.

Both triggers T1 and T2 are set with respect to the T0 trigger which handles the sequence of the phase current, DC-bus voltage,
and resolver feedback measurement. The goal is to have the positive peak of phase-shifted sine signal aligned with T0 instance
and therefore the T1 and T2 are manually set according to the detailed view of Figure 9. on page 20.

The application state machine functions are called from an interrupt service routine (ISR), which is associated with CTU-ADC
command interrupt request. As shown in the ADC command list, the ADC command interrupt is linked with CTU trigger T0CR,
that is, when measurement of the phase currents, DC bus voltage and resolver feedbacks is finished.

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
20 NXP Semiconductors

FlexPWMsub0 counter

FlexPWMphAoutput

FlexPWM0

FlexPWMMRS

CTU triggers

eTimer0 CH5 OFLAG
-Resolver Excitation

Resolver feedback signals
Sin-Cos at 10KHz

ADC conversion
commands execution

ISR service routine

Full Cycle Reload, Every Second Opportunity
VAL1
VAL3

VAL0

VAL2
INIT

A_top

A_bot
deadtime

PWM
reload

100μs

Free for application
use

PWM
reload

PWM
reload

Duty-cycles
calculation

sin
cos

phase
I_ABC

EOC
interrupt

Free for application
use

FOC
calculation

Duty-cycles
calculation

sin
cos

Trig. 1

COMP 1

Trig. 2

COMP 2

Trig. 1

COMP 1

Trig. 2

COMP 2

Phase shift due to the filtering

MRSMRSMRS
Trig. 0Trig. 0

phase
I_ABC

EOC
interrupt

FOC
calculation

eTimer0 CH5 succ. compare

Figure 10. FlexPWM-CTU-ADC conversion timing for single motor control

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 21

Figure 11. FlexPWM-CTU-ADC conversion timing for dual motor control

To ensure correct calculation of the FOC algorithm, the measurement of the resolver outputs and phase current must be executed
at the same time. Because there are only two independent sample and hold circuitries on MPC5744P, parallel sampling of all
signals is impossible. Two phase currents can be read at the same time as well as two resolver signals can be read at the same
time. Two measurements of these four signals must, however, be sequenced one after another. Sequencing of FOC quantities
measurement is handled by ADC Command List.

The CTU external trigger in toggle mode can be used to debug the application timing processes.

 NOTE

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
22 NXP Semiconductors

5.6 On-chip motor control peripherals interconnection

Figure 12. MPC5744P motor control peripherals connection

MPC5744P – MCU configuration

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 23

6 Software design

6.1 Introduction
This section describes the embedded software framework of the PMSM FOC application and its implementation in MPC5744P.
The aim of this section is to develop a clear understanding of the designed software focusing on key parts such as software
framework based on the application state machine, loop control and interrupt routines.

6.2 Application software design
The idea of proposed concept is to split the software into two main layers. The first one is linked with the device and hardware
configuration, and is called as a hardware dependent layer. While the second one is hardware independent layer and contains
software modules for signal processing.

The application defines a new type named pmsmFOC_t available in PMSM_struct.h file.

typedefstruct {
 AppFaultStatus faultID; // Application actual fault
 AppFaultStatus faultIDp; // Application fault flagst
 U32 svmSector; // Space Vector Modulation sector
 SWLIBS_2Syst iDQFbck; // dq axis feedback currents
 SWLIBS_2Syst iDQReq; // dq axis required currents, given by speed PI
 SWLIBS_2Syst iDQReqZC; // dq axis currents after zero cancellation
 SWLIBS_2Syst iDQErr; // Error between reference and feedback signal
 SWLIBS_2Syst uDQReq; // dq axis required voltages, given by current PIs
 SWLIBS_2Syst thTransform; // transformation angle - for Park transformation
 SWLIBS_2Syst iAlBeFbck; // alpha/beta axis feedback currents
 SWLIBS_2Syst uAlBeReq; // alpha/beta required voltages
 SWLIBS_2Syst uAlBeReqDCB; // alpha/beta voltages, DC Bus ripple elimination

 GMCLIB_ELIMDCBUSRIP_T elimDcbRip; // DC-bus voltage ripple elimination
 alignment_t align; // Alignment procedure
 GDFLIB_FILTER_IIR1_T dAxisZC; // d-axis current zero cancellation
 GDFLIB_FILTER_IIR1_T qAxisZC; // q-axis current zero cancellation
 GFLIB_CONTROLLER_PIAW_P_T dAxisPIp; // d-axis current PI controller
 GFLIB_CONTROLLER_PIAW_P_T qAxisPIp; // q-axis current PI controller
 GFLIB_CONTROLLER_PIAW_P_T speedPIp; // Speed Loop PI controller

 scalarControl_t scalarControl; // Scalar Control states variables
 driveStates_t cntrState; // Control states variables
 controlLoop_t controlLoop; // Position/Speed variables
 resolver_data_t Resolver; // SENSOR - resolver s/w data type
 ATO_observer_t Resolver_SW; // SENSOR - Tracking Observer s/w data type
 flexPWM_sw_t pwm; // ACTUATOR - FlexPWM s/w data type
 MC33937_T MC33937; // ACTUATOR - 3-ph. pre-driver s/w data type
 mpc5744P_DevKit_t MPC5744P_HW; // HW initialization of Development Kit
modules

 ph_current_meas_data_t iAbcFbck; // SENSOR - three phases current feedback
 dcb_voltage_meas_data_t uDcbFbck; // SENSOR - raw/filtered value of Udc
 volatile tU8 btSpeedUp; //button on power stage to speed up motor
 volatile tU8 btSpeedDown; //button on power stage to slow down motor
 tU8motorID; //unique motor identifier
} pmsmFOC_t;

The proposed structure includes all variables related to cascade structure for PMSM FOC, state variables related to the application
and development kit, and data for peripherals configuration such as base address or channel offset.

Software design

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
24 NXP Semiconductors

Table 11. MotorID and FOC Structure Table

motorID pmsmFOC_t

0 – (Motor 1) FOC_one

1 – (Motor 2) FOC_two

6.3 Application data flow overview
The application software is interrupt driven running in real time. There are two periodic interrupt service routines
(FOC_one_Fast_ISR() and FOC_two_Fast_ISR()) associated with CTU-ADC command interrupt requests. These ISRs execute
all motor control tasks including both fast current and slow speed loop control. All tasks are performed in an order described by
the application state machine shown on Figure 15. on page 27 and application flowcharts shown on Figure 14. on page 26
and Figure 13. on page 25.

Figure 13. Flow chart diagram of a main function

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor control calculations, the
state machine functions are called within a periodic ISR. Therefore, to call state machine functions, the periphery causing this
periodic interrupt must be properly configured and the interrupt enabled. As described later, all peripherals are initially configured
and all interrupts are enabled before calling the state machine, see Figure 15. on page 27.

Software design

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 25

As soon as interrupts are enabled and all peripheries are correctly configured as described in MPC5744P – MCU configuration
on page 10, the state machine functions are called from the CTU-ADC interrupt service routine. The background loop handles
noncritical timing tasks, such as the FreeMASTER communication polling.

Figure 14. Flow chart diagram of periodic interrupt service routine

6.4 State machine
The application state machine is implemented using a two-dimensional array of pointers to functions called state_table_one[][]()
and state_table_two[][]() for Motor 1 and Motor 2 respectively. The first parameter describes the current application event and the
second parameter describes the actual application state. These two parameters select a particular pointer to state machine
function, which causes a function call whenever state_table_one[][]() or state_table_two[][]() is called.

Software design

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
26 NXP Semiconductors

Figure 15. Application state machine

The application state machine considers seven states represented by a variable state defined as AppStates :

typedef enum {
 reset = 0,
 init = 1,
 fault = 2,
 ready = 3,
 calib = 4,
 align = 5,
 run = 6
 }AppStates; /* Application state user type*/

To indicate/initiate a change of state, thirteen events are defined, selected using variable event defined as AppEvents:

typedef enum {
 e_reset = 0,
 e_reset_done = 1,
 e_fault = 2,
 e_fault_clear = 3,
 e_init_done = 4,

Software design

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 27

 e_ready = 5,
 e_app_on = 6,
 e_calib = 7,
 e_calib_done = 8,
 e_align = 9,
 e_align_done = 10,
 e_run = 11,
 e_app_off = 12
 }AppEvents; /* Application event user type */

6.4.1 State – RESET
State RESET is the first state the state machine enters after power on or reset, in other words, when the application enters main()
function. In RESET state, all used peripherals are reset and configured as required by the application (see MPC5744P – MCU
configuration on page 10). Before configuring peripheral modules, all interrupts are disabled. Interrupts are enabled after the
RESET state pass. Therefore, the periodic CTU-ADC interrupt is not requested, and the state machine functions cannot be
executed until all interrupts are enabled and all peripherals set.

State RESET is a "one pass" function/state. It is entered and executed only once, and the next state is called after RESET is
finished. If there is no error/fault during RESET execution, the application event is set to event=e_reset_done and all interrupts
are enabled at the end of the function. From this point, the CTU-ADC interrupts are enabled, and if the peripherals are correctly
configured, the next call of state machine function is from within the CTU-ADC interrupt service routine.

According to the data flow diagram of the CTU-ADC interrupt service routine, Figure 14. on page 26, the routine for three phase
current measurement PhCurrent3Ph_get_data() is executed first, followed by the rotor position measurement routine. The fault
detection function is always called before the state machine function call, ensuring correct transition to FAULT state in case a fault
is detected. If there is no fault detected, the application event remains set to event=e_reset_done, hence INIT state is selected
as the next state to execute.

The user can initiate a jump to RESET state from any state of the state machine by setting the event to event=e_reset. This is
done by setting switchAppReset variable to true using FreeMASTER. The entire RESET procedure as described above is then
repeated. The following sequence is performed in this order:

• interrupts disable

• all peripherals reset and configure

• user control and fault variables reset

 switchAppOnOff = false;
 switchAppOnOffState = false;
 switchFaultClear = false;
 switchAppReset = false;
 faultID.R = 0x0;
 faultIDp.R = 0x0;

• event set to e_ reset_done

• interrupts enable

6.4.2 State – INIT
State INIT is similar to state RESET "one pass" state/function, and can be entered from all states except for READY state, provided
there are no faults detected. All application variables and parameters are initialized in state INIT. After the execution of INIT state,
the application event is automatically set to event=e_init_done, and state READY is selected as the next state to enter.

Transition to the INIT state is performed by setting event to event=e_app_off, which is done automatically on falling edge of
switchAppOnOff=false using FreeMASTER.

Software design

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
28 NXP Semiconductors

6.4.3 State – FAULT
The application goes immediately to this state when a fault is detected. The system allows all state machine states to pass into
the FAULT state by setting event=e_fault. State FAULT is a state that allows transition back to itself if a fault is present in the
system and the user does not request clearing of fault flags.

There are two different variables to signal fault occurrence in the application. The actual fault register faultID represents the
current state of the fault pin/variable etc., and the pending fault register faultIDp represents a fault flag, which is set once actual
fault is/was true. Even if the actual fault is reset (fault source disappears), the pending fault remains set until manually cleared by
the user. Such mechanisms allow for stopping the application and analyzing the cause of failure, even if the fault was caused by
a short glitch on monitored pins/variables.

State FAULT can only be left when application variable switchFaultClear is manually set to true (using FreeMASTER). That is,
the user has acknowledged that the fault source has been removed and the application can be restarted. When the user sets
switchFaultClear = true; the following sequence is automatically executed:

 faultID.R = 0x0; // Clear Fault register
 faultIDp.R = 0x0; // Clear Pending Fault register
 switchFaultClear = false; // Reset fault clearing switch
 event = e_fault_clear; // new applicationevent

When the next state (INIT) is entered, all fault bits are cleared, which means no fault is detected (faultIDp.R = 0x0) and
application variable switchFaultClear is manually set to true.

Both faultID and faultIDp are defined as AppFaultStatus, which is a 32bit long data type. Application faults are bit mapped in
AppFaultStatus type as follows:

Table 12. Application fault status user type

x 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FLTx FLTx FLTx RESERVED FLTx FLTx FLTx FLTx RESERVED

x 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED FLTx FLTx FLTx FLTx FLTx FLTx FLTx FLTx FLTx FLTx FLTx

• AppFaultStatus field description

Table 13. AppFaultStatus field description

Field Description

FLT_0 OverDCBusVoltage (Over-voltage on DC bus)

FLT_1 UnderDCBusVoltage (Under-voltage on DC bus)

FLT_2 OverDCBusCurrent (Over-current on DC bus)

FLT_3 OverLoad (Overload Flag)

FLT_4 MainsFault (Mains out of range)

FLT_5 WrongHardware (Wrong hardware fault flag)

FLT_6 OverHeating (Overheating fault flag)

FLT_7 OverPhaseACurrent (Over-current on phase A)

FLT_8 OverPhaseBCurrent (Over-current on phase B)

FLT_9 OverPhaseCCurrent (Over-current on phase C)

Table continues on the next page...

Software design

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 29

Table 13. AppFaultStatus field description (continued)

FLT_10 OffCancError (Offset cancellation error)

FLT_21 FOCError (error in FOC calculation function)

FLT_22 AlignError (error during alignment)

FLT_23 CalibError (error during ADC calibration)

FLT_24 InitError (error during app initialization)

FLT_29 FLEXPWM_Error (error in FlexPWM hw initialization)

FLT_30 ADC_Error (error in ADC hw initialization)

FLT_31 CTU_Error (error in CTU hw initialization)

There are two approaches to detect the fault state. Over-currents and over-voltage detection is performed by external comparators
with output brought to the Flex_PWM fault pin. These pins are red in the faultDetect() funtion within FOC_Fast_ISR() routine,
Figure 14. on page 26. To detect fault FLT_5, a SIUL2 external interrupt is used to detect the INT pin on MC33937. The INT pin
becomes high as soon as a fault appears and is detected by MC33937, [9].

6.4.4 State – READY
The state READY is a state that allows transition back to itself, provided no faults are present and the user does not request the
start of the application. In other words, t his is a wait state where the application waits for the user to initiate a transition to a run
state.

Transition to the RUN state is conditioned by the states CALIB and ALIGN. Transition to CALIB state is performed by switching
the application on (setting event to e_app_on) , which is done automatically on the rising edge of switchAppOnOff=true in
FreeMASTER or on the falling edge of the SW1 flop/flop switch on power stage board.

Transition to the FAULT state is performed automatically when a fault occurs.

6.4.5 State – CALIB
In this state, ADC DC offset calibration is performed. There are three ADC channels for 3-phase currents measurement as well
as two ADC channels for resolver sine and cosine signals measurement.

When the state machine enters the CALIB state, all PWM outputs are enabled and resolver sensor excitation is disabled.

Calibration of the phase current DC offsets is achieved by generating 50% duty-cycle on the PWM outputs and applying a moving
average filter to all configured current channels. The output of the filter represents an averaged DC offset value. The DC offset is
stored for each current channel and is subtracted from the measured value when in normal operation. In this way, the half-range
DC offset, caused by voltage shift of 1.65V in conditional circuitry, is removed in all three phases.

Calibration of the resolver output DC offsets requires disabling the resolver excitation signal which ensures zero voltage value on
both sine and cosine signals. Then the same procedure as described in phase current DC offset calibration is performed. Acquired
DC offset caused by voltage shift of 1.65V in conditional circuitry, is removed in both resolver signals when in normal operation.
After successful calibration, the resolver excitation is enabled.

The state CALIB is a state that allows transition back to itself, provided no faults are present, the user does not requested stop of
the application, and the calibration process has not finished. The calibration window is set by default to 1ms. When calibration
counter reached 1ms and the averaged values are successfully saved, the application event is automatically set to
event=e_calib_done and state machine can proceed to the state ALIGN.

Transition to the FAULT state is performed automatically when a fault occurs.

Software design

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
30 NXP Semiconductors

6.4.6 State – ALIGN
Alignment of the rotor and stator flux vectors is used to mark zero electrical position. This position can be used to calibrate position
sensors.

When using a relative position sensor such as encoder, the initial position is not known, therefore the eTimer counter counting
the encoder edges has to be correctly reset at the start of operation in the ALIGN state. When using an absolute position sensor
such as resolver, the initial position is known but it might be loaded by an error due to the light misalignment of the sensor and
rotor. Resolver position DC offset represents a non-zero value of measured electrical rotor position when rotor aligned to zero
electrical position in the ALIGN state. The position offset value is stored and is subtracted from the measured value when in normal
operation.

In the ALIGN state a DC voltage is applied in phase A for a certain period. This forces the rotor to turn to “align” position, that is,
the stator and rotor fluxes are aligned. The rotor position in which the rotor stabilizes after applying this DC voltage is set as zero
position.

To wait for the rotor to stabilize in the aligned position, the DC voltage is constantly applied during the period defined by an
alignment duration. The alignment time duration and amplitude of the DC voltage is specified in the RESET state. Timing is
implemented using a software counter that counts from a predefined value down to zero. During this time, the event remains set
to event=e_align. When the counter reaches zero, the counter is reset back to a predefined value and the event is automatically
set to event=e_align_done. This enables transition to the RUN state.

Transition to the FAULT state is performed automatically when a fault occurs.

6.4.7 State – RUN
In this state, all calculations for the FOC algorithm as described in the section PMSM field-oriented control on page 2 are
performed. Calculation of the fast current loop is executed every CTU-ADC interrupt when in the RUN state, while calculation of
the slow speed loop is executed every Nth CTU-ADC interrupt. Arbitration is done using a counter that counts from zero up to
value N. When value N is reached, the counter is reset back to zero and the slow speed loop calculation is performed. This way,
only one interrupt is needed for both loops and timing of both loops is synchronized, that is, slow loop calculations are finished
before entering fast loop calculations.

Transition to the INIT state is performed by switching the application off, in other words by setting event to event=e_app_off,
which is done automatically on the falling edge of switchAppOnOff=false in FreeMASTER or on the rising edge of the SW1 flop/
flop switch on power stage board.

Transition to the FAULT state is performed automatically when a fault occurs.

The following figure shows the implementation of the FOC algorithm with an overview of used functions and variable
nomenclatures. The position and speed evaluation routines is implemented for the resolver sensor. FOC motor control functions
are supported by Automotive Math and Motor Control Library Set for MPC574xP [8].

Software design

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 31

Figure 16. Variables/function name convention of implemented FOC algorithm

6.5 Current, speed, and position measurement
This section describes the routines for measurement of the FOC feedback variables such as phase currents, motor speed and
position. The FOC feedback variables are obtained by calling the getMotorControlVariables() function periodically in CTU-ADC
interrupt service routine FOC_one_Fast_ISR() and FOC_two_Fast_ISR().

6.5.1 Current measurement
Due to several available hardware configurations (PCIe interface J1 and J200) the current measurement hardware initialization
is done by the PhCurrent_meas_hw_init() function called in the RESET state.

Three phase currents can be obtained by calling either the PhCurrent2Ph_get_data() or PhCurrent3Ph_get_data() function.
The PhCurrent2Ph_get_data() function provides the measurement only of two currents at any time, and third one is calculated
according to Phase current measurement on page 6. The currents to be measured and current to be calculated depend on a
sector in which the actual output voltage vector lies. The sector is calculated by GMCLIB_SvmStd() function, which generates three
phase duty-cycles for the inverter by employing Space Vector Modulation technique.

The function PhCurrent3Ph_get_data() provides the measurement of all three currents at any time. This approach requires a
minimal PWM pulse width for successful current sampling, hence it cannot be used up to full PWM duty-cycle. This technique is
used in the project and minimal pulse width is achieved by limitation of the required voltages to 90% of full duty-cycle.

6.5.2 Resolver position and speed measurement
Section Resolver signal processing on page 7 describes the ATO approach to extract the information about the speed and position
from the resolver output signals.

Software design

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
32 NXP Semiconductors

Due to several available hardware configurations (PCIe interface J1 and J200) the resolver hardware initialization is done by the
Resolver_hw_init() function called in the RESET state. Resolver sine and cosine signals are acquired by calling the
Resolver_get_data() function. The speed and position are then obtained by calling the following functions: ATO_calculation(),
ATO_get_position_el(), and ATO_get_w_speed_el(). The position error for the ATO algorithm is calculated in separate
function ATO_theta_err_calc_resolver() because different sensor requires different approach to calculate the position error.

thRotMec

wRotMec

wRotEl

thRotEl

AMCLIB_TrackObsrv_FLT
err estim

estim

-

GDFLIB_FilterMA

Resolver

LPFeTimer0
#CH5

ADC0 #CH0
ADC1 #CH0

J7
sin
cos

sin
cos

sin

cos

Resolver_hw_init()

ATO_calculation()

ATO_theta_err_calc_resolver()

GFLIB_Sin

GFLIB_Cos

Resolver_get_data()

Motor PP

ATO_get_w_speed_el ()

estim
Motor PP

ATO_get_position_el()

estim

Figure 17. ATO approach for resolver speed and position measurement

The resolver is an absolute position sensor, that is, there is no need for a mechanical alignment. However, the resolver must
either:

• be mounted precisely on the rotor shaft, aligned position of rotor and stator fluxes result in resolver sin/cos signals
representing zero, or

• an offset between real zero position and zero position indicated by the resolver has to be known a priory.

This offset is then always subtracted from the measured position. Initialization of the resolver offset is done at the end of the align
procedure (ALIGN state), by writing the value measured from the resolver into the offset.

7 Application control user interface

To control the application and monitor the variables in runtime, use the NXP real-time debug monitor and data visualization tool
FreeMASTER [5]. The example software package of the MPC5744P Development Kit contains a preconfigured FreeMASTER
example project. An integral part of the FreeMASTER project is the Motor Control Application Tuning (MCAT) tool [6] to help the
user tune the FOC application.

7.1 FreeMASTER
Communication with the host PC is made via USB. Because FreeMASTER supports RS232 communication, there must be a
driver installed on the host PC that creates a virtual COM port from the USB. Use this COM port for the FreeMASTER
communication.

The application configures the LINFlex module of the MPC5744P for communication speed of 115 200 bps. Set FreeMASTER to
the same speed by navigating to FreeMASTER menu \Project>Options> and selecting the Comm tag.

• Watch on-board variables behavior in various formats using FreeMASTER

• Monitor the real-time behavior of the phase currents and other motor quantities using FreeMASTER recorder.

• Control the application using MCAT Control Page, Figure 18. on page 34.

• Tune the motor application using MCAT

Application control user interface

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 33

Figure 18. FreeMASTER real-time monitor with MCAT control page

7.2 Motor Control Application Tuning (MCAT) tool
The MCAT tool is a user-friendly graphical plug-in tool for FreeMASTER, which allowstuning and controlling the motor-control
applications. It supports up to three PMSM motors and is fully compliant with the FOC cascade control structure. The added value
of MCAT is the capability to calculate the parameters of the PI controller in the control structure. All application parameters are
stored and can be exported as static configuration header file. For more details about MCAT see [6, 7] .

The MCAT should be first configured to be aligned with the application, Figure 19. on page 35. Click the Setting icon in the right
upper corner to open the setting window and perform the general settings, FOC structure settings, chose the application
mechanical sensors, and organize the panels in the MCAT tab menu. All changes are stored clicking the OK button.

Application control user interface

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
34 NXP Semiconductors

Figure 19. MCAT Setting page

The next mandatory step is to fill the parameters of the application. For that purpose, enter the Parameters tab. Store Data button
stores all changes in the panel, Reload Data loads the default values, and Update Target button updates the Alignment parameters
to the MCU.

Application control user interface

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 35

Figure 20. MCAT Input Application Parameters page

Once the motor and application parameters are entered, the tuning process can start. MCAT is fully compatible with speed FOC
structure with current and speed loop. Speed and position signal processing routines can be tuned by MCAT as well. There is an
option to select either resolver sensor, encoder sensor, or sensorless model-based approach in the MCAT setting panel.

As an example, the current loop tuning can be seen in figure below. FreeMASTER recorder can trigger required current and display
the current response as well as the acting voltage value.

Application control user interface

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
36 NXP Semiconductors

Figure 21. MCAT tuning process – current loop

An Application Control Structure page brings an advantage of MCAT to control the motor at different level of cascade control
structure, figure below. Scalar control offers a possibility to control the motor in open loop manner without any feedback request.
Next level is a voltage FOC control where only position information is required. Current FOC incorporates first PI controllers in
the loop and requires the current information. The full control is Speed FOC where all control loops are closed.

Figure 22. MCAT Application Control Structure page

The application configuration file is generated in the Output File tab. Clicking the button a header file is generated to the configured
path which is selected in the Setting page.

7.3 MCAT control page
MCAT control page simplifies the control task using the speed gauge and buttons to control the motor, and displays the application
actual state and faults, figure below.

Application control user interface

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 37

Permanent/Pending
faults

DCbus voltage
measurement

Application
On/Off switch

Application state
and clear fault

Load application
default setting

Mechanical speed
 required and measured

Actual fault status

Figure 23. MCAT Control page

The Application State field displays the actual state machine status. In case of the Fault state:

• The permanent/pending faults are indicated by a highlighted red bar with the name of the fault source.

• The actual faults are indicated by the circle-shaped LED-like indicator, which is placed next to the bar with the name of the
fault source.

• The actual presence of a fault is indicated by highlighting the respective LED-like indicator.

• The RUN button changes to FAULT and is highlighted by red color.

If a fault state occurs for any reason, the application switches off automatically, and displays the FAULT application state, indicated
by a pink frame indicator.

When all actual fault sources are removed (which is indicated by none of the LED-like fault indicators being lit), clear the pending
faults by pressing the FAULT CLEAR button that appears instead of the RUN button. This clears all pending faults and enables
the transition of the state machine into the INIT state and then to the READY state.

When the application faults are cleared and the application pass to READY state, all state variables of the control algorithm a re
set to zero , but all control algorithm parameters do not change their value.

Load the default setting and the algorithm parameters pressing Load button. Load button enables the transition to the RESET
(then – INIT – READY) state where the application is set to its default configuration defined by PMSM_appconfig.h.

Start the application by clicking the "On/Off" button.

Application control user interface

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
38 NXP Semiconductors

In the RUN state, all control loops of the FOC algorithm are active. That means that the three-phase currents are measured and
used to close the current loop, and the actual rotor speed is measured to close the speed loop. Select the desired speed of the
rotor in the variable watch window. The variable for controlling the speed is called Nreq; it is the required speed recalculated to
the mechanical speed in revolutions per minute.

Switch the application off by clicking the On/Off button, and it proceeds to the INIT state and consequently to the READY state.
Because of the motor used, select the required speed in the range from -3000 rpm to 3000 rpm.

The field-weakening algorithm is not implemented, and the required value of the d-axis current is set to zero.

8 References

1. MPC574xP MCU, product page

2. MPC5744P Reference Manual

3. MPC5744P Controller Board user manual

4. 3-phase Low Voltage Power Stage User Manual

5. FreeMASTER Run-Time Debugging Tool

6. Motor Control Application Tuning (MCAT) Tool

7. AN4642, Motor Control Application Tuning (MCAT) Tool for 3-phase PMSM

8. Automotive Math and Motor Control Library Set for MPC5744P

9. Three Phase Field Effect Transistor Pre-driver MC33937

9 Revision history

This section documents the changes done in this document.

Revision number Date Substantive changes

0 08/2017 Initial release

1 08/2018 Added documentation for dual motor
control including the software
configuration, peripheral descriptions for
two motors, and an updated timing
diagram

References

3-Phase PMSM Development Kit with MPC5744P, Rev. 1, August, 2018
NXP Semiconductors 39

http://www.nxp.com/MPC574xP
http://www.nxp.com/files/32bit/doc/ref_manual/MPC5744PRM.pdf?fasp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://www.nxp.com/AutoMCDevkits
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive-and-industrial-microcontrollers-mcus/3-phase-pmsm-development-kit-with-nxp-mpc5744p-mcu:MTRCKTSPS5744P?tab=Documentation_Tab
http://www.nxp.com/FREEMASTER
http://www.nxp.com/MCAT
http://www.nxp.com/doc/AN4642
http://www.nxp.com/AutoMCLib
http://www.nxp.com/MC33937

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,

big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,

Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,

ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org.

Ⓒ 2018 NXP B.V.

Document Number: AN12017
Rev. 1, August, 2018

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 System concept
	3 PMSM field-oriented control
	3.1 Fundamental principle of PMSM FOC
	3.2 PMSM model in quadrature phase synchronous reference frame
	3.3 Phase current measurement
	3.4 Resolver signal processing

	4 MPC5744P – development kit configuration
	4.1 Controller board
	4.2 3-phase power stage board

	5 MPC5744P – MCU configuration
	5.1 MPC5744P configuration file
	5.2 Pulse width modulator module (FlexPWM)
	5.2.1 FlexPWM general settings
	5.2.2 FlexPWM SUBmodule settings

	5.3 Cross-Triggering Unit (CTU)
	5.4 Enhanced Motor Control Timer (eTimer)
	5.4.1 Resolver excitation
	5.4.2 Encoder decoding

	5.5 CTU triggers, ADC conversion and interrupt timing
	5.6 On-chip motor control peripherals interconnection

	6 Software design
	6.1 Introduction
	6.2 Application software design
	6.3 Application data flow overview
	6.4 State machine
	6.4.1 State – RESET
	6.4.2 State – INIT
	6.4.3 State – FAULT
	6.4.4 State – READY
	6.4.5 State – CALIB
	6.4.6 State – ALIGN
	6.4.7 State – RUN

	6.5 Current, speed, and position measurement
	6.5.1 Current measurement
	6.5.2 Resolver position and speed measurement

	7 Application control user interface
	7.1 FreeMASTER
	7.2 Motor Control Application Tuning (MCAT) tool
	7.3 MCAT control page

	8 References
	9 Revision history

