
1 Introduction
A device tree is a tree structure used to describe the physical
hardware in a system. Each node in the tree describes the
characteristics of the device being represented. The purpose of
the device tree is to describe device information in a system
that cannot necessarily be dynamically detected or discovered
by a client program. For example, a PCI host may be able to
probe and detect attached devices; and so a device tree node
describing PCI devices may not be required. However, a
device node is required to describe the PCI host bridge in the
system, if that cannot be detected by probing.

Before the advent of the device tree, the kernel contained
device specific code. A small change, such as the modification
of an I2C peripheral’s address would force a recompilation of
the kernel image to be run.

The boot loader (for example, U-Boot) would load a single
binary, the kernel image, and execute it.

Prior to device trees, several attempts were made to reduce
complexity and pass small amounts of information to the
kernel. The boot loader would typically prepare some
additional information and place it in system ram at a location
pointed to by a predefined register. This information would
contain some basic information, such as memory size and
location, and kernel command line information, such as IP
address. The goal was to allow the kernel to configure

Freescale Semiconductor Document Number: AN5125

Application Note Rev. 0, 09/2015

Introduction to Device Trees

© 2015 Freescale Semiconductor, Inc.

Contents

1 Introduction.............................. 1

2 Basic device tree..2

3 Syntax................................ 3

4 Memory mapping and addressing..... 4

5 Interrupts.............................. 7

6 Example: Device tree node............... 8

7 Device tree inclusion..................... 9

8 Device tree compiler... 11

9 U-Boot... 11

10 Linux................................. 12

11 Examples..............................15

12 Revision history.. 33

hardware based on parsable information about the hardware rather than hard-coded initialization functions (for example,
hard-coded IP addresses).

With device trees, the kernel itself no longer needs specific code for each version of hardware. Instead, the code is located in
a separate binary: the device tree blob. This enables us to target different hardware with the same kernel image by simply
changing the much simpler, and much smaller, device tree binary.

The device tree can be passed to the kernel either through appending it to the kernel image or through the bootloader. The
machine type is now defined in the device tree itself. The bootloader can dynamically add some information (for example,
clock frequencies) to the device tree and then passes a pointer to the tree, located in system memory, through r2 (for ARM®

architecture) or r3 (for Power Architecture®). The kernel then unflattens and parses the device tree.

2 Basic device tree
Device trees are well described in the Power.org Standard for Embedded Power Architecture Platform Requirements
(ePAPR): https://www.power.org/documentation/epapr-version-1-1/. The ePAPR defines a concept, a device tree, to describe
system hardware and separate that description from the kernel image.

The device tree is a tree structure with nodes that describe the physical devices in the system that cannot be dynamically
detected by software. The nodes are organized in a hierarchical parent/child relationship.

This figure is a representation of a simple device tree, describing the platform type, CPU and memory. Nodes are organized
in a hierarchy as a collection of property and value tokens. Sub-nodes define the relationship of devices within the hierarchy.
(e.g. I2C devices are children of an I2C controller node.)

/

model = "fsl, P1010";

compatible = "fsl, P1010RDB";

#address-cells = <2>;

#size-cells - <2>;

CPUs

memory

ethernet @ 0xfe001000

#address-cells = <1>;

#size-cells = <0>;

CPU @ 0

Node Name

Unit Address

device_type = "cpu";

reg = <0x0>;

next-level-cache = <&L2>;

Property Value
Property Name

phandle
device_type = "memory";

Figure 1. High-level device tree

In Figure 1, we see the definition of a P1010 based system. The compatible keyword specifies the name of the system in the
form <manufacturer>, <model>. This may be used by the operating system to make decisions on how to run on the
machine.

Basic device tree

Introduction to Device Trees, Rev. 0, 09/2015

2 Freescale Semiconductor, Inc.

https://www.power.org/documentation/epapr-version-1-1/

Further in the tree, we see a node named cpus define one CPU with a unit address of 0. This corresponds to the node’s reg
property and indicates that a single CPU is available.

Further in the tree, the node named Ethernet has a unit-address value of FE001000.

This example is intended as a simple example of portions of a device tree. The following sections delve into more advanced
examples, as well as specifics of the syntax used to define nodes in the tree.

3 Syntax
A device tree is simply a tree structure of nodes and properties. Properties are key-value pairs and may contain both
properties and child nodes. The following sections review the basic syntax of the device tree nodes, as well as parent/child
node relationships.

3.1 Node names

The node name is a label used to identify the node. The unit-address component of the node identifies the base address of the
bus on which the node sits. This is the primary address used to access the device.

Child nodes must be uniquely named, but can alternatively be addressed by a “unit name,” which is used to differentiate
nodes with the same name (for example, multiple I2C devices in the same SoC) at the same level. Unit names are made of the
node names, the “@” symbol, and a unit address (for example, i2c@3000, i2c@4000, and so on).

Multiple definitions of the same node are merged into one by the Device Tree Compiler.

3.2 Properties

A node may contain multiple properties arranged in name = value format. The name consists of a string, while value can be
an array of strings, bytes, numbers, or phandles, or a mixture of types. For example, value can be:

• compatible = "fsl,mpc8610-msi", "fsl,mpic-msi";
• reg = <0 0 0x8000000>;
• interrupt-parent = <&mpic>;

NOTE
Numbers are always 32-bit big-endian in device trees. At times, multiple 32-bit big-
endian numbers are used to represent a larger value (for example, 64-bit).

3.3 Phandle

A phandle (pointer handle) is a 32-bit value associated with a node that is used to uniquely identify that node so that the node
can be reference from a property in another node. More simply put, it is a property in one node that contains a pointer to
another node. A phandle is created either by the device tree compiler or U-Boot for each label.

In the following example, <&label> is converted to the phandle for the labeled node by the DTC.

name@address {
 <key> = <&label>;
};

Syntax

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 3

label: name@adresss {
}

It is most commonly used for interrupts. In Listing 1 on page 7, interrupt-parent is assigned a phandle to the node with
the label mpic.

3.4 Aliases

The aliases node is an index of other nodes. The properties of the node are paths within the device tree, not phandles.

aliases {
 ethernet0 = &enet0;
 ethernet1 = &enet1;
 ethernet2 = &enet2;
 serial0 = &serial0;
 serial1 = &serial1;
 pci0 = &pci0;
};

4 Memory mapping and addressing
Addresses are encoded using the following three properties:

• reg
• #address-cells
• #size-cells

Each addressable device has a reg property, which lists the address ranges used by the device through one or more 32-bit
integers, called cells. Both address and length are variable in size, so the #address-cells and #size-cells properties in the
parent node define the number of cells in each field.

CPU nodes represent a simple case of addressing. Each CPU is assigned a unique ID, and there is no size associated with
CPU IDs.

cpus {
 #address-cells = <1>;
 #size-cells = <0>;

 cpu0: PowerPC,e6500@0 {
 device_type = "cpu";
 reg = <0 1>;
 next-level-cache = <&L2>;
 };

 cpu1: PowerPC,e65000@2 {
 device_type = "cpu";
 reg = <2 3>;
 next-level-cache = <&L2>;
 };
 cpu2: PowerPC,e6500@4 {
 device_type = "cpu";
 reg = <4 5>;
 next-level-cache = <&L2>;
 };

Memory mapping and addressing

Introduction to Device Trees, Rev. 0, 09/2015

4 Freescale Semiconductor, Inc.

 cpu3: PowerPC,e65000@6 {
 device_type = "cpu";
 reg = <6 7>;
 next-level-cache = <&L2>;
 };
};

Memory mapped devices are assigned a range of addresses, rather than a single address value as found in CPU nodes. #size-
cells of the parent indicates how large (in 32-bit quantities) the length field of each child is. #address-cells indicates how
many 32-bit address cells are used per child, as well.

{
 #address-cells = <0x1>;
 #size-cells = <0x1>;
 compatible = "fsl,p1022-immr", "simple-bus";
 i2c@3100 {
 reg = <0x3100 0x100>;
 };
}

In the above example, we see two cells in the reg property of the I2C child node. The first cell corresponds to the base
address of 0x3100. The second cell is the size. So, the register map of this particular I2C controller is from 0x3100 to 0x31ff.

Memory mapped devices may also include a ranges property in order to translate a range of addresses from parent to child
devices.

The root node describes the CPU’s address space. Child nodes of the root use the CPU’s address domain and do not need
explicit mapping. However, nodes that are not direct children of the root node do not use the CPU’s address domain. The
device tree must specify how to translate addresses from one domain to another. Through the ranges property, such
translation is performed and a non-direct mapped child may obtain a memory mapped address.

/ {
 #address-cells = <0x2>;
 #size-cells = <0x2>;
 soc@fffe00000 {
 ranges = <0x0 0xf 0xffe00000 0x100000>;
 #address-cells = <0x1>;
 #size-cells = <0x1>;
 compatible = "fsl,p1022-immr", "simple-bus";
 i2c@3100 {
 #address-cells = <0x1>;
 #size-cells = <0x0>;
 cell-index = <0x1>;
 compatible = "fsl-i2c";
 reg = <0x3100 0x100>;
 codec@1a {
 compatible = "wlf,wm8776";
 reg = <0x1a>;
 };
 };

The ranges property defines a range of addresses for the child devices in this format: <bus-address parent-bus-address
size>

• bus-address — bus base address, using #address-size of this bus node
• parent-bus-address — base address in the parent’s address space, using #address-size of the parent node
• size — size of mapping, using #address-size of this node

Memory mapping and addressing

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 5

Note that an empty ranges property indicates that the translation from parent to child address space is an identity mapping
only, meaning that the parent bus address space is the same as the child bus address space. The absence of a ranges property
is not the same as an empty ranges property. The absence of a ranges property means that translation is not possible (for
example, with CPU nodes).

In the above example, the SoC has a range defined that maps to:
• Bus address = 0x0 (using the #address-size of the SoC node)
• Parent address = 0x0F_FFE0_0000

NOTE
Numbers are represented as 32-bit, big-endian in the device tree. However, because
the #address-size of the parent node is set to 2, we concatenate two cells into a 64-
bit address of 0x0000_000F_FFE0_0000.

In this example, the SoC node is defined at this address. This corresponds to the CCSR base address (or the internal
register map base address) on the QorIQ P1022 device.

• Size = 0x100000 (using #address-size of the child node)

These essentially map address 0x0 of children to 0xF_FFE0_0000, which is the base address of the SoC. So, for example, the
I2C controller defined is at address 0x3100, which corresponds to an offset of 0x3100 from the base, or an absolute SoC
address of 0xF_FFE0_3100.

Finally, there are devices that are not memory mapped on the processor bus. They may have indirect addresses that are not
directly accessible by the CPU. Instead, the parent device’s driver would be responsible for bus accesses.

i2c@3000 {
 gpio3: gpio@21 {
 compatible = "nxp,pca9555";
 reg = <0x21>;
 #gpio-cells = <2>;
 gpio-controller;
 polarity = <0x00>;
 };

For example, the above I2C controller taken from PSC9131rdb.dts shows an I2C device assigned an address, 0x21, but no
length or range associated with it.

PCI address space is completely separate from the CPU address space, and address translation is handled slightly differently.
This is still performed using the range, #address-cells, and #size-cells properties.

pci1: pcie@ffe09000 {
 reg = <0 0xffe09000 0 0x1000>;
 ranges = <0x2000000 0x0 0xa0000000 0 0xa0000000 0x0 0x20000000
 0x1000000 0x0 0x00000000 0 0xffc10000 0x0 0x10000>;

PCI child addresses use three cells labeled phys.hi, phys.mid, and phys.low. The first of these, phys.hi, encodes information
about the space. Most interesting may be the space coding, which indicates configuration space, I/O space, or 32-/64-bit
memory space.

The PCI child address is followed by CPU address space and size. The size of these are determined by the parent’s definition
of #address-cells and #size-cells.

In the above example, we have two address spaces defined:
• A 32-bit memory region beginning at PCI address 0xa0000000, mapped to CPU address 0xa000000, with size =

0x20000000
• An I/O region beginning at PCI address 0x0, mapped to CPU address 0xffc10000, with size = 0x10000

Memory mapping and addressing

Introduction to Device Trees, Rev. 0, 09/2015

6 Freescale Semiconductor, Inc.

4.1 Partitions

Many times, flash partitions are described in the device tree (see TABLE 1). This would, for example, correspond to a
partition on an mtd device seen by the kernel. However, partitions typically are not based on a hardware description and are
instead an arbitrary partitioning by the device tree author and should be discouraged.

5 Interrupts
Interrupts differ from addresses translations and do not follow the nature structure of the tree. Instead, interrupt signals can
originate from and terminate anywhere in the machine. Interrupt signals are expressed as links between nodes, instead of
naturally in tree form. Interrupt connections can be described using the following properties:

• interrupt-controller
• #interrupt-cells
• interrupt-parent
• interrupts

The interrupt-controller property is an empty property, declaring a node as a device that receives interrupt signals.

The #interrupt-cells property is a property of the interrupt controller node. It is used to define how many cells are in an
interrupt specifier for the interrupt controller.

The interrupt-parent property is a property of a device node containing a phandle to the interrupt controller to which it is
attached. Nodes without an interrupt-parent property can inherit the property from their parent node.

Finally, the interrupts property is a property of a device node containing a list of interrupt specifiers; one for each interrupt
output signal.

The following two nodes show interrupts connections on a QorIQ P1010 device.

Listing 1. Example: Interrupt connections on a QorIQ P1010 device

mpic: pic@40000 {
 interrupt-controller;
 #address-cells = <0>;
 #interrupt-cells = <4>;
 reg = <0x40000 0x40000>;
 compatible = "fsl,mpic";
 device_type = "open-pic";
 };
serial0: serial@4500 {
 cell-index = <0>;
 device_type = "serial";
 compatible = “fsl,ns16550”,"ns16550";
 reg = <0x4500 0x100>;
 clock-frequency = <0>;
 interrupts = <42 2 0 0>;
 interrupt-parent = <&mpic>;
 };

In Listing 1 on page 7, the interrupt controller is defined as pic, which is at address offset 0x40000. The label mpic was
added to the interrupt controller node to assign a phandle to the interrupt-parent property in the root node.

Interrupts

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 7

For the MPIC, the interrupt property has either two or four values. The first cell always specifies the index of the xIVPR
register of that interrupt. The first 16 are external interrupts; the remaining are internal interrupts. Therefore, internal
interrupts have a value 16 larger than documented in the reference manuals. #interrupt-cells in the pic node, above, is
defined as four, indicating each interrupt specifier has four cells. From the above example, the interrupt number was 42. 42 -
16 = 26, which, according to the P1010 reference manual, corresponds to the DUART interrupt.

The second value represents level sense. For MPIC, level sense is defined as follows:
• 0 = low-to-high edge sensitive type enabled
• 1 = active-low level sensitive type enabled
• 2 = active-high level sensitive type enabled
• 3 = high-to-low edge sensitive type enabled

If there is a third and fourth value, they represent interrupt-type and type-info. For MPIC, interrupt-type is defined as
follows:

• 0 = normal
• 1 = error interrupt
• 2 = MPIC inter-processor interrupt
• 3 = MPIC timer interrupt

In the case of an error interrupt, type-info is the error interrupt number. type-info would also be valid for IPIs and timers.

The complete description of MPIC bindings can be found in Documentation/devicetree/bindings/powerpc/fsl/mpic.txt.

NOTE
In Listing 1 on page 7, device_type is deprecated and should not be used. Also, using
#cell-index is discouraged. If used, the binding needs to be specific about what it
corresponds to in the programming model, and alternatively, a more specific named
property should be considered.

For the ARM GIC, the bindings are similar but different. The first cell defines the interrupt type:
• 0 = SPI interrupts
• 1 = PPI interrupts

The second cell contains the interrupt number. SPI interrupts number 0-987, while PPI interrupts number 0-15.

The third cell represents level sense:
• 1 = low-to-high edge sensitive
• 2 = high-to-low edge sensitive
• 4 = active-high level sensitive
• 8 = active-low level-sensitive

The complete description of GIC bindings can be found in Documentation/devicetree/bindings/arm/gic.txt.

For alternate interrupt controllers, we would have to examine the specific bindings for a complete explanation of the two
cells, but these are typically defined with the first cell specifying interrupt number and the second specifying interrupt flags
(such as edge/level triggering, active-high, active-low, and so on).

6 Example: Device tree node
Below is an example node of an I2C controller, with two devices on the I2C interface.

i2c@3000 {
 #address-cells = <1>;
 #size-cells = <0>;
 cell-index = <0>;
 compatible = "fsl-i2c";
 reg = <0x3000 0x100>;

Example: Device tree node

Introduction to Device Trees, Rev. 0, 09/2015

8 Freescale Semiconductor, Inc.

 interrupts = <43 2>;
 interrupt-parent = <&mpic>;
 dfsrr;

 dtt@48 {
 compatible = "national,lm75";
 reg = <0x48>;
 };

 rtc@68 {
 compatible = "dallas,ds1337";
 reg = <0x68>;
 };
};

Using the syntax described above, we can make the following observations about this example node:
• The I2C controller is located at offset 0x3000 from its parent.
• The driver for the I2C controller is fsl-i2c.
• The first child is named dtt, at offset 0x48 from its parent; the driver is national lm75.
• The second child is named rtc, at offset 0x68 from its parent; the driver is Dallas ds1337.
• The interrupt parent is the mpic, and interrupt number 0x43 is used. Because this is OpenPIC, an offset of 16 is added

to the interrupt number for internal interrupts. 43 - 16 = 27, so this is actually SoC interrupt 0x27.

7 Device tree inclusion
Device trees can be split into several files. As an example, the device tree for the QorIQ Qonverge product, the BSC9131 is
split into two files.

Device tree inclusion

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 9

bsc9131rdb.dts

definition of reference design board

/include/ "bsc9131si.dtsi
/ {

model = "fsl, bsc9131.rdb";
compatible = "fsl, bsc9131rdb";

bsc9131si.dtsi

definition of BSC9131 silicon

cpu@0 {

device_type = "cpu";
compatible = "fsl, e500v2";

bsc9131rdb.dtb

Compiled Binary DTB

00000060 00 00 00 03 00 00 00 0f 00 00 00 1b 66 73 6c 2c |............fsl,|
00000070 31 33 31 62 73 63 39 31 33 31 72 64 62 00 00 00 |bsc9131rdb......|
00000080 00 00 00 0f 00 00 00 21 66 73 6c 2c 62 73 63 39 |.......!fsl,bsc9|
00000090 72 64 62 00 00 00 00 00 01 61 6c 69 61 00 00 03 |131rdb......alia|

Figure 2. Device tree inclusion

.dts files are board level definitions. The .dts extension denotes “device tree source”.

.dtsi files are files included by the .dts files and generally contain SoC-level definitions. Device tree files do not have to be
monolithic; instead, they can be split into several files, including each other. By convention, .dtsi files are included files,
containing definitions of SoC-level information, while .dts files are final device trees containing board-level information.
The .dtsi extension denotes “device tree source include”.

The inclusion works by overlaying the tree of the including file over the tree of the included file, producing a combined
compiled binary.

As another example, the P1022 processor uses multiple include files for different SoC-specific nodes:
• p1022ds.dtsi — board definitions common to all addresses sizes
• p1022ds_32b.dts — main 32-bit DTS for the P1022 development system
• p1022ds_36b.dts — main 36-bit DTS for the P1022 development system
• fsl/p1022si-pre.dtsi — aliases and CPU nodes
• fsl/p1022si-post.dtsi — updates/overrides to SoC-specific nodes
• fsl/pq3-*.dtsi — common PowerQUICC III SoC devices
• fsl/qoriq-*.dtsi — common QorIQ SoC devices

/include/ "pq3-i2c-0.dtsi“
/include/ "pq3-i2c-1.dtsi“
/include/ "pq3-duart-0.dtsi“
/include/ "pq3-espi-0.dtsi“
spi@7000 {
 fsl,espi-num-chipselects = <4>;
};

Device tree inclusion

Introduction to Device Trees, Rev. 0, 09/2015

10 Freescale Semiconductor, Inc.

8 Device tree compiler
The Device Tree Compiler (DTC) is the tool that is used to compile the source into a binary form. Source code for the DTC
is located in scripts/dtc.

The output of the device tree compiler is a device tree blob (DTB), which is a binary form that gets loaded by the boot loader
and parsed by the Linux kernel at boot.

On ARM® and ARM® 64-bit architectures, DTBs to be generated at build time are listed in arch/../boot/dts/Makefile,
although they can be manually compiled by the DTC at any time.

The basic syntax of the DTC command line is: dtc [options] <input filename>

The most common options include:

-I <input format>
-O <output format>
-b <boot CPU>
 set the physical boot cpu

The input format could be .dts, .dtb, or .fs (.fs would read from the current file systems /proc/device-tree). The output format
could be .dts, .dtb, or .asm. There are many other options, to pad bytes and so on (-R, -S, -P). As an example, to compile the
above mentioned bsc9131rdb.dts file: dtc –I dts –O dtb bsc9131rdb.dts > bsc9131rdb.dtb

The DTC can also be used to reverse compile DTBs and make them human-readable again: dtc –I dtb –O dts
bsc9131rdb.dtb > bsc9131rdb_output.dts

9 U-Boot
U-Boot updates the flattened device tree (FDT) with platform-specific information, such as the information derived from the
reset configuration word (RCW), environment variables, and hardware configuration. The most common areas that U-Boot
touches are related to frequency, MAC addresses, LIODNs (Peripheral MMU settings), and memory size — although the
actual fix-ups are board specific and are not documented in any place other than the U-Boot code. Within U-Boot, the main
function where this all occurs is ft_board_setup().

U-Boot itself does not use the device tree on current Freescale platforms, although it has several commands that allow you to
view and manipulate the FDT itself:

• bootm has FDT-related subcommands:
• bootm fdt — relocates the flattened device tree
• bootm go — performs fix-up actions and boots the operating system

• fdt manipulates the FDT:
• fdt addr <addr> [<length>] — sets the FDT location to <addr>
• fdt boardsetup — performs board-specific setup
• fdt move <fdt> <newaddr> <length> — copies the FDT to <addr> and makes it active
• fdt resize — resizes the FDT to size + padding to 4 K address
• fdt print <path> [<prop>] — recursive print starting at <path>
• fdt set <path> <prop> [<val>] — sets <property> [to <val>]
• fdt mknode <path> <node> — creates a new node after <path>
• fdt rm <path> [<prop>] — deletes the node or <property>
• fdt header — displays header information
• fdt chosen [<start> <end>] — adds/updates the /chosen branch in the tree

• <start>/<end> — initrd the start/end address

Device tree compiler

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 11

10 Linux

10.1 Reading the flattened device tree (FDT)

If CONFIG_PROC_DEVICETREE is set in the kernel configuration options, you can view the actual device tree parsed by
the kernel from within the /proc file system after booting.

For example, you can execute a find for all nodes under /proc/device-tree:

[root@p4080ds]# cd /proc/device-tree
[root@p4080ds]# find
.
./name
[...]
./model
./fsl,dpaa/ethernet@0/fsl,qman-channel
[...]
./soc@ffe000000/fman@500000/ethernet@f0000/phy-connection-type
[...]

./soc@ffe000000/dma@100300/dma-channel@100/interrupts
[...]
./chosen/linux,initrd-start

You may also use the dtc tool to compile the /proc/device-tree into a DTS file:

[root@p4080DS]# dtc -I fs -O dts /proc/device-tree/
[...]
chosen {
bootargs = "root=/dev/ram rw console=ttyS0,115200 ramdisk_size=128000";
linux,stdout-path = "/soc@ffe000000/serial@11c500";
linux,initrd-start = <0x2f320000>;
linux,initrd-end = <0x2ffffd15>;
};

10.2 Device tree bindings

Device tree bindings describe the syntax used to describe specific types and classes of devices. The compatible property of a
device node describes the specific binding, or bindings, to which the node complies. Device tree bindings recognized by the
kernel are documented in Documentation/devicetree/bindings.

Each document describes which properties are accepted, with which values, as well as which properties are mandatory or
optional. The latest device tree bindings can be found upstream.

As an example, below is the documentation for the IFC binding, located in Documentation/devicetree/bindings/powerpc/fsl/
ifc.txt.

Linux

Introduction to Device Trees, Rev. 0, 09/2015

12 Freescale Semiconductor, Inc.

Figure 3. IFC binding documentation

10.2.1 Manually parsing bindings

Occasionally, more often for modules, device tree bindings are undocumented. Because the kernel source is open, it is
possible to go through the code and identify exactly how the node is used and by what driver code.

The compatible string is used to bind a device with a driver. Below is an example of an SPI node in the bsc9131rdb.dts file
from the Freescale Wireless SDK Release 1.5:

spi@6000 {
 rfphy0: ad9361_phy@0{
 compatible = "fsl,espi-ad_phy","ad9361";
 reg = <0>;
 spi-max-frequency = <20000000>;
 spi-cpha;
 band_group1 = <1 7>;
 band_group2 = <41>;

Linux

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 13

 band_group3 = <>;
 band_group4 = <13 40>;
 band_group_sniff1 = <>;
 band_group_sniff2 = <13>;
 band_group_sniff3 = <1 7>;
 band_group_sniff4 = <>;
 band_group_config1 = <&pa_en 0 &lna_en 0>;
 band_group_config2 = <&pa_en 0 &lna_en 1>;
 band_group_config3 = <&pa_en 1 &lna_en 0>;
 band_group_config4 = <&pa_en 1 &lna_en 1>;

 reset: reset {
 label = "reset";
 gpios = <&gpio1 2 1>;
 };
 pa_en: pa_en {
 #num-val = <1>;
 label = "pa_en";
 gpios = <&gpio 18 1>;
 };
 lna_en: lna_en {
 #num-val = <1>;
 label = "lna_en";
 gpios = <&gpio 17 1>;
 };
 };
);

From the bindings in the node, we can see that the hardware is compatible with fsl, espi-ad_phy, and ad9361. This
compatible property is used by the kernel to identify the hardware and match a driver that is registered in the kernel.

Looking through the source, we can see that espi-ad_phy is aliased to ad9361_phy (in file drivers/of/base.c). Further
searching finds the driver for ad9361_phy is located in drivers/rf/phy/ad9361.c.

#define DRV_NAME "ad9361_phy"
static struct spi_driver ad_phy_driver = {
 .driver = {
 .name = DRV_NAME,
 .bus = &spi_bus_type,
 .owner = THIS_MODULE,
 },
 .probe = ad_phy_probe,
 .remove = __devexit_p(ad_phy_remove),
};

The driver name is registered with the kernel as ad9361_phy, which is why this particular driver is used.

Probe is defined as ad_phy_probe, which indicates the function used to parse the device tree. We can examine this function
to see exactly where and how the properties in the device tree node for this RF module are used.

As another example, we can look at the T1040 device tree from the QorIQ SDK 1.6. The following is from t1040rdb.dts:

ucc@2200{
 compatible = "fsl,ucc_hdlc";
 rx-clock-name = "brg2";
 tx-clock-name = "brg2";
 fsl,rx-sync-clock = "none";
 fsl,tx-sync-clock = "none";
 fsl,tx-timeslot = <0xfffffffe>;
 fsl,rx-timeslot = <0xfffffffe>;
 fsl,tdm-framer-type = "e1";
 fsl,tdm-mode = "normal";
 fsl,tdm-id = <1>;
 fsl,siram-entry-id = <2>;

Linux

Introduction to Device Trees, Rev. 0, 09/2015

14 Freescale Semiconductor, Inc.

 fsl,inter-loopback;
};

In this example, the hardware is compatible with fsl,ucc_hdlc. We see that the driver for the hardware is located at
drivers/net/wan/fsl_ucc.hdlc.c

#define DRV_DESC "Freescale QE UCC HDLC Driver"
#define DRV_NAME "ucc_hdlc"

static struct platform_driver_ucc_hdlc_driver = {
 .probe = ucc_hdlc_probe,
 .remove = ucc_hdlc_remove,
 .driver = {
 .owner = THIS_MODULE,
 .name = DRV_NAME,
 .pm = HDLC_PM_OPS,
 .of_match_table = fsl_ucc_hdlc_of_match,
 },
};

In this case, probe is defined as ucc_hdlc_probe, which indicates the function used to parse the device tree.

11 Examples
On Power Architecture®, for example, device trees are located in arch/powerpc/boot/dts. On ARM® architecture, device trees
are for now located in arch/arm/boot/dts.

The following sections are commented examples of DTS and DTSI files for two different Freescale products — P2020 and
LS1021A-TWR.

NOTE
For brevity, only certain sections are outlined below.

11.1 P2020 example

Below are example sections of a device tree for the P2020 RDB. This specific DTS file makes use of multiple DTSI include
files.

11.1.1 P2020rdb.dts

This table shows the P2020rdb.dts file, which describes the P2020 board.

Table 1. P2020rdb.dts

DTS file Comments

/include/ "fsl/p2020si-pre.dtsi" Include file fsl/p2020si-pre.dtsi

/ { Root node is identified with a forward slash

model = "fsl,P2020RDB"; Defines the manufacturer (fsl) and model number
(P2020RDB) of the device

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 15

Table 1. P2020rdb.dts (continued)

DTS file Comments

compatible = "fsl,P2020RDB"; Describes specific board

aliases { Each property of the aliases node defines an index of other
nodes

ethernet0 = &enet0;

ethernet1 = &enet1;

ethernet2 = &enet2;

serial0 = &serial0;

serial1 = &serial1;

pci0 = &pci0;

pci1 = &pci1;

};

memory { Memory node

device_type = "memory"; Defines device type as memory

};

lbc: localbus@ffe05000 { Node localbus, starting at address 0xFFFE05000

reg = <0 0xffe05000 0 0x1000>; First instance of reg must be equal to the address of the
localbus node. Because address-cells = 2 (at the root node,
defined in the DTSI file):

• Address (64-bit quantity) = 0x0_FFE0_5000
• Size (at the root node) = 2

So, the size here is a 64-bit quantity (represented by two
<u32> values) equal to 0x1000.

/* NOR and NAND Flashes */ The ranges property maps translation between the address
space of the bus (child) and the address space of the parent.
The first cell indicates chip select followed by offset into the
chip-select address and size.

ranges = <0x0 0x0 0x0 0xef000000 0x01000000 CS0, offset 0xef000000, size 0x1000000

0x1 0x0 0x0 0xffa00000 0x00040000 CS1, offset 0xffa00000, size 0x40000

0x2 0x0 0x0 0xffb00000 0x00020000>; CS2, offset 0xffb00000, size 0x20000

nor@0,0 { This is the first child of the local bus. CS = 0, address offset is
0x0

#address-cells = <1>; Addresses of children (for example, partitions) are 32 bits

#size-cells = <1>; Size of children are 32 bits

compatible = "cfi-flash"; Hardware for NOR is indicated as cfi-flash

reg = <0x0 0x0 0x1000000>; The local bus defines the first cell as chip select, followed by
address and size.

CS = 0, address offset 0x0000_0000, size = 0x1000000

bank-width = <2>; 16-bit device on the local bus

device-width = <1>; A binding specific to cfi-flash

partition@0 { First child of NOR

/* This location must not be altered */

/* 256KB for Vitesse 7385 Switch firmware */

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

16 Freescale Semiconductor, Inc.

Table 1. P2020rdb.dts (continued)

DTS file Comments

reg = <0x0 0x00040000>; reg = 0, which indicates this starts at the top of NOR (which
was defined by parent = 0x0_EF00_0000) and goes for size =
0x40000

label = "NOR (RO) Vitesse-7385 Firmware"; Label and read-only are bindings specific to the driver. Label
is a human readable string defining the device.

read-only;

};

partition@40000 { Second child of NOR, starting at offset 0x40000

/* 256KB for DTB Image */

reg = <0x00040000 0x00040000>; Start address = 0x40000 and size = 0x40000

label = "NOR (RO) DTB Image";

read-only;

};

……

nand@1,0 { Nand child of local bus, chip select = 1, address offset = 0x0
from parent

#address-cells = <1>;

#size-cells = <1>;

compatible = "fsl,p2020-fcm-nand", The NAND node is defined as compatible with two different
drivers.

"fsl,elbc-fcm-nand";

reg = <0x1 0x0 0x40000>; Local bus defines the first cell as chip select, followed by
address and size.

CS = 1, address offset 0x0000_0000, size = 0x4_0000

partition@0 {

/* This location must not be altered */

/* 1MB for u-boot Boot loader Image */

reg = <0x0 0x00100000>; First child of NAND; resides at the top of the NAND address
range

label = "NAND (RO) U-Boot Image";

read-only;

};

partition@100000 { Second child of NAND, with address offset of 0x10_0000

/* 1MB for DTB Image */

reg = <0x00100000 0x00100000>; Address is offset 0x10_0000 from the top of NAND

label = "NAND (RO) DTB Image";

read-only;

};

……

soc: soc@ffe00000 { Label is for SoC at address 0xFE00_0000.

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 17

Table 1. P2020rdb.dts (continued)

DTS file Comments

NOTE: This is >32bit, because the root node’s #address-
cells property is set to 2 (actual #address-cells
mapping in the dtsi file). This node maps internal
SoC registers to address 0x0FFE000000.

ranges = <0x0 0x0 0xffe00000 0x100000>; Maps translation between the address space of the bus and
the address space of the parent. Because address size of
child nodes are 1, and address size of this node is 2. This
maps address 0x0 of child nodes to 0x0_FFE0_0000, with a
size of 0x100000.

……

i2c@3000 { I2C node at address 0x3000

rtc@68 { Child RTC at offset 0x68 from parent

compatible = "dallas,ds1339"; Hardware is Dallas, ds1339

reg = <0x68>; Address 0x68

};

};

……

spi@7000 { SPI node at offset 0x7000

flash@0 { SPI child at offset 0, labeled flash

#address-cells = <1>; Child nodes use one <u32> address

#size-cells = <1>; Child nodes use one <u32> for size

compatible = "spansion,s25sl12801"; Hardware is Spansion, s25sl12801

reg = <0>;

spi-max-frequency = <40000000>; Additional info parse-able by the SPI driver for max frequency
allowable by SPI port

partition@0 { Child of flash at offset 0

/* 512KB for u-boot Boot loader Image */

reg = <0x0 0x00080000>; Offset 0, size 0x80000

label = "SPI (RO) U-Boot Image"; Label used for the partition

read-only; Attribute is parsable by flash driver

};

partition@80000 { Second partition of child under flash

/* 512KB for DTB Image */

reg = <0x00080000 0x00080000>; Offset 0x80000, size 0x80000

label = "SPI (RO) DTB Image"; Label used for the partition

read-only; Attribute is parsable by flash driver

};

partition@100000 { Partition child of flash at offset 0x100000

/* 4MB for Linux Kernel Image */

reg = <0x00100000 0x00400000>; Offset 0x100000, size 0x400000

label = "SPI (RO) Linux Kernel Image"; Label used for the partition

read-only; Attribute is parsable by flash driver

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

18 Freescale Semiconductor, Inc.

Table 1. P2020rdb.dts (continued)

DTS file Comments

};

partition@500000 { Child partition of flash at offset 0x500000

/* 4MB for Compressed RFS Image */

reg = <0x00500000 0x00400000>; Offset 0x500000, size 0x400000

label = "SPI (RO) Compressed RFS Image"; Label used for the partition

read-only; Attribute is parsable by flash driver

};

partition@900000 { Child partition of flash at offset 0x900000

/* 7MB for JFFS2 based RFS */

reg = <0x00900000 0x00700000>; Offset 0x900000, size 0x700000

label = "SPI (RW) JFFS2 RFS"; Label used for the partition

};

};

};

usb@22000 { USB at offset 0x22000 from the SoC

phy_type = "ulpi"; Attribute is parsable by the driver, indicating ULPI interface

dr_mode = "host"; Attribute is parsable by the driver, indicating USB host

};

mdio@24520 { MDIO port at offset 0x24520

phy0: ethernet-phy@0 { PHY0 child at offset 0x0 from MDIO

interrupts = <3 1 0 0>; xIVPR=3, active-low, normal

reg = <0x0>;

};

enet0: ethernet@24000 { Ethernet 0 at offset 0x2400 from SoC

fixed-link = <1 1 1000 0 0>; Attribute is parsable by driver, fixed link

phy-connection-type = "rgmii-id"; Attribute is parsable by driver, indicating PHY connection =
RGMII

};

enet1: ethernet@25000 { Ethernet 1 at offset 0x2500 from the SoC

tbi-handle = <&tbi0>; Pointer to TBI0

phy-handle = <&phy0>; Pointer to Ethernet PHY0 (phandle)

phy-connection-type = "sgmii"; Attribute is parsable by driver, indicating PHY connection =
SGMII

};

pci0: pcie@ffe08000 {

reg = <0 0xffe08000 0 0x1000>; PCIe at offset 0xffe08000 from the root node

status = "disabled"; Currently set to disabled

};

pci1: pcie@ffe09000 { PCIe at offset 0xffe09000 from the root node

reg = <0 0xffe09000 0 0x1000>; PCI1 registers at 0xffe090000.

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 19

Table 1. P2020rdb.dts (continued)

DTS file Comments

Because address-cells = 2 (at the root node, defined in the
DTSI file):

• Address (64-bit quantity) = 0x0_ffe09000
• Size = 0x1000

ranges = <0x2000000 0x0 0xa0000000 0 0xa0000000 0x0
0x20000000

PCI child addresses use three cells (phys.hi, phys.mid, and
phys.low)

phys.hi = 0x2000000, which is a field defined in bindings for
things such as prefetchable, configuration space, memory
space, and so on. In this case, it maps to a 32-bit memory
space.

PCI address = 0x0_a0000000

Translated to space 0x0_a0000000 from root node (using
address-size from root space)

Size of window = 0x20000000

0x1000000 0x0 0x00000000 0 0xffc10000 0x0 0x10000>; phys.hi = 0x2000000, which is a field defined in bindings for
things such as prefetchable, configuration space, memory
space, and so on. In this case, it maps to the I/O space.

PCI address = 0x0_00000000

Translated to space 0x0_ffc10000 from root node (using
address-size from root space)

Size of window = 0x10000

pcie@0 { Child PCIe at offset 0x0 from parent (0xffe09000 from root)

ranges = <0x2000000 0x0 0xa0000000 PCIe (in p2020rdb-post.si) is defined with three <u32>
address cells for the child, size = 2 <u32>

phys.hi=0x2000000 = 32-bit memory space

PCI address = 0x0_a0000000

Translated to space 0x2000000 (phys.hi), 0x0 (phys.mid),
0xa0000000 (phys.low)

Size of window = 0x20000000

0x2000000 0x0 0xa0000000

0x0 0x20000000

0x1000000 0x0 0x0 phys.hi=0x1000000 = I/O space

PCI address = 0x0_00000000

Translated to space 0x1000000 (phys.hi), 0x0 (phys.mid), 0x0
(phys.low)

Size of window = 0x100000

0x1000000 0x0 0x0

0x0 0x100000>;

};

};

/include/ "fsl/p2020si-post.dtsi" Include file fsl/p2020si-post.dtsi

Examples

Introduction to Device Trees, Rev. 0, 09/2015

20 Freescale Semiconductor, Inc.

11.1.2 P2020si-pre.dtsi

This table provides a device tree included in the p2020si-pre.dtsi file, which also includes the e500vs_power_isa.dtsi file.

Table 2. P2020si-pre.dtsi

DTS file Comments

/dts-v1/; Indication that this DTS file conforms with DTS version 1

/include/ "e500v2_power_isa.dtsi" Include file e500v2_power_isa.dtsi

/ { Root node is identified with a forward slash

compatible = "fsl,P2020"; Can be used by a program for device driver selection (for
example, by an operating system to select platform-specific
code)

#address-cells = <2>; Defines the number of <u32> cells used to encode address
by children as 2

#size-cells = <2>; Root node defines size as two <u32>

interrupt-parent = <&mpic>; Interrupts are directed to MPIC

aliases { Each property of the aliases node defines an index of other
nodes

serial0 = &serial0;

serial1 = &serial1;

ethernet0 = &enet0;

ethernet1 = &enet1;

ethernet2 = &enet2;

pci0 = &pci0;

pci1 = &pci1;

pci2 = &pci2;

};

cpus { CPU node

#address-cells = <1>; Defines the number of <u32> cells used to encode the
address field in child nodes reg property

#size-cells = <0>; Defines the number of <u32> cells used to encode the size
field in a child node’s reg property. Because this is 0, children
are not expected to have a size field in the reg property.

PowerPC,P2020@0 { Node is a labeled PowerPC, P2020

device_type = "cpu"; Indicates this is a CPU node

reg = <0x0>; Indicates CPU 0

next-level-cache = <&L2>; Pointer to the next level of cache

};

PowerPC,P2020@1 { Node is a labeled PowerPC, P2020

device_type = "cpu"; Indicates this is a CPU node

reg = <0x1>; Indicates CPU 1

next-level-cache = <&L2>; Pointer to the next level of cache

};

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 21

Table 2. P2020si-pre.dtsi (continued)

DTS file Comments

};

};

11.1.3 P2020si-post.dtsi

The post DTSI file contains definitions for the peripherals on the SoC, such as local bus and PCI. Many of these are
referenced to as phandles in the main p2020rdb.dts file. This file, in turn, includes many other DTSI files defining the
specific peripherals. Many uses would not need to touch these files because they are SoC specific.

As an example, here is the local bus controller definition from the post.dtsi file:

&lbc {
 #address-cells = <2>;
 #size-cells = <1>;
 compatible = "fsl,p2020-elbc", "fsl,elbc", "simple-bus";
 interrupts = <19 2 0 0>;
};

This is a typical node that defines children to have two address cells and one size cell. The LBC hardware is compatible with
"fsl, p2020-elbc", "fsl, elbc", and "simple-bus". Interrupt is defined at #19 and set to active-high level sensitive. &lbc is a
label to the node path.

11.2 LS1021A example

Below is an example of a device tree for the LS1021A-TWR board. This DTS file describes the LS1021A-TWR board, and
includes other DTSI files, as shown in the following figure.

Examples

Introduction to Device Trees, Rev. 0, 09/2015

22 Freescale Semiconductor, Inc.

ls1021a-twr.dts

ls1021a.dtsi

skeleton64.dtsi

arm-gic.h

definition of tower reference board

#include "ls1021a.dtsi

definition of LS1021A silicon

definition of LS1021A silicon

#include "skeleton64.dtsi"
#include <dt-bindings/interrupt-controller/arm-gic.h

definition of LS1021A silicon

Figure 4. LS1021A DTS and DTSI structure

11.2.1 ls1021a-twr.dts

This table shows the ls1021a-twr.dts file, which describes the LS1021A-TWR board.

Table 3. ls1021a-twr.dts

DTS file Comments

/dts-v1/; Indicates that this DTS file conforms with DTS version 1

#include "ls1021a.dtsi" Include file ls1021a.dts

/ { Root node is identified with a forward slash

model = "LS1021A TWR Board"; Defines the model number of the device

aliases { Each property of the aliases node defines an index of other
nodes

enet2_rgmii_phy = &rgmii_phy1;

enet0_sgmii_phy = &sgmii_phy2;

enet1_sgmii_phy = &sgmii_phy0;

};

clocks { Clocks node;

sys_mclk: clock { Definition of phandle sys_mclk

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 23

Table 3. ls1021a-twr.dts (continued)

DTS file Comments

compatible = "fixed-clock"; Defined as a fixed-frequency clock, using fixed-clock bindings

#clock-cells = <0>; Single clock output

clock-frequency = <24576000>; Frequency of the clock

};

};

regulators { Regulators node;

compatible = "simple-bus"; Memory mapped with no specific driver; child nodes are
registered as platform devices.

#address-cells = <1>; Defines the number of <u32> cells used to encode address
by children as 1

#size-cells = <0>; Child cells use no size encoding

reg_3p3v: regulator@0 { Defines phandle reg_3pvp to regulator at address 0

compatible = "regulator-fixed"; Hardware is compatible with "regulator-fixed"; can be used by
the operating system or the device driver.

reg = <0>; Regulator is assigned a single address of 0, which matches
address at initialization of node (reg_3p3v: regulator@0)

regulator-name = "3P3V"; Name for the regulator output

regulator-min-microvolt = <3300000>; Smallest voltage allowed

regulator-max-microvolt = <3300000>; Largest voltage allowed

regulator-always-on; Regulator should never be disabled

};

};

sound { Sound node

compatible = "fsl,vf610-sgtl5000"; Specific driver used for sound

simple-audio-card,name = "FSL-VF610-TWR-BOARD";

simple-audio-card,routing = No connections between audio components

"MIC_IN", "Microphone Jack",

"Microphone Jack", "Mic Bias",

"LINE_IN", "Line In Jack",

"Headphone Jack", "HP_OUT",

"Speaker Ext", "LINE_OUT";

simple-audio-card,cpu = <&sai1>; Points to phandle &sai1, defined in .dtsi

simple-audio-card,codec = <&codec>; Points to phandle &codec, defined later as sgtl5000

};

};

&dcu0 { Points to phandle dcu0;

display = <&display>; Points to phandle display

status = "okay"; Device is enabled

display: display@0 { Phandle display defined at address 0

bits-per-pixel = <24>; Should be 24 for RGB888

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

24 Freescale Semiconductor, Inc.

Table 3. ls1021a-twr.dts (continued)

DTS file Comments

display-timings { See the binding document display-timing.txt for bindings

native-mode = <&timing0>;

timing0: nl4827hc19 {

clock-frequency = <10870000>;

hactive = <480>;

vactive = <272>;

hback-porch = <2>;

hfront-porch = <2>;

vback-porch = <2>;

vfront-porch = <2>;

hsync-len = <41>;

vsync-len = <4>;

hsync-active = <1>;

vsync-active = <1>;

};

};

};

};

&duart0 { Merges with the expanded path of node with duart0:label from
the DTSI file.

status = "okay"; Device is enabled

};

&duart1 { Merges with the expanded path of node with duart1:label from
the DTSI file.

astatus = "okay"; Device is enabled

};

&enet0 { Merges with the expanded path of node with enet0:label from
the DTSI file.

tbi-handle = <&tbi1>; Phandle of TBI interface for this MAC

phy-handle = <&sgmii_phy2>; Phandle of PHY connected to this controller

phy-connection-type = "sgmii"; Controller/PHY interface is SGMII

status = "okay"; Device is enabled

};

&enet1 { Merges with the expanded path of node with enet1:label from
the DTSI file.

tbi-handle = <&tbi1>; Phandle of TBI interface for this MAC

phy-handle = <&sgmii_phy0>; Phandle of PHY connected to this controller

phy-connection-type = "sgmii"; Controller/PHY interface is SGMII

status = "okay"; Device is enabled

};

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 25

Table 3. ls1021a-twr.dts (continued)

DTS file Comments

&enet2 { Merges with the expanded path of node with enet2:label from
the DTSI file.

phy-handle = <&rgmii_phy1>; Phandle of PHY connected to this controller

phy-connection-type = "rgmii-id"; Controller/PHY interface is RGMII

status = "okay"; Device is enabled

};

&i2c0 { Merges with the expanded path of node with i2c0:label from
the DTSI file.

status = "okay"; Device is enabled

};

&i2c1 { Merges with the expanded path of node with i2c1:label from
the DTSI file.

status = "okay"; Device is enabled

codec: sgtl5000@a {

compatible = "fsl,sgtl5000"; Use audio driver sgtl5000

reg = <0x0a>;

VDDA-supply = <®_3p3v>;

VDDIO-supply = <®_3p3v>;

clocks = <&sys_mclk 1>;

};

hdmi: sii9022a@39 { Define phandle HDMI, pointing to node sii9022a at address
0x39

compatible = "fsl,sii902x"; Use sii902x driver

reg = <0x39>; I2C address of the device

interrupts = <GIC_SPI 167 IRQ_TYPE_EDGE_RISING>; Interrupts to the CPU

};

};

&i2c2 { Label to node path for I2C2

status = "okay"; Device is enabled

monitor: ltc2945@67 {

reg = <0x67>;

};

};

&ifc { Merges with the expanded path of node with ifc:label from the
DTSI file.

status = "okay"; Device is enabled

#address-cells = <2>; Defines the number of <u32> cells used to encode address
by children as 2

#size-cells = <1>; Defines the number of <u32> cells used to encode size by
children as 1

/* NOR, and CPLD on board */ The ranges property maps translation between the address
space of the bus (child) and the address space of the parent.

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

26 Freescale Semiconductor, Inc.

Table 3. ls1021a-twr.dts (continued)

DTS file Comments

Because address-cells = 2, all addressing is via two <u32>
values.

ranges = <0x0 0x0 0x0 0x60000000 0x08000000 Maps 0x0 of child to 0x60000000 of parent, for a size of
0x08000000

0x2 0x0 0x0 0x7fb00000 0x00000100>; Maps 0x2_0000_0000 of child to 0x7fb00000 of parent, for a
size of 0x00000100

nor@0,0 { First child of IFC, address of 0 (which is translated to address
0x60000000 of parent

compatible = "cfi-flash"; Driver to use for NOR flash

#address-cells = <1>; Defines the number of <u32> cells used to encode address
by children as 1

#size-cells = <1>; Defines the number of <u32> cells used to encode size by
children as 1

reg = <0x0 0x0 0x8000000>; Memory space at address 0x0 for a size of 0x8000000

bank-width = <2>; Width, in bytes, of flash interface

device-width = <1>; Width, in bytes, of single flash device

partition@0 { First mtd partition of NOR flash

/* 128KB for rcw */

reg = <0x00000000 0x0020000>; Memory space at address 0x0 for a size of 0x0020000

label = "NOR bank0 RCW Image"; Label for mtd driver

};

partition@20000 { Second partition, at address 20000

/* 1MB for DTB */

reg = <0x00020000 0x00100000>; Memory space at address 0x00020000 (note that address
matches address in node definition) for a size of 0x00100000

label = "NOR DTB Image"; Label for mtd driver

};

partition@120000 { mtd partition of NOR flash

/* 8 MB for Linux Kernel Image */

reg = <0x00120000 0x00800000>; Memory space at address 0x00120000 for a size of
0x00800000

label = "NOR Linux Kernel Image"; Label for mtd driver

};

partition@920000 { mtd partition of NOR flash

/* 56MB for Ramdisk Root File System */

reg = <0x00920000 0x03600000>; Memory space at address 0x00920000 for a size of
0x03600000

label = "NOR Ramdisk Root File System Image"; Label for mtd driver

};

partition@3f80000 { mtd partition of NOR flash

/* 512KB for bank4 u-boot Image */

reg = <0x03f80000 0x80000>; Memory space at address 0x03f80000 for a size of 0x80000

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 27

Table 3. ls1021a-twr.dts (continued)

DTS file Comments

label = "NOR bank4 u-boot Image"; Label for mtd driver

};

partition@4000000 { mtd partition of NOR flash

/* 128KB for bank4 RCW Image */

reg = <0x04000000 0x20000>; Memory space at address 0x04000000 for a size of 0x20000

label = "NOR bank4 RCW Image"; Label for mtd driver

};

partition@4020000 { mtd partition of NOR flash

/* 63MB JFFS2 ROOT File System Image */

reg = <0x04020000 0x3f00000>; Memory space at address 0x04020000 for a size of
0x3f00000

label = "NOR JFFS2 ROOT File System Image"; Label for mtd driver

};

partition@7f80000 { mtd partition of NOR flash

/* 512KB for bank0 u-boot Image */

reg = <0x07f80000 0x80000>; Memory space at address 0x07f80000 for a size of 0x80000

label = "NOR bank0 u-boot Image"; Label for mtd driver

};

};

};

&lpuart0 { Merges with the expanded path of node with lpuart0:label
from the DTSI file.

status = "okay"; Device is enabled

};

&mdio0 { Merges with the expanded path of node with mdio0:label from
the DTSI file.

sgmii_phy0: ethernet-phy@0 { Defines the PHY and address

reg = <0x0>; Offset of the register set for this device

};

rgmii_phy1: ethernet-phy@1 { Defines the PHY and address

reg = <0x1>; Offset of the register set for this device

};

sgmii_phy2: ethernet-phy@2 { Defines the PHY and address

reg = <0x2>; Offset of the register set for this device

};

tbi1: tbi-phy@1f { Defines TBI PHY at address 0x1f

reg = <0x1f>; Offset of the register set for this device

device_type = "tbi-phy";

};

};

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

28 Freescale Semiconductor, Inc.

Table 3. ls1021a-twr.dts (continued)

DTS file Comments

&uqe { Merges with the expanded path of node with uqe:label from
the DTSI file.

tdma: ucc@2000 {

compatible = "fsl,ucc-tdm";

rx-clock-name = "clk8";

tx-clock-name = "clk9";

fsl,rx-sync-clock = "rsync_pin";

fsl,tx-sync-clock = "tsync_pin";

fsl,tx-timeslot = <0xfffffffe>;

fsl,rx-timeslot = <0xfffffffe>;

fsl,tdm-framer-type = "e1";

fsl,tdm-mode = "normal";

fsl,tdm-id = <0>;

fsl,siram-entry-id = <0>;

};

serial: ucc@2200 { Node UCC at address 0x2200

device_type = "serial"; Defines the device type for UCC

compatible = "ucc_uart"; Driver for UCC Uart

port-number = <1>; Corresponds to /dev/ttyQE device

rx-clock-name = "brg2"; UCC Rx clock source

tx-clock-name = "brg2"; UCC Tx clock source

};

};

&pwm6 { Merges with the expanded path of node with pwm6:label from
the DTSI file.

status = "okay"; Device is enabled

};

&pwm7 { Merges with the expanded path of node with pwm7:label from
the DTSI file.

status = "okay"; Device is enabled

};

&qspi { Merges with the expanded path of node with qspi:label from
the DTSI file.

num-cs = <2>; Number of chip selects for QSPI

status = "okay"; Device is enabled

qflash0: n25q128a13@0 { Define the phandle of QFLASH0 pointing to node
n25q128a13 at address 0

compatible = "micron,n25q128a13"; Driver used is micron n25q128a13

#address-cells = <1>; Child nodes use one address cell

#size-cells = <1>; Child nodes use one size cell

spi-max-frequency = <20000000>; Max frequency

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 29

Table 3. ls1021a-twr.dts (continued)

DTS file Comments

reg = <0>;

};

};

&sai1 { Merges with the expanded path of node with sai1:label from
the DTSI file.

status = "okay"; Device is enabled

};

11.2.2 ls1021a.dtsi

The following sections use information from the ls1021a.dtsi file, which describes the LS1021A SoC hardware and is
included by the tower board device tree. Two additional files are included from within this one, neither of which are
commented upon from within this document.

Table 4. ls1021a.dtsi

DTS file Comments

#include "skeleton64.dtsi"

#include <dt-bindings/interrupt-controller/arm-gic.h> Include file arm-gic.h, for interrupt controller definition

/ { Root node is identified with a forward slash

compatible = "fsl,ls1021a"; Can be used by a program for device driver selection (for
example, by an operating system to select platform specific
code)

interrupt-parent = <&gic>; Interrupt controller points to phandle GIC (defined in arm-
gic.h)

#address-cells = <2>; Defines the number of <u32> cells used to encode address
by children as 2

#size-cells = <2>; Defines the number of <u32> cells used to encode size by
children as 2

aliases { Each property of the aliases node defines an index of other
nodes

serial0 = &lpuart0;

serial1 = &lpuart1;

serial2 = &lpuart2;

serial3 = &lpuart3;

serial4 = &lpuart4;

serial5 = &lpuart5;

ethernet0 = &enet0;

ethernet1 = &enet1;

ethernet2 = &enet2;

sysclk = &sysclk;

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

30 Freescale Semiconductor, Inc.

Table 4. ls1021a.dtsi (continued)

DTS file Comments

gpio0 = &gpio1;

gpio1 = &gpio2;

gpio2 = &gpio3;

gpio3 = &gpio4;

crypto = &crypto;

};

memory@80000000 { Memory is located at address 0x80000000

device_type = "memory";

reg = <0x0 0x80000000 0x0 0x20000000>; Size (defined in parent was 2, and address was 2), address =
0x80000000 and size = 0x20000000

};

cpus { CPU node

#address-cells = <1>; Defines the number of <u32> cells used to encode the
address field in child nodes reg property

#size-cells = <0>; Defines the number of <u32> cells used to encode the size
field in a child node’s reg property. Because this is 0, children
are not expected to have a size field in the reg property.

cpu@f00 { Defines the node as ARM, Cortex®-A7, address f00 (for
example, CPU f00)

compatible = "arm,cortex-a7"; Can be used by a program for device driver selection (for
example, by an operating system to select platform-specific
code)

device_type = "cpu"; Indicates this is a CPU node

reg = <0xf00>; reg defines the CPU ID and must match the address of the
CPU node.

clocks = <&cluster1_clk>;

};

cpu@f01 { Defines the node as ARM, Cortex-A7, address f01 (for
example, CPU f01)

compatible = "arm,cortex-a7";

device_type = "cpu"; Indicates this is a CPU node

reg = <0xf01>; reg defines the CPU ID and must match the address of the
CPU node.

clocks = <&cluster1_clk>;

};

};

soc { High-level node that defines the SoC

compatible = "simple-bus"; Memory mapped with no specific driver. Child nodes are
registered as platform devices.

#address-cells = <2>; Defines the number of <u32> cells used to encode address
by children as 2

#size-cells = <2>; Defines the number of <u32> cells used to encode size by
children as 2

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 31

Table 4. ls1021a.dtsi (continued)

DTS file Comments

device_type = "soc"; Sets the device type

interrupt-parent = <&gic>; Sets interrupts to go to phandle GIC

ranges; Empty ranges indicates identity mapping is used

gic: interrupt-controller@1400000 { Phandle GIC, pointing to interrupt-controller at address
0x1400000

compatible = "arm,cortex-a15-gic"; Can be used by a program for device driver selection (for
example, by an OS to select platform-specific code)

#interrupt-cells = <3>; Number of cells needed to encode an interrupt

interrupt-controller; Defines the node as interrupt controller

reg = <0x0 0x1401000 0x0 0x1000>, Registers at location 0x1401000, size 0x1000

<0x0 0x1402000 0x0 0x1000>, Registers at location 0x1402000, size 0x1000

<0x0 0x1404000 0x0 0x2000>, Registers at location 0x1404000, size 0x2000

<0x0 0x1406000 0x0 0x2000>; Registers at location 0x1406000, size 0x2000

interrupts = <GIC_PPI 9 (GIC_CPU_MASK_SIMPLE(2) |
IRQ_TYPE_LEVEL_HIGH)>;

Definition of interrupt from GIC

};

ifc: ifc@1530000 { IFC node at address 0x1530000

compatible = "fsl,ifc", "simple-bus"; Compatible with the "fsl,ifc" driver

reg = <0x0 0x1530000 0x0 0x10000>; Registers at location 0x1530000, size 0x10000

interrupts = <GIC_SPI 75 IRQ_TYPE_LEVEL_HIGH>; Definition of interrupt from IFC

};

qspi: quadspi@1550000 { QSPI node at address 0x1550000

compatible = "fsl,ls1-qspi"; Can be used by a program for device driver selection (for
example, by an OS to select platform-specific code)

#address-cells = <1>; Defines the number of <u32> cells used to encode address
by children as 1

#size-cells = <0>; Defines the number of <u32> cells used to encode size by
children as 1

reg = <0x0 0x1550000 0x0 0x10000>, Memory mapped registers defined at 0x1550000, size
0x10000

<0x0 0x40000000 0x0 0x4000000>; Memory mapped registers defined at 0x40000000 size
0x40000000

reg-names = "QuadSPI", "QuadSPI-memory"; Indicates first block of registers is named QuadSPI and
second block is QuadSPI-memory

interrupts = <GIC_SPI 131 IRQ_TYPE_LEVEL_HIGH>; Definition of QSPI interrupt

clock-names = "qspi_en", "qspi"; Clock names for QSPI

clocks = <&platform_clk 1>, <&platform_clk 1>; Corresponding clocks for QSPI

big-endian; Indicates that the peripheral is big-endian

amba-base = <0x40000000>; Indicates that the AMBA® base address is 0x40000000

status = "disabled"; Indicates that the QSPI block is disabled

};

i2c0: i2c@2180000 { I2C node at address 0x2180000

Table continues on the next page...

Examples

Introduction to Device Trees, Rev. 0, 09/2015

32 Freescale Semiconductor, Inc.

Table 4. ls1021a.dtsi (continued)

DTS file Comments

compatible = "fsl,vf610-i2c"; Hardware is described by vf610-i2c

#address-cells = <1>; Defines the number of <u32> cells used to encode address
by children as 1

#size-cells = <0>; Children have no size encodings

reg = <0x0 0x2180000 0x0 0x10000>; Registers at 0x2180000, size 0x10000

interrupts = <GIC_SPI 88 IRQ_TYPE_LEVEL_HIGH>; Definition of interrupt for I2C0

clock-names = "i2c"; Label for the clock

clocks = <&platform_clk 1>; Clocks = phandle platform_clk

status = "disabled"; Indicates that the device is not presently operational, but may
become operational at a later time

};

12 Revision history
This table provides a revision history for this application note.

Table 5. Document revision history

Rev.

number

Date Description

0 09/2015 Initial public release

Revision history

Introduction to Device Trees, Rev. 0, 09/2015

Freescale Semiconductor, Inc. 33

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: www.freescale.com/salestermsandconditions.

Freescale, the Freescale logo, and QorIQ are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Layerscape is a
trademark of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM and ARM
Powered are registered trademarks of ARM Limited (or its subsidiaries)
in the EU and/or elsewhere. All rights reserved. The Power Architecture
and Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by Power.org.
Freescale is licensed by EPIC Technologies Inc. to make and sell
packages that include EPIC's "Chips First" technology and related
patents.

© 2015 Freescale Semiconductor, Inc.

Document Number AN5125
Revision 0, 09/2015

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/salestermsandconditions

	Introduction
	Basic device tree
	Syntax
	Node names
	Properties
	Phandle
	Aliases

	Memory mapping and addressing
	Partitions

	Interrupts
	Example: Device tree node
	Device tree inclusion
	Device tree compiler
	U-Boot
	Linux
	Reading the flattened device tree (FDT)
	Device tree bindings
	Manually parsing bindings

	Examples
	P2020 example
	P2020rdb.dts
	P2020si-pre.dtsi
	P2020si-post.dtsi

	LS1021A example
	ls1021a-twr.dts
	ls1021a.dtsi

	Revision history

