

© 2018 NXP B.V.

KE16Z PDB Trigger ADC Conversion in

Back-to-Back Mode

1. Introduction

Programmable Delay Block (PDB) provides controllable

delays from either an internal or an external trigger, or a

programmable interval tick, to the hardware trigger inputs

of ADCs, so that the precise timing between ADC

conversions can be achieved. PDB module supports one

configurable channel for ADC hardware trigger, which is

associated with one ADC module. For each PDB channel,

there is one trigger output for ADC hardware trigger to

start an analog-to-digital conversion, and up to four pre-

trigger outputs to ADC module to select different ADC

channels prior to ADC conversion.

PDB back-to-back operation enables the ADC conversions

complete signal (the COCO flag) to trigger the next PDB

channel pre-trigger and trigger output automatically

without any additional external trigger input to PDB

module. In some real-time applications, like motor control,

it’s necessary to sample two ADC channels almost at the

same time to get the correct analog value. For some MCUs

with more than one ADC modules, it’s not a problem, since

each ADC module can sample one ADC input, the two

ADC modules sample the two analog inputs in parallel.

While KE16Z only has one ADC module, it has to

implement analog-to-digital conversion one by one. As a

result, the interval between the two ADC conversions

becomes critical. In this case, PDB back-to-back mode is a

NXP Semiconductors Document Number: AN12313

Application Note Rev. 0 , 12/2018

Contents

1. Introduction .. 1
2. Features Usage ... 2

2.1 Overview ... 2
2.2 Back-to-back acknowledgement connections 2
2.3 Timing of PDB pre-trigger and trigger outputs 4

3 Implementation Details .. 5
3.1 FTM configuration .. 5
3.2 ADC configuration .. 5
3.3 PDB configuration .. 6

4 Conclusion.. 8
5 Reference.. 8

Features Usage

KE16Z PDB Trigger ADC Conversion in Back-to-Back Mode, Application Note, Rev. 0, 12/2018

2 NXP Semiconductors

good solution, as it can start another ADC conversion immediately right after the previous conversion

complete.

This application note explains the inter-connections of PDB and ADC, provides an example to help user

understand the configurations of PDB and ADC for back-to-back mode. The implementation of the

example is based on IAR embedded Workbench 8.30.1 development environment, SDK 2.4.0 software,

KE16Z board.

2. Features Usage

2.1 Overview

The PDB module is a timer that provides controllable delays to the hardware trigger inputs of ADCs, in

order to the precise timing between ADC conversion. The PDB uses either an internal or external trigger

input in order to start counting. In this use case, the PDB trigger source selection is implemented

through the TRGMUX module. FTM channel match trigger or init trigger is used as the trigger input

source of PDB and one PDB channel is associated with one ADC module. The PDB channel supports 4

pre-triggers, which can be used to select different ADC channels. The modules overview is shown in

Figure 1.

 The modules overview

2.2 Back-to-back acknowledgement connections

The PDB back-to-back mode acknowledgement connections are implemented inside PDB unit as a ring.

The back-to-back mode needs to receive an ADC conversion complete flag to trigger the next PDB pre-

trigger output. Once PDB get a trigger input signal, the first pre-trigger output is generated after a

predefined delay time. The following PDB back-to-back operation acknowledgment connections are

implemented based on PDB0_CH0C1_BB bits setting.

Features Usage

KE16Z PDB Trigger ADC Conversion in Back-to-Back Mode, Application Note, Rev. 0, 12/2018

NXP Semiconductors 3

When BB[0]=1, PDB0 channel 0 pre-trigger 0 acknowledgement input: ADC0SC1D_COCO; When

BB[1]=1, PDB0 channel 0 pre-trigger 1 acknowledgement input: ADC0SC1A_COCO; When BB[2]=1,

PDB0 channel 0 pre-trigger 2 acknowledgement input: ADC0SC1B_COCO; When BB[3]=1, PDB0

channel 0 pre-trigger 3 acknowledgement input: ADC0SC1C_COCO.

In the use case, FTM0 generates a periodic interrupt trigger signal to start PDB0,so PDB0_CH0C1_BB

is written with 0xE. The mapping between back-to-back enable bits and pre-triggers is shown in Table 1.

The inter-connectivity diagram in back-to-back mode is shown in Figure 2.

 Mapping between enable bits and pre-triggers

 Inter-connectivity diagram in back-to-back mode

Back-to-Back Enable bit PDB Channel Pre-Trigger

BB[0] pre-trigger 0

BB[1] pre-trigger 1

BB[2] pre-trigger 2

BB[3] pre-trigger 3

Features Usage

KE16Z PDB Trigger ADC Conversion in Back-to-Back Mode, Application Note, Rev. 0, 12/2018

4 NXP Semiconductors

2.3 Timing of PDB pre-trigger and trigger outputs

KE16Z MCU has one PDB module and one ADC module only. PDB0 channel 0 is associated with

ADC0 block, and the PDB0 channel 0 has four pre-trigger outputs. Each pre-trigger output and trigger

output are connected to the ADC hardware inputs. The pre-triggers are used to precondition the ADC

block before the actual trigger occurs. When the ADC receives the rising edge of the trigger, the ADC

will start the conversion according to the precondition determined by the pre-triggers.

The ADC module has 4 sets of configuration and result registers, for example, ADC_SC1A and

ADC_RA. So that the ADC can alternate conversions between four different analog sources. The PDB

pre-trigger outputs are used to specify which signal will be sampled next. When a pre-trigger m is

asserted, the ADC conversion is triggered with set m of the configuration and result registers.

The timing diagram in Figure 3 shows the pre-trigger and trigger outputs of PDB0 to ADC0 trigger by

setting PDB0_CH0C1_BB to 0xE.

The following steps occur in the process of PDB0 trigger ADC0 conversion in back-to-back mode.

1. FTM0 generates periodic channel match trigger to start PDB0.

2. When external trigger input to PDB0, it will generate the pre-trigger 0 after a defined delay,

which depends on PDB0_CH0DLY0_DLY. The pre-trigger 0 output can trigger one ADC0

channel conversion.

3. BB[1] is set to 1, ADC completed flag COCOA will trigger PDB0 pre-trigger 1. The pre-trigger 1

output can trigger one ADC0 channel conversion.

4. BB[2] is set to 1, ADC completed flag COCOB will trigger PDB0 pre-trigger 2. The pre-trigger 2

output can trigger one ADC0 channel conversion.

5. BB[3] is set to 1, ADC completed flag COCOC will trigger PDB0 pre-trigger 3. The pre-trigger 3

output can trigger one ADC0 channel conversion.

6. After the period of FTM0, FTM0 generates another trigger input to PDB0, to start another ADC0

conversion.

 Timing of PDB trigger and pre-trigger outputs to ADC

Implementation Details

KE16Z PDB Trigger ADC Conversion in Back-to-Back Mode, Application Note, Rev. 0, 12/2018

NXP Semiconductors 5

3 Implementation Details

There is a use case for implementation details of PDB trigger ADC conversion in back-to-back mode. In

the use case, FTM0, PDB0, ADC0 three peripherals must be configured. FTM0 generates an periodic

external trigger to start PDB0 channel 0 trigger. Then PDB0 trigger four ADC channel alternate

conversions in back-to-back mode.

3.1 FTM configuration

FTM0 module is set up to generate channel match trigger. KE16Z has a TRGMUX that provides a

module interconnectivity scheme. The FTM0 module triggers are external triggers and connect to one

input trigger of TRGMUX in the chip design. It is necessary to configure TRGMUX before FTM0

configuration.

/* select FTM0 hardware trigger as PDB0 trigger input */

TRGMUX_SetTriggerSource(TRGMUX0, kTRGMUX_Pdb0, kTRGMUX_TriggerInput0, kTRGMUX_SourceFtm0);

FTM0 hardware trigger is selected as the PDB input trigger by configuring the TRGMUX. The trigger

output signal of FTM0 is connect to Trigger-In 0 of PDB0.

FTM0 is initialized to output edge-aligned PWM signal, the frequency of PWM is configured as 100 Hz.

Select FTM0 channel 0 to generate the external trigger by setting FTM0_EXTTRIG_CH0TRIG to 1.

The initialization code for reference is as follows:

 /* Initialize FTM module. */

 FTM_GetDefaultConfig(&ftmConfigStruct);

 ftmConfigStruct.extTriggers = kFTM_Chnl0Trigger; /* Enable to output the trigger. */

 FTM_Init(DEMO_FTM_BASE, &ftmConfigStruct);

 /* Configure ftm params with frequency 100Hz */

 pwmParam.chnlNumber = kFTM_Chnl_0;

 pwmParam.level = pwmLevel;

 pwmParam.dutyCyclePercent = 50U; /* Percent: 0 - 100. */

 pwmParam.firstEdgeDelayPercent = 0U;

 FTM_SetupPwm(DEMO_FTM_BASE, &pwmParam, 1U, kFTM_EdgeAlignedPwm, DEMO_FTM_PWM_HZ,
DEMO_FTM_COUNTER_CLOCK_HZ);

3.2 ADC configuration

PDB0 trigger four ADC0 channel alternate conversions in back-to-back mode. In addition to the ADC0

clock select, arbitration, and some basic initialization configurations, there are a few points need to pay

attention in the use case.

Implementation Details

KE16Z PDB Trigger ADC Conversion in Back-to-Back Mode, Application Note, Rev. 0, 12/2018

6 NXP Semiconductors

Set ADC0_SC2_ADTRG to 1 to enable PDB0 hardware trigger for ADC0. ADC0 contains four sets of

configuration and result registers: A, B, C, D, set ADC0_SC1m_ADCH to channel number to select the

external channels as ADC0 input and ADC0_SC1D_AIEN to 1 to enable conversion complete interrupt.

 /* Enable hardware trigger mode. */

 ADC12_EnableHardwareTrigger(DEMO_ADC_BASE, true);

 /* Configure the ADC12 conversion channels and interrupt. */

adc12ChannelConfigStruct.enableInterruptOnConversionCompleted = false;

 adc12ChannelConfigStruct.channelNumber = DEMO_ADC_USER_CHANNEL;

 ADC12_SetChannelConfig(DEMO_ADC_BASE, DEMO_ADC_CHANNEL_GROUP, &adc12ChannelConfigStruct);

 adc12ChannelConfigStruct.enableInterruptOnConversionCompleted = false;

 adc12ChannelConfigStruct.channelNumber = DEMO_ADC_USER_CHANNEL+26;

 ADC12_SetChannelConfig(DEMO_ADC_BASE, DEMO_ADC_CHANNEL_GROUP+27, &adc12ChannelConfigStruct);

 adc12ChannelConfigStruct.enableInterruptOnConversionCompleted = false;

 adc12ChannelConfigStruct.channelNumber = DEMO_ADC_USER_CHANNEL+29;

 ADC12_SetChannelConfig(DEMO_ADC_BASE, DEMO_ADC_CHANNEL_GROUP+2, &adc12ChannelConfigStruct);

 adc12ChannelConfigStruct.enableInterruptOnConversionCompleted = true;

 adc12ChannelConfigStruct.channelNumber = DEMO_ADC_USER_CHANNEL+30;

 ADC12_SetChannelConfig(DEMO_ADC_BASE, DEMO_ADC_CHANNEL_GROUP+3, &adc12ChannelConfigStruct);

3.3 PDB configuration

The PDB0 generates pre-triggers and trigger output to the ADC0. In order to make PDB0 work properly

in back-to-back mode, there are a few points need to note when configuring it. The configuration details

about PDB0 will be given in the following content:

1. Clock select

The only clock source of PDB module is system clock. Make sure the system clock is enable for PDB0

by setting PCC_PDB0_CGC to 1.

 /* Enable PDB0 clock. */

 CLOCK_EnableClock(kCLOCK_Pdb0);

Implementation Details

KE16Z PDB Trigger ADC Conversion in Back-to-Back Mode, Application Note, Rev. 0, 12/2018

NXP Semiconductors 7

2. Enable and select the trigger source for PDB0

Some features of PDB0 are configured by PDB0_SC register. The PDB0 internal registers are loaded

with values from their buffers when the trigger input event is detected after PDB0_SC_LDOK is set to 1.

So this bit can be written in the last to update the MOD, IDLY and other registers with the values

previously written to their internal buffer.

Set the PDB0_SC_PDBEN to 1 to enable the PDB function. PDB0 contains a counter whose output is

compared to several different values, the counter will reset and start when PDB0 is enabled.

Set PDB0_SC_LDMOD to 0, it can load values from buffers into the internal registers immediately after

1 is written to PDB0_SC_LDOK.

Set PDB0 _SC_PRESCALER and PDB0_SC_MUTL to appropriate values to divider for the counter

clock, they are used to calculate the delay time.

PDB0 channel 0 has up to 15 trigger input sources, set PDB0_SC_TRGSEL to 0 to select Trigger-In 0 as

the trigger input source.

 /* Initialize PDB module. */

 PDB_GetDefaultConfig(&pdbConfigStruct);

/* The trigger would be selected by TRGMUX. */

 pdbConfigStruct.triggerInputSource = kPDB_TriggerInput0;

 PDB_Init(DEMO_PDB_BASE, &pdbConfigStruct);

3. PDB0 modulus and channel delay time configuration

The mod of PDB is not used but must be set up to an appropriate value. It should be more than delay

value. The delay value determines the delay time of pre-trigger. Set the mod (PDB0_MOD_MOD) to

2000 and set channel 0 pre-trigger 0 delay value (PDB0_CH0DLY0_DLY) to 500 in the use case. It does

not need to configure delay value for other pre-triggers in back-to-back mode. The channel delay time

for pre-trigger is determined by clock, prescale, multiplication factor and delay value.

 /* Configure the PDB mod. */

PDB_SetModulusValue(DEMO_PDB_BASE, DEMO_PDB_MODULO_VALUE);

 /* Configure the PDB pre-Trigger 0 delay time. */

 PDB_SetADCPreTriggerDelayValue(DEMO_PDB_BASE, DEMO_PDB_TRIGGER_CHANNEL,
DEMO_PDB_PRETRIGGER_CHANNEL, DEMO_PDB_PRETRIGGER_DELAY_VALUE);

4. Back-to-back mode configuration

Set PDB0_CH0C1_EN to 0xF to enable PDB0 channel 0 four pre-triggers.

Set PDB0_CH0C1_TOS[0] to 1, pre-trigger 0 asserts when the counter reaches the channel delay

register plus one peripheral clock cycle after a rising edge is detected on selected trigger input source.

Other three pre-triggers are in bypassed mode.

Reference

KE16Z PDB Trigger ADC Conversion in Back-to-Back Mode, Application Note, Rev. 0, 12/2018

8 NXP Semiconductors

Set PDB0_CH0C1_BB to 0xE, the pre-trigger 1, pre-trigger 2 and pre-trigger 3 are enabled in back-to-

back mode. When the first ADC conversion complete flag COCOA is set up, it can trigger next pre-

trigger and the trigger output can trigger the next ADC conversion.

/* Configure the ADC Pre-Trigger. */

 PDB_SetADCPreTriggerDelayValue(DEMO_PDB_BASE, DEMO_PDB_TRIGGER_CHANNEL,
DEMO_PDB_PRETRIGGER_CHANNEL, DEMO_PDB_PRETRIGGER_DELAY_VALUE);

 /* PDB Channel Back-to-back Enable / PDB Channel Pre-Trigger Enable / PDB Channel Pre-Trigger Output Select */

 pdbAdcPreTriggerConfigStruct.enablePreTriggerMask = (1U << DEMO_PDB_PRETRIGGER_CHANNEL)|(1U <<
DEMO_PDB_PRETRIGGER_CHANNEL+1)|(1U << DEMO_PDB_PRETRIGGER_CHANNEL+2)|(1U <<
DEMO_PDB_PRETRIGGER_CHANNEL+3);

 pdbAdcPreTriggerConfigStruct.enableOutputMask = (1U << DEMO_PDB_PRETRIGGER_CHANNEL);

 pdbAdcPreTriggerConfigStruct.enableBackToBackOperationMask = (1U << DEMO_PDB_PRETRIGGER_CHANNEL+1)
|(1U << DEMO_PDB_PRETRIGGER_CHANNEL+2)|(1U << DEMO_PDB_PRETRIGGER_CHANNEL+3);

 PDB_SetADCPreTriggerConfig(DEMO_PDB_BASE, DEMO_PDB_TRIGGER_CHANNEL,
&pdbAdcPreTriggerConfigStruct);

5. Load OK

Modulus register, channel 0 delay 0 register and others are internal buffered, any values written to the

register are written to its internal buffer instead. The values in this register's internal buffers are loaded

into this register only after "1" is written to the PDB0_SC_LDOK bit.

 /* Load PDB counter register. */

 PDB_DoLoadValues(DEMO_PDB_BASE);

4 Conclusion

This application note explains the inter-connections of FTM, PDB and ADC, introduces how to use

PDB back-to-back mode to implement periodic trigger four ADC channel conversions. Users can easily

implement the function by reference to details of configuration.

5 Reference

Following references are available on NXP website:

1. KE16Z Reference Manual (Document: KE1xZP48M48SF0RM)
2. Using FTM, PDB, and ADC on KE1xF to Drive Dual PMSM FOC and PFC (AN5380)

3. Synchronize Analog Modules and Timers with PDB Modules in MC9S08MP16 (AN4424)

4. Tips and Tricks Using PDB in Motor Control Applications on Kinetis (AN4822)

5. PDB Driver for the MC9S08GW64 (AN4163)

https://www.nxp.com/docs/en/application-note/AN5380.pdf
https://www.nxp.com/docs/en/application-note/AN4424.pdf
https://www.nxp.com/docs/en/application-note/AN4822.pdf
https://www.nxp.com/docs/en/application-note/AN4163.pdf

Document Number: AN12313
Rev. 0

12/2018

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers

to use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products

for any particular purpose, nor does NXP assume any liability arising out of the application or

use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters that may be provided in

NXP data sheets and/or specifications can and do vary in different applications, and actual

performance may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customer's technical experts. NXP does not convey

any license under its patent rights nor the rights of others. NXP sells products pursuant to

standard terms and conditions of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s

applications and products, and NXP accepts no liability for any vulnerability that is discovered.

Customers should implement appropriate design and operating safeguards to minimize the

risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,

MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,

SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,

AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient

Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor

Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,

Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a

Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of

NXP B.V. All other product or service names are the property of their respective owners. Arm,

AMBA, Arm Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and

μVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or

elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed,

NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2018 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	KE16Z PDB Trigger ADC Conversion in Back-to-Back Mode
	1. Introduction
	2. Features Usage
	2.1 Overview
	2.2 Back-to-back acknowledgement connections
	2.3 Timing of PDB pre-trigger and trigger outputs

	3 Implementation Details
	3.1 FTM configuration
	3.2 ADC configuration
	3.3 PDB configuration

	4 Conclusion
	5 Reference

