NXP Semiconductors
Application Note

Host SDK on Linux OS

1.Introduction

This document provides a detailed description for
Kinetis Host Application Programming Interface
(Host API) implementing the Framework Serial
Connectivity Interface (FSCI).

The Host API can be deployed from a PC tool (ie.
Test Tool for Connectivity Products) or from a host
processor to perform control and monitoring of a
wireless protocol stack running on the Kinetis
microcontroller. The software modules and libraries
implementing the Host API are included in the
Kinetis Wireless Host Software Development Kit
(SDK).

This document describes how to install all software
requirements to develop a Thread, Bluetooth® Low
Energy (BLE) and Zigbee examples; running on
Kinetis KW41Z devices, which are interfaced from a
Linux® OS by the Host API and the Host SDK.

© 2019 NXP B.V.

Document Number: AN12566
Rev. 0, 09/2019

Contents

INEFOAUCTION ... s
Get the MCUXpresso SDK
HOSE SDK ...t s
Framework Serial Communication Interface (FSCI).......... 3
Linux OS Host Software Installation Guide
5.1 PrereqUIsiteSooocovevrirniieiccrninee
Install HSDK ibraries..........ccococvevveiernencinenns
6. Libraries description........cc.ccccoverrenineiennnnen
6.1. DiIrectory treeccoovvvevvieenininnnenns

apwpE

7.1.
8. FSCITrame ...ocviiiiiiieeee e

8.1. Obtain data frame from Test Tool Application 7

8.2. Coding the frames
9. Frame callbackcocovvviiiiniiiicciins
10. Add SOUrCe fileS.......ooviiiiiiie e
11. Configure makefile. ..o,
12. Compile an application...........c.ccovevvnennnne
13. Thread Shell demo..........ccoviviciriiiicies

13.1. PrerequisiteS.......ccccovvvvverieiinennnnnn

13.2. Rundemo application
14. Thread HSDK demo........ccocoiviiiineiiiiiennne

14.1. PrerequisiteS........cccoovvvvvivrniviiennnnnn.

14.2. Rundemo application

143, Demo desCriptioncovivvieiniinieirseeee
144, Send CoAP and Socket messages from the HSDK 20

15. Thread TUN/TAP HSDK

15.1. TUN Interfacecccocoovvevrniiiicinnnn.
152, TAPINterfaceccovviniiiiiiceec
153, TOPOIOGY .ovvieviciiriciicic e
154, General Setup......cccvvvrieiiiniiieiin,

16. ZigBee HSDK Demo..........ccccevvvirieiincnnnnns
16.1. Black BOX....cooveiniiiiicce,
16.2. Control Bridge........ccovovvriiriieinnne.

17. BLE HSDK DemMO......ccccoiieiiiiieiiiiieiiiiie s
17.1. BLE Host Stack layersc..cccceue.
17.2. GATT profile hierarchy

Host SDK

2. Get the MCUXpresso SDK

The MCUXpresso Software Development Kit (SDK) includes full source code under a permissive open-
source license for all hardware abstraction and peripheral driver software.

Click below to download the FRDM-KW41Z SDK.
https://mcuxpresso.nxp.com/en/select?device=FRDM-KW41Z
Note:
This application note is developed on SDK version 2.2.1 from August 2019.

3. Host SDK

The Kinetis Wireless Host SDK consist in a set of cross-platform C language libraries which can be
integrated into a variety of user defined applications for interacting with Kinetis Wireless
Microcontrollers.

The HSDK software is designed to help developers to interact with Host SDK from Python and C
programming languages.

The Kinetis Wireless Host SDK runs on Windows OS, Linux OS, Apple OS X ® and OpenWrt. This
document describes a subset of functionalities related to interfacing with Thread, Zigbee and BLE stacks
from a Linux OS with focus on C language bindings.

KW Host APl Wrappers — C, Python, Java

User Defined Actions Upon
Events

FSCI Packets - Objects Send Commands

~~

KW Host APIl — Set of C libraries

Serial
Communication Raw FSCI Packets | FSCI over RNDIS

~~

Operating System

Device Detection

Windows Linux 05X

S~

Freescale Kinetis-W MCUs

FROM-KBAF &
FRDM- TWR- USB-
KW24D KW24D512 | Kw24D512 Jggz";'];ﬂ\ FRDM-KWA1Z | USB-KW41Z

Figure 1. Kinetis Wireless Host Software System Block diagram.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
2 NXP Semiconductors

https://mcuxpresso.nxp.com/en/select?device=FRDM-KW41Z

Framework Serial Communication Interface (FSCI)

4. Framework Serial Communication Interface (FSCI)

The FSCI module allows interfacing the Kinetis protocol stack with a host system or PC tool using a
serial communication interface.

FSCI can be implemented using the set of Linux OS libraries exposing the Host API described in this
document and the NXP Test Tool for Connectivity Products PC application (Running on Windows OS).

The FSCI module sends and receives messages as shown in figure 2. This structure is not specific to a
serial interface and is designed to offer the best communication reliability. The device is expecting
messages in little-endian format and responds with messages in little-endian format.

An FSCI frame has the following fields:

Opcode Message
STX Group Type Length Payload Checksum
\ T }
Header
Figure 2. FSCI frame fields.
Table 1.

FSCI Frame Format 1 byte Used for synchronization over the serial interface. The

STX value is always 0x02.

Opcode Group 1 byte Distinguishes between different Service Access Primitives
(MLME, MCPS, GAP, GATT).

Message Type 1 byte Specifies the exact message opcode that is contained in the
packet.

Length 2 bytes The length of the packet payload, excluding the header and
the checksum. The length field content shall be provided in
little endian format.

Payload Variable Payload of the actual message.

Checksum 1/2 bytes Field used to check the data integrity of the packet. When

virtual interfaces are used to distinguish between the BLE
and Thread stacks when both running concurrently on the
same device, this field expands to two bytes to embed the
virtual interface number.

The FSCI messages acts as a Remote Procedure Call (RPC) mechanism in which a message triggers a
remote procedure/callback.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors 3

Linux OS Host Software Installation Guide

5.Linux OS Host Software Installation Guide
Prerequisites

5.1.1. SDK libraries

Unzip the previously downloaded FRDM-KW41Z SDK, most of the files used in this document are on
the path: <SDK path>\tools\wireless\host_sdk\hsdk>

To download FRDM-KW41Z SDK, please refer to Section 2.

5.1.2. Test Tool Application

To download Test Tool application, go to https://www.nxp.com/ and search ‘Test Tool for connectivity
products’.

NOTE
Test Tool application only runs on Windows OS.

5.1.3. Linux packages

Following packages are required before starting any demo:
e build-essential
¢ libudev-dev
e libpcap-dev

Use ‘apt-get install” on Debian-based distributions.

$apt-get install build-essential
$apt-get install libudev-dev
$apt-get install libpcap-dev

Install HSDK libraries

Open a terminal in the directory: ‘~\<SDK path>\tools\wireless\host_sdk\hsdk’. Execute the following
commands to build and install the libraries required by the HSDK:

$make
$sudo make install

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
4 NXP Semiconductors

https://www.nxp.com/

Libraries description

6. Libraries description

Directory tree

You can find hsdk folder at: <SDK path>\tools\wireless\host_sdk\hsdk’ bin
E common
physical E FsciBootloader
protocol E GetKinetisDevices
sy's [] make_tap
e hsdk (] rmake_tun
demo | Makefile
doc | Makefile.dk07
include B rcapTest
ohysical Bl spiest
B thread_HsDK
PCAP protocol B Thread KW Tun
Pl res B Thread Shell
UART sys B Thread_shell

E PhysicalDevice

F5CI

E Framer

Figure 3. directory tree.

e demo
Contains all demo source codes provided in the HSDK, and the makefile to compile them.
o bin: contains executable files of every demo.

e include

Every library used in demos are placed in this folder. These libraries have only prototype
functions.

o physical: has all physical protocols used to set a communication with the Kinetis device.
o protocol: in this folder are placed the libraries to create the framer and the FSCI frame.
o sys: has general libraries needed to work with an OS.
e physical
Contains every .C files of the physical library find in the ‘include’ folder.
o PCAP: has all functions to set a PCAP communication.
o SPI: has all functions to set an SPI communication.
o UART: has all functions to set a UART communication.
e protocol: contains every .C files of the protocol library find in the ‘include’ folder.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 5

Framer

o FSCI: in this folder are placed the libraries to create the FSCI frame.

Below is a small description of the header files required to develop an HSDK application.

e ‘Framer.h’ and ‘FSCIFrame.h’ are headers needed to create, destroy and send the FSCI frames
from the computer to the board. Contains information about the structure of the FSCI frame and
all prototypes functions that can be used. It can be found in the following directory:

‘<SDK path>\tools\wireless\host_sdk\hsdk\include\protocol’

* ‘PhysicalDevice.h’ is needed to attach the board with the computer by UART protocol (more
device types are supported by the library). The library can be found in the next directory:

‘<SDK path>\tools\wireless\host_sdk\nsdk\include\physical’

e ‘UARTConfiguration.h’ has all structures and enumerations to configure UART protocol
communication. It can be found in the following directory:

‘<SDK path>\tools\wireless\host_sdk\hsdk\include\physicaN\UART"’

Each HSDK demo has its own header with all operation groups and codes needed by the FSCI frame
protocol. These headers are located in the following directory:
‘<SDKpath>\tools\wireless\host_sdk\hsdk\demo .

/. Framer

A framer is required to specify every field that contains in the message packet. The API that is provided
for HSDK supports a variety of protocols, allowing the developer to create his own frames manipulating
every field of the framer such as the endianness, CRC field size, length field size, etc. Also, it is used to
specify the port where the physical device is connected to the computer.

Create framer

The construction of this frame is made with the following functions:

InitPhysicalDevice(DeviceType type, void *pConfigData, char *deviceName, FsciAckPolicy
policy)

‘PhysicalDevice.h’

This function defines the following parameters:
¢ Communication protocol (UART, SPI, USB...).
e Communication protocol data configuration.
e The port where the Kinetis device is connected.
e Policy for FSCI acknowledge synchronization (none, TX, RX, both, global).

InitializeFramer(void *connDev, FramerProtocol protocol, uint8_t lengthFieldSize, uint8_t
crcFieldSize, endianness endian);

‘Framer.h’
This function constructs the framer fields. Its parameters are:

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
6 NXP Semiconductors

FSCI frame

e Physical device. The one created with the first function InitPhysicalDevice().
e Frame protocol type (FSCI, HCI, ASCII).

e Length field size.

e CRC field size.

e Endianness of the framer.

OpenPhysicalDevice(PhysicalDevice *);

‘PhysicalDevice.h’

Open the specific device created in the first function InitPhysicalDevice(). Parameters:
e Physical device. The one created with the first function InitPhysicalDevice().

8. FSCI frame

Frame protocol allows monitoring an extensive testing of the protocol layer interfaces. It also allows the
separation of the protocol stack between two protocol layers in two processing entities set up, the host
processor (typically running the upper layers of a protocol stack) and the Black Box application
(typically containing the lower layers of the stack, serving as modem).

Refer to Connectivity Framework Reference Manual document at section 3.11 Framework Serial
Communication Interface to get more information about it. The document can be found in the
directory: <SDK path>\docs\wireless\Common.

Obtain data frame from Test Tool Application

Test Tool for connectivity products provides several loaded commands sets for every connectivity
protocol (BLE, Zigbee, Thread, SMAC). Also, it provides a serial window view where the user can
watch each byte contained in every FSCI command sent and received by the host computer.

These characteristics make the Test Tool a very useful application to analyze FSCI commands.

8.1.1. Load a host demo to FRDM-KW41Z

For example, you can load a Thread ‘host_controlled_device’ demo to one FRDM-KW41Z board. The
demo project can be found in the directory:’ <SDK path>\boards\frdmkw41z
\wireless_examples\thread\ .

8.1.2. Use Test Tool application

Connect the board to the computer with Windows OS, open Test Tool application and double-click on
the COMXx on Active devices.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 7

FSCI frame

=3 nxp

& Command Conscle

Test Tool 12

i)

, Script Server

1y StartPage

TESt TeO

[l Command Console

Use Command Console to send FSCI commands to development boards. Double
dick a port to open a serial connection to the device,

USBIUART ExternalTCPIP

-

COM6
BAUDRATE: 115200

@ Firmware Loaders

Load a *:518, *.bin or *.srec file to a development board.

Launch Firmware Loader...
4 Load a * srecimage file to the flash of an Kinetis via OpenSDA or JLink.

PRd

]

Protocel Analyzer [«(oax\;tanceTuo\ %Flrmware Loader R Radio Test g"(}TA Updates - I ZGWUI <} Settings @Help 2

i
== Protocol Analyzer

Use the Protocol Analyzer with a NXP hardware dongle to view OTA packet activity.
Click a channel to start an analyzer session.

11 12 13 14 15 16 17 18 cConsumer
19 20 21 22 23 24 25 26

Launch Protocol Analyzer...

L:._J Script Server

Automatically run wireless connectivity Python test scripts. Tests run by sending
batch FSCI commands to the development boards.

Launch Script Server...

[(I Coexistence Tool

Use Coexistence Tool to run and log radio interference tests.

Launch Coexistence Tool...

x

Figure 4. Test Tool home page.

Verify that the ‘Loaded Command Set’ corresponds to the protocol stack that you just loaded (Zigbee,
Thread, BLE) and check Raw Data checkbox at the bottom.

&3 NXP Test Tool 12

& Command Consele &, Script Server 2% Protocol Analyzer

u StartPage

Device List

. coM6
* BAUDRATE: 115200

@ Command Console %
1 x

@ Open {fSettings <5 § C

- THR_¢ q

{{ Coiistence Tool 4 Fimware Loader B Radio Test $ OTA Updates = [l ZGWUI % Settings @ Help 2

I | | mstancerd1]

Add Shorteut

Loaded Command Set Im,aadlpil‘z‘ sl

Attributeld[1]

Al Command...
Index[1]

THR_FactoryResetRequest Channel

THR_NwkScan Request
THR_SelDeviceConfig Request
THR_CreateNwk Request
THR_Join Request
THR_GetAtr Request
THR_GetThreadipAddr Request
THR_Disconnect Request
MESHCOP_CommissionerSetParams Request
MESHCOP_StantCommissioner Request
MESHCOP_StopCommissionerRequest
MESHCOP_AddExpectedJoiner Request
MESHCOP_RemoveExpected.oinerRequest
MESHCOP_SyncSteeringDataRequest
MESHCOP_RemoveAllExpectedJoiners Request
NWKU_lfconfigAll Request
SocketCreate Request
Socket-Bind Request
SocketConnect Request

Attrsize[1]

Value[1]

SocketSend Request
SocketReceive Request
SocketListen Request
Socket-ReceiveFromRequest

Get Default...

[ox00

Channel -

[oxa0 |

[oxo1 |
[\

SendRaw.. | -\

I Raw Data I

o fecoratiocs m > | |4

THR_SetAtir Request Jp2 cE 180500 00 0400 010F 3

Figure 5. Test Tool command window.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors

8.1.3. Send and receive packets

FSCI frame

The FSCI frame example described below sets the channel 15 as an attribute in a Thread network.
Frame data is obtained from the Test Tool application specifying each one of the fields and indicating if

the message is an RX or TX packet.

Below is a description of each one of the steps that the developer should follow:

1. Select the command to be sent.

2. Select ‘Channel’ on the “Attributeld” field, set the channel number on the value field and send the

command.

X
Command: THR_SetAttrRequest

gs <5 @
Loaded Command Set | ThreadIP_1.2.5.xml

All Commands... Add Shortcut

THR_FactoryResetRequest
THR_NwkScan.Request
THR_SetDeviceConfig.Request
THR_CreateNwk Request
THR_Join.Request
THR_GetAttr.Request
THR_SetAtir Request
THR_GetThreadlpAddr.Request

v | Instanceld[1]

Attributeld[1]
Index[1]
Channel
AttrSize[1]
Value[1]

Figure 6.

[ox00

| chamne

RX and TX messages appear on the right side of the screen. With this information, the developer can

watch all fields in the sent frame.

- TX: THR SetAttr.Request 02 CE 18 05 00 00 04 00 01 OF D3

[Syne [1 byte] = 02] -
mzuup [1 byte] = {E] »
OpCode [1 byte] = 18

|Length [2 bytes] = 00 05| I
Inscanceld [1 byte) = 00

Arcributeld [1 bycte] = 04| (Channel)

Index [1 byte) = 00

ArerSize [1 byte) = 01

Value [l bytel = OF

[CRC [1 byte] = p9| >

P RX: THR_SetAttr.Confirm 02 CF 18 01 00 00 Dé

Figure 7. Frame fields.

5Tx

opGroup
Message Type
Length

Data Payload

Checksum

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors

FSCI frame

The payload data from the TX message is shown at the bottom of the screen. Taking this raw data, the
developer can create the buffers for every command that can be sent to the board.

THR_SetAttr.Request hn nn@ OF

Command: THR_SetAttrRequest

Instanceld[1] 000 |
Attributeld[1] Channel & v
Index[1] |Uxﬂﬂ |
Channel

AttrSize[1] 0x01 E |
Value[1] 15 |

Figure 8. Frame payload.
Analyzing the frame fields of the RX message:
e opGroup: Is different than the TX message opGroup byte.
e Message Type: Is the same as the TX message opCode byte.
e Status (payload): A zero response indicates a successful execution command.

b TH: THR SetAttr.Bequest 02 CE 18 05 00 00 04 OO0 01 OF D3

1 BX: THR SetAttr_ Confirm 02 CF 18 01 00 00 Dé

| Syne [1 byte] 0z |

= » STX
|OpGrnup [1 bvte] = CFl » opGroup
Oplode [1 byte] = 18 Message Type
|I.E1'Lgth [2 bytes] = o0 01} p Length
Status [l byte] = 00 |(Success) Data Payload
| cre [1 bytel = D& | » Checksum

Figure 9. Frame fields.

Coding the frames

8.2.1. Function description

‘FSCIFrame.h’ offers several functions to create FSCI frames. This is a brief description of the
‘CreateFSCIFrame()’ function.

The function receives six parameters:

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
10 NXP Semiconductors

FSCI frame

e framer: The function uses this parameter to set the length and the endianness frame size. Refer to
‘Chapter 6. Framer’ from this document to obtain more information about it.

e opGroup: Every FSCI frame has a code to identify if the frame is an RX or TX packet. The
opGroup codes that are supported in this example can be found in ‘common.h’ with an ‘OG’
ending name.

e opCode: Every FSCI frame has its own opCode that specifies the command that wants to be
executed by the board (factory reset, create network, join to network, send coap message, etc.).
Every opCode that is supported can be found in ‘common.h’ with an ‘OC’ ending name.

e data: Pointer to the data payload that is going to be sent to the board.
e length: Payload length.
e virtualld: Specifies if the frame uses a virtual interface or not.

8.2.2. Select the opGroup & opCode

TX message opGroup and opCode provided in ‘Section 7.1.3 - Send and Receive Packets’ are the ones
that will be used to construct the frame.

opGroup | OxXCE | This byte corresponds to a TX message. Every command sent to the board will
have this opGroup.

opCode 0x18 | This byte corresponds to set an attribute to the network.

Every opGroup and opCode supported can be found in ‘common.h’ file.

8.2.3. Create data payload buffer

A data buffer is required to send different FSCI commands to the board. This buffer can be created using
the information collected in ‘Send and receive packets 8.1.3°. In this case, the payload buffer has the
next bytes:

static uint8_t set_ch_buf[] = {THR_INST_ID, ©x04, 0x00, 0x01l, OxOF};

8.2.4. Create FSCI frame

By now, the developer has all information required to create his own FSCI frame. The
‘CreateFSCIFrame ()’ function and the parameters used to create the frame is shown below.

FSCIFrame *set_channel = CreateFSCIFrame(framer, TX_0G, THR_SET_ATTR_OC, set_ch_buf,
sizeof(set_ch_buf), VIF);

8.2.5. Send frame

‘Framer.h’ header provides the ‘sendFrame ()’ function. Following are the parameters that are used by
this function:

e framer: this parameter is used to set the length and the endianness frame size. To obtain more

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 11

Frame callback

information about it see chapter 7 Framer.

e frame: can be any FSCI frame created by the developer.The FSCI frame created in section 8.2.4
Create FSCI Frame is used in this document.

SendFrame(framer, set_channel);

8.2.6. Destroy FSCI Frame

‘Framer.h’ library provides the ‘DestroyFsciframe()’ function. This function is used to deallocate the
memory space required by the frame. The function receives the FSCI frame to be destroyed.

DestroyFSCIFrame(FSCIFrame *);

9. Frame callback

In this example, every time a TX message is sent to the client device, the board responds with an RX
message.

First, the developer needs to attach a callback to the framer created in Section 6.1 Create Framer. This
callback is executed on every RX packet. ‘Framer.h’ header provides ‘AttachToFramer ()’ function:

AttachToFramer(framer, NULL, callback);

Analyzing the frame received in section 7.1.3 Send and Receive Packets, the developer can execute
specific tasks depending on the received message. The opCode field can be used to filter the messages.

static void callback(void *callee, void *response)
{
FSCIFrame *frame = (FSCIFrame *) response;
if (frame->opGroup = THR_RX_OG && frame->opGroup != MWS_RX_OG) {
DestroyFSCIFrame(frame);
return;
}
switch (frame->opCode) {
case THR_SET_ATTR_OC:
printf("RX: THR_SetAttr.Confirm");
if (frame->data[0] == 0x00) {
printf(" -> Success\n");
}
break;
DestroyFSCIFrame(frame);

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
12 NXP Semiconductors

Compile an application

10. Add source files

This application note consists of eight source files that are not included in the SDK folder. To run the
following demos correctly, you need to copy these files in the ‘hsdk\demo’ path:

‘“<SDK path> \tools\wireless\host_sdk\hsdk\demo ’

Make sure to replace the old Makefile with the new one to compile all the source files with a single
command.

These source files can be found as a ZIP named ‘Host SDK on Linux OS’ at Application Note Software
section.

11. Configure makefile

Go to: ‘<SDK path> \tools\wireless\host_sdk\hsdk\demo " and open the file named ‘Makefile’ with a
text editor of your preference. This file is used to resolve any dependency on the used libraries and
compile every demo.

If the developer wants to add his own file, make sure the name of your application file is written in the
line that is shown below, if it is not, write it.

build: cl

Then, go to the end of the makefile and add the build profile of your project as it-s shown in the figure
below.

BIITI NEL ACS
BUILDFLAGS

S5PITest.o

T MNT o oA — "
BUTLDDI f 5 - 3 IN

BIITI OFT ACS
BULLLDFLAGS

File_Name: File Mame.o

Add here

Figure 10. Makefile view.

Substitute ‘File Name’ with your own file name.
12. Compile an application
To compile any demo application, follow the next step on the computer with Linux OS:

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors 13

Thread Shell demo

e Open aterminal in the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo " and
execute the next command:

$make

If user wants to compile his own application, make sure to previously configure the makefile file (refer
to Chapter 10. Configure makefile).

13. Thread Shell demo

This demo allows the developer to experiment and become familiar with the Thread Host Control
Interface (THCI) messages.

To get more information about this demo, please refer to the document: Kinetis Thread Stack Shell
Interface User’s Guide. The document can be found in the following directory:’ <SDK
path>\docs\wireless\Thread .

Prerequisites

To make this example work correctly, the boards will have an identification letter as is shown in the next

figure:
THCI \
&= \\ /ff
Thread Host Controlled Device Router Eligible Device
(THCD) 2

@

Figure 11. Board setup.
Load THCD firmware to both boards as follows:

e Board A:
Load ‘host_controlled_device’ example. The project can be found:
' <SDK path>\boards\frdmkw41z \wireless_examples\thread\".

e Board B:
Load ‘router_eligible_device’ demo. The project can be found:
*<SDK path>\boards\frdmkw41z \wireless_examples\thread\".

Run demo application

To execute this demo, follow the next steps:
e Compile demo. See Chapter 10. Compile an Application.
e Open aterminal in the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo\bin.
¢ Execute ‘GetKinetisDevices’ program to obtain the port where the Kinetis device is connected.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

14 NXP Semiconductors

Thread HSDK demo

e Execute ‘Thread Shell’ application.
$sudo ./GetKinetisDevices
NXP Kinetis-W device on|/dev/tty ACMO|

$sudo ./Thread_Shell [/dev/tty ACMO[L5/115200 |

v vy

Parameters: Port Channel Baud rate

Note:

If you are running these demos on a Virtual machine you need to enable
the USB controllers in the virtual machine settings, then the board will be
recognized as a connected device.

{2 Ubuntu - Settings | ? b
E General - usB

[I’ System Enable USB Controlle:
!J Display "f 7'
Storage 458 30 6T Controes

@p Audio USB Device Filters
EA SEGGER J-Link [0100]
L-jJ Network

@ Serial Ports
&’ uss

D Shared Folders
EI User Interface

R

==

Figure 12. Virtual machine configuration.

14. Thread HSDK demo

Refer to ‘Kinetis Thread Host Control Interface Reference Manual’ document to have a more detailed
description of each one of the available Thread messages. The document can be at:
* <SDK path>\docs\wireless\Thread’.

The Thread HSDK demo makes use of the HSDK APIs to send several packets with 1 second interval
between each one. The host device sends the following commands to the serial interface and the client

device will execute them:
e Create network.
e Start Commissioner.
e Allow nodes to connect.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 15

Thread HSDK demo

When a node joins the network, perform the following using Mesh Local Address:

Print node data.

Send one ICMP Echo request (Ping).

Send one CoAP message “/led toggle” with no ACK. (User verify if the LED was toggled).
Send one CoAP message “/temp” with ACK.

Open a Socket and send data to the remote node.

Print any Socket request coming from the network.

Prerequisites

To make this example work correctly, the boards have an identification letter as is shown in below

figure:

@

THCI \

=2 \\ //f

Thread Host Controlled Device Router Eligible Device
(THCD) :

Figure 13. Board identification.

Load THCD firmware to both boards as follows:

Board A:

Load ‘host_controlled_device’ example. The project can be found:
' <SDK path>\boards\frdmkw41z \wireless_examples\thread\".
Board B:

Load ‘router_eligible_device’ demo. The project can be found:
*<SDK path>\boards\frdmkw41z \wireless_examples\thread\".

To enable the router_eligible_end_device to send and receive socket messages it is necessary to
set SOCK_DEMO to 1. This macro can be found in the ‘config.h’ file.

Run demo application

To run any demo application (or your own application) follow these steps:

Compile demo. See chapter 10 Compile an Application.

Connect the Board A to the computer with Linux OS.

Open a terminal in the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo\bin .
Execute ‘GetKinetisDevices’ program to obtain the port where the Kinetis device is connected.
Execute ‘Thread_HSDK’ program.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

16

NXP Semiconductors

Thread HSDK demo

$sudo ./GetKinetisDevices
NXP Kinetis-W device on|/dev/ttyACMO)|

x

$sudo ./ Thread_HSDK |/dev/tty ACMO][15] 115200

Parameters: Port Channel Baud rate

Demo description

14.3.1.Create Thread Network

The Thread HSDK application will starts and you see the information as in below image on your
terminal:

sudo . /Example /dev/ttyACMB 15 115288

icy Rotation Interval

—» Set PSKd key

Local Host IP address

Channel: 15

Figure 14. Board A, Thread Network creation.

The host sets the channel, PAN ID, Extended PAN ID, and other several attributes also starts the
network as commissioner.

When network is created, the demo displays the host IP addresses and the network information by

sending ‘ifconfig’ FSCI frame. You can enable or disable the use of this command by setting
USE_IFCONFIG at the top of the ‘Thread HSDK.c’ file.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors 17

Thread HSDK demo

14.3.2.Join New Node

Connect the Board B and open a serial terminal with Tera Term or PuTTY. Configure the serial
terminal with the following parameters: Baud rate: 115200, 8-bit data, 1 stop bit, No flow control, No

parity.

Tera Term: Serial port setup *

Paort: COMB ~ 0K

Baud rate: 115200 v

Data: 8 bit v Cancel
Parity: none ~

Stop: 1 bit v Help

Flow control: none ~

Transmit delay
EI msecichar EI msecfline

Figure 15. Serial terminal configuration.

Press the reset button on the Board B and enter the next thr commands on the serial terminal:
$ thr scan allchannel
$ thr set channel 15
$ thr join

T COM4 - Tera Term VT — O >
Eile Edit Setup Control Window Help

SHELL starting...

NSP Thread v1.1.1.35
« "thr join" to join a network, or "thr create" to start new network
v "help” for other commands

% thr scan allchannel

Thread Network: B
PAN ID: Bxface
Channel: 15
LQI:= 119

Received bheacons: 1

¢ thr set channel 15
Success?

% thr join

Joining network...

Figure 16. Board B, ‘thr commands.

The end device joins to the Thread network. You can see the outputs as below on the Linux terminal
showing the commissioner status:

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
18 NXP Semiconductors

Thread HSDK demo

started

r accepted e
A node has joined

! iding the rity material to the Joiner
= IN JOIN_ENT_|

Figure 17. Board A, commissioner status.

¢ thr join
Joining network...

Commiszsioning successful

Attached to network with PAM ID: Bxface ——p Join to the Thread network with the same PAN ID

Figure 18. Board B, joining network.

14.3.3. Print joiner’s IPv6 addresses

This information is obtained by sending ‘getnodesip’ FSCI frame. You can enable or disable this

—» IP addresses of new joiner

fdeg:dbB: : ff

Figure 19. Joiner IPv6 address.

14.3.4.Ping request/response
You can enable or disable this command by setting USE_PING.

Figure 20. Ping request/response.

14.3.5. COAP messages

First, the host sends a create instance request and receives the confirmation. Then, sends both CoAP
messages (“/led toggle” and “/temp”) and receives only the temperature response.

You can enable or disable this command by setting USE_COAP.

RX: NWEU_CoapCreateInstance.Confirm -> OK!
R¥X: NWKU_Co ved. Indication

Statu
Payload -> Temp

Figure 21. CoOAP message.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 19

Thread HSDK demo

LED control.

You can put in different states your led end device.

> coap CON POST fdoo:dbB8::ff:fefd:400 [led flash
RX: NWKU_CoapCreateInstance.Confirm -> OK!

RX: NWKU CoapMsgReceived.Indication
Status -> Success

Figure 22. LED status.

14.3.6. Socket messages

The host opens a socket port and send data to the end device.

Open Socket

Figure 23. Socket message.
See the received socket data in the router_eligible_end_device serial terminal.

Attached to network with PAM ID: Bxface

1234 From IPv6 Address: fdBB:db8::ff:feBd:B

Figure 24. Socket received data.

You can enable or disable this command by setting USE_SOCKET.

Send CoAP and Socket messages from the HSDK
14.4.1. CoAP

14.4.1.1. Modifications on the board side

User can send his own CoAP messages to the host. To do this, a new uri-path must be added on the host-
controlled device. Follow the next community post to add a new uri-path:
https://community.nxp.com/docs/DOC-333784.

Once the new uri-path callback has been added, the user can use THCI_EventData() function to send data
to the host (Linux computer) through thci message.

THCI_EventData(uint8_t opCode, uint8_t length, uint8_t *pData);

This function can be found in ‘thci.h’ file. It can be used to send data from board A to the host
computer, specifying the opCode and a pointer to the sending data.
NOTE

All these modifications must be implemented on the board side (MCUXpresso or IAR) only on
board A.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
20 NXP Semiconductors

https://community.nxp.com/docs/DOC-333784

Thread HSDK demo

14.4.1.2. Modifications on the host side

The only thing that must be added on the host side is on the reception callback. These modifications
depend on the opCode used by the developer and the functionality that wants to be added.

14.4.2. Socket
To send socket messages from the end device to the leader (host_controlled_device), enter the below
commands on the serial terminal (board B):

$ help socket

$ socket open udp fd00:db8::ff:fe00:0 1233

$ socket send 0 ABCD

Developer can see the available socket commands and its parameters.

% help socket
socket — IP Stack BSD Sockets commands
socket open <protocol’ <{remote ip addr> <remote port:

socket send <{socket id>» <{payload> —— Socket commands
socket close <socket id>

Figure 25. Socket commands.

Open a socket port using UDP protocol and the leader IP address. Send ‘ABCD’ using the socket id
obtained in the socket open response.

socket open wdp fdBB:db8::ff:feBd:\A 1233
lpening_Euqket... 0K —» Open socket
nocke (! - B
socket send B ABCD
Socket Data Sent

Figure 26. Socket commands 2.

See the information sent by the end device printed in the host terminal.

R¥: Socket-Connect.Confirm
Payload{4} -= ABCD From IPvE Address: fdBB:dbB::ff:feBB:488

Figure 27. Socket information from host terminal.

—» Receive socket message

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 21

Thread TUN/TAP HSDK

15. Thread TUN/TAP HSDK

TUN and TAP interfaces allows the programmer to send and receive network traffic (MAC or IP level)
on his applications. Both are software interfaces, they have no physical hardware components. The
Kernel manages the created interfaces and decides when to send data through those TUN or TAP
interfaces or through any physical hardware component. The developer can only use one interface on his
application, you can’t use both at the same time. Depending on the network requirements, you can
choose a TUN or TAP interface.

The Kinetis Thread Stack implements a serial Tunnel media Interface which can be used to exchange
IPv6 packets encapsulated in THCI commands with a host system.

Kernel

TUN/TAP
WiFi Ethemnet

| Applicatiun|
Figure 28. TUN/TAP software interface

TUN Interface

TUN interface works at layer three (Network), which can operate with IP packets. This interface
provides routing between different nodes. Since TUN runs at layer three, it can only accept IP packets.
This type of interface is used when programmers want to enable routing.

TAP Interface

TAP interface works at layer two (Data Link Layer), which handle MAC frames. This interface provides
node-to-node data transfer or point-to-point connection. Since TAP runs at layer two, the device can
send data to any layer three protocol added on the device. This type of interface is used when

programmers want to create a network bridge and avoid routing between the host_controlled_device and
the HSDK host.

Application
) TUN
Network IP Packets
TAP
e MAC Packsts
PHY

Figure 29. TUN/TAP layers

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
22 NXP Semiconductors

Thread TUN/TAP HSDK

NOTE
Previous versions of the Thread stack permitted to disable ND completely on the serial tunnel media
interface, with communication being network layer only (layer-3 TUN mode). The current version of
the Thread stack disables this mode to promote link layer communication (layer-2 TAP mode)
between the Thread border router and external networks. If needed, one may modify the firmware to
use TUN mode instead of TAP mode by stripping out the Ethernet header from network frames
handled in functions IP_Serial TunRecv and IP_Serial TunSend6.

A bridge is used to join two independent networks together and form a larger network. Having this in
mind, you could create an interconnection between those networks and exchange data.

(<)

A

Border Router 1 Y Border Router 2
L J J

A

v L

Thread Metwork 1 Thread Metwork 2

Figure 30. Bridge between 2 networks.

Topology

Two components are required to provide connectivity to the host: the TUN/TAP kernel module, which
allows the OS to create virtual interfaces and a program that knows how to encapsulate/decapsulate 1P
packets from/to FSCI/THCI.

The image below describes the communication stages for each message sent by the host (PC) and the
Thread device (Border Router).

FSCI
encapsulator Serial Interface KW Device
program on host

IP packet from TUM interface on

Kernel PC host

Figure 31. Direction from host (PC) to serial Thread device.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors 23

Thread TUN/TAP HSDK

FSCI
Serial Interface decapsulator
program on host

TUM interface on Kernel receives
PC host the packet

IP packet from

Thread stack

Figure 32. Direction from Thread device to host (PC)

15.3.1. Linux Host

In this scenario, the Linux host is a bridge between the OpenWrt Router and the Kinetis Border Router.
The PC receive/send IPv6 packets encapsulated by THCI serial commands. To do this, the PC have to
enable a TUN/TAP interface. Refer to Figure 33.

15.3.2. Border Router

The Border Router will act as an interface to forward IPv6 packets between the Thread network and the
Linux host. To do this, the Kinetis device will have to support a TUN/TAP interface. Refer to Chapter
15.4 General setup to enable it. Refer to Figure 33.

15.3.3. OpenWrt Router

A router with DHCPv6-PD support is required. This router enables you to connect your Thread network
to any other system that uses IPv6 packets. The Prefix Delegation feature delegates the IP address
assignation. Refer to Figure 33.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
24 NXP Semiconductors

Thread TUN/TAP HSDK

ISP

DHCPvE-PD
OpenWrt Router

Ethemet/Wi-Fi

: v
e Linux
(Host SDK) % Data Base
=\ E

TUN/TAF over
THCI

m Border Router

Thread

Figure 33. Overall network topology using TUN/TAP and external host

General setup

e Linux Host.
e OpenWrt AP/Router with DHCPv6-PD support.

15.4.1. Embedded setup

First, verify that you have the latest SDK version (this document uses 2.2 version). Refer to Chapter
4.1.1. SDK Builder of this document to see the download link.

e 1 FRDM-KW41Z as Border Router (Host Controlled Device)
e 1 FRDM-KW41Z as joiner device.

15.4.1.1. Configuration

Border Router (Host Controlled Device)

Use the Host Controlled Device demo provided in the FRDM-KW41 SDK. The project can be found in
the following directory:’ <SDK path>\boards\frdmkw41z\wireless_examples\thread\ .

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 25

ZigBee HSDK Demo

The following changes are needed to enable the TAP interface:
1. Enable THR_SERIAL_TUN_IF [source/config.h

Joiner device.

Use the Router Eligible End Device demo provided in the FRDM-KW41 SDK. The project can be found
at: * <SDK path>\boards\frdmkw41z\wireless_examples\thread\". No changes are required on this demo.

To create a network with TUN/TAP devices, follow the instructions in the next tutorial:
https://community.nxp.com/docs/DOC-334294. You will find step by step instructions on how to enable
this functionality.

To have a more detailed description of the Thread Tunnel Interface please refer to the document: Kinetis
FSCI Host Application Programming Interface on ‘Chapter 6. Thread Integration with Linux OS Host
on Serial (UART) Tunnel Interface’ and ‘Chapter 7 Applications Using the TUN Interface’. The
document can be found at: * <SDK path>\docs\wireless\Thread .

16. ZigBee HSDK Demo

There are two demo examples based on ZigBee protocol:

1. Zigbee Black Box: Can be used as coordinator or as router. There are two different files, one for
each implementation. The files are named ‘Zigbee_ BBC_HSDK.c’ and ‘Zigbee BBR _HSDK.c’
respectively. Both files use ‘Zigbee BlackBox HSDK.h’ as header.

2. ZigBee Control Bridge: Provides a means of controlling ZigBee devices within a ZigBee
network. The device would typically act as ZigBee 10T Gateway.

Both ZigBee HSDK demos send several packets with 1 second interval between each one. The host
device is programmed to send the following commands through the serial interface and the client device
will execute them:

e Start ZigBee network.

e Install code to allow Unique Link Key.

e Permit join.

When a ZigBee node (OnOffLight Router) joins the network:

e Send a Discover Command.

e Send a Simple Descriptor request.

e Send a Read attributes for OnOff status.

e Send an OnOff Set State command.

e Find & Bind — Initiator.

¢ Receive attribute report periodically from the OnOffLight Router.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

26 NXP Semiconductors

https://community.nxp.com/docs/DOC-334294

ZigBee HSDK Demo

Black Box

16.1.1. Add your own OpCode — embedded side

All Zigbee FSCI command codes supported by the device are found in ‘SerialLink.h’ file as an
enumeration named ‘teSL_MsgType’. Follow the steps below to add a new opcode implementation.

1. Select a name and a number that are not already listed in ‘teSL_MsgType’ enumeration and add
it. It is recommended to follow the naming standard.

2. Goto ‘app Znc cmds.c’ file and look for the following function:
‘APP_vProcessincomingSerial Commands(uint8 u8RxByte)’.

Add a new ‘case’ statement with your new command code selected in the first step.

4. Add your code implementation inside the case statement.

16.1.2. FSCI Black Box as Coordinator

16.1.2.1. Prerequisites

To make this example work correctly, the boards have an identification letter as is shown in the below

figure:
& \\\ /fr

Zigbee FSCI Black Box Zigbee Router

Figure 34. Board setup.

Load ZHCD firmware to both boards as follows:
e Board A:
Load ‘fsci_black_box’ example. The project can be found:
' <SDK path>\boards\frdmkw41z \wireless_examples\zigbee 3 0\".

Follow the steps bellow to enable the Install Code functionality. These changes are needed to
run this demo correctly. (If you are creating a new project and don’t want to use Install Code,
there is no need to do it):
1. In bdb_options.h change #define BDB_JOIN_USES INSTALL_CODE_KEY from
FALSE to TRUE.
2. Add a new opcode to support the install code FSCI command on the embedded side. To

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 27

ZigBee HSDK Demo

do this, refer to chapter 13.2. Add your own Opcode — embedded side, and add the
following code:

As command code in ‘teSL_MsgType’ enumeration (SerialLink.h file):
E_SL_MSG_INSTALL CODE = 0x0015
As command code implementation (app_Znc_cmds.c):
case (E_SL_MSG_INSTALL_CODE):
{
uint64_t u64Addr;
uint8 t i;
uint8_t offset = 0;
uint8 t Key[16];
ZPS tsAplAib * psAplAib;

ub4Addr = ZNC_RTN_U64_ OFFSET (au8LinkRxBuffer,offset,offset);
for(i = 0; i < 16 ; i++)

{

Key[i] = au8LinkRxBuffer[offset + i];

}

/* Install the new code */

ZPS_eAplZdoAddReplaceInstallCodes(u64Addr, Key, 16,
ZPS_APS_UNIQUE_LINK_KEY);

psAplAib = ZPS psAplAibGetAib();

for(i=0; i<16;i++)

{

Key[i] = psAplAib->psAplDeviceKeyPairTable-
>psAplApsKeyDescriptorEntry[0].au8LinkKey[i];

}
vSL_WriteMessage(E_SL_MSG_INSTALL_CODE, 16, Key);

¥

break;

e BoardB:
Load ‘router’ demo. The project can be found at:
'<SDK path>\boards\frdmkw41z \wireless_examples\ zighbee 3 0\".

Follow the steps bellow to enable the Install Code functionality. These changes are required to
run this demo correctly. (If you are creating a new project and don’t want to use Install Code,
there is no need to do it):

1. Inapp_router_node.c in the APP_vinitialiseRouter() function add the following before

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

28 NXP Semiconductors

ZigBee HSDK Demo

the call to ZPS_eAplAfinit():
/* Enable use of install codes */
ZPS_tsAplAib *psAib = ZPS_psAplAibGetAib();
psAib->bUseInstallCode = BDB_JOIN USES_INSTALL_CODE_KEY;

2. Inbdb_options.h change #define BDB_JOIN_USES INSTALL_CODE_KEY from
FALSE to TRUE.

16.1.2.2. Run demo application

Before executing the coordinator ZigBee host application, you need to edit ‘install code buf variable in
‘Zigbee BBC HSDK.c’ file. Replace all bytes with the corresponding MAC address of your own
joiner device repeated. This is required to allow your joiner into the network.

16.1.2.3. Find MAC Address

To find the MAC address of your own joiner device run router demo and open a serial terminal as
done in previous steps, then type “extendedaddr”, the string displayed by the console is the MAC
address.

T COM4 - Tera Term VT - a X
File Edit Setup Control Window Help

3

»* ROUTER RESET »*

-0 - 0 0 00 000 o -0 o -0 e e - D

APP: Entering APP_vInitResources{)>

APP: Entering APP_vInitialise{?

Start Up StaTe @ On Network O

B MAC: BxB @ Key: 00 00 00 00 00 PP 00 GO PO PP OO 00 PO 0O PO OO
MAC: BxB @ Key: 5a 62 67 42 65 65 41 6¢c 6c 69 61 6e 63 65 30 39
MAC: BxB @ Key: dB@ di d2 d3 d4 d5 d6 d7 d8 d%? da db dc dd de df

3 MAC: BxB @ Key: 29 cd ac e4 3e a5 7% 6e fO 79 89 84 75 74 45 f1

APP: Entering BDB_uStart()

APP: BDB_EUENT_INIT_SUCCESS
extendedaddr
> Bx?5c52c6Bf12aB3a8

<

For example, if your joiner device MAC address is: 0x75C52C60F12A03A8 you will do the following:

e static uint8_t install code_buf[] = {@x75, @xC5, @x2C, Ox60, OxFl, Ox2A, 0x03,
OxA8, 0x75, OxC5, Ox2C, Ox60, OxF1l, Ox2A, Ox03, OxA8,0x75, OxC5, Ox2C, Ox60, OXF1,
Ox2A, Ox03, OxA8};

To run any demo application (or your own application) follow the next steps:
e Compile demo. See chapter 10 Compile an Application.
e Connect the Board A to the computer with Linux OS.
e Open aterminal at the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo\bin .

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors 29

ZigBee HSDK Demo

¢ Execute ‘GetKinetisDevices’ program to obtain the port where the Kinetis device is connected.
e Execute ‘Zigbee BBC_HSDK’ program.

$sudo ./GetKinetisDevices

NXP Kinetis-W device on|/dev/ttyACMO|

N

$sudo ./Zighee_BBC_HSDK |/dev/tty ACMO|15]115200|

v v

Parameters: Port Channel Baud rate

16.1.2.4. Demo description

Create Zigbee Network

The program starts doing a factory reset, setting the channel and extended PANID network parameters
before starting the network.

You can enable or disable this set of the extended PAN ID parameter by setting USE_SET_XPANID in
‘Zigbee BlackBox HSDK.h’ file.

File Edit View Search Terminal Help

R¥: FactorylewRestart

£: SetChannelMask Set Channel mask

SetExtend

Startletwork sage
%: Createletwork.5tatus -= Success
X: MNetworkloinedFormed -= Formed Hew Hetwork Start network &
thort Address: Be coordinator information
Extended Address: TBadbEfc56051e10

= L

Figure 35. Creation of Zigbee network

Install Code

Once the ZigBee network has been created, the coordinator installs a Unique Link Key using the MAC
address of the joiner device. This command allows to use a unique Link Key in the joining process. On
the Linux terminal you must see the new Link Key for the joiner node.

You can enable or disable this command by setting USE_INSTALL_CODE in
‘Zigbee BlackBox HSDK.h’ file.

T¥: InstallCode.Reguest

RX: New Link Added:
CFTCE51204A0B20401CEGDAATESDAETE

%: InstallCode.5tatus -= Success

Unique Link Key created

Figure 36. Install code

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
30 NXP Semiconductors

Join New Node

ZigBee HSDK Demo

The coordinator sends a permit join message to allow other nodes to join and waits until a device sends a

join request.

Connect the Board B and open a serial terminal with Tera Term or PuTTY. Configure the serial

terminal with the following parameters: Baud rate: 115200, 8-bit data, 1 stop bit, No flow control, No

parity.

Tera Term: Serial port setup
Port: COMB w OK
Baud rate:
Data: 8 bit w Cancel
Parity: none w
Stop: 1 bit v Help
Flow control: none w

Transmit delay

El msecjchar El msecfline

Figure 37. Serial terminal configuration

Press the reset button on the Board B and enter the next commands on the serial terminal:

$ channel 15
$ join

330 -JnE-J0E 3o -aE - 30 3o 303030 - JnE-J0E-3oF - JoE-J0F 3o -JoE-J0 3o - JmE-J0E o - JoE-J0f 3o -JoE-J0 3o -JmE-J0E o - JaE-J0f 3o -JoE-J0 et -JmE-JuE e - JaE-Jo e oo

#= HOUTER RESET

3

T T e Ea T ata Tt a it atadataTataaiataiataatatsiataistasatataiatasaistadatatsiatatatakatotakakal
APP: Entering APP_vinitResources()

APP: Entering APP_viInitialised>

B MAC: BxB @ Keyp: B0 08 B0 B0 00 B0 OO G0 B OO
1 MAC: BxH @ Key: 5a 67 67 42 65 65 41 bc 6o 69
2 MAC: BxB @ Key: dB@ di d2 d3 d4 45 d6 d7 d8 49

3 MAC: BxB @ Key: cf 7c b5 12 84 a%? 82 84 ?1 ce
APP: Entering BDB_uvStart(>

BDB: Disc on Ch 15 from BxA0003H004

Muk Join B4

You can see a permit join request, a device announce and a router discovery on the host serial terminal.

H8 U8 B8 BA BR 8@
61 G6e 63 65 38 137
da db dc dd de df
6d aa V8 5d 46 Ve

Figure 38. Board B, channel and join commands.

This messages indicates a succesfully joining request.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors

31

ZigBee HSDK Demo

A: LtJoining.Request
¥: PermitJoin.5tatus -»
i%: Device Announce

Short Address: df4b

Extended Address: 476fb446B0BBE3Zb

Join request

Router discovery
MwkStatus -»

Figure 39. Board A, join request.

In the image below, you can see the asignation of the Unique Link Key generated in the Apendix A.
Install Code. The Link Key generated by the coordinator is used for the joining process and then is
replaced by the Trust Center Link Key sent by the coordinator.

% BDBE: APP_uGenCallback [B 181
BDB: uvMsTryMwukJoin — dindex B of 1 HNuks

BDB: Try To join facefacefaceface on Ch 15
BNB- OPP oan2llbacl (@ L1

cf=Pc:hh:12-4:a?:-82:4-P1 ce:bd-aa:-7A:-5d:46:7e-BDB: BDB_vHz=TimerCh 1
yNz=StartTclk
APP_vGenCallback [4 21
APP_vGenCallback [31
APP_vGenCallback [A 11
21 Trust Center Trust Center Link Key
APP_vGenCallback

|2:fa:5&:8c:1c:éc:15:fﬂ:83:92:4e:Eﬂ:a?:i?:ﬂ4:ﬂa

L oin UCCEesSs

Figure 40. Board B, link keys

Match Descriptor

In this command, the developer enter a profile ID and a list of clusters to ask a specific node if they have
some clusters in common. The node responds with the endpoint that supports any cluster in the list.

You can enable or disable this command by setting USE_ MATCH_DESCRIPTOR in
‘Zigbee BlackBox HSDK.h’ file.

Té: MatchDescriptor.Request
RX: MatchDescriptor.5tatus -= Success
RX: MatchDes

Router short address

Figure 41. Board A, match descriptor.

Simple Descriptor

This command is another way to know which clusters are supported by a specific node in the ZigBee
network. In this command, the developer must specify the short address of the required node and the
endpoint where he wants to look up.

The node responds with the profile ID and a list of supported clusters in the selected endpoint.

You can enable or disable this command by setting USE_SIMPLE_DESCRIPTOR in
‘Zigbee BlackBox HSDK.h’ file.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

32 NXP Semiconductors

ZigBee HSDK Demo

Router information

Supported UutClusters: @9

Figure 42. Board A, simple descriptor.

Read Attributes

Send this command to read one or several attributes on a specific cluster. Developer enter a list of
attributes to be read.

You can enable or disable this command by setting USE_READ_ATTRIBUTES in
‘Zigbee BlackBox HSDK.h’ file.

To read multiple attributes from a cluster you can enable USE_DYNAMIC_ATTRIBUTES and modify
the macro NUMBER _OF ATTRIBUTES in ‘Zigbee BlackBox HSDK.h'.

Read attributes command

Source Addres: [dfdb]

Endpoint: [81]

Cluster ID: [BBE6E]

Attribute ID: BB] On/fOFF
Attribute Data Type: [18] Boolean
Value: [88] OFf

Figure 43. Board A, Read attributes.

Find & Bind

The coordinator sends a Find command as initiator on a specific endpoint and cluster. Both extended
address (coordinator and requested device) are required to execute this command. Once this command is
executed, the router reports its attributes every minute (time by default) automatically.

You can enable or disable this command by setting USE_FIND_AND_BIND in
‘Zigbee BlackBox HSDK.h’ file.

Find & Bind initiator

Figure 44. Board A, find and bind.

Cluster Command

In the example demo is used an on/off command which is supported by the OnOff Cluster (Cluster ID
0006). Every time an attribute is modified, the device reports the attribute automatically only if the
binding was created using Find & Bind procedure.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors 33

ZigBee HSDK Demo

You can enable or disable this command by setting USE_SET_ATTRIBUTE in
‘Zigbee BlackBox HSDK.h’ file.

'anffd1thl Efle

Cluster command response

I1u twr ID:

dnd ID:

Uu1uttr1hutu.ﬁe5pnn5e
ce Addres: [df4b]
int: [B1]
Cluster ID: [8886]
Attribute ID: [8088] OnfOff
Httrﬂ:ut-—- |:|:|t:| Type: [18] Boolean

Automatic attribute report

Figure 45. Board A, cluster command.

16.1.3. FSCI Black Box as Router

16.1.3.1. Prerequisites

To make this example work correctly, the boards have an identification letter as is shown in the below
figure:

-~ N

Zigbee FSCI Black Box Zigbee Coordinator

Figure 46. Board setup.

Load THCD firmware to both boards as follows:
e Board A:
Load ‘fsci_black _box’ example. The project can be found:
*<SDK path>\boards\frdmkw41z \wireless_examples\zigbee 3 0\’

To enable the Install Code functionality, follow the steps bellow. These changes are required to
run this demo correctly. (If you are creating a new project and don’t want to use Install Code,
there is no need to do it):
1. In bdb_options.h change #define BDB_JOIN_USES_INSTALL_CODE_KEY from
FALSE to TRUE.

2. Inapp_zps_cfg.h change #define

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
34 NXP Semiconductors

ZigBee HSDK Demo

ZPS_INIT_APL_DEFAULT GLOBAL_APS_LINK_KEY from FALSE to TRUE.

3. Inapp_start.c in the vinitialiseApp() function add the following after the call to
APP_vSetMacAddr();

/* Enable use of install codes */
ZPS_tsAplAib *psAib = ZPS_psAplAibGetAib();
psAib->bUseInstallCode = BDB_JOIN USES_INSTALL_CODE_KEY;

e BoardB:
Load ‘coordinator’ demo. The project can be found:
*<SDK path>\boards\frdmkw41z \wireless_examples\ zighee_3 0\".

Follow the steps bellow to enable the Install Code functionality. These changes are required to

run this demo correctly. (If you are creating a new project and don’t want to use Install Code,

there is no need to do it):

1. In bdb_options.h change #define BDB_JOIN_USES INSTALL_CODE_KEY from FALSE
to TRUE.

16.1.3.2. Demo description

Create ZigBee Network

Now, the Board B starts the ZigBee network and the Board A joins to the network by FSCI
commands.

Connect the Board B and open a serial terminal with Tera Term or PUuTTY. Configure the serial
terminal with the following parameters: Baud rate: 115200, 8-bit data, 1 stop bit, No flow control, No

parity.

Tera Term: Serial port setup .

Port: COMB w 0K

Baud rate: 115200 w

Data: 8 bit w Cancel
Parity: none w

Stop: 1 bit v Help

Flow control: none ~

Transmit delay
EI msecichar EI msecfline

Figure 47. Serial terminal configuration.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors

35

ZigBee HSDK Demo

Press the reset button on the Board B and enter the commands below on the serial terminal:

$channel 15
$form

See the information as in below image on your terminal:

-JE=30f-J0E~JoE-J0f o0 ~3aE-J0E e -0 ~3uf 30 -JoE-J0F - Inf 30 -JmE-JoE-of -0 ~mE e - JuE e -JmE e -0 ~oE-J0f ~ef-J0E~3uE-Jof e~ J0E~3uf-Jof-JeE-Jof ~3uf-Jef-JE-Jof-nf-Jef b

* COORDINATOR RESET *
CaZakalakeiatataistotatakateiotokakatsiotskaodiatstsiatototaiotototatatotototsbetotatatstotakad
APP: Entering APP_viInitRezources<)

APP: Entering APP_viInitialise<>

Recovered Application State A On Metwork A

APP: Entering BDB_uStartid

channel 15

> 15

% form
BDB: Forming Centralized MNuwk
Mwk Formation 88

% BDB: APP_wGenCallhack [B 41
APP-BDB: MwkFormation Success
APP-ZD0: Hetwork started Channel = 15

Figure 48. Board B, coordinator commands.

Install Code
Enter the below command on the coordinator serial terminal:

$ code <addr> <install_code>
Replace <addr> with the MAC address of the joiner node.
Replace <install_code> with the MAC address of the joiner node repeated once.
In this case, the MAC address of the joiner node is: 78ADB6FC56951E19.
To find the MAC address of the joiner device refer to step 16.1.2.3

code P8ADB6FCS56951E1? 7BADB&FCS6Y

Hey Hdded ftopy JsadbbichbYhlel. 5

B MAC: |0x7Badbbfc 56951e19

1 MAC: &%a REY: @@

2 MAC: Bx0 Key: 88

3 MAC: BOx0 Key: 8@

4 MAC: Bx0 Key: 88

L MAC: BxB Key: 88

6 MAC: Bx@ Key: B8 Unique Link Key
7 MAC: BxB Key: 88 B created for the
8 MAC: BAxH Key: d@ router node
Key: B@

FERRRERE

7 MAC: BxA
18 MAC: Bx@ A Key: 5a 6% 67 42 65 65 41 6c 6ec 69 61 6Ge 63 65 38 39
11 MAG: BxA A Key: dB di d2 d3 d4 45 d6 d7 d8 d? da db dc dd de df
12 MAC: Bx8 A Key: B8 BB B0 G0 BA B8 BA B8 DA B0 OB B0 A AA A8 AA

Figure 49. Board B, install code command.

See the APS table on the coordinator serial terminal showing the Unique Link Key assigned to the joiner
node with the specific MAC address.

Join FSCI Router Node
Enter the next command on the coordinator serial terminal:

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

36 NXP Semiconductors

ZigBee HSDK Demo

$ steer

steer
APP-BDB: MNulkSteering Success

wk Steering @8

BDE: APP_wvGenCallback [@ 2]
Figure 50. Board B, steer command.

This command allows other nodes to join to the ZigBee network created by the coordinator.

Then, join the FSCI router:

e Compile FSCI router demo. See chapter 10 Compile an Application.
e Connect the Board A to the computer with Linux OS.
e Open aterminal in the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo\bin .
e Execute ‘GetKinetisDevices’ program to obtain the port where the Kinetis device is connected.
e Execute ‘Zigbee BBR_HSDK’ program.

$sudo ./GetKinetisDevices

NXP Kinetis-W device on|/dev/ttyACMO|

\

$sudo ./Zighee_BBR_HSDK |/dev/ttyACMO|15]115200|

v vy

Parameters: Port Channel Baud rate

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 37

ZigBee HSDK Demo

sudo . fIigbee BER_HSDK jdev/ttyACME 15 115208

deClusterAttributelist:
deCommandIDList
C terAttributelist:

andIDList
2 ibutelist:

terAttributelist:
eCommandIDList
eClusterAttributelist:
eCommandIDList

ClusterAttributelist:
mmandIDList

terAttributelist:
andIDList

terAttributelist:

Lst
terAttributelist:

mmandIDList

yHNewRestart

Set channel: 15
Set device type as router

ned to Existing Network

c56051e10

Figure 51. Board A, Zigbee router view.

When a FSCI device executes a reset, sends a list of clusters and attributes to the host computer so the
user can know which ones are supported by the connected device.

You can enable or disable this command by setting SEE_ ATTRIBUTE_LIST in

‘Zigbee BlackBox HSDK.h’ file. By default, is set to 0.
BDB: APP_vGenCallbhack [B 21
Mew Mode b7f2 Has Joined

BDB: APP_vGenCallbhack [8 11
APP-ZD0: Data Indication Status A8 from h7f2 Src Ep B Dst Ep @ Profile BABA Cluste

BDB: APP_wGenCallback [@ 141

APP-ZD0: Discovery Confirm

BDB: APP_vGenCallbhack [B 21
BDB: APP_vGenCallbhack [B 31
BDE: AFP_wGenCallbhack [B 261
APP-ZD0: Trust Center Status HA

Figure 52. Board B, callback from router device.

Control Bridge

For the moment, the only way to manipulate Control Bridge demo is through ZGUI from the Test Tool
Application. For more information about its functionality, refer to ‘AN12063-MKW41Z-AN-ZigBee-3-
0-ControlBridge’ document provided in the following directory:

*<SDK path>\docs\wireless\ Zighee\Application Notes\".

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

38 NXP Semiconductors

BLE HSDK Demo

17. BLE HSDK Demo

This demo allows the developer to experiment and become familiar with the Framework Serial
Communication Interface (FSCI) and the BLE Host Stack to implement a Heart Rate application.

BLE Host Stack layers
The BLE Host Stack layers that offers access using FSCI are GATT, GATTDB, L2CAP, and GAP.

Each layer provides primitives that an upper layer (profile/application) uses to access services of that
layer.

Here a brief description of that layers:

GATT: provides methods in which the services can be discovered and can be used, allows the access and
retrieval of information between client and server.

GATTDB: provides methods in which services can be added, modified or removed.
L2CAP: allows higher level protocols and applications to transmit and receive upper layer data packets.
GAP layer provides:

e Discoverability modes and procedures.

e Connection modes and procedures.

e Security/Bonding modes and procedures.

Application

Heart Rate
Profile
Elood Pressure
HID

Generic Generic

GATT Attribute Access GAP
Profile Profile
Attribute Security
Protocol Manager

Logical Link Control and
Adaptation Protocol

Link Layer

Figure 53. BLE system architecture.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 39

BLE HSDK Demo

For more detailed information about FSCI messages to the layers previously mentioned, refer to the
document: “BLE Host Stack FSCI Reference Manual”. The document can be found at:
" <SDK path>\docs\wireless\Bluetooth .

GATT profile hierarchy

Here is a general GATT profile hierarchy scheme that this demo follows, most of the FSCI Frames sent
to the BLE Host Stack Black Box are to create this scheme and set up the Heart Rate Sensor profile.

Heart Rate Sensor

Device Information
Service

Heart Rate Service Battery Service

Heart Body Sensor Heart Rate Control Battery Level Manufacturer
Rate Measurement Location Point Measurement Name

8 bit HR 8 bit BL

= Serial Number
measurement measurement

= Software Revision

Figure 54. GATT profile hierarchy scheme.

Hierarchy level description:
1. Profile: defines the main behavior of the device, in this case a Heart Rate Sensor.
2. Service: is a collection of data and behaviors for a feature.
3. Characteristic: is the value used in the service.
4. Descriptor: describes how to read the characteristic value.

For more detailed information about BLE system architecture, refer to the Bluetooth SIG available on the
link, www.bluetooth.com/specifications/bluetooth-core-specification/

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
40 NXP Semiconductors

http://www.bluetooth.com/specifications/bluetooth-core-specification/

BLE HSDK Demo

Prerequisites

To make this example work correctly, use a FRDM-KW41Z board and a smartphone with the “NXP IoT
Toolbox” app:

= N 7 NK
BLE FSCI Black

Box

Figure 55. Board setup.

Load BLE FSCI Black Box firmware to the board as follows:
e Board A:
Load ‘ble_fsci_black_box’ example. The project can be found:
' <SDK path>\boards\frdmkw41z \wireless_examples\bluetooth\ ble_fsci_black box".
e NXP IoT Toolbox

The loT Toolbox is a mobile application developed by NXP Semiconductors. It is designed for
the Android™ and iOS™ handheld devices. The mobile application is free in App Store® and
Google Play™.

Run demo application

To execute this demo, follow the steps below:
e Compile demo. See Chapter 10. Compile an Application.
e Open aterminal in the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo\bin .
e Execute ‘GetKinetisDevices’ program to obtain the port where the Kinetis device is connected.
¢ Execute ‘HRS BLE HSDK’ application.
$sudo ./GetKinetisDevices
NXP Kinetis-W device on|/dev/tty ACMO|

v
$sudo /HRS_BLE_HSDK [dev/ttyACMQ[115200
v v

Parameters: Port Baud rate

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors 41

BLE HSDK Demo

The HRS_BLE_SDK starts, and you should see the below information on your console.

First, a general reset request is sent, followed by the layer's confirmation response. Then, the request to
add a generic GATT and GAP services, these are used to create the first level of the hierarchy scheme
viewed in ‘Section 15.2 - GATT profile hierarchy’.

javier@javier-vVirtualBox:~/Desktop/KW41_SDK/tools/wirel Jhost_sdk/hsdk/fdemo/bin$
sudo ./HRS BLE_HSDK /dev/ttyACM1 115200

FSCI-CPUReset.Request General reset request
L2CAP.Confirm-=>gBleSuccess

L2CAP.Confirm->gBleSuccess

L2CAP.Confirm-=>=gBleSuccess

GATT.Confirm-=gBleSuccess

GATTDB.Confirm-=gBleSuccess

L2CAP.Confirm-=>gBleSuccess
GAP-GenericEventInitializationComplete.Indication
GAP.Confirm->gBleSuccess

---- Add GATT Service ----

namic-AddPrimaryServiceDeclaration.Request Add Generic Attribute Profile
GATTDB.Confirm-=>gBleSuccess
GATTDBDynamic-AddPrimaryServiceDeclaration.Indication
Service Handle: @@e1l

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -> Service Changed

GATTDB.Confirm-=>gBleSuccess
GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication
Characteristic Handle: @002

GATTDBDynamic-AddCccd.Request

GATTDB.Confirm-=>gBleSuccess

GATTDBDynamic-AddCccd.Indication
Cccd Handle: 0004

---- Add GAP Service ----

namic-AddPrimaryServiceDeclaration.Request| €< Add Generic Access Profile
GATTDB.Confirm-=gBleSuccess
GATTDBDynamic-AddPrimaryServiceDeclaration.Indication
Service Handle: 0805

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -= Device Name

GATTDB.Confirm-=gBleSuccess

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication
Characteristic Handle: 8086

Figure 56. Adding generic attributes and access profiles.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
42 NXP Semiconductors

BLE HSDK Demo

In this section, the Heart Rate service is added as a service, then, the characteristics of that service as
heart rate measurement, body sensor location and heart rate control point are added.

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -=> Appeareance

GATTDB.Confirm-=gBleSuccess

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication
Characteristic Handle: 060608

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -> Ppcp
GATTDB.Confirm-=gBleSuccess
GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication
Characteristic Handle: 000a
GATTDB.Confirm->gBleSuccess
GATTDBDynamic-AddCccd.Indication
Cccd Handle: 806c

---- Add Heart Rate Service ----

namic-AddPrimaryServiceDeclaration.Request| < Add Heart service
. - UUID = 0x180D
GATTDB.Confirm-=gBleSuccess
GATTDBDynamic-AddPrimaryServiceDeclaration.Indication
Service Handle: @68d

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -> HR Measurement
GATTDB.Confirm-=gBleSuccess
GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication

Characteristic Handle: 000@e

Add Heart Rate Characteristics

GATTDBDynamic-AddCccd.Request e HR Measurement
GATTDB.Confirm->gBleSuccess e Body Sensor Location
GATTDBDynamic-AddCccd.Indication * MR Control Point

Cccd Handle: 00160

TX: GATTDBDynamic-AddCharacteristicDeclarationAndvalue.Request -= Body Sensor Loca
tion
RX: GATTDB.Confirm-=gBleSuccess
RX: GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication
Characteristic Handle: 0011

TX: GATTDBDynamic-AddCharacteristicDeclarationAndvValue.Request -= Control Point

RX: GATTDB.Confirm-=gBleSuccess

RX: GATTDBDynamic-AddCharacteristicDeclarationAndvalue.Indication
Characteristic Handle: 06013

Figure 57. Adding Heart Rate service and characteristics.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors 43

BLE HSDK Demo

Then, the program adds Battery and Device Information services, each service followed by their
necessary characteristics and in some cases descriptors of that characteristics.

---- Add Battery Service ----

GATTDBDynamic-AddPrimaryServiceDeclaration.Request|<«—— AddBattery service
GATTDB.Confirm-=gBleSuccess HUID = 0xd80F
GATTDBDynamic-AddPrimaryServiceDeclaration.Indication

Service Handle: 0015

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -=> Battery Lewvel

GATTDB.Confirm->gBleSuccess Add Battery Level

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication characteristic
Characteristic Handle: 0016 LHID= (AT

GATTDBDynamic-AddCharacteristicDescription.Request -> Char Format |

GATTDB.Confirm->=gBleSuccess Add Descriptor for Battery

GATTDBDynamic-AddCharacteristicDescriptor.Indication Level characteristic
Descriptor Handle: 0618

GATTDBDynamic-AddCccd.Request

GATTDB.Confirm-=gBleSuccess

GATTDBDynamic-AddCccd.Indication
Cccd Handle: 8019

---- Add Device Information Service ----

. . . . <4——— Add Device Information
GATTDBDynamic-AddPrimaryServiceDeclaration.Request e

GATTDB.Confirm-=gBleSuccess UUID = 0x180A
GATTDBDynamic-AddPrimaryServiceDeclaration.Indication
Service Handle: ©01a

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -= Manufacturer Nam

. Add Device Info Characteristics
GATTDB.Confirm-=gBleSuccess e

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication. wodel number
Characteristic Handle: 081b e Serial number

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -= Model Number

GATTDB.Confirm->gBleSuccess

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication
Characteristic Handle: 001d

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -= Serial Number

GATTDB.Confirm-=gBleSuccess

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication
Characteristic Handle: 801f

Figure 58.Adding battery and device information services, characteristics and descriptors.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors

BLE HSDK Demo

Here the program is still adding device information characteristics, then the host request the device
address and sets the advertising data. At this point, the device is recognized as a Heart Rate sensor
profile instead of having a generic profile added at the beginning of the program.

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -> Hardware Revision
GATTDB.Confirm->gBleSuccess
GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication

Characteristic Handle: 8021

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -> Firmware Revision
GATTDB.Confirm->gBleSuccess
GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication

Characteristic Handle: @823

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -> Software Revision
GATTDB.Confirm-=gBleSuccess
GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication

Characteristic Handle: 8825

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -> System Id

GATTDB.Confirm->gBleSuccess

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication
Characteristic Handle: 0027

GATTDBDynamic-AddCharacteristicDeclarationAndValue.Request -> Ieee Rcdl
GATTDB.Confirm-=gBleSuccess
GATTDBDynamic-AddCharacteristicDeclarationAndValue.Indication e HW Revision
Characteristic Handle: 0829 FW Revision

SW Revision

Add Device Info Characteristics

---- Read Public Device Address ---- System 1D
IEEE Rcdl
GAP-ReadPublicdeviceAddress.Request
GAP.Confirm->gBleSuccess
GAP-GenericEventPublicAddressRead.Indication

Address: 90b5de376000 <4— Public Device Address

---- Set Advertising Data ----

Set values to advertise a

GAP-SetAdvertisingData.Request | .. Rate Sensor Profile

GAP.Confirm->gBleSuccess
GAP-GenericEventAdvertisingDataSetupComplete.Indication

Figure 59. Device information characteristics.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors 45

BLE HSDK Demo

To update heart rate measurements, battery level and sensor location, it’s necessary to find their own
handles, then, with that handles discovered, the values of the services previously added can be refreshed.

---- Handles for write notification ----

GATTDB-WriteAttribute.Request -> Find Battery Service Handle
GATTDB.Confirm->gBleSuccess
GATTDB-FindServiceHandleInService.Indication

|Service Handle Indication:

< Battery Service Handle
6615]|< 0x0015

GATTServer-RegisterHandlesForWriteNotifications.Request
GATT.Confirm-=gBleSuccess

GATTServer-RegisterCallback.Request
GATT.Confirm->gBleSuccess

GATTDB-FindCharValueHandleInService.Request -> Find HR service handle
GATTDB.Confirm-=gBleSuccess
ndservice eln

Hand mglcatwn Heart Rate Service Handle
] 3 | € (0)(0]0[0]D)

GATTDB-WriteAttribute.Request -= Find Heart Rate Measurement Handle
GATTDB.Confirm-=gBleSuccess

S - Service.Indication Heart Rate Measurement
Characteristic Value Handle: e@of|* Handle

0x000F
GATTDB-FindCharValueHandleInService.Request -> Find Body Sensor Location
GATTDB.Confirm-=gBleSuccess

GﬁTT[QB;ﬁ_nﬂLhanmmmmﬂmTService .Indication 5])
. . L ody Sensor Location Handl€]
Characteristic Value Handle: 0812 |% 0x0012

GATTDB-FindCharValueHandleInService.Request -= Find Battery Level Handle
GATTDB.Confirm-=gBleSuccess
GATTDB-FindCharacteristicValueHandleInService.Indication

Characteristic Value Handle: 0017 [<

Battery Level Handle
0x0017

GATTDB-WriteAttribute.Request -= Heart Rate Measurement
GATTDB.Confirm-=gBleSuccess

GATTDB-WriteAttribute.Request -= Body Sensor Location
GATTDB.Confirm-=gBleSuccess

GATTDB-WriteAttribute.Request -> Battery Level
GATTDB.Confirm-=gBleSuccess

Figure 60. Handles for write notifications.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors

BLE HSDK Demo

The setup is done, finally the host sends a request to start advertising and then waits for the NXP loT
Toolbox connection.

Set advertising parameters:
° Min & Max Connection Intervals
GAP-SetAdvertisingParameters.Request | — e Advertising type
GAP.Confirm->gBleSuccess e Address Type
GAP-GenericEventAdvertisingParametersSetupComplete.Indication

waiting for connection == Configuration done, connect a
waiting for connection = smartphone with the NXP 10T Toolbox
waiting for connection ==

Figure 61. Start advertising and wait for NXP loT Toolbox connection.

Once the demo prints the “waiting for connection” message, open NXP IoT Toolbox, go to Heart Rate
option and then tap on the “NXP_HRS” device.

For more detailed information about setting the NXP IoT Toolbox App, please refer to the mobile
application user guide available at: nxp.com/docs/en/user-quide/KBLETMAUG.pdf?fromsite=ja

3:53 # Tilrw o 54%E

loT Toolbox
Heart Rate

) stop

NXP_HRS
00:60:37:D0:B5:90
Unbonded -47 dBm

vy
47\

Figure 62. NXP IoT Toolbox, Heart Rate view.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
NXP Semiconductors 47

https://www.nxp.com/docs/en/user-guide/KBLETMAUG.pdf?fromsite=ja

BLE HSDK Demo

waiting for connection
waiting for connection
waiting for connection

R¥X: ConnectionEventConnected.Indication
waiting for connection
Started to send Heart Rate measurements

Figure 63. Device connected terminal view.

Program sending updates of heart rate measurement and battery level to the NXP IoT Toolbox app.

Tilh o o 54%m

loT Toolbox
Heart Rate

DISCONNECT

105

bpm

Sensor Location

Chest

200

160

&0

EPM

0 40 an

Time (s)
»w o

Status: Connected 58% @

Figure 64. Application view.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
48 NXP Semiconductors

Appendix A

18. Appendix A

Install Code.

The Install Codes allow the developer to create a temporary Unique Link Key on every joining node
using its MAC address and change it once the joining process is completed.

e Global Link Key: This key is used in the joining process. Allows to connect and join a node to a
ZigBee network. By default, *ZigBeeAlliance09’ key is set.

e Unique Link Key: Has the same functionality of Link Key but it is unique to every joiner node.
MAC address is used to generate these unique link key.

¢ Network Key: This key is used to decrypt the packets sent in the ZigBee network.

e Trust Center Link Key: Used for communications between the Trust Center and one other node.
It is randomly generated by the Trust Center.

To have more information about ZigBee Security, refer to chapter 5.8 Implementing Zigbee Security on
‘Zigbee 3.0 Stack User Guide’ document that can be found in the next directory:

‘<SDK path>\docs\wireless\Zigbee\".

18.1.1.Key Exchange Process

The internal process that is executed in this key exchange is the following:
e The coordinator creates a Unique Link Key for the joining node using install code command. To
do this, the developer needs the MAC address (extended address) of the joiner node.

* The joiner node will make a join request to the network using its own Unique Link Key. If the
coordinator generated key doesn’t match with the joiner key, the joiner will attempt to join again
after security timeout and after 3 retries the joiner node fails with APS security fail.

e |f the joiner was accepted, the coordinator will provide the Standard Network Key to the joiner
node. This Transport Key packet will be encrypted with the Unique Link Key.

* The joiner router will request the Trust Center Key to the coordinator. This request will be
encrypted with the Unique Link Key and the Standard Network Key provided before. This key
will replace the Unique Link Key as the new Link Key.

In the figure below is described the key exchange process using the command ‘install code’ on a Zigbee
network.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 49

Appendix A

Coordinator

MAC address:
78adb6fc56951e19

Joiner Device

MAC address:
476b4468088832b

User Interface Zighee QOver The Air
e s s
I T W bl
Coordinator
Create Network
code 476fb4468085332b
T
Add Install Code Unigue Link Key
Permit Join
Start Metwork Steering
B 802.15.4 Association]
. Mew node joined L > Joined
: APS data indication
Transport Network Key N
N APS data confirm
APS data acknowledge

Route Discovery Confirm

Device announce

-«

Device announce

APS data confirm

»*

Mode Descriptor Reguest

‘Nod e Descriptor Response

APS data indication

Request Trust Center Key)

APS data acknowledge

ZPS TC Status

Figure 65. key exchange process.

ZPS TC Status

Transport Trust Center Link Key

Verify Key

-

+

Confirm Key

I

2

APS data confirm

Joiner Device

Join Reguest
-

| Standard Network
(Key

I__ Trust Center Link
I' Key

On figure 66, find all Over the Air (OTA) packets using a sniffer and Ubiqua protocol analyzer,
demonstrating the functionality described on figure 65.

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

50

NXP Semiconductors

Appendix A
& 18 11:35:58.397@& @.467472 15 IigBee MaC Beacon Request BxFFFF 124
7 28 11:35:58.3995 @.882688 15 ZIigBee NEK Beacon: MNwkOpen: RC 1: Depth. Bx 0008 e
g 21 11:35:58.5424 @,142768 15 ZigBee MaC Association Request 47 :6F 1 B4.. 9x8888 125
g 11:35:58.5435 ©.881856 15 ZigBee MAC Acknowledgement 125
@ 18 11:35:59.8361 ©.492524 15 ZigBee MaCc Data Request 47 :6F :B4.. 8w000a 126
1 5 11:35:59.8371 @.888976 15 ZIZigBee MAC Acknowledgement 126
12 27 11:35:59.8444 8.887296 15 IZigBee MaC Association Response: Success 78:AD:B6.. 47:6F:B.. 167
3 5 11:35:59.8456 @.801264 15 ZigBee MAC Acknowledgement 167
814 73 11:35:59.8523 ©.886648 15 IZigBee APS Transport Key Bx2e08 BuC23D 168
15 5 11:35:59.8558- 8.882736 15 ZigBee MAC Acknowledgement 168
& 15 57 11:35:59.8714 @.816432 15 ZigBee ZDP Device Announce 8xC23D BxFFFF 127
& 17 51 11:35:59.885& @.813528 15 ZigBee N Route Request: ManyToOne with.. Bx2ege BxFFFF 169
& 13 57 11:35:59.1862 ©.821288 15 IigBee ZDP Device Announce BxBea8 BxFFFF 17a
& 13 51 11:35:59.1847 @.878495 15 ZigBee Nk Route Request: ManyToOne with.. 8xC23D BxFFFF 128
Bz 55 11:35:59.3834 ©.1986388 15 IZigBee MWK Route Record BxC23D gxaaae 129
22 5§ 11:35:59.3856 ©.882168 15 ZigBee MAC Acknowledgement 129
B 22 48 11:35:59.3898 @.084288 15 ZIZigBee ZDP Mode Descriptor Request 8xC23D Bx0008 13a
23 5 11:35:59.3917 @.881936 15 ZigBee MAC Acknowledgement 138
@22 45 11:35:59.4842 ©.812496 15 ZigBee APS Acknowledgement Bx2008 BxC23D 171
s 5 11:35:59.4@861 @.881848 15 ZigBee MAC Acknowledgement 171
B B2 11:35:59.4148 @.888728 15 ZigBee ZDP Mode Descriptor Response Bx0008 BxC23D 172
- 11:35:59.4172 8.882384 15 ZigBee MAC Acknowledgement 172
B2 45 11:35:59.4256 ©.888488 15 IigBee APS Acknowledgement 8w C230 Bx2e00 121
2 5 11:35:59.4274- @,881848 15 ZigBee MAC Acknowledgement 131
& 2 58 11:35:59.4387 ©.883288 15 IigBee APS Request Key BxC23D Bx 2000 132
15 11:35:59.4329 @.882248 15 ZigBee MAC Acknowledgement 132
832 98 11:35:59.4398 ©.886864 15 IZigBee APS Transport Key Bxea8 BxC23D 173
= 5 11:35:59.4422 8.883264 15 ZIZigBee MAC Acknowledgement 173
B3 65 11:35:59.4522 ©.889952 15 ZigBee APS Verify Key 8w C230 Bx2e00 133
s 5 11:35:59.4547 @.882488 15 ZigBee MAC Acknowledgement 133
&3 /7 11:35:59.4599 @.885184 15 IigBee APS Confirm Key Bx2008 BxC23D 174
7 5 11:35:59.4524. @,@882528 15 ZigBee MAC Acknowledgement 174

Figure 66. Over the Air packets.

18.1.2. Generate Unique Link Key — Install code command

To successfully use the install code command, the developer must consider the following aspects:

To get familiar with the install code command, is recommended to see how it works. You can do this by
using the coordinator demo example found in the next directory:’ <SDK path>\boards\frdmkw41z
\wireless_examples\zigbee 3_0\".
To see the parameters needed by this command, enter ‘help code’ on the serial terminal:
$ help code
code — Provisions an install code into the APS Key Table
code <addr> <install_code>
e <addr>: MAC address of the node that will be doing a join request to the network.
e <install_code>: 128-bit pre-configured key value.

Since <install_code> parameter is a pre-configured value on the joiner device, the user cannot enter any
random value on the coordinator terminal. By default, this value is the joiner device MAC address
repeated once.

The developer can change this value in the function ‘bGetInstallCode(uint8 t* pInstallCode)’ in the next

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 51

A
Appendix A

lines (‘app_zb_utils.c’ file):

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019
52 NXP Semiconductors

How to Reach Us:

Home Page:
WWW.Nxp.com

Web Support:
WWW.Nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be provided in
NXP data sheets and/or specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP does not convey
any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s
applications and products, and NXP accepts no liability for any vulnerability that is discovered.
Customers should implement appropriate design and operating safeguards to minimize the
risks associated with their applications and products.

NXP, NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
COOLFLUX, EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES,
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,
MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,
AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient
Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor
Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,
Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a
Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS, EdgeScale,
EdgelLock, elQ, and Immersive 3D are trademarks of NXP B.V. All other product or service
names are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan,
Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and pVision are registered trademarks of
Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE,
CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and
Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by Power.org.

© 2019 NXP B.V.

Document Number: AN12566
Rev. 0
09/2019

http://www.nxp.com/
http://www.nxp.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Host SDK on Linux OS
	1. Introduction
	2. Get the MCUXpresso SDK
	3. Host SDK
	4. Framework Serial Communication Interface (FSCI)
	5. Linux OS Host Software Installation Guide
	5.1. Prerequisites
	5.1.1. SDK libraries
	5.1.2. Test Tool Application
	5.1.3. Linux packages

	Install HSDK libraries

	6. Libraries description
	6.1. Directory tree

	7. Framer
	7.1. Create framer

	8. FSCI frame
	8.1. Obtain data frame from Test Tool Application
	8.1.1. Load a host demo to FRDM-KW41Z
	8.1.2. Use Test Tool application
	8.1.3. Send and receive packets

	8.2. Coding the frames
	8.2.1. Function description
	8.2.2. Select the opGroup & opCode
	8.2.3. Create data payload buffer
	8.2.4. Create FSCI frame
	8.2.5. Send frame
	8.2.6. Destroy FSCI Frame

	9. Frame callback
	10. Add source files
	11. Configure makefile
	12. Compile an application
	13. Thread Shell demo
	13.1. Prerequisites
	13.2. Run demo application

	14. Thread HSDK demo
	14.1. Prerequisites
	14.2. Run demo application
	14.3. Demo description
	14.3.1. Create Thread Network
	14.3.2. Join New Node
	14.3.3. Print joiner’s IPv6 addresses
	14.3.4. Ping request/response
	14.3.5. CoAP messages
	14.3.6. Socket messages

	14.4. Send CoAP and Socket messages from the HSDK
	14.4.1. CoAP
	14.4.1.1. Modifications on the board side
	14.4.1.2. Modifications on the host side

	14.4.2. Socket

	15. Thread TUN/TAP HSDK
	15.1. TUN Interface
	15.2. TAP Interface
	15.3. Topology
	15.3.1. Linux Host
	15.3.2. Border Router
	15.3.3. OpenWrt Router

	15.4. General setup
	15.4.1. Embedded setup
	15.4.1.1. Configuration

	16. ZigBee HSDK Demo
	16.1. Black Box
	16.1.1. Add your own OpCode – embedded side
	16.1.2. FSCI Black Box as Coordinator
	16.1.2.1. Prerequisites
	16.1.2.2. Run demo application
	16.1.2.3. Find MAC Address
	16.1.2.4. Demo description
	Create Zigbee Network
	Install Code
	Join New Node
	Match Descriptor
	Simple Descriptor
	Read Attributes
	Find & Bind
	Cluster Command

	16.1.3. FSCI Black Box as Router
	16.1.3.1. Prerequisites
	16.1.3.2. Demo description
	Create ZigBee Network
	Install Code
	Join FSCI Router Node

	16.2. Control Bridge

	17. BLE HSDK Demo
	17.1. BLE Host Stack layers
	17.2. GATT profile hierarchy
	17.3. Prerequisites
	17.4. Run demo application

	18. Appendix A
	18.1. Install Code.
	18.1.1. Key Exchange Process
	18.1.2. Generate Unique Link Key – Install code command

