

© 2019 NXP B.V.

Host SDK on Linux OS

1. Introduction

This document provides a detailed description for

Kinetis Host Application Programming Interface

(Host API) implementing the Framework Serial

Connectivity Interface (FSCI).

 The Host API can be deployed from a PC tool (ie.

Test Tool for Connectivity Products) or from a host

processor to perform control and monitoring of a

wireless protocol stack running on the Kinetis

microcontroller. The software modules and libraries

implementing the Host API are included in the

Kinetis Wireless Host Software Development Kit

(SDK).

This document describes how to install all software

requirements to develop a Thread, Bluetooth® Low

Energy (BLE) and Zigbee examples; running on

Kinetis KW41Z devices, which are interfaced from a

Linux® OS by the Host API and the Host SDK.

NXP Semiconductors Document Number: AN12566

Application Note Rev. 0 , 09/2019

Contents

1. Introduction .. 1
2. Get the MCUXpresso SDK .. 2
3. Host SDK ... 2
4. Framework Serial Communication Interface (FSCI) 3
5. Linux OS Host Software Installation Guide 4

 Prerequisites .. 4
Install HSDK libraries ... 4

6. Libraries description ... 5
 Directory tree .. 5

7. Framer .. 6
 Create framer ... 6

8. FSCI frame ... 7
 Obtain data frame from Test Tool Application 7
 Coding the frames ... 10

9. Frame callback ... 12
10. Add source files .. 13
11. Configure makefile ... 13
12. Compile an application ... 13
13. Thread Shell demo.. 14

 Prerequisites .. 14
 Run demo application .. 14

14. Thread HSDK demo ... 15
 Prerequisites .. 16
 Run demo application .. 16
 Demo description .. 17
 Send CoAP and Socket messages from the HSDK 20

15. Thread TUN/TAP HSDK ... 22
 TUN Interface ... 22
 TAP Interface .. 22
 Topology ... 23
 General setup ... 25

16. ZigBee HSDK Demo .. 26
 Black Box .. 27
 Control Bridge ... 38

17. BLE HSDK Demo .. 39
 BLE Host Stack layers .. 39
 GATT profile hierarchy... 40
 Prerequisites .. 41
 Run demo application .. 41

18. Appendix A .. 49
 Install Code. .. 49

Host SDK

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

2 NXP Semiconductors

2. Get the MCUXpresso SDK

The MCUXpresso Software Development Kit (SDK) includes full source code under a permissive open-

source license for all hardware abstraction and peripheral driver software.

Click below to download the FRDM-KW41Z SDK.

 https://mcuxpresso.nxp.com/en/select?device=FRDM-KW41Z

Note:

This application note is developed on SDK version 2.2.1 from August 2019.

3. Host SDK

The Kinetis Wireless Host SDK consist in a set of cross-platform C language libraries which can be

integrated into a variety of user defined applications for interacting with Kinetis Wireless

Microcontrollers.

The HSDK software is designed to help developers to interact with Host SDK from Python and C

programming languages.

The Kinetis Wireless Host SDK runs on Windows OS, Linux OS, Apple OS X ® and OpenWrt. This

document describes a subset of functionalities related to interfacing with Thread, Zigbee and BLE stacks

from a Linux OS with focus on C language bindings.

Figure 1. Kinetis Wireless Host Software System Block diagram.

https://mcuxpresso.nxp.com/en/select?device=FRDM-KW41Z

Framework Serial Communication Interface (FSCI)

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 3

4. Framework Serial Communication Interface (FSCI)

The FSCI module allows interfacing the Kinetis protocol stack with a host system or PC tool using a

serial communication interface.

FSCI can be implemented using the set of Linux OS libraries exposing the Host API described in this

document and the NXP Test Tool for Connectivity Products PC application (Running on Windows OS).

The FSCI module sends and receives messages as shown in figure 2. This structure is not specific to a

serial interface and is designed to offer the best communication reliability. The device is expecting

messages in little-endian format and responds with messages in little-endian format.

An FSCI frame has the following fields:

Figure 2. FSCI frame fields.

Table 1.

FSCI Frame Format

STX

1 byte Used for synchronization over the serial interface. The

value is always 0x02.

Opcode Group 1 byte Distinguishes between different Service Access Primitives

(MLME, MCPS, GAP, GATT).

Message Type 1 byte Specifies the exact message opcode that is contained in the

packet.

Length 2 bytes The length of the packet payload, excluding the header and

the checksum. The length field content shall be provided in

little endian format.

Payload Variable Payload of the actual message.

Checksum 1 / 2 bytes Field used to check the data integrity of the packet. When

virtual interfaces are used to distinguish between the BLE

and Thread stacks when both running concurrently on the

same device, this field expands to two bytes to embed the

virtual interface number.

The FSCI messages acts as a Remote Procedure Call (RPC) mechanism in which a message triggers a

remote procedure/callback.

Linux OS Host Software Installation Guide

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

4 NXP Semiconductors

5. Linux OS Host Software Installation Guide

 Prerequisites

 SDK libraries

Unzip the previously downloaded FRDM-KW41Z SDK, most of the files used in this document are on

the path: <SDK path>\tools\wireless\host_sdk\hsdk>

To download FRDM-KW41Z SDK, please refer to Section 2.

 Test Tool Application

To download Test Tool application, go to https://www.nxp.com/ and search ‘Test Tool for connectivity

products’.

NOTE

Test Tool application only runs on Windows OS.

 Linux packages

Following packages are required before starting any demo:

• build-essential

• libudev-dev

• libpcap-dev

Use ‘apt-get install’ on Debian-based distributions.

$apt-get install build-essential

$apt-get install libudev-dev

$apt-get install libpcap-dev

 Install HSDK libraries

Open a terminal in the directory: ‘~\<SDK path>\tools\wireless\host_sdk\hsdk’. Execute the following

commands to build and install the libraries required by the HSDK:

$make

$sudo make install

https://www.nxp.com/

Libraries description

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 5

6. Libraries description

 Directory tree

 You can find hsdk folder at: <SDK path>\tools\wireless\host_sdk\hsdk’

• demo

Contains all demo source codes provided in the HSDK, and the makefile to compile them.

o bin: contains executable files of every demo.

• include

Every library used in demos are placed in this folder. These libraries have only prototype

functions.

o physical: has all physical protocols used to set a communication with the Kinetis device.

o protocol: in this folder are placed the libraries to create the framer and the FSCI frame.

o sys: has general libraries needed to work with an OS.

• physical

Contains every .C files of the physical library find in the ‘include’ folder.

o PCAP: has all functions to set a PCAP communication.

o SPI: has all functions to set an SPI communication.

o UART: has all functions to set a UART communication.

• protocol: contains every .C files of the protocol library find in the ‘include’ folder.

Figure 3. directory tree.

Framer

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

6 NXP Semiconductors

o FSCI: in this folder are placed the libraries to create the FSCI frame.

Below is a small description of the header files required to develop an HSDK application.

• ‘Framer.h’ and ‘FSCIFrame.h’ are headers needed to create, destroy and send the FSCI frames

from the computer to the board. Contains information about the structure of the FSCI frame and

all prototypes functions that can be used. It can be found in the following directory:

‘<SDK path>\tools\wireless\host_sdk\hsdk\include\protocol’

• ‘PhysicalDevice.h’ is needed to attach the board with the computer by UART protocol (more

device types are supported by the library). The library can be found in the next directory:

‘<SDK path>\tools\wireless\host_sdk\hsdk\include\physical’

• ‘UARTConfiguration.h’ has all structures and enumerations to configure UART protocol

communication. It can be found in the following directory:

‘<SDK path>\tools\wireless\host_sdk\hsdk\include\physical\UART’

Each HSDK demo has its own header with all operation groups and codes needed by the FSCI frame

protocol. These headers are located in the following directory:

‘<SDKpath>\tools\wireless\host_sdk\hsdk\demo’.

7. Framer

A framer is required to specify every field that contains in the message packet. The API that is provided

for HSDK supports a variety of protocols, allowing the developer to create his own frames manipulating

every field of the framer such as the endianness, CRC field size, length field size, etc. Also, it is used to

specify the port where the physical device is connected to the computer.

 Create framer

The construction of this frame is made with the following functions:

InitPhysicalDevice(DeviceType type, void *pConfigData, char *deviceName, FsciAckPolicy
policy)

‘PhysicalDevice.h’

This function defines the following parameters:

• Communication protocol (UART, SPI, USB…).

• Communication protocol data configuration.

• The port where the Kinetis device is connected.

• Policy for FSCI acknowledge synchronization (none, TX, RX, both, global).

InitializeFramer(void *connDev, FramerProtocol protocol, uint8_t lengthFieldSize, uint8_t
crcFieldSize, endianness endian);

‘Framer.h’

This function constructs the framer fields. Its parameters are:

FSCI frame

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 7

• Physical device. The one created with the first function InitPhysicalDevice().

• Frame protocol type (FSCI, HCI, ASCII).

• Length field size.

• CRC field size.

• Endianness of the framer.

OpenPhysicalDevice(PhysicalDevice *);

‘PhysicalDevice.h’

Open the specific device created in the first function InitPhysicalDevice(). Parameters:

• Physical device. The one created with the first function InitPhysicalDevice().

8. FSCI frame

Frame protocol allows monitoring an extensive testing of the protocol layer interfaces. It also allows the

separation of the protocol stack between two protocol layers in two processing entities set up, the host

processor (typically running the upper layers of a protocol stack) and the Black Box application

(typically containing the lower layers of the stack, serving as modem).

Refer to Connectivity Framework Reference Manual document at section 3.11 Framework Serial

Communication Interface to get more information about it. The document can be found in the

directory: <SDK path>\docs\wireless\Common.

 Obtain data frame from Test Tool Application

Test Tool for connectivity products provides several loaded commands sets for every connectivity

protocol (BLE, Zigbee, Thread, SMAC). Also, it provides a serial window view where the user can

watch each byte contained in every FSCI command sent and received by the host computer.

These characteristics make the Test Tool a very useful application to analyze FSCI commands.

 Load a host demo to FRDM-KW41Z

For example, you can load a Thread ‘host_controlled_device’ demo to one FRDM-KW41Z board. The

demo project can be found in the directory:’ <SDK path>\boards\frdmkw41z

\wireless_examples\thread\’.

 Use Test Tool application

Connect the board to the computer with Windows OS, open Test Tool application and double-click on

the COMx on Active devices.

FSCI frame

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

8 NXP Semiconductors

Figure 4. Test Tool home page.

Verify that the ‘Loaded Command Set’ corresponds to the protocol stack that you just loaded (Zigbee,

Thread, BLE) and check Raw Data checkbox at the bottom.

Figure 5. Test Tool command window.

FSCI frame

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 9

 Send and receive packets

The FSCI frame example described below sets the channel 15 as an attribute in a Thread network.

Frame data is obtained from the Test Tool application specifying each one of the fields and indicating if

the message is an RX or TX packet.

Below is a description of each one of the steps that the developer should follow:

1. Select the command to be sent.

2. Select ‘Channel’ on the “AttributeId” field, set the channel number on the value field and send the

command.

RX and TX messages appear on the right side of the screen. With this information, the developer can

watch all fields in the sent frame.

Figure 6.

Figure 7. Frame fields.

FSCI frame

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

10 NXP Semiconductors

The payload data from the TX message is shown at the bottom of the screen. Taking this raw data, the

developer can create the buffers for every command that can be sent to the board.

Figure 8. Frame payload.

Analyzing the frame fields of the RX message:

• opGroup: Is different than the TX message opGroup byte.

• Message Type: Is the same as the TX message opCode byte.

• Status (payload): A zero response indicates a successful execution command.

Figure 9. Frame fields.

 Coding the frames

 Function description

‘FSCIFrame.h’ offers several functions to create FSCI frames. This is a brief description of the

‘CreateFSCIFrame()’ function.

The function receives six parameters:

STX

opGroup

Length

Data Payload

Checksum

Message Type

FSCI frame

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 11

• framer: The function uses this parameter to set the length and the endianness frame size. Refer to

‘Chapter 6. Framer’ from this document to obtain more information about it.

• opGroup: Every FSCI frame has a code to identify if the frame is an RX or TX packet. The

opGroup codes that are supported in this example can be found in ‘common.h’ with an ‘OG’

ending name.

• opCode: Every FSCI frame has its own opCode that specifies the command that wants to be

executed by the board (factory reset, create network, join to network, send coap message, etc.).

Every opCode that is supported can be found in ‘common.h’ with an ‘OC’ ending name.

• data: Pointer to the data payload that is going to be sent to the board.

• length: Payload length.

• virtualId: Specifies if the frame uses a virtual interface or not.

 Select the opGroup & opCode

TX message opGroup and opCode provided in ‘Section 7.1.3 - Send and Receive Packets’ are the ones

that will be used to construct the frame.

opGroup 0xCE This byte corresponds to a TX message. Every command sent to the board will

have this opGroup.

opCode 0x18 This byte corresponds to set an attribute to the network.

Every opGroup and opCode supported can be found in ‘common.h’ file.

 Create data payload buffer

A data buffer is required to send different FSCI commands to the board. This buffer can be created using

the information collected in ‘Send and receive packets 8.1.3’. In this case, the payload buffer has the

next bytes:

static uint8_t set_ch_buf[] = {THR_INST_ID, 0x04, 0x00, 0x01, 0x0F};

 Create FSCI frame

By now, the developer has all information required to create his own FSCI frame. The

‘CreateFSCIFrame()’ function and the parameters used to create the frame is shown below.

FSCIFrame *set_channel = CreateFSCIFrame(framer, TX_OG, THR_SET_ATTR_OC, set_ch_buf,
sizeof(set_ch_buf), VIF);

 Send frame

‘Framer.h’ header provides the ‘SendFrame()’ function. Following are the parameters that are used by

this function:

• framer: this parameter is used to set the length and the endianness frame size. To obtain more

Frame callback

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

12 NXP Semiconductors

information about it see chapter 7 Framer.

• frame: can be any FSCI frame created by the developer.The FSCI frame created in section 8.2.4

Create FSCI Frame is used in this document.

SendFrame(framer, set_channel);

 Destroy FSCI Frame

‘Framer.h’ library provides the ‘DestroyFSCIFrame()’ function. This function is used to deallocate the

memory space required by the frame. The function receives the FSCI frame to be destroyed.

DestroyFSCIFrame(FSCIFrame *);

9. Frame callback

In this example, every time a TX message is sent to the client device, the board responds with an RX

message.

First, the developer needs to attach a callback to the framer created in Section 6.1 Create Framer. This

callback is executed on every RX packet. ‘Framer.h’ header provides ‘AttachToFramer()’ function:

AttachToFramer(framer, NULL, callback);

Analyzing the frame received in section 7.1.3 Send and Receive Packets, the developer can execute

specific tasks depending on the received message. The opCode field can be used to filter the messages.

static void callback(void *callee, void *response)

{

 FSCIFrame *frame = (FSCIFrame *) response;

 if (frame->opGroup != THR_RX_OG && frame->opGroup != MWS_RX_OG) {

 DestroyFSCIFrame(frame);

 return;

 }

 switch (frame->opCode) {

 case THR_SET_ATTR_OC:

 printf("RX: THR_SetAttr.Confirm");

 if (frame->data[0] == 0x00) {

 printf(" -> Success\n");

 }

 break;

 DestroyFSCIFrame(frame);

Compile an application

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 13

}

10. Add source files

This application note consists of eight source files that are not included in the SDK folder. To run the

following demos correctly, you need to copy these files in the ‘hsdk\demo’ path:

‘<SDK path> \tools\wireless\host_sdk\hsdk\demo’

Make sure to replace the old Makefile with the new one to compile all the source files with a single

command.

These source files can be found as a ZIP named ‘Host SDK on Linux OS’ at Application Note Software

section.

11. Configure makefile

Go to: ‘<SDK path> \tools\wireless\host_sdk\hsdk\demo’ and open the file named ‘Makefile’ with a

text editor of your preference. This file is used to resolve any dependency on the used libraries and

compile every demo.

If the developer wants to add his own file, make sure the name of your application file is written in the

line that is shown below, if it is not, write it.

Then, go to the end of the makefile and add the build profile of your project as it-s shown in the figure

below.

Figure 10. Makefile view.

Substitute ‘File_Name’ with your own file name.

12. Compile an application

To compile any demo application, follow the next step on the computer with Linux OS:

Add here

Thread Shell demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

14 NXP Semiconductors

• Open a terminal in the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo’ and

execute the next command:

$make

If user wants to compile his own application, make sure to previously configure the makefile file (refer

to Chapter 10. Configure makefile).

13. Thread Shell demo

This demo allows the developer to experiment and become familiar with the Thread Host Control

Interface (THCI) messages.

To get more information about this demo, please refer to the document: Kinetis Thread Stack Shell

Interface User’s Guide. The document can be found in the following directory:’ <SDK

path>\docs\wireless\Thread’.

 Prerequisites

To make this example work correctly, the boards will have an identification letter as is shown in the next

figure:

Figure 11. Board setup.

Load THCD firmware to both boards as follows:

• Board A:

Load ‘host_controlled_device’ example. The project can be found:

’ <SDK path>\boards\frdmkw41z \wireless_examples\thread\’.

• Board B:

Load ‘router_eligible_device’ demo. The project can be found:

’ <SDK path>\boards\frdmkw41z \wireless_examples\thread\’.

 Run demo application

To execute this demo, follow the next steps:

• Compile demo. See Chapter 10. Compile an Application.

• Open a terminal in the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo\bin’.

• Execute ‘GetKinetisDevices’ program to obtain the port where the Kinetis device is connected.

Thread HSDK demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 15

• Execute ‘Thread_Shell’ application.

$sudo ./GetKinetisDevices

 NXP Kinetis-W device on /dev/ttyACM0

$sudo ./Thread_Shell /dev/ttyACM0 15 115200

Note:

If you are running these demos on a Virtual machine you need to enable

 the USB controllers in the virtual machine settings, then the board will be

 recognized as a connected device.

Figure 12. Virtual machine configuration.

14. Thread HSDK demo

Refer to ‘Kinetis Thread Host Control Interface Reference Manual’ document to have a more detailed

description of each one of the available Thread messages. The document can be at:

’ <SDK path>\docs\wireless\Thread’.

The Thread HSDK demo makes use of the HSDK APIs to send several packets with 1 second interval

between each one. The host device sends the following commands to the serial interface and the client

device will execute them:

• Create network.

• Start Commissioner.

• Allow nodes to connect.

Parameters: Port Channel Baud rate

Thread HSDK demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

16 NXP Semiconductors

When a node joins the network, perform the following using Mesh Local Address:

• Print node data.

• Send one ICMP Echo request (Ping).

• Send one CoAP message “/led toggle” with no ACK. (User verify if the LED was toggled).

• Send one CoAP message “/temp” with ACK.

• Open a Socket and send data to the remote node.

• Print any Socket request coming from the network.

 Prerequisites

To make this example work correctly, the boards have an identification letter as is shown in below

figure:

Figure 13. Board identification.

Load THCD firmware to both boards as follows:

• Board A:

Load ‘host_controlled_device’ example. The project can be found:

’ <SDK path>\boards\frdmkw41z \wireless_examples\thread\’.

• Board B:

Load ‘router_eligible_device’ demo. The project can be found:

’ <SDK path>\boards\frdmkw41z \wireless_examples\thread\’.

To enable the router_eligible_end_device to send and receive socket messages it is necessary to

set SOCK_DEMO to 1. This macro can be found in the ‘config.h’ file.

 Run demo application

To run any demo application (or your own application) follow these steps:

• Compile demo. See chapter 10 Compile an Application.

• Connect the Board A to the computer with Linux OS.

• Open a terminal in the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo\bin’.

• Execute ‘GetKinetisDevices’ program to obtain the port where the Kinetis device is connected.

• Execute ‘Thread_HSDK’ program.

Thread HSDK demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 17

$sudo ./GetKinetisDevices

 NXP Kinetis-W device on /dev/ttyACM0

$sudo ./ Thread_HSDK /dev/ttyACM0 15 115200

 Demo description

 Create Thread Network

The Thread HSDK application will starts and you see the information as in below image on your

terminal:

Figure 14. Board A, Thread Network creation.

The host sets the channel, PAN ID, Extended PAN ID, and other several attributes also starts the

network as commissioner.

When network is created, the demo displays the host IP addresses and the network information by

sending ‘ifconfig’ FSCI frame. You can enable or disable the use of this command by setting

USE_IFCONFIG at the top of the ‘Thread_HSDK.c’ file.

Parameters: Port Channel Baud rate

Starts as commissioner

Allow other nodes to join

Set PSKd key

Create Thread network

Set channel 15

Local Host IP address

Network information

Thread HSDK demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

18 NXP Semiconductors

 Join New Node

Connect the Board B and open a serial terminal with Tera Term or PuTTY. Configure the serial

terminal with the following parameters: Baud rate: 115200, 8-bit data, 1 stop bit, No flow control, No

parity.

Figure 15. Serial terminal configuration.

Press the reset button on the Board B and enter the next thr commands on the serial terminal:

$ thr scan allchannel

$ thr set channel 15

$ thr join

Figure 16. Board B, ‘thr’ commands.

The end device joins to the Thread network. You can see the outputs as below on the Linux terminal

showing the commissioner status:

Network information

Thread HSDK demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 19

Figure 17. Board A, commissioner status.

Figure 18. Board B, joining network.

 Print joiner’s IPv6 addresses

This information is obtained by sending ‘getnodesip’ FSCI frame. You can enable or disable this

command by setting USE_GET_NODES_IP.

Figure 19. Joiner IPv6 address.

 Ping request/response

You can enable or disable this command by setting USE_PING.

Figure 20. Ping request/response.

 CoAP messages

First, the host sends a create instance request and receives the confirmation. Then, sends both CoAP

messages (“/led toggle” and “/temp”) and receives only the temperature response.

You can enable or disable this command by setting USE_COAP.

Figure 21. CoAP message.

Join to the Thread network with the same PAN ID

IP addresses of new joiner

Ping req/rsp

CoAP messages req/rsp

A node has joined

Thread HSDK demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

20 NXP Semiconductors

LED control.

You can put in different states your led end device.

Figure 22. LED status.

 Socket messages

The host opens a socket port and send data to the end device.

Figure 23. Socket message.

See the received socket data in the router_eligible_end_device serial terminal.

Figure 24. Socket received data.

You can enable or disable this command by setting USE_SOCKET.

 Send CoAP and Socket messages from the HSDK

 CoAP

14.4.1.1. Modifications on the board side

User can send his own CoAP messages to the host. To do this, a new uri-path must be added on the host-

controlled device. Follow the next community post to add a new uri-path:

https://community.nxp.com/docs/DOC-333784.

Once the new uri-path callback has been added, the user can use THCI_EventData() function to send data

to the host (Linux computer) through thci message.

THCI_EventData(uint8_t opCode, uint8_t length, uint8_t *pData);

This function can be found in ‘thci.h’ file. It can be used to send data from board A to the host

computer, specifying the opCode and a pointer to the sending data.

NOTE

All these modifications must be implemented on the board side (MCUXpresso or IAR) only on

board A.

Socket message received from leader

Open Socket

https://community.nxp.com/docs/DOC-333784

Thread HSDK demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 21

14.4.1.2. Modifications on the host side

The only thing that must be added on the host side is on the reception callback. These modifications

depend on the opCode used by the developer and the functionality that wants to be added.

 Socket

To send socket messages from the end device to the leader (host_controlled_device), enter the below

commands on the serial terminal (board B):

$ help socket

$ socket open udp fd00:db8::ff:fe00:0 1233

$ socket send 0 ABCD

Developer can see the available socket commands and its parameters.

Figure 25. Socket commands.

Open a socket port using UDP protocol and the leader IP address. Send ‘ABCD’ using the socket id

obtained in the socket open response.

Figure 26. Socket commands 2.

See the information sent by the end device printed in the host terminal.

Figure 27. Socket information from host terminal.

Socket commands

Open socket

Send socket message

Receive socket message

Thread TUN/TAP HSDK

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

22 NXP Semiconductors

15. Thread TUN/TAP HSDK

TUN and TAP interfaces allows the programmer to send and receive network traffic (MAC or IP level)

on his applications. Both are software interfaces, they have no physical hardware components. The

Kernel manages the created interfaces and decides when to send data through those TUN or TAP

interfaces or through any physical hardware component. The developer can only use one interface on his

application, you can’t use both at the same time. Depending on the network requirements, you can

choose a TUN or TAP interface.

The Kinetis Thread Stack implements a serial Tunnel media Interface which can be used to exchange

IPv6 packets encapsulated in THCI commands with a host system.

Figure 28. TUN/TAP software interface

 TUN Interface

TUN interface works at layer three (Network), which can operate with IP packets. This interface

provides routing between different nodes. Since TUN runs at layer three, it can only accept IP packets.

This type of interface is used when programmers want to enable routing.

 TAP Interface

TAP interface works at layer two (Data Link Layer), which handle MAC frames. This interface provides

node-to-node data transfer or point-to-point connection. Since TAP runs at layer two, the device can

send data to any layer three protocol added on the device. This type of interface is used when

programmers want to create a network bridge and avoid routing between the host_controlled_device and

the HSDK host.

Figure 29. TUN/TAP layers

Thread TUN/TAP HSDK

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 23

NOTE

Previous versions of the Thread stack permitted to disable ND completely on the serial tunnel media

interface, with communication being network layer only (layer-3 TUN mode). The current version of

the Thread stack disables this mode to promote link layer communication (layer-2 TAP mode)

between the Thread border router and external networks. If needed, one may modify the firmware to

use TUN mode instead of TAP mode by stripping out the Ethernet header from network frames

handled in functions IP_SerialTunRecv and IP_SerialTunSend6.

A bridge is used to join two independent networks together and form a larger network. Having this in

mind, you could create an interconnection between those networks and exchange data.

Figure 30. Bridge between 2 networks.

 Topology

Two components are required to provide connectivity to the host: the TUN/TAP kernel module, which

allows the OS to create virtual interfaces and a program that knows how to encapsulate/decapsulate IP

packets from/to FSCI/THCI.

The image below describes the communication stages for each message sent by the host (PC) and the

Thread device (Border Router).

Figure 31. Direction from host (PC) to serial Thread device.

Thread TUN/TAP HSDK

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

24 NXP Semiconductors

Figure 32. Direction from Thread device to host (PC)

 Linux Host

In this scenario, the Linux host is a bridge between the OpenWrt Router and the Kinetis Border Router.

The PC receive/send IPv6 packets encapsulated by THCI serial commands. To do this, the PC have to

enable a TUN/TAP interface. Refer to Figure 33.

 Border Router

The Border Router will act as an interface to forward IPv6 packets between the Thread network and the

Linux host. To do this, the Kinetis device will have to support a TUN/TAP interface. Refer to Chapter

15.4 General setup to enable it. Refer to Figure 33.

 OpenWrt Router

A router with DHCPv6-PD support is required. This router enables you to connect your Thread network

to any other system that uses IPv6 packets. The Prefix Delegation feature delegates the IP address

assignation. Refer to Figure 33.

Thread TUN/TAP HSDK

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 25

Figure 33. Overall network topology using TUN/TAP and external host

 General setup

• Linux Host.

• OpenWrt AP/Router with DHCPv6-PD support.

 Embedded setup

First, verify that you have the latest SDK version (this document uses 2.2 version). Refer to Chapter

4.1.1. SDK Builder of this document to see the download link.

• 1 FRDM-KW41Z as Border Router (Host Controlled Device)

• 1 FRDM-KW41Z as joiner device.

15.4.1.1. Configuration

Border Router (Host Controlled Device)

Use the Host Controlled Device demo provided in the FRDM-KW41 SDK. The project can be found in

the following directory:’ <SDK path>\boards\frdmkw41z\wireless_examples\thread\’.

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

26 NXP Semiconductors

The following changes are needed to enable the TAP interface:

1. Enable THR_SERIAL_TUN_IF /source/config.h

Joiner device.

Use the Router Eligible End Device demo provided in the FRDM-KW41 SDK. The project can be found

at: ’ <SDK path>\boards\frdmkw41z\wireless_examples\thread\’. No changes are required on this demo.

To create a network with TUN/TAP devices, follow the instructions in the next tutorial:

https://community.nxp.com/docs/DOC-334294. You will find step by step instructions on how to enable

this functionality.

To have a more detailed description of the Thread Tunnel Interface please refer to the document: Kinetis

FSCI Host Application Programming Interface on ‘Chapter 6. Thread Integration with Linux OS Host

on Serial (UART) Tunnel Interface’ and ‘Chapter 7 Applications Using the TUN Interface’. The

document can be found at: ’ <SDK path>\docs\wireless\Thread’.

16. ZigBee HSDK Demo

There are two demo examples based on ZigBee protocol:

1. Zigbee Black Box: Can be used as coordinator or as router. There are two different files, one for

each implementation. The files are named ‘Zigbee_BBC_HSDK.c’ and ‘Zigbee_BBR_HSDK.c’

respectively. Both files use ‘Zigbee_BlackBox_HSDK.h’ as header.

2. ZigBee Control Bridge: Provides a means of controlling ZigBee devices within a ZigBee

network. The device would typically act as ZigBee IoT Gateway.

Both ZigBee HSDK demos send several packets with 1 second interval between each one. The host

device is programmed to send the following commands through the serial interface and the client device

will execute them:

• Start ZigBee network.

• Install code to allow Unique Link Key.

• Permit join.

When a ZigBee node (OnOffLight Router) joins the network:

• Send a Discover Command.

• Send a Simple Descriptor request.

• Send a Read attributes for OnOff status.

• Send an OnOff Set State command.

• Find & Bind – Initiator.

• Receive attribute report periodically from the OnOffLight Router.

https://community.nxp.com/docs/DOC-334294

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 27

 Black Box

 Add your own OpCode – embedded side

All Zigbee FSCI command codes supported by the device are found in ‘SerialLink.h’ file as an

enumeration named ‘teSL_MsgType’. Follow the steps below to add a new opcode implementation.

1. Select a name and a number that are not already listed in ‘teSL_MsgType’ enumeration and add

it. It is recommended to follow the naming standard.

2. Go to ‘app_Znc_cmds.c’ file and look for the following function:

‘APP_vProcessIncomingSerialCommands(uint8 u8RxByte)’.

3. Add a new ‘case’ statement with your new command code selected in the first step.

4. Add your code implementation inside the case statement.

 FSCI Black Box as Coordinator

16.1.2.1. Prerequisites

To make this example work correctly, the boards have an identification letter as is shown in the below

figure:

Figure 34. Board setup.

Load ZHCD firmware to both boards as follows:

• Board A:

Load ‘fsci_black_box’ example. The project can be found:

’ <SDK path>\boards\frdmkw41z \wireless_examples\zigbee_3_0\’.

 Follow the steps bellow to enable the Install Code functionality. These changes are needed to

run this demo correctly. (If you are creating a new project and don’t want to use Install Code,

there is no need to do it):

1. In bdb_options.h change #define BDB_JOIN_USES_INSTALL_CODE_KEY from

FALSE to TRUE.

2. Add a new opcode to support the install code FSCI command on the embedded side. To

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

28 NXP Semiconductors

do this, refer to chapter 13.2. Add your own Opcode – embedded side, and add the

following code:

As command code in ‘teSL_MsgType’ enumeration (SerialLink.h file):

E_SL_MSG_INSTALL_CODE = 0x0015

As command code implementation (app_Znc_cmds.c):

case (E_SL_MSG_INSTALL_CODE):

{

uint64_t u64Addr;

uint8_t i;

uint8_t offset = 0;

uint8_t Key[16];

ZPS_tsAplAib * psAplAib;

u64Addr = ZNC_RTN_U64_OFFSET(au8LinkRxBuffer,offset,offset);

 for(i = 0; i < 16 ; i++)

{

Key[i] = au8LinkRxBuffer[offset + i];

}

/* Install the new code */

ZPS_eAplZdoAddReplaceInstallCodes(u64Addr, Key, 16,

ZPS_APS_UNIQUE_LINK_KEY);

psAplAib = ZPS_psAplAibGetAib();

for(i=0; i<16;i++)

{

Key[i] = psAplAib->psAplDeviceKeyPairTable-

>psAplApsKeyDescriptorEntry[0].au8LinkKey[i];

}

vSL_WriteMessage(E_SL_MSG_INSTALL_CODE, 16, Key);

}

 break;

• Board B:

Load ‘router’ demo. The project can be found at:

’ <SDK path>\boards\frdmkw41z \wireless_examples\ zigbee_3_0\’.

Follow the steps bellow to enable the Install Code functionality. These changes are required to

run this demo correctly. (If you are creating a new project and don’t want to use Install Code,

there is no need to do it):

1. In app_router_node.c in the APP_vInitialiseRouter() function add the following before

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 29

the call to ZPS_eAplAfInit():

/* Enable use of install codes */

ZPS_tsAplAib *psAib = ZPS_psAplAibGetAib();

psAib->bUseInstallCode = BDB_JOIN_USES_INSTALL_CODE_KEY;

2. In bdb_options.h change #define BDB_JOIN_USES_INSTALL_CODE_KEY from

FALSE to TRUE.

16.1.2.2. Run demo application

Before executing the coordinator ZigBee host application, you need to edit ‘install_code_buf’ variable in

‘Zigbee_BBC_HSDK.c’ file. Replace all bytes with the corresponding MAC address of your own

joiner device repeated. This is required to allow your joiner into the network.

16.1.2.3. Find MAC Address

To find the MAC address of your own joiner device run router demo and open a serial terminal as

done in previous steps, then type “extendedaddr”, the string displayed by the console is the MAC

address.

For example, if your joiner device MAC address is: 0x75C52C60F12A03A8 you will do the following:

• static uint8_t install_code_buf[] = {0x75, 0xC5, 0x2C, 0x60, 0xF1, 0x2A, 0x03,

0xA8, 0x75, 0xC5, 0x2C, 0x60, 0xF1, 0x2A, 0x03, 0xA8,0x75, 0xC5, 0x2C, 0x60, 0xF1,

0x2A, 0x03, 0xA8};

To run any demo application (or your own application) follow the next steps:

• Compile demo. See chapter 10 Compile an Application.

• Connect the Board A to the computer with Linux OS.

• Open a terminal at the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo\bin’.

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

30 NXP Semiconductors

• Execute ‘GetKinetisDevices’ program to obtain the port where the Kinetis device is connected.

• Execute ‘Zigbee_BBC_HSDK’ program.

$sudo ./GetKinetisDevices

 NXP Kinetis-W device on /dev/ttyACM0

$sudo ./Zigbee_BBC_HSDK /dev/ttyACM0 15 115200

16.1.2.4. Demo description

Create Zigbee Network

The program starts doing a factory reset, setting the channel and extended PANID network parameters

before starting the network.

You can enable or disable this set of the extended PAN ID parameter by setting USE_SET_XPANID in

‘Zigbee_BlackBox_HSDK.h’ file.

Figure 35. Creation of Zigbee network

Install Code

Once the ZigBee network has been created, the coordinator installs a Unique Link Key using the MAC

address of the joiner device. This command allows to use a unique Link Key in the joining process. On

the Linux terminal you must see the new Link Key for the joiner node.

You can enable or disable this command by setting USE_INSTALL_CODE in

‘Zigbee_BlackBox_HSDK.h’ file.

Figure 36. Install code

Parameters: Port Channel Baud rate

Start network &
coordinator information

Set Extended PAN ID

Set Channel mask

Unique Link Key created

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 31

Join New Node

The coordinator sends a permit join message to allow other nodes to join and waits until a device sends a

join request.

Connect the Board B and open a serial terminal with Tera Term or PuTTY. Configure the serial

terminal with the following parameters: Baud rate: 115200, 8-bit data, 1 stop bit, No flow control, No

parity.

Figure 37. Serial terminal configuration

Press the reset button on the Board B and enter the next commands on the serial terminal:

$ channel 15

$ join

Figure 38. Board B, channel and join commands.

You can see a permit join request, a device announce and a router discovery on the host serial terminal.

This messages indicates a succesfully joining request.

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

32 NXP Semiconductors

Figure 39. Board A, join request.

In the image below, you can see the asignation of the Unique Link Key generated in the Apendix A.

Install Code. The Link Key generated by the coordinator is used for the joining process and then is

replaced by the Trust Center Link Key sent by the coordinator.

Figure 40. Board B, link keys

Match Descriptor

In this command, the developer enter a profile ID and a list of clusters to ask a specific node if they have

some clusters in common. The node responds with the endpoint that supports any cluster in the list.

You can enable or disable this command by setting USE_MATCH_DESCRIPTOR in

‘Zigbee_BlackBox_HSDK.h’ file.

Figure 41. Board A, match descriptor.

Simple Descriptor

This command is another way to know which clusters are supported by a specific node in the ZigBee

network. In this command, the developer must specify the short address of the required node and the

endpoint where he wants to look up.

The node responds with the profile ID and a list of supported clusters in the selected endpoint.

You can enable or disable this command by setting USE_SIMPLE_DESCRIPTOR in

‘Zigbee_BlackBox_HSDK.h’ file.

Unique Link Key

Trust Center Link Key

Router discovery

Device announce

Join request

Router short address

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 33

Figure 42. Board A, simple descriptor.

Read Attributes

Send this command to read one or several attributes on a specific cluster. Developer enter a list of

attributes to be read.

You can enable or disable this command by setting USE_READ_ATTRIBUTES in

‘Zigbee_BlackBox_HSDK.h’ file.

To read multiple attributes from a cluster you can enable USE_DYNAMIC_ATTRIBUTES and modify

the macro NUMBER_OF_ATTRIBUTES in ‘Zigbee_BlackBox_HSDK.h'.

Figure 43. Board A, Read attributes.

Find & Bind

The coordinator sends a Find command as initiator on a specific endpoint and cluster. Both extended

address (coordinator and requested device) are required to execute this command. Once this command is

executed, the router reports its attributes every minute (time by default) automatically.

You can enable or disable this command by setting USE_FIND_AND_BIND in

‘Zigbee_BlackBox_HSDK.h’ file.

Figure 44. Board A, find and bind.

Cluster Command

In the example demo is used an on/off command which is supported by the OnOff Cluster (Cluster ID

0006). Every time an attribute is modified, the device reports the attribute automatically only if the

binding was created using Find & Bind procedure.

Router information

Supported input clusters

Read attributes command

Router attribute response

Find & Bind initiator

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

34 NXP Semiconductors

You can enable or disable this command by setting USE_SET_ATTRIBUTE in

‘Zigbee_BlackBox_HSDK.h’ file.

Figure 45. Board A, cluster command.

 FSCI Black Box as Router

16.1.3.1. Prerequisites

To make this example work correctly, the boards have an identification letter as is shown in the below

figure:

Figure 46. Board setup.

Load THCD firmware to both boards as follows:

• Board A:

Load ‘fsci_black_box’ example. The project can be found:

’ <SDK path>\boards\frdmkw41z \wireless_examples\zigbee_3_0\’.

To enable the Install Code functionality, follow the steps bellow. These changes are required to

run this demo correctly. (If you are creating a new project and don’t want to use Install Code,

there is no need to do it):

1. In bdb_options.h change #define BDB_JOIN_USES_INSTALL_CODE_KEY from

FALSE to TRUE.

2. In app_zps_cfg.h change #define

Cluster command response

Automatic attribute report

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 35

ZPS_INIT_APL_DEFAULT_GLOBAL_APS_LINK_KEY from FALSE to TRUE.

3. In app_start.c in the vInitialiseApp() function add the following after the call to

APP_vSetMacAddr();

/* Enable use of install codes */

ZPS_tsAplAib *psAib = ZPS_psAplAibGetAib();

 psAib->bUseInstallCode = BDB_JOIN_USES_INSTALL_CODE_KEY;

• Board B:

Load ‘coordinator’ demo. The project can be found:

’ <SDK path>\boards\frdmkw41z \wireless_examples\ zigbee_3_0\’.

Follow the steps bellow to enable the Install Code functionality. These changes are required to

run this demo correctly. (If you are creating a new project and don’t want to use Install Code,

there is no need to do it):

1. In bdb_options.h change #define BDB_JOIN_USES_INSTALL_CODE_KEY from FALSE

to TRUE.

16.1.3.2. Demo description

Create ZigBee Network

Now, the Board B starts the ZigBee network and the Board A joins to the network by FSCI

commands.

Connect the Board B and open a serial terminal with Tera Term or PuTTY. Configure the serial

terminal with the following parameters: Baud rate: 115200, 8-bit data, 1 stop bit, No flow control, No

parity.

Figure 47. Serial terminal configuration.

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

36 NXP Semiconductors

Press the reset button on the Board B and enter the commands below on the serial terminal:

$channel 15

$form

See the information as in below image on your terminal:

Figure 48. Board B, coordinator commands.

Install Code

Enter the below command on the coordinator serial terminal:

$ code <addr> <install_code>

Replace <addr> with the MAC address of the joiner node.

Replace <install_code> with the MAC address of the joiner node repeated once.

In this case, the MAC address of the joiner node is: 78ADB6FC56951E19.

To find the MAC address of the joiner device refer to step 16.1.2.3

Figure 49. Board B, install code command.

See the APS table on the coordinator serial terminal showing the Unique Link Key assigned to the joiner

node with the specific MAC address.

Join FSCI Router Node

Enter the next command on the coordinator serial terminal:

Unique Link Key
created for the
router node

Install code command

MAC address
(extended address)
of the joiner node

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 37

$ steer

Figure 50. Board B, steer command.

This command allows other nodes to join to the ZigBee network created by the coordinator.

Then, join the FSCI router:

• Compile FSCI router demo. See chapter 10 Compile an Application.

• Connect the Board A to the computer with Linux OS.

• Open a terminal in the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo\bin’.

• Execute ‘GetKinetisDevices’ program to obtain the port where the Kinetis device is connected.

• Execute ‘Zigbee_BBR_HSDK’ program.

$sudo ./GetKinetisDevices

 NXP Kinetis-W device on /dev/ttyACM0

$sudo ./Zigbee_BBR_HSDK /dev/ttyACM0 15 115200

Parameters: Port Channel Baud rate

ZigBee HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

38 NXP Semiconductors

Figure 51. Board A, Zigbee router view.

When a FSCI device executes a reset, sends a list of clusters and attributes to the host computer so the

user can know which ones are supported by the connected device.

You can enable or disable this command by setting SEE_ATTRIBUTE_LIST in

‘Zigbee_BlackBox_HSDK.h’ file. By default, is set to 0.

Figure 52. Board B, callback from router device.

 Control Bridge

For the moment, the only way to manipulate Control Bridge demo is through ZGUI from the Test Tool

Application. For more information about its functionality, refer to ‘AN12063-MKW41Z-AN-ZigBee-3-

0-ControlBridge’ document provided in the following directory:

’ <SDK path>\docs\wireless\ Zigbee\Application Notes\’.

Set channel: 15
Set device type as router

List of clusters & attributes

Scan to join network

Set channel 15
Set device type as router

BLE HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 39

17. BLE HSDK Demo

This demo allows the developer to experiment and become familiar with the Framework Serial

Communication Interface (FSCI) and the BLE Host Stack to implement a Heart Rate application.

 BLE Host Stack layers

The BLE Host Stack layers that offers access using FSCI are GATT, GATTDB, L2CAP, and GAP.

 Each layer provides primitives that an upper layer (profile/application) uses to access services of that

layer.

Here a brief description of that layers:

GATT: provides methods in which the services can be discovered and can be used, allows the access and

retrieval of information between client and server.

GATTDB: provides methods in which services can be added, modified or removed.

L2CAP: allows higher level protocols and applications to transmit and receive upper layer data packets.

GAP layer provides:

• Discoverability modes and procedures.

• Connection modes and procedures.

• Security/Bonding modes and procedures.

GAP GATT

Logical Link Control and
Adaptation Protocol

Figure 53. BLE system architecture.

BLE HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

40 NXP Semiconductors

For more detailed information about FSCI messages to the layers previously mentioned, refer to the

document: “BLE Host Stack FSCI Reference Manual”. The document can be found at:

’ <SDK path>\docs\wireless\Bluetooth’.

 GATT profile hierarchy

Here is a general GATT profile hierarchy scheme that this demo follows, most of the FSCI Frames sent

to the BLE Host Stack Black Box are to create this scheme and set up the Heart Rate Sensor profile.

Figure 54. GATT profile hierarchy scheme.

Hierarchy level description:

1. Profile: defines the main behavior of the device, in this case a Heart Rate Sensor.

2. Service: is a collection of data and behaviors for a feature.

3. Characteristic: is the value used in the service.

4. Descriptor: describes how to read the characteristic value.

For more detailed information about BLE system architecture, refer to the Bluetooth SIG available on the

link, www.bluetooth.com/specifications/bluetooth-core-specification/

Heart Rate Sensor

Heart Rate Service

Heart

Rate Measurement

8 bit HR
measurement

Body Sensor
Location

Heart Rate Control
Point

Battery Service

Battery Level
Measurement

8 bit BL
measurement

Device Information
Service

Manufacturer
Name

Serial Number

Software Revision

http://www.bluetooth.com/specifications/bluetooth-core-specification/

BLE HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 41

 Prerequisites

To make this example work correctly, use a FRDM-KW41Z board and a smartphone with the “NXP IoT

Toolbox” app:

Figure 55. Board setup.

Load BLE FSCI Black Box firmware to the board as follows:

• Board A:

Load ‘ble_fsci_black_box’ example. The project can be found:

’ <SDK path>\boards\frdmkw41z \wireless_examples\bluetooth\ ble_fsci_black_box’.

• NXP IoT Toolbox

The IoT Toolbox is a mobile application developed by NXP Semiconductors. It is designed for

the Android™ and iOS™ handheld devices. The mobile application is free in App Store® and

Google Play™.

 Run demo application

To execute this demo, follow the steps below:

• Compile demo. See Chapter 10. Compile an Application.

• Open a terminal in the next directory: ‘<SDK path>\tools\wireless\host_sdk\hsdk\ demo\bin’.

• Execute ‘GetKinetisDevices’ program to obtain the port where the Kinetis device is connected.

• Execute ‘HRS_BLE_HSDK’ application.

$sudo ./GetKinetisDevices

 NXP Kinetis-W device on /dev/ttyACM0

$sudo ./HRS_BLE_HSDK /dev/ttyACM0 115200

Parameters: Port Baud rate

BLE HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

42 NXP Semiconductors

The HRS_BLE_SDK starts, and you should see the below information on your console.

First, a general reset request is sent, followed by the layer's confirmation response. Then, the request to

add a generic GATT and GAP services, these are used to create the first level of the hierarchy scheme

viewed in ‘Section 15.2 - GATT profile hierarchy’.

Figure 56. Adding generic attributes and access profiles.

Add Generic Attribute Profile

Add Generic Access Profile

General reset request

BLE HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 43

In this section, the Heart Rate service is added as a service, then, the characteristics of that service as

heart rate measurement, body sensor location and heart rate control point are added.

Figure 57. Adding Heart Rate service and characteristics.

Add Heart service
UUID = 0x180D

Add Heart Rate Characteristics

• HR Measurement

• Body Sensor Location

• HR Control Point

BLE HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

44 NXP Semiconductors

Then, the program adds Battery and Device Information services, each service followed by their

necessary characteristics and in some cases descriptors of that characteristics.

Figure 58.Adding battery and device information services, characteristics and descriptors.

Add Battery service
UUID = 0x180F

Add Battery Level
characteristic
UUID = 0x2A19

Add Descriptor for Battery
Level characteristic

Add Device Information
service
UUID = 0x180A

Add Device Info Characteristics

• Manufacturer name

• Model number

• Serial number

BLE HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 45

Here the program is still adding device information characteristics, then the host request the device

address and sets the advertising data. At this point, the device is recognized as a Heart Rate sensor

profile instead of having a generic profile added at the beginning of the program.

Figure 59. Device information characteristics.

Add Device Info Characteristics

• HW Revision

• FW Revision

• SW Revision

• System ID

• IEEE Rcdl

Public Device Address

Set values to advertise a
Heart Rate Sensor Profile

BLE HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

46 NXP Semiconductors

To update heart rate measurements, battery level and sensor location, it’s necessary to find their own

handles, then, with that handles discovered, the values of the services previously added can be refreshed.

Figure 60. Handles for write notifications.

Battery Service Handle
0x0015

Heart Rate Service Handle
0x000D

Heart Rate Measurement
Handle
0x000F

Body Sensor Location Handle
0x0012

Battery Level Handle
0x0017
 Energy Expended Enabled

Sensor Contact Supported
Sensor Contact Detected

Battery Level = 100%

Sensor Location = Chest

BLE HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 47

The setup is done, finally the host sends a request to start advertising and then waits for the NXP IoT

Toolbox connection.

Figure 61. Start advertising and wait for NXP IoT Toolbox connection.

Once the demo prints the “waiting for connection” message, open NXP IoT Toolbox, go to Heart Rate

option and then tap on the “NXP_HRS” device.

For more detailed information about setting the NXP IoT Toolbox App, please refer to the mobile

application user guide available at: nxp.com/docs/en/user-guide/KBLETMAUG.pdf?fromsite=ja

Figure 62. NXP IoT Toolbox, Heart Rate view.

Set advertising parameters:

• Min & Max Connection Intervals

• Advertising type

• Address Type

Start Advertising

Configuration done, connect a
smartphone with the NXP IoT Toolbox

https://www.nxp.com/docs/en/user-guide/KBLETMAUG.pdf?fromsite=ja

BLE HSDK Demo

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

48 NXP Semiconductors

Figure 63. Device connected terminal view.

Program sending updates of heart rate measurement and battery level to the NXP IoT Toolbox app.

Figure 64. Application view.

Device connected message

Appendix A

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 49

18. Appendix A

 Install Code.

The Install Codes allow the developer to create a temporary Unique Link Key on every joining node

using its MAC address and change it once the joining process is completed.

• Global Link Key: This key is used in the joining process. Allows to connect and join a node to a

ZigBee network. By default, ’ZigBeeAlliance09’ key is set.

• Unique Link Key: Has the same functionality of Link Key but it is unique to every joiner node.

MAC address is used to generate these unique link key.

• Network Key: This key is used to decrypt the packets sent in the ZigBee network.

• Trust Center Link Key: Used for communications between the Trust Center and one other node.

It is randomly generated by the Trust Center.

To have more information about ZigBee Security, refer to chapter 5.8 Implementing Zigbee Security on

‘Zigbee 3.0 Stack User Guide’ document that can be found in the next directory:

‘<SDK path>\docs\wireless\Zigbee\’.

 Key Exchange Process

The internal process that is executed in this key exchange is the following:

• The coordinator creates a Unique Link Key for the joining node using install code command. To

do this, the developer needs the MAC address (extended address) of the joiner node.

• The joiner node will make a join request to the network using its own Unique Link Key. If the

coordinator generated key doesn’t match with the joiner key, the joiner will attempt to join again

after security timeout and after 3 retries the joiner node fails with APS security fail.

• If the joiner was accepted, the coordinator will provide the Standard Network Key to the joiner

node. This Transport Key packet will be encrypted with the Unique Link Key.

• The joiner router will request the Trust Center Key to the coordinator. This request will be

encrypted with the Unique Link Key and the Standard Network Key provided before. This key

will replace the Unique Link Key as the new Link Key.

In the figure below is described the key exchange process using the command ‘install code’ on a Zigbee

network.

Appendix A

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

50 NXP Semiconductors

Figure 65. key exchange process.

On figure 66, find all Over the Air (OTA) packets using a sniffer and Ubiqua protocol analyzer,

demonstrating the functionality described on figure 65.

Appendix A

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

NXP Semiconductors 51

Figure 66. Over the Air packets.

 Generate Unique Link Key – Install code command

To successfully use the install code command, the developer must consider the following aspects:

To get familiar with the install code command, is recommended to see how it works. You can do this by

using the coordinator demo example found in the next directory:’ <SDK path>\boards\frdmkw41z

\wireless_examples\zigbee_3_0\’.

To see the parameters needed by this command, enter ‘help code’ on the serial terminal:

$ help code

code – Provisions an install code into the APS Key Table

 code <addr> <install_code>

• <addr>: MAC address of the node that will be doing a join request to the network.

• <install_code>: 128-bit pre-configured key value.

Since <install_code> parameter is a pre-configured value on the joiner device, the user cannot enter any

random value on the coordinator terminal. By default, this value is the joiner device MAC address

repeated once.

The developer can change this value in the function ‘bGetInstallCode(uint8_t* pInstallCode)’ in the next

Appendix A

Host SDK on Linux OS, Application Note, Rev. 0, 09/2019

52 NXP Semiconductors

lines (‘app_zb_utils.c’ file):

if(pIeeeAddr)

{

 /* Generate an install code that is the MAC address repeated once */

 FLib_MemCpyReverseOrder(pInstallCode, pIeeeAddr, sizeof(uint64_t));

 FLib_MemCpyReverseOrder(pInstallCode + sizeof(uint64_t), pIeeeAddr,

sizeof(uint64_t));

 result = TRUE;

}

Document Number: AN12566
Rev. 0

09/2019

How to Reach Us:

Home Page:

www.nxp.com

Web Support:

www.nxp.com/support

Information in this document is provided solely to enable system and software implementers

to use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products

for any particular purpose, nor does NXP assume any liability arising out of the application or

use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters that may be provided in

NXP data sheets and/or specifications can and do vary in different applications, and actual

performance may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customer's technical experts. NXP does not convey

any license under its patent rights nor the rights of others. NXP sells products pursuant to

standard terms and conditions of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s

applications and products, and NXP accepts no liability for any vulnerability that is discovered.

Customers should implement appropriate design and operating safeguards to minimize the

risks associated with their applications and products.

NXP, NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,

MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,

SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,

AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient

Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor

Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,

Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a

Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS,EdgeScale,

EdgeLock, eIQ, and Immersive 3D are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan,

Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE,

CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and

Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and

related marks are trademarks and service marks licensed by Power.org.

© 2019 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Host SDK on Linux OS
	1. Introduction
	2. Get the MCUXpresso SDK
	3. Host SDK
	4. Framework Serial Communication Interface (FSCI)
	5. Linux OS Host Software Installation Guide
	5.1. Prerequisites
	5.1.1. SDK libraries
	5.1.2. Test Tool Application
	5.1.3. Linux packages

	Install HSDK libraries

	6. Libraries description
	6.1. Directory tree

	7. Framer
	7.1. Create framer

	8. FSCI frame
	8.1. Obtain data frame from Test Tool Application
	8.1.1. Load a host demo to FRDM-KW41Z
	8.1.2. Use Test Tool application
	8.1.3. Send and receive packets

	8.2. Coding the frames
	8.2.1. Function description
	8.2.2. Select the opGroup & opCode
	8.2.3. Create data payload buffer
	8.2.4. Create FSCI frame
	8.2.5. Send frame
	8.2.6. Destroy FSCI Frame

	9. Frame callback
	10. Add source files
	11. Configure makefile
	12. Compile an application
	13. Thread Shell demo
	13.1. Prerequisites
	13.2. Run demo application

	14. Thread HSDK demo
	14.1. Prerequisites
	14.2. Run demo application
	14.3. Demo description
	14.3.1. Create Thread Network
	14.3.2. Join New Node
	14.3.3. Print joiner’s IPv6 addresses
	14.3.4. Ping request/response
	14.3.5. CoAP messages
	14.3.6. Socket messages

	14.4. Send CoAP and Socket messages from the HSDK
	14.4.1. CoAP
	14.4.1.1. Modifications on the board side
	14.4.1.2. Modifications on the host side

	14.4.2. Socket

	15. Thread TUN/TAP HSDK
	15.1. TUN Interface
	15.2. TAP Interface
	15.3. Topology
	15.3.1. Linux Host
	15.3.2. Border Router
	15.3.3. OpenWrt Router

	15.4. General setup
	15.4.1. Embedded setup
	15.4.1.1. Configuration

	16. ZigBee HSDK Demo
	16.1. Black Box
	16.1.1. Add your own OpCode – embedded side
	16.1.2. FSCI Black Box as Coordinator
	16.1.2.1. Prerequisites
	16.1.2.2. Run demo application
	16.1.2.3. Find MAC Address
	16.1.2.4. Demo description
	Create Zigbee Network
	Install Code
	Join New Node
	Match Descriptor
	Simple Descriptor
	Read Attributes
	Find & Bind
	Cluster Command

	16.1.3. FSCI Black Box as Router
	16.1.3.1. Prerequisites
	16.1.3.2. Demo description
	Create ZigBee Network
	Install Code
	Join FSCI Router Node

	16.2. Control Bridge

	17. BLE HSDK Demo
	17.1. BLE Host Stack layers
	17.2. GATT profile hierarchy
	17.3. Prerequisites
	17.4. Run demo application

	18. Appendix A
	18.1. Install Code.
	18.1.1. Key Exchange Process
	18.1.2. Generate Unique Link Key – Install code command

