

AN11593
How to design in and program the PCA9641 I2C arbiter
Rev. 1 — 23 October 2014 Application note

Document information

Info Content

Keywords Fast-mode Plus (Fm+) I2C-bus, 2-to-1 I2C-bus multiplexer, recover stuck
I2C-bus, I2C-bus collision avoidance, I2C.

Abstract The PCA9641 is highly integrated and smart design for 2-1 I2C-bus
multiplexer. It is used in a system that needs two masters sharing the
same slave devices. The internal switch is programmed by the masters
but it will not switch in a middle of the task once owned by the master. The
PCA9641 sends an interrupt to the master requesting the bus when the
downstream bus is available. If the down-stream bus is hung, the
initial/recovery function clears the downstream bus and sends status to
both masters. Low voltage I2C masters can communicate with higher
voltage level of slave devices

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter

Revision history

Rev Date Description

1 20141023 Initial version
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 2 of 22

Contact information
For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
1. Introduction

PCA9641 arbiter is a smart 2-to-1 I2C multiplexer. It is a new innovative part taking care of
the modern I2C-bus switching without hang up or data loss. PCA9641 has very robust
operation and the masters don't need to worry about management scheduling the
downstream bus. PCA9641 is very easy to program, and it prevents a master from
interrupting the other master until the task is finished. A requested master is notified when
the downstream bus is available. With PCA9641, users will simplify their software and not
worry about stealing the bus from the other master in the middle of transaction.

PCA9641 can be used to clear the downstream bus should it be hung.

2. Overview of PCA9641 smart 2-to-1 I2C-bus multiplexer

The PCA9641 is a 2-to-1 I2C master multiplexer with an arbiter function. It is designed for
high reliability dual master I2C-bus applications where correct system operation is
required even when two I2C-bus masters issue their commands at the same time. The
arbiter will select a winner and let it work uninterrupted, and the losing master will take
control of the I2C-bus after the winner has finished. The arbiter also allows for queued
requests where a master requests the downstream bus while the other master has
control.

Multiple transactions can be done without interruption. Any master can reserve the
downstream bus from 1 ms to 255 ms or forever by programming the reserve time
register. During this time, the connection will be protected until the timer expires or the
master gives up its ownership.

The pass gates of the switches are constructed such that the VDD pin can be used to limit
the maximum high voltage, which will be passed by the PCA9641. This allows the use of
different bus voltages on each pair, so that 1.8 V, 2.5 V, or 3.3 V devices can communicate
with 3.3 V devices without any additional protection up to 3.6 V.
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 3 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter

• 2-to-1 bidirectional master selector

• I2C-bus interface logic; compatible with SMBus standards

• Two active LOW interrupt outputs

• Active LOW reset input

• Channel selection via I2C-bus

• Four address pins allowing up to 128 different addresses

• Active arbitration when two masters try to take the downstream I2C-bus at the same
time

• The winning master controls the downstream bus until it is done, as long as it is within
the reserve time

• Hardware and Software reset

• Bus time-out after 100 ms on an inactive downstream I2C-bus optional

• Readable device ID (manufacturer, device type, and revision)

• Bus initialization/recovery function

Fig 1. Block diagram of PCA9641

PCA9641

002aag814

INPUT
FILTER

SCL_MST0

SDA_MST0

AD3
AD2
AD1
AD0

POWER-ON
RESET

I2C-BUS
CONTROL

AND
REGISTER

BANK

RESET
VDD

INPUT
FILTER

SCL_MST1

SDA_MST1

BUS
TIME-OUT

SLAVE
CHANNEL
SWITCH

CONTROL

SCL_SLAVE

SDA_SLAVE

BUS
RECOVERY/

INITIALIZATION

OSCILLATOR

INTERRUPT
LOGIC

VSS

INT0

INT1 INT_IN

STOP
DETECTION

STOP
DETECTION
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 4 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
• Bus traffic sensor

• Low Ron switches

• Allows voltage level translation between 1.8V, 2.3 V, 2.5 V and 3.3 V buses

• No glitch on power-up

• Supports hot insertion

• Software identical for both masters

• Low standby current

• Operating power supply voltage range of 2.3 V to 3.6 V

• 20 Hz to 1 MHz clock frequency

• Packages offered: TSSOP16, HVQFN16

3. Application design examples for PCA9641 arbiter

3.1 Principle of PCA9641 arbiter

PCA9641 arbiter is used in a system where two I2C masters want to share the same slave
devices on the downstream bus:

When MST1 has its grant (owns the downstream bus), it can talk to slave1, slave3 and
slave4, but it cannot see slave2 (see Fig 1). All its transactions will be protected without
any interruption from MST2 until the reserve time is expired or the master gives up its

Fig 2. PCA9641 system application

sysapp

MST1

MST2

PC
A9

64
1

I2C

I2C

I2C

Slave3

Slave4

INT1

INT2

INT-IN

Slave1

Slave2

1.8 V

2.5 V

1.8 V 2.3 V

3.3 V

VDD

2.5 V

3.3 V
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 5 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
grant. MST2 can request the downstream bus while MST1 owns the bus. After MST1
gives up the bus and MST2 will have its grant. MST2 will be notified by an interrupt from
the PCA9641 or LOCK_GRANT register status.

3.2 Difference between PCA9541A de-mux and PCA9641 arbiter

PCA9541A I2C de-mux operation: any master can take control of the downstream bus at
any time and starts communicate with downstream slave devices. This action can cause
many collisions, data lost and even more serious I2C-bus hung.

PCA9641 I2C arbiter operation: Any master can request the downstream bus at any time,
but only one wins the bus, the losing master will take control of the bus after the winner
finishes its task or gives up its ownership.

A transaction includes many I2C start conditions and stop conditions and idle times. Note:
idle time should not be longer than 100 ms.

Fig 3. PCA9541A de-mux operation

demux

M1-Trans3MST 1

MST 2

M1-Trans2

M1-Trans1

M2-Trans2 M2-Trans1

P
C

A
95

41
I2

C
 d

e-
m

ux

I2C M1

I2C M2

M1-Trans1M1-Trans1M1-Trans2M1-Trans3

M1-Trans2
Slave 1

Slave 2

t1 t1

INT0

INT1

INT_IN

M2 data lost M2 data lost

PCA9541A I2C de-mux operation

Fig 4. PCA9641 arbiter operation

arbiter

M1-Trans3MST 1

MST 2

M1-Trans2

M1-Trans1

M2-Trans2 M2-Trans1

PC
A

96
41

A
rb

ito
r

I2C M1

I2C M2

M2-Trans1M1-Trans1M2-Trans2M1-Trans3

M1-Trans2
Slave 1

Slave 2

t1

t1

INT0

INT1

INT_IN

PCA9641 arbiter 2-to-1I2C de-mux operation

Fig 5. A transaction is included multiple "STOP" and "START"

stopstart

M1-Trans1 M1-Trans1 Write to

PCA9641Read Slave 1 PWrite to Slave 2 PRead from Slave 2Write to PCA9641 SSSSSP P P
<100 ms
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 6 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
4. How to program PCA9641 and control the downstream bus

4.1 How to request downstream bus

Any master can request the downstream bus at any time, but the requested master will
not have its control until PCA9641 sends back a response that the downstream bus is
ready to use. PCA9641 always monitors the two masters and the downstream bus. If the
downstream bus is idle and no master is controlling it, the PCA9641 will give the
downstream bus to the requested master.

There are two kinds of requests; request with time period and request with disable timer.

1. Request with time period - when the master knows exactly how much time is required
it can program the timer register and send a request to PCA9641.

2. Request with disable timer - the master programs the timer with zero value, that
means the timer is disable. The master can own the downstream bus forever until it
writes to the control register to disable the controller (give up the downstream bus).

4.1.1 Request with time period

Request with time period - when the master knows exactly how much time is required it
can program the timer register and send a request to PCA9641.

1. To reserve the downstream bus from 1 ms to 255 ms without any interruption by
writing to RT register. Write 0x01 for 1 ms and 0xFF for 255 ms to RT register.

2. Request for the downstream bus by writing '1' to CONTR register bit 0
(LOCK_REQ = 1).

Simple code: A master wants to have 100 ms to talk to the downstream bus through
PCA9641with INT (interrupt) pin connects microcontroller (MCU).

Step #0 // Enable interrupt service to MCU when LOCK_GRANT status register is active
(or when the downstream bus is available INT pin will be active LOW)

| S | 9641 addr + W | ACK | 0x05 | ACK | 0x7B | ACK | P |
Step #1 // Master writes to reserve time = 100 ms or set RT = 0x64 (hex)
| S | 9641 addr + W | ACK | 0x03 | ACK | 0x64 | ACK | P |
Step #2 // Master writes '1' to CONTR register bit 0 to request the downstream bus
| S | 9641 addr + W | ACK | 0x01 | ACK | 0x01 | ACK | P |

Note: Reserve time register cannot be changed after the request master gets grant

4.1.2 Request with disable reserve time

When a master does not know how much time it needs for the downstream bus. It can
own the downstream bus forever until it writes to the control register to disable the
controller (give up the downstream bus).

1. Disable the reserve time (reserve the downstream bus without knowing how much
time needed) by writing 0x00 to RT (reserve time) register.

2. Request for the downstream bus by writing '1' to CONTR register bit 0
(LOCK_REQ = 1).
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 7 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
Simple code: A master wants to talk to the downstream bus, but it does not know how
much time its need. System has setup with hardware interruption, INT pin of
PCA9641connects to interrupt input pin of MCU.

Step #0 // Enable interrupt service to MCU when LOCK_GRANT status register is active
(or when the downstream bus is available INT pin will be active LOW)

| S | 9641 addr + W | ACK | 0x05 | ACK | 0x7B | ACK | P |
Step #1 // Master writes '0' to reserve time to disable the timer (RT = 0x00)
| S | 9641 addr + W | ACK | 0x03 | ACK | 0x00 | ACK | P |
Step #2 // Master writes '1' to CONTR register bit 0 to request the downstream bus
| S | 9641 addr + W | ACK | 0x01 | ACK | 0x01 | ACK | P |

Note: Reserve time register cannot be changed after the request master gets grant

4.2 Take control of downstream bus

After request command is done, master needs to monitor the interrupt line (INTx). If the
interrupt line goes LOW, or LOCK_GRANT bit in CONTR register is set, the requested
master has owned the downstream bus. The requested master needs to write to
BUS_CONNECT bit in CONTR register to connect I2C-bus from master to downstream
bus.

Simple code: Wait for INT is LOW then connect I2C-bus from master to downstream bus

// Wait for interrupt (INTx = 0)
While (INTx); // INTx = 1 do nothing
// Connect I2C-bus from a master to downstream bus (BUS_CONNECT = 1) and make sure

LOCK_REQ bit is '1'.
| S | 9641 addr + W | ACK | 0x01 | ACK | 0x5 | ACK | P |

Now, the master can communicate with any slave devices on the downstream bus.

4.3 How to give up the downstream bus

4.3.1 Give up the downstream bus with reserve time not zero

After LOCK_GRANT bit is set in CONTR register, PCA9641 will start counting down in
milliseconds, until the time becomes zero, the LOCK_GRANT will be reset with condition;
PCA9641 must see the "STOP" condition and the bus is idle (SCL and SDA are high).

The grant master can write '0' to LOCK_REQ bit in CONTR register to give up the
downstream bus before reserve time is expired.

Simple code: give up the ownership of the downstream bus

| S | 9641 addr + W | ACK | 0x01 | ACK | 0x00 | ACK | P |
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 8 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
4.3.2 Give up the downstream bus with disable reserve time

If a master requests the downstream bus with zero on reserve time register, the master
has to write '0' to LOCK_REQ bit in CONTR register to give up its ownership of the
downstream bus. Otherwise, the granted master will keep the bus forever.

Simple code: Give up the ownership of the downstream bus

| S | 9641 addr + W | ACK | 0x01 | ACK | 0x00 | ACK | P |

5. Avoid hogging the bus (e.g. keeping the downstream bus forever)

To avoid a granted master keeping the downstream bus forever, the granted master
should enable the IDLE_TIMER_DIS bit in CONTR register. If the bus is idle for more than
100 ms, the LOCK_GRANT will be reset and the ownership of the downstream bus will
expire.

Simple code: avoid keeping the bus forever

// enable 100 ms idle timer disconnect and request the downstream bus as the same time.
| S | 9641 addr + W | ACK | 0x01 | ACK | 0x21 | ACK | P |

Note: Idle means: when SCL and SDA are not toggling after a stop condition.

Fig 6. IDLE_TIMER_DIS = 1 when master uses reserve timer  0

idletimerdis1

Timer 199ms 198ms 1ms 0ms
Timer disable

S Write to
PCA9641 P idle S Read/Write to

slave P Idle
> 100 ms S Read/Write to slave P

SCL/
SDA

LOCK-GRANT

Stretching
condition
> 100 ms

IDLE_TIMER_DIS = 1
When Reserve Timer ≠ 0

Master owns the
downstream bus

Master lost the
downstream bus

SCL & SDA are not
toggling

Master set
RT = 200ms

IDLE condition
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 9 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter

6. Bus initialization and bus recovery

Bus initialization - The granted master should enable this function before make connection
with the downstream bus. This function will make sure the downstream bus in idle
condition before it makes connection; otherwise, PCA9641 will report to master that the
bus is hung.

Bus recovery - If a granted master knows the downstream bus is hung, the master can
use this function to clear the downstream bus. If the bus cannot be clear, PCA9641 will
send an interrupt to both master.

Here is how Bus init/recovery works: PCA9641 will send clocks out until SDA high, and
then send a stop to complete its function. If SDA is still stuck low, PCA9641 reports
BUS_INIT_FAIL in STATUS register.

Simple code: Enable BUS_INIT while connecting the I2C-bus to downstream bus

// enable: IDLE_TIMER_DIS, BUS_INIT, BUS_CONNECT and LOCK_REQ
| S | 9641 addr + W | ACK | 0x01 | ACK | 0x2D | ACK | P |

7. Reset options

There are two ways to reset the PCA9641, hardware reset and software reset

7.1 Hardware reset

PCA9641 has a hardware pin to reset all internal logic and registers to the power-up reset.
All internal switches are open and no master owns the downstream bus.

Fig 7. IDLE_TIMER_DIS = 1 when master uses reserve timer = 0

idletimerdis2

Timer Master set
RT = 0 Timer disable

S Write to PCA9641 P Idle
99 ms

Idle
> 100 msS Read/Write to slave P

SCL/
SDA

LOCK-GRANT

Stretching
condition
> 100 ms

IDLE_TIMER_DIS = 1
When Reserve Timer is disable

Master owns the
downstream bus

Master lost the
downstream bus

SCL & SDA are not
toggling

IDLE condition
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 10 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter

7.2 Software reset (general call software reset)

7.2.1 SW reset for system with all I2C devices (no SMBus device)

Any master can send a general call software reset to reset internal I2C logic and registers
of all slave devices on the I2C-bus.

EX: If MST1 connects to downstream bus and sends general call software reset, all the
blue devices on I2C-bus will be affected

Simple code: general call software reset

| S | 0x00 + W | ACK | 0x06 | ACK | P |

Fig 8. Definition of RESET timing

SDA

SCL

002aae735

trst

50 %

30 %

50 % 50 %

50 %

tREC;STA tw(rst)L

RESET

INTn

START

trst

ACK or read cycle

Fig 9. Software reset with all I2C slave devices (no SMBus device)

softwarereset

MST1

MST2

PC
A9

641

I2C

I2C

I2C

Slave1

Slave2

INT1

INT2

INT-IN

Slave 1A

Slave 2A

1.8 V

2.5 V

1.8 V 2.3 V

3.3 V

vdd

2.5 V

3.3 V
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 11 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
7.2.2 SW reset for system with mixed I2C devices and SMBus devices

If a system has any SMBus device on I2C-bus, SMBus device would not understand the
general call software reset command. Therefore, PCA9641 has an option to generate
SMBus time-out to reset SMBus devices on the I2C-bus when it receives a general call
software reset.

Slave4 is a SMBus slave device, it will not reset when general call software reset is sent.
If SMBUS_WSRST is set, PCA9641 will send SMBus time-out (35 ms SCL low) and then
reset PCA9641.

Simple code: Turn on SMBUS_WSRST (CONTR[4] = 1)
| S | 9641 addr + W | ACK | 0x01 | ACK | (0xXX || 0x10) | ACK | P |

8. How to take care of a hung downstream bus

PCA9641 monitors the downstream bus and two master buses. If any SCL or SDA is
stuck low for more than 500 ms, the PCA9641 will generate an interrupt to the master if
BUS_HUNG_MSK is set in INT_MSK register.

8.1 How to separate the master I2C-bus from the hung downstream bus

There are two ways for a granted master to get off (disconnect) the hung downstream
bus: (Note - user needs to set these bits before the event happens)

1. Set IDLE_TIMER_DIS - if there is any reason the I2C-bus has not toggled for more
than 100 ms after reserve time is expired or disable, the PCA9641 will disconnect the
master bus from the downstream bus and takes away its grant.

Simple code: how to enable IDLE_TIMER_DIS function

| S | 9641 addr + W | ACK | 0x01 | ACK | (0xXX || 0x20) | ACK | P |

Fig 10. Software reset for a system has I2C devices and SMBus devices

softwarereset1

MST1

MST2

PC
A9

64
1

I2C

I2C

I2C

Slave3

Slave4

INT1

INT2

INT-IN

Slave1

Slave2

1.8 V

2.5 V

1.8 V 2.3 V

3.3 V

VDD

2.5 V

3.3 V

SMBUS device
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 12 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
2. Hardware reset pin - if the grant master pulls the reset pin LOW, then the PCA9641
will reset all internal registers and open the switch between masters and the
downstream bus.

Note: A master can push other master, who owns the downstream bus, out by sending
software reset or hardware reset to PCA9641 (not recommended)

8.2 How to clear the stuck downstream bus once requested from the bus

There are two methods to clear the downstream bus after the master has disconnected
itself (e.g. Section 8.1)

1. Make sure the master owns the downstream bus and is not connect to the
downstream bus. The granted master writes a command to enable the BUS_INIT
function and then writes a command to connect to the downstream bus. PCA9641 will
send clocks out to recover the downstream bus. If the bus cannot recover, PCA9641
will send an interrupt to both masters and also update BUS_HUNG_INT bit.

Simple code:

| S | 9641 addr + W | ACK | 0x01 | ACK | (0xXX || 0x08) | ACK | P |

2. Toggle SCL signal by programming the SCL_IO bit in the status register. The granted
master can remote toggle SCL_SLAVE then check SDA_SLAVE by reading the
SDA_IO in the status register.

Simple code: How to toggle SCL_SLAVE pin

// set SCL_SLAVE = 0 (low), clear bit 6 of status register
| S | 9641 addr + W | ACK | 0x02 | ACK | (0xXX & 0xDF) | ACK | P |
Wait period
// set SCL_SLAVE = 1 (low), set bit 7 of status register
| S | 9641 addr + W | ACK | 0x02 | ACK | (0xXX || 0x40) | ACK | P |
Wait period
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 13 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
9. Software flowchart how to program PCA9641

Here is the flowchart for how to get control of downstream bus. Two methods are
presented; interrupt and polling. Best results are from using the interrupt.

9.1 Interrupt method

Fig 11. Block diagram of a system with interrupt connection

blockdiag

MST1

MST2
PC

A9
64

1

I2C

I2C

I2C

Slave1

Slave2

INT-SINT1

INT2
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 14 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter

Fig 12. PCA9641 software flow chart for a system without interrupt connection

flowchart

INT(1,2) = 0 or
CONTR[1] =1

INT_MSK[2] = 0
RT = 0x00

CONTR = 0x09

No

Yes

CONTR[2] = 1

Master talks to
downstream

bus at this time

CONTR = 0x00

Yes

No

Master give up its
downstream bus

Master writes:
Enable interrupt for LOCK_GRANT_MSK
Set Reserve time = 0; reserve the bus forever
Set BUS_INIT and LOCK_REQ(clear
downstream (DS) bus before connect and
request DS bus)

Master checks:
Check interrupt pin is set or
Polling LOCK _GRANT status

Master writes:
Set BUS_CONNECT = 1 (connect to DS bus)

PCA9641 checks
BUS_INIT bit

PCA9641 sends
clocks out and checks
SDA (check and clear
DS bus)

MST bus
connects
to DS bus

Bus
initializing

No

Yes

Bus
initialization

failed
(bus hung)

STATUS[1]
= 0 PCA9641 updates

BUS_INIT_FAIL bit

PCA9641 connects
master to DS bus

Master writes to
LOCK_REQ = 0 bit to
give up DS bus

CONTRL[3]
=1

Master owns the DS
bus

Interrupt method
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 15 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
9.2 Polling method

Fig 13. Block diagram of a system without interrupt connection

blockdiag1

MST1

MST2

PC
A9

64
1

I2C

I2C

Slave1

Slave2
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 16 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter

Fig 14. PCA9641 software flow chart for a system without interrupt connection

flowchart1

CONTR[1] =1

RT = 0xF0
CONTR = 0x09

No

Yes

CONTR[2] = 1

Master talks to
downstream

bus

CONTR = 0x00

Yes

No

CONTR[1] = 0

Master writes:
Enable interrupt for LOCK_GRANT_MSK
Set Reserve time = F0; reserve the bus for
240 ms
Set BUS_INIT and LOCK_REQ(clear
downstream (DS) bus before connect and
request DS bus)

Master:
Polling LOCK_GRANT status

Master writes:
Set BUS_CONNECT = 1 to connect DS bus

PCA9641 checks
BUS_INIT bit

PCA9641 sends
clocks out and checks
SDA (check and clear
DS bus)

MST
connect to

DS bus

Bus
initializing

No

Yes

Bus
initialization

failed
(bus hung)

STATUS[1]
= 0 PCA9641 updates

BUS_INIT_FAIL bit

PCA9641 connects
master to DS bus

Master writes to
LOCK_REQ = 0 bit to
give up downstream
bus

CONTR[3]
=1

Master owns the DS
bus

reserve time is
expired

Yes

No

Stop condition

No

Yes
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 17 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
10. Design consideration

10.1 How to calculate pull up resistors for SCL and SDA

PCA9641 provides isolation between two masters but do not provide any additional drive
capability or isolate capacitance between the master buses and downstream bus.
Therefore, the overall capacitance of the highest master bus and downstream bus must
be taken into consideration when choosing the value of pull-up resistor.

The main considerations in choosing the pull-up resistor are:

1. Ensuring that the current does not exceed the maximum Iol = 3 mA at 0.4 V. This
determines the minimum resistor value.

2. Ensuring that the rise time does not exceed 1.0 s for a standard mode (100 kHz)
bus, 300 ns for the Fast-mode (400 kHz) or 120 ns for the Fast-most Plus (1 MHz)
(affected by the bus capacitance and pull-up resistor). This determines the maximum
resistor value.

When the input voltage to the multiplexer is low, the resistance of the switch is assumed to
be negligible in comparison to the pull-up resistors.

For this example of devices operating in the standard mode (100 kHz), the power
consumption is not critical since it is operating from the mains, so the maximum 3 mA
current is allowed to flow when SDA and SCL are low.

I1 is the current through R1

I2 is the current through R2

Fig 15. I2C-buses with pull-up resistors

i2cbus

PCA9641

MST2

MST1

VDDS

VDD1

VDD2

R1

R2

RsC2

C1

Cs

Master 1

Master 2

downstrem
bus
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 18 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
Is is the current through Rs

C1 is the total load capacitance of the master 1 bus 300 pF

C2 is the total load capacitance of the master 2 bus 200 pF

Cs is the total load capacitance of the downstream bus 100 pF

VDD1 is voltage of master1 bus 3.3 V

VDD2 is voltage of master2 bus 1.8 V

VDDS is voltage of downstream bus 2.5 V

Since the capacitance of the downstream is ¼ of the total capacitance of the bus when
PCA9641 is connected to downstream bus, I1 = 3mA * 1/4 = 0.75 mA and pull up in
master 1 and master 2 bus can be set to I1 = I2 = 2.5 mA

R1 = 3.3 V / 2.25 mA = 1.32 k

R2 = 1.8 V / 2.25 mA = 0.8 k

Rs = 2.5 V / 0.75 mA = 3.33 k

Additional verification:

Ensure the rise time specification of 1 s for standard mode I2C is not exceeded. Consider
the VDD -related input threshold of VIH = 0.7 x VDD and VIL = 0.3 x VDD for the purposes
of RC time constant calculation.

V(t) = VDD (1-1/e -t /RC) where t is the time since the charging started and RC is the
time constant.

V(t1) = 0.3 x VDD = VDD (1-1/e-t 1/RC); then t1 = 0.3566749 x RC

V(t2) = 0.7 x VDD = VDD (1-1/e-t 2/RC); then t2 = 1.2039729 x RC

Trise = t2 - t1 = 0.8472979 x RC

Scenario 1: Master 1 with no downstream channel enabled

Trise = 0.8472979 x R1C1

= 0.8472979 x 1320 x 300e-12

= 0.33 s

Trise = t2 - t1 = 0.8472979 x RC

Scenario 2: Master 2 with no downstream channel enabled

Trise = 0.8472979 x R2C2

= 0.8472979 x 800 x 200e-12

= 0.14 s

Scenario 2: Master 1 enabled

Trise = 0.8472979 x (R1// Rs)(C1 // Cs)

= 0.8472979 x (1300x3330/(1300+3330)) x (300 e-12 + 100 e-12)

= 0.32 s

Scenario 3: Master 2 enabled
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 19 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
Trise = 0.8472979 x (R2// Rs)(C2 // Cs)

= 0.8472979 x (800x3330/(800+3330) x (200 e-12 + 100 e-12)

= 0.16 s

All rise times are well below the maximum rise time of 1 s.

11. Summary

PCA9641 is an arbitrator of two I2C-bus masters to avoid collisions and help to recover
from hung buses. This application note outlines how to use the PCA9641 and provides
software to recover from a hung downstream bus.
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 20 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
12. Legal information

12.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.

12.2 Disclaimers

Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product

design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express, implied
or statutory, including but not limited to the implied warranties of
non-infringement, merchantability and fitness for a particular purpose. The
entire risk as to the quality, or arising out of the use or performance, of this
product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable
to customer for any special, indirect, consequential, punitive or incidental
damages (including without limitation damages for loss of business, business
interruption, loss of use, loss of data or information, and the like) arising out
the use of or inability to use the product, whether or not based on tort
(including negligence), strict liability, breach of contract, breach of warranty or
any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by customer
for the product or five dollars (US$5.00). The foregoing limitations, exclusions
and disclaimers shall apply to the maximum extent permitted by applicable
law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

12.3 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
AN11593 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.

Application note Rev. 1 — 23 October 2014 21 of 22

NXP Semiconductors AN11593
How to design in and program the PCA9641 I2C arbiter
13. Contents

1 Introduction . 3

2 Overview of PCA9641 smart 2-to-1 I2C-bus
multiplexer . 3

3 Application design examples for PCA9641
arbiter . 5

3.1 Principle of PCA9641 arbiter 5
3.2 Difference between PCA9541A de-mux and

PCA9641 arbiter . 6

4 How to program PCA9641 and control the
downstream bus . 7

4.1 How to request downstream bus 7
4.1.1 Request with time period 7
4.1.2 Request with disable reserve time 7
4.2 Take control of downstream bus 8
4.3 How to give up the downstream bus 8
4.3.1 Give up the downstream bus with reserve time not

zero. 8
4.3.2 Give up the downstream bus with disable reserve

time. 9

5 Avoid hogging the bus (e.g. keeping the
downstream bus forever) 9

6 Bus initialization and Bus recovery 10

7 Reset options . 10
7.1 Hardware reset . 10
7.2 Software reset (general call software reset) . . 11
7.2.1 SW Reset for system with all I2C devices (no

SMBus device) . 11
7.2.2 SW reset for system with mixed I2C devices and

SMBus devices. 12

8 How to take care of a hung downstream bus 12
8.1 How to separate the master I2C-bus from the hung

downstream bus . 12
8.2 How to clear the stuck downstream bus once

requested from the bus. 13

9 Software flowchart how to program PCA9641 14
9.1 Interrupt method . 14
9.2 Polling method . 16

10 Design consideration 18
10.1 How to calculate pull up resistors for SCL and

SDA . 18

11 Summary . 20

12 Legal information. 21
12.1 Definitions. 21
12.2 Disclaimers . 21
12.3 Trademarks. 21

13 Contents. 22
© NXP Semiconductors N.V. 2014. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 23 October 2014

Document identifier: AN11593

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.

	1. Introduction
	2. Overview of PCA9641 smart 2-to-1 I2C-bus multiplexer
	3. Application design examples for PCA9641 arbiter
	3.1 Principle of PCA9641 arbiter
	3.2 Difference between PCA9541A de-mux and PCA9641 arbiter

	4. How to program PCA9641 and control the downstream bus
	4.1 How to request downstream bus
	4.1.1 Request with time period
	4.1.2 Request with disable reserve time

	4.2 Take control of downstream bus
	4.3 How to give up the downstream bus
	4.3.1 Give up the downstream bus with reserve time not zero
	4.3.2 Give up the downstream bus with disable reserve time

	5. Avoid hogging the bus (e.g. keeping the downstream bus forever)
	6. Bus initialization and bus recovery
	7. Reset options
	7.1 Hardware reset
	7.2 Software reset (general call software reset)
	7.2.1 SW reset for system with all I2C devices (no SMBus device)
	7.2.2 SW reset for system with mixed I2C devices and SMBus devices

	8. How to take care of a hung downstream bus
	8.1 How to separate the master I2C-bus from the hung downstream bus
	8.2 How to clear the stuck downstream bus once requested from the bus

	9. Software flowchart how to program PCA9641
	9.1 Interrupt method
	9.2 Polling method

	10. Design consideration
	10.1 How to calculate pull up resistors for SCL and SDA

	11. Summary
	12. Legal information
	12.1 Definitions
	12.2 Disclaimers
	12.3 Trademarks

	13. Contents

