
i.MX 8M Immersiv3D Application Note

Document number I3DAN
Release For Production, 11/2021

Version 2 Release For Production 6.0.0

© 2021 NXP Semiconductors. All rights reserved

Table of Contents
1. Introduction. 1

2. Overview of i.MX 8M Audio Framework . 2

3. Post processing plugin. 3

3.1. Architecture . 3

3.2. Post Processing API . 3

3.3. Implementing and integrating a custom plugin . 7

3.3.1. Creating a custom post processing plugin. 7

3.3.2. Integrating a PPP to the pipeline . 8

3.3.3. Compiling and running a new post processing plugin . 8

3.4. Custom post processing example . 10

4. Little Kernel services . 15

4.1. General purpose timer . 15

4.2. Custom IPC . 15

4.2.1. Provided CIPC endpoint . 15

4.2.1.1. File interface. 15

4.2.1.2. Direct device access . 15

4.2.2. Adding a new CIPC endpoint . 16

5. Hardware abstraction layer. 18

5.1. Input and output abstraction. 18

5.2. HAL API. 18

5.3. Audio data from LK . 20

6. Control process . 21

6.1. Control process main. 21

6.2. Control process pipe . 21

6.2.1. IDLE state . 22

6.2.2. Discover decoder state. 23

6.2.3. Decoder configuration state . 24

6.2.4. Pipeline configuration state . 24

6.2.5. TX activating state. 25

6.2.6. Active state . 26

6.2.7. Flush transition state . 26

6.2.8. Stopping state. 27

6.3. Control process ping . 27

6.4. Control process mute. 27

6.5. Frame configuration . 27

6.6. Control process event notifier . 27

6.7. Control process new event management . 28

7. Board adaptation . 30

7.1. Linux configuration . 30

7.1.1. Linux device tree . 30

7.1.2. RPC interface . 37

7.1.2.1. HDMI switch driver . 38

7.1.2.1.1. HDMI RPC callbacks . 38

7.1.2.1.2. HDMI RPC Events. 41

7.1.2.1.3. HDMI RPC sequence . 41

7.1.2.1.4. External HDMI driver and HDMI Linux Control driver. 43

7.1.2.2. DAC driver. 46

7.1.2.2.1. RPC_DAC_INIT_ID . 46

7.1.2.2.2. RPC_DAC_OPEN_ID . 46

7.1.2.2.3. RPC_DAC_CLOSE_ID . 47

7.1.2.2.4. RPC_DAC_G_CAP_ID. 47

7.1.2.2.5. RPC_DAC_S_FORMAT_ID . 47

7.1.2.2.6. DAC RPC sequence. 47

7.1.2.3. ADC driver. 48

7.1.2.3.1. RPC_ADC_INIT_ID . 48

7.1.2.3.2. RPC_ADC_OPEN_ID . 48

7.1.2.3.3. RPC_ADC_CLOSE_ID . 48

7.1.2.3.4. RPC_ADC_G_CAP_ID . 48

7.1.2.3.5. RPC_ADC_S_FORMAT_ID . 49

7.1.2.3.6. ADC RPC sequence. 49

7.2. Little Kernel configuration. 50

7.2.1. Little Kernel device tree . 50

7.2.2. Board callback . 58

7.2.3. SAI configuration . 58

7.2.4. Multiple SAI TX configuration . 59

7.2.5. Audio clock configuration. 61

7.2.6. Channel status support . 62

7.3. Jailhouse configuration. 63

7.3.1. Root cell . 63

7.3.2. Little Kernel cell . 63

7.4. Memory configuration . 63

7.4.1. Memory usage overview. 64

7.4.2. Jailhouse memory configuration . 65

7.4.2.1. Linux root cell . 65

7.4.2.2. Little Kernel cell. 66

7.4.3. Little Kernel memory configuration . 68

8. Revision history . 70

Annex A: CIPC custom post processing example . 72

Annex B: New event handling example . 78

Chapter 1. Introduction
This application note describes the i.MX 8M Audio Framework and explains procedures for
integration, configuration, and usage of its features.

Chapter 1. Introduction 1

© 2021 NXP Semiconductors. All rights reserved.

Chapter 2. Overview of i.MX 8M Audio
Framework
The i.MX 8M Audio Framework (called Audio Framework in this document) aims to be an
alternative to a Digital Signal Processor (DSP) on an audio system. For that, the Audio Framework
can allocate up to two of the four application processors of the i.MX 8M to run different audio
related use cases. To improve performance, the real time audio processing flow is separated into
different stages. A simplified diagram is shown in Figure 1.

This application note describes major features of the Audio Framework, including how to control
the audio pipeline, how to implement custom Post Processing Plugins, adaptation to custom boards.

Figure 1. Simplified Audio Framework diagram

2 Chapter 2. Overview of i.MX 8M Audio Framework

© 2021 NXP Semiconductors. All rights reserved.

Chapter 3. Post processing plugin
The Post Processing stage allows to apply different algorithms to an audio stream. Because every
use case is different, the Audio Framework is modular and allows the integration of new algorithms
as Post Processing Plugins (PPPs).

3.1. Architecture
Each Post Processing element is plugged into the Audio Framework and communicates with it
through an Adaptation Layer (HAL), as shown in Figure 2. This communication allows the Audio
Framework not only to control the Post Processing Plugin but also to pipeline and connect it with
other Post Processing Plugins.

Figure 2. Post Processing Plugin

3.2. Post Processing API
The Audio Framework exposes two levels of API: Application level API and Post Processing level
API.

On one hand, the application level API is a string-based REST API. This means that commands are
sent as strings with a “parameter=value” format. This type of implementation allows users to create
their own plugins in an OS and language-agnostic environment. Additionally, to the REST API, a
binary API allows to share a C structure between Linux Application and Post Processing algorithm.

The application level API supports operations like getting capabilities of the platform,
building/destroying a pipeline, adding/removing Post Processing elements to a pipeline, and
interacting with a plugin. All these operations are used through 4 methods described in Table 1.

Table 1. Application level REST API

Command Description

POST Create a resource (create a post processing pipeline or element).

GET Read information from a resource (get a property value).

PUT Write information to a resource (set a property value).

Chapter 3. Post processing plugin 3

© 2021 NXP Semiconductors. All rights reserved.

Command Description

DELETE Delete a resource.

On the other hand, the Post Processing level API allows to add a Post Processing Algorithm in the
system, expose its capabilities, initialize and terminate it, save/retrieve data, and expose the plugin
private API to the applications. For this, the Post Processing Plugin can use the elements described
in Table 2.

Table 2. Post Processing level API

Name Type Description

ppp_command_type Enumeration Lists possible REST Commands

cowbell_context Structure Post Processing Plugin context data

cowbell_driver Structure Structure allowing to register Post Processing
Plugin callbacks

audio_metadata Structure Structure automatically filled after the decoder
with information concerning the stream

register_ppp_driver Function Registers the Post Processing Plugin into Audio
Framework

ppb_get_src Function Returns the pointer to “inplace” buffer where
PPP can perform write accesses. For PPP with
both source and sink pads, it returns the same
pointer as ppb_get_sink.

ppb_get_sink Function Returns the pointer to “inplace” buffer where
PPP can perform read accesses. For PPP with
both source and sink pads, it returns the same
pointer as ppb_get_src.

ppb_set_src_data_len Function Updates data length of every PPB associated to a
source pad.

ppb_get_src_audio_metadata Function Returns the pointer to the metadata structure of
the current audio chunk in the selected source
pad. For PPP with both source and sink pads, it
returns the same pointer as
ppb_get_sink_audio_metadata.

ppb_get_sink_audio_metadata Function Returns the pointer to the metadata structure of
the current audio chunk in the selected sink pad.
For PPP with both source and sink pads, it
returns the same pointer as
ppb_get_src_audio_metadata.

4 Chapter 3. Post processing plugin

© 2021 NXP Semiconductors. All rights reserved.

Name Type Description

ppb_get_src_cust_metadata Function Returns the pointer to the customer metadata of
the current audio chunk in the selected source
pad. For PPP with both source and sink pads, it
returns the same pointer as
ppb_get_sink_cust_metadata.

ppb_get_sink_cust_metadata Function Returns the pointer to the customer metadata of
the current audio chunk in the selected sink pad.
For PPP with both source and sink pads, it
returns the same pointer as
ppb_get_src_cust_metadata.

cpu_to_pts_clock Function Converts CPU system clock to PTS timebase

Additionally, Audio Framework provides a set of parsing functions to interpret the commands
received by the Post Processing Plugin:

Table 3. Post Processing parser API

Name Type Description

ppp_node_s Structure Node structure for Capabilities tree

ppp_type_and_size_t Structure Structure specifying the size and type of a
property value

ppp_send_command Function Function used to send the REST API commands
(POST, GET, PUT, and DELETE)

ppp_from_caps_to_case Function Provides the “key” properties from a Capabilities
string

ppp_read_next_property_set Function Provides the “key” property and the “value” to
set from a command string

ppp_insert Function Inserts a key property on a Capabilities tree

ppp_search Function Searches a key property on a Capabilities tree

ppp_delete_tree Function Deletes a key property on a Capabilities tree

ppp_set_string_to_type Function Converts a string to the defined type and size

ppp_get_string_from_type Function Converts key/value pair to "key=value"

ppp_get_type_and_size Function Parses type and size in a string

ppp_get_size Function Parses size of an array in a string

ppp_add_to_return_string Function Concatenates a string into the given one

ppp_read_next_property_to_
get

Function Provides the “key” property to return from a
command string

ppp_read_next_property_to_
set

Function Provides the “key” property and its value to set
from a command string

ppp_get_root Function Returns the root node of a PPP

Chapter 3. Post processing plugin 5

© 2021 NXP Semiconductors. All rights reserved.

Name Type Description

ppp_strdup Function Duplicates a string, returning an identical
malloc’d string

Note that the type_size argument of functions ppp_set_string_to_type and ppp_get_string_from_type
correspond to the following strings and match the corresponding types:

Table 4. Post Processing type_size string

String C type

PPP_BOOL "bool"

PPP_BOOL_ARRAY "bool[N]"

PPP_CHAR "char"

PPP_CHAR_ARRAY "char[N]"

PPP_FLOAT "float"

PPP_FLOAT_ARRAY "float[N]"

PPP_DOUBLE "double"

PPP_DOUBLE_ARRAY "double[N]"

PPP_INT8 "int8_t"

PPP_INT8_ARRAY "int8_t[N]"

PPP_INT16 "int16_t"

PPP_INT16_ARRAY "int16_t[N]"

PPP_INT32 "int32_t"

PPP_INT32_ARRAY "int32_t[N]"

PPP_INT64 "int64_t"

PPP_INT64_ARRAY "int64_t[N]"

PPP_UINT8 "uint8_t"

PPP_UINT8_ARRAY "uint8_t[N]"

PPP_UINT16 "uint16_t"

PPP_UINT16_ARRAY "uint16_t[N]"

PPP_UINT32 "uint32_t"

PPP_UINT32_ARRAY "uint32_t[N]"

PPP_UINT64 "uint64_t"

PPP_UINT64_ARRAY "uint64_t[N]"

Audio samples and metadata are packed by the Input Manager and pushed to the rest of the
pipeline. CPPs can retrieve this metadata for each chunk with the "ppb_get_XXX_metadata" API
shown in Table 2. The Control Process also gets the same information from the decoder.

6 Chapter 3. Post processing plugin

© 2021 NXP Semiconductors. All rights reserved.

The metadata information contains: decoder id, number of channels, sampling rate, format_size,
speaker id, timestamp, and PTS. Note that for the “audio_metadata” structure, the “decoder_id”
value corresponds to the decoder types defined in sdk/public/include/common/af_types.h.
Additionally, the “speaker_id” is an array with values corresponding to the channel names defined
in sdk/public/include/common/iec62574.h, because they follow the IEC62574 norm.

The customer metadata provides a memory region for customers to fill with information to be
transmitted along the pipeline. The “ppa_cust_md_size” REST API can be used to fix the size of this
memory region in bytes: PUT pipeline0/pipeline.elt/0/ppa_cust_md_size=3840.

Both metadata and customer metadata are passed in a sequential order based on how elements are
linked in the pipeline and synchronized with each audio chunk.

3.3. Implementing and integrating a custom plugin

3.3.1. Creating a custom post processing plugin

Every post processing plugin must register three functions:

• static char *MyParser(struct cowbell_context *context, enum ppp_command_type cmd, char
*command): This function interprets and executes the REST API commands passed as an
argument.

• static const char *MyGetCaps(void): This function returns the capabilities of the post processing
plugin.

• static const char *MyPostProcessing(struct cowbell_context *context, size_t len): This
function performs the audio processing of the plugin to a chunk of bytes determined by len.

Additionally, there are two optional functions that can be used to make or log changes at the
beginning/ending of the element:

• static void *Start(struct cowbell_context *context): This function is called at the start of a
new stream after the decoder has received the first audio sample. This function can be used to
initialize/reset the CPP when receiving a new stream.

• static void *Stop(struct cowbell_context *context): This function is called at the end of a
stream, particularly when the pipeline is flushed.

These functions are needed by the Audio Framework to interact with the PPP through the
cowbell_driver structure as follows:

Chapter 3. Post processing plugin 7

© 2021 NXP Semiconductors. All rights reserved.

static struct cowbell_driver ppp_driv = {
 .ops = {
 .start = volume_start, //optional
 .stop = volume_stop, //optional
 .parser = MyParser,
 .process = MyPostProcessing,
 .get_caps = MyGetCaps,
 },
 .compat = "ppp2af.elt"
};

Finally, the post processing plugin must be registered into the Audio Framework:

register_ppp_driver(&ppp_driv);

3.3.2. Integrating a PPP to the pipeline

Once a PPP is developed, it must be included into the pipeline. The post processing pipeline (section
of the pipeline where PPP can be added) start and end points are defined by “ppa_head” and
“ppa_tail” properties. If the new element is not used as the starting or ending component of the
pipeline, then it doesn’t need to be included in one of the previously mentioned properties. Please
notice that this assumes other elements to be present and correctly linked between each other.

A new REST command file must be created to include new elements. Users can get inspiration from
the default.rest file on the sdcard image (/usr/local/share/rest/). Be aware that <ppp_compat>
corresponds to the compat field of cowbell_driver.

POST Element=pipeline0/<ppp_compat>/<ppp_name>
PUT pipeline0/pipeline.elt/0/ppa_head=<ppp_name>&ppa_tail=<ppp_name>

3.3.3. Compiling and running a new post processing plugin

Currently, the Audio Framework provides an SDK with libraries and public header files allowing to
create a Little Kernel application linked to a customized plugin. This plugin is given as an example
and allows to control the volume of the audio stream. Pipeline, capabilities, user structure,
callbacks, and processing can be completely customized. Once post processing plugin modifications
are done, export the build environment toolchain:

$ export ARMGCC_DIR=/<custom_path>/gcc-linaro-7.3.1-2018.05-x86_64_aarch64-elf

Run /build_pp_imx8mm_release.sh from /path/to/sdk/build/cmake/ to generate binary, elf, and map
files at /path/to/sdk/build/cmake/pp_release:

$./clean.sh
$./build_pp_imx8mm_release.sh

8 Chapter 3. Post processing plugin

© 2021 NXP Semiconductors. All rights reserved.

Finally, run this new binary application on the target in the same way as the pp_sample.

Similar steps can be done to build an SDK in the debug mode, using the build_pp_imx8mm_debug.sh
script.

Please note: When an SDK is built in the debug mode, it still uses the prebuilt libraries from AF that
are built in the release mode.

Audio Framework also provides a SHELL available on the second COM Port to communicate with
the PPP. Commands should respect the following syntax:

ppp cmd "POST Element=pipeline0/volume.elt/volume0"
ppp cmd "POST Element=pipeline0/volume.elt/volume1"
ppp cmd "POST Link=pipeline0/volume.elt/volume0&pipeline0/volume.elt/volume1"
ppp cmd "GET pipeline0/<compat.elt>/<element>/<property1>&<property2>"
ppp cmd "PUT
pipeline0/<compat.elt>/<element>/<property1>=<value1>&<property2>=<value2>"
ppp cmd "DELETE Link=pipeline0/volume.elt/volume0&pipeline0/volume.elt/volume0"
ppp cmd "DELETE Element=pipeline0/volume.elt/volume0"
ppp cmd "DELETE Element=pipeline0/volume.elt/volume1"

A Linux interface has also been developed to access PPP. This interface is located under
/sys/devices/platform/bb800000.pci/pci0000:00/0000:00:00.0/0000:00:00.0.rpmsg_ppp.-1.-1/. To
send commands to Audio Framework, write the PPP file at that location. To retrieve information
from Audio Framework, read that same file. Additionally, Audio Framework provides the afrun.sh
script to send commands through this interface.

For example:

root@imx8mmevk:~# afrun.sh /dev/stdin
running: /dev/ttymxc1
PUT pipeline0/volume.elt/volume0/gain=1
> PUT pipeline0/volume.elt/volume0/gain=1
< OK

A particular command (from both Little Kernel and Linux shell) allows to create new elements that
will share the same user data. This way, modifying a property of one element will impact all
“connected” elements. Note that, only one new connected element can be created per command.
Deleting connected elements is possible as long as the “child” element is deleted before the “parent"
one. However, connecting an element to another element already sharing user data will actually
connect it to the second one’s parent (see the example below).

In the following example, volume1, volume2, and volume3 share the same user data and volume1
is the “parent” element for both volume2 and volume3:

Chapter 3. Post processing plugin 9

© 2021 NXP Semiconductors. All rights reserved.

"POST Pipeline=pipeline1"
"POST Element=pipeline1/volume.elt/volume1"
"POST Element=pipeline1/volume.elt/volume2 pipeline1/volume.elt/volume1"
"POST Element=pipeline1/volume.elt/volume3 pipeline1/volume.elt/volume2"

3.4. Custom post processing example
Audio Framework provides a post processing plugin example: volume. This plugin allows to control
the volume of the audio stream by adding gain to it.

The first step is to create a structure containing data specific to the post processing plugin. In this
case, we only need the gain.

struct volume_data {
 float gain;/**< @brief Gain to be added to the audio stream */
};

Then, we need to implement the PPP callbacks. As for the capabilities for this example, we have a
single property: gain. Be aware that each capability must be separated by the ‘&’ character.

static const char *volume_get_caps(void)
{
 return "numsink=32&numsrc=32&gain=property";
}

The parser interfacing the REST API with the PPP implements each PPP_COMMAND to allocate the
PPP structure, delete it, update the gain of the PPP, and return it. Audio Framework provides
different helpers for this. Notice that the POST command is used to initialize the gain to a default
value.

static char *volume_parser(struct cowbell_context *context,
 enum ppp_command_type cmd, char *command)
{
 struct volume_data *data;
 int property_ret = 0, ret = 0;
 char *ptr_key = NULL;
 char *ptr_value = NULL;
 char *return_string = NULL;
 bool ppp_error = false;
 char *data_string = NULL;
 char *saveptr = NULL;
 cp_event_volume_t param;

 switch (cmd) {
 case PPP_COMMAND_POST:
 printlk(LK_DEBUG, "'%s' received POST command\n", context->name);

10 Chapter 3. Post processing plugin

© 2021 NXP Semiconductors. All rights reserved.

 data = osa_malloc(sizeof(struct volume_data));
 if (!data)
 return PPP_ALLOC_STRING_ERROR;

 context->user_data = data;
 /* Set default values */
 data->gain = 1.0f;
 break;
 case PPP_COMMAND_DELETE:
 osa_free(context->user_data);
 break;
 case PPP_COMMAND_PUT:
 data = (struct volume_data *) context->user_data;
 /* Proposed helper to parse command line */
 property_ret = ppp_read_next_property_to_set(command, &ptr_key, &ptr_value,
&saveptr);
 while (property_ret == ERRCODE_NO_ERROR && ppp_error == false) {
 PPP_SWITCH (ptr_key) {
 PPP_CASE ("gain"):
 /* Proposed helper to convert string to expected type */
 ret = ppp_set_string_to_type(ptr_value, &data->gain, "float");
 if (ERRCODE_NO_ERROR != ret) {
 printlk(LK_ERR, "Error: Invalid command \"%s=%s\"\n", ptr_key,
ptr_value);
 return PPP_ALLOC_STRING_ERROR;
 }
 param.volume = data->gain;
 /* Send Event of gain change to CP */
 ret = cp_send_event(0, CP_EVENT_CPP_VOLUME, (void *) ¶m,
sizeof(param));
 if (ERRCODE_NO_ERROR != ret) {
 printlk(LK_ERR, "Error: Failed Send Event to CP\n");
 return PPP_ALLOC_STRING_ERROR;
 }

 PPP_BREAK;

 PPP_DEFAULT:
 printlk(LK_ERR, "Error: Key \"%s=%s\" not found\n", ptr_key,
ptr_value);
 ppp_error = true;
 PPP_BREAK;
 }
 property_ret = ppp_read_next_property_to_set(NULL, &ptr_key, &ptr_value,
&saveptr);
 }

 return (ppp_error == false) ? PPP_ALLOC_STRING_SUCCESS :
PPP_ALLOC_STRING_ERROR;
 case PPP_COMMAND_GET:
 data = (struct volume_data *) context->user_data;

Chapter 3. Post processing plugin 11

© 2021 NXP Semiconductors. All rights reserved.

 /* Proposed helper to parse command line */
 property_ret = ppp_read_next_property_to_get(command, &ptr_key, &saveptr);
 while (property_ret == ERRCODE_NO_ERROR) {
 PPP_SWITCH (ptr_key) {

 PPP_CASE ("gain"):
 /* Proposed helper to convert type to expected string */
 data_string = ppp_get_string_from_type(ptr_key, &data->gain, "float");
 PPP_BREAK;

 PPP_DEFAULT:
 printlk(LK_ERR, "Error: Key \"%s\" not found\n", ptr_key);
 data_string = PPP_ALLOC_STRING_ERROR;
 PPP_BREAK;
 }

 /* Concatenate current string to return string */
 ppp_add_to_return_string(&return_string, data_string);
 /* Free memory allocated by ppp_get_string_from_type() */
 osa_free(data_string);
 property_ret = ppp_read_next_property_to_get(NULL, &ptr_key, &saveptr);
 }

 printlk(LK_DEBUG, "PPP_COMMAND_GET returns = %s\n", return_string);

 return return_string ? return_string : PPP_ALLOC_STRING_ERROR;
 default:
 return PPP_ALLOC_STRING_ERROR;
 }

 return PPP_ALLOC_STRING_SUCCESS;
}

The audio processing of the Volume plugin adds the specified gain to the audio stream.

12 Chapter 3. Post processing plugin

© 2021 NXP Semiconductors. All rights reserved.

static const char *volume_process(struct cowbell_context *context, size_t len)
{
 struct volume_data *data = (struct volume_data *) context->user_data;
 float *psink;
 size_t samples_count;
 size_t i, j;

 if (len % sizeof(float)) {
 printlk(LK_ERR, "Do not support this buffer len :%lu\n", len);
 return PPP_FIX_STRING_ERROR;
 }

 samples_count = len / sizeof(float);
 for (i = 0; i < AUDIO_CHANNELS_MAX; i++) {
 psink = (float *) ppb_get_sink(context, i);

 if (psink == NULL)
 continue;

 for (j = 0; j < samples_count; j++)
 *psink++ *= data->gain;
 }

 return PPP_FIX_STRING_SUCCESS;
}

There are two additional callbacks than can be included in the element: start() and stop()
callbacks. Please note that these are optional. The following example shows how to include them:

static void volume_start(struct cowbell_context *context)
{
 struct volume_data *data = (struct volume_data *)context->user_data;

 printlk(LK_DEBUG, "volume start:%f\n", data->gain);
}

static void volume_stop(struct cowbell_context *context)
{
 struct volume_data *data = (struct volume_data *)context->user_data;

 printlk(LK_DEBUG, "volume stop:%f\n", data->gain);
}

Finally, the driver structure is created and the Volume plugin is registered.

Chapter 3. Post processing plugin 13

© 2021 NXP Semiconductors. All rights reserved.

static struct cowbell_driver ppp_volume = {
 .compat = "volume.elt",
 .ops = {
 .start = volume_start,
 .stop = volume_stop,
 .parser = volume_parser,
 .process = volume_process,
 .get_caps = volume_get_caps,
 },
};

static void __attribute__ ((constructor)) volume_init(void)
{
 register_ppp_driver(&ppp_volume);
}

14 Chapter 3. Post processing plugin

© 2021 NXP Semiconductors. All rights reserved.

Chapter 4. Little Kernel services
Little Kernel already provides several services that can be used by custom post processing plugins
and the board adaptation files.

4.1. General purpose timer
The SDK provides a driver for the General Purpose Timer (GPT) of the i.MX 8M at
sdk/public/include/drivers/. This driver allows PPPs to configure, start, stop, and get the counter of
a selected GPT. Additionally, the CAPTURE feature can be enabled and configured with a callback.
Please note that the COMPARE feature is not available. For more information on the GPT, see the
i.MX 8M Reference Manual.

4.2. Custom IPC
Immersiv3D provides an interface for Linux and Custom Post Processing Plugins (CPP) to exchange
up to 8 MB of binary data.

4.2.1. Provided CIPC endpoint

4.2.1.1. File interface

Immersiv3D provides a Linux daemon “ivshm_binary”, allowing to abstract the CIPC interface into
a file-based exchange between Little Kernel and Linux. Indeed, the following API allows CPPs to
directly read or write files in the Linux file system:

ssize_t cipc_size_file(unsigned id, char *name);
ssize_t cipc_read_file(unsigned id, void *buf, size_t len, char *name);
ssize_t cipc_write_file(unsigned id, void *buf, size_t len, char *name, unit32_t
oflags);

4.2.1.2. Direct device access

On the Linux side, a new device (/dev/cipc) is exposed for users to interact with this interface. To
access it, Linux applications can do file operations like open, read, write, and close to send/receive
data to/from the CIPC interface. For example:

write(/dev/cipc, "Hello from Linux", sizeof(char) * strlen("Hello from Linux"));

On the LK side, a set of API has been exported into the SDK so that CPPs can write and read the
same CIPC interface:

size_t cipc_read_buf(unsigned id, void *buf, size_t len);
size_t cipc_write_buf(unsigned id, void *buf, size_t len);

Chapter 4. Little Kernel services 15

© 2021 NXP Semiconductors. All rights reserved.

Note that the "id" argument that corresponds to the Endpoint ID of the CIPC interface should be set
to 0x203 to communicate with the endpoint under /dev/cipc.

Be aware that these functions on the LK side and the file operation on Linux only write and read to
the CIPC buffer. They don’t provide an event to notify the receiver of new data in the pipeline.
However, this event can be simulated through the REST API, a timer, or any other signal depending
on the use case.

For example, two new capabilities can be added to the CPP to act as a flag: LK_read_cipc and
Linux_read_cipc. On one hand, Linux will send the LK_read_cipc REST command to notify that CPP
can read the new data written by Linux. On the other hand, Linux can poll using the REST
command to detect when Linux_read_cipc capability is set by the CPP. In this case, Linux can read
the /dev/cipc to retrieve the new information. An example can be found in Appendix A.

4.2.2. Adding a new CIPC endpoint

Immersiv3D allows customers to create new CIPC endpoints to include new binary path into the
system. If more than one CPP must communicate through the binary path with Linux, new CIPC
endpoints must be created.

On the Linux side, the new endpoint must be declared as a node in the Linux device tree. For
example, if users want to create a new “lpf_cipc”:

& ivshm_rpmsg {
 lpf_cipc {
 compatible = "fsl,rpmsg-binary";
 id = <0x400>;
 size = <8192>; /* Endpoint buffer size (B) */
 buffer = <8>; /* binary buffer size (MB) */
 };
};

Please note that all custom nodes must have an ID equal to or higher than 0x400. All lower IDs are
reserved for internal Immersiv3D use.

This new node will automatically expose the “lpf_cipc” endpoint under /dev/lpf_cipc. Users can
then do file operations as they are done for the /dev/cipc endpoint.

On the Little Kernel side, the new endpoint must be declared as a node in the LK device tree, using
the same example as above:

lpf_cipc {
 compatible = "imx_ivshm_binary";
 size = <8192>; /* Endpoint buffer size (B) */
 buffer = <8>; /* binary buffer size (MB) */
 id = <0x400>;
 status = "ok";
};

16 Chapter 4. Little Kernel services

© 2021 NXP Semiconductors. All rights reserved.

Please note that id parameters of the node must be the same on both Linux and LK device trees. The
remaining size, buffer, or buffer_bytes parameter can be tuned according to the use case:

• the size parameter aims to determine the maximum chunk per transfer (must be set to 8KB for
a large file transfer).

• the buffer or buffer_bytes parameters aim to determine the receive buffer size available for an
application.

Finally, the CPP can use the same CIPC API described in the previous chapter to communicate with
the CIPC interface. For this example, the “id” argument of the functions should be 0x400.

Chapter 4. Little Kernel services 17

© 2021 NXP Semiconductors. All rights reserved.

Chapter 5. Hardware abstraction layer
Audio Framework provides a Hardware Abstraction Layer (HAL) to abstract the different source
and sink devices from the pipeline. This allows Immersiv3D to have a single API to communicate
with all types of inputs and output devices.

5.1. Input and output abstraction
The Hardware Abstraction Layer (HAL) is used to integrate Immersiv3D into an audio board
different from the i.MX Audio Board (MCIMX8M-AUD) reference board. Currently, the HAL provides
an input and output interface between Audio Framework pipeline and the LK source/sink drivers.

HAL can be used only for the RPC interface. The example imx8mm-ab2-rpc.dts, imx8mn-ab2-rpc.dts,
and imx8mnul-ab2-rpc.dts device trees specify the hal-input and hal-output to use the hdmi_lnx and
dac_lnx nodes, which correspond to the RPC interface. For more information on this interface, see
section Section 7.1.2.

5.2. HAL API
Inside HAL, the available IO devices are initialized through input and output streams. Available
streams are identified through hdmi, spdif, dac, dac2, adc, adc2, alsa, alsa-voice, and alsa-cpp. These
are defined inside hal-input and hal-output nodes from the device tree files.

After a stream is registered inside HAL, it can be obtained with the following function:

struct audio_hal_stream * audio_hal_get_stream_by_name(const char *name)

This returns the corresponding HAL stream, which was registered at HAL initialization. The
structure of HAL stream is explained in Table 5.

Table 5. Audio HAL stream parameters

Name Type Description

hw_device Structure Opaque type holding the hardware device
drivers details

list_node node Structure Node to hook the element to a list within stream
manager

direction Structure Stream direction

stream_type Structure Stream type currently in use

capabilities Unsigned integer Stream capabilities

get_name Function Returns the stream name as reported by the
hardware device driver

get_stream_capabilities Function Returns a mask holding the capabilities of the
stream

18 Chapter 5. Hardware abstraction layer

© 2021 NXP Semiconductors. All rights reserved.

Name Type Description

set_stream_type Function Sets the stream type, returning 0 in case of
success and a negative value otherwise

get_sample_rate Function Returns the stream sampling rate in Hz

set_sample_rate Function Sets the sample rate, returning 0 in case of
success and a negative value otherwise

get_pcm_format Function Returns the PCM data format, determining
bitwidth and endianness

set_pcm_format Function Sets the PCM data format, returning 0 in case of
success and a negative value otherwise

get_period_size Function Returns the period size in frame, or a negative
value in case of error

set_period_size Function Sets the period size, returning 0 in case of
success, or a negative value in case of error

get_channels Function Gets the number of channels, returning 0 in case
of success, or a negative value in case of error

set_channels Function Sets the number of channels, returning 0 in case
of success, or a negative value in case of error

set_callback Function Sets the callback function for notifying stream
changes and non-blocking actions completion

get_latency Function Returns audio hardware estimated latency in
microseconds

get_timestamp Function Gets the timestamp of a specific HAL event,
returning 0 if call is successful or a negative
value otherwise

set_timestamp Function Sets the timestamp of a specific HAL event,
usually to defer HAL actions, returning 0 if a call
is successful or a negative value otherwise

get_buffer_size Function Gets the buffer size of the interface, returning 0
if a call is successful or a negative value
otherwise.

get_bitrate Function Gets the estimated bit rate of the interface,
returning 0 if a call is successful or a negative
value otherwise

get_custom_format_layout Function Gets a custom format layout, returning 0 if a call
is successful or ERR_NOT_SUPPORTED if a
custom layout is not supported

open Function Opens the stream, returning status 0 for success,
or a negative status otherwise

Chapter 5. Hardware abstraction layer 19

© 2021 NXP Semiconductors. All rights reserved.

Name Type Description

close Function Closes the stream, returning status 0 for success,
or a negative status otherwise

set_parameters Function Sets the audio stream parameters, returning
status 0 for success, or a negative status
otherwise

start Function Starts the stream, returning status 0 for success,
or a negative status otherwise

stop Function Stops the stream, returning status 0 for success,
or a negative status otherwise

The detailed description for the HAL interface can be found in the SDK release archive under the
public/include/hardware/audio.h header file.

5.3. Audio data from LK
Audio Framework provides a method for sending audio data from Little Kernel to Linux. For this, a
PPP element can be created, which extracts the channels data and sends it to Linux ALSA.

The ALSA stream object is obtained from HAL through alsa-cpp-output naming using the
audio_hal_get_stream_by_name API. This can be done in a POST function of the new PPP element.
After obtaining the corresponding HAL stream structure, it can be managed through the
parameters mentioned in Table 5.

Configuration of the stream parameters can be done in the PUT function, assuming the stream has
been initialized and obtained when PPP was created. Here are some examples of stream
parameters that must be considered:

• Stream flow (open/start/stop/close)

• Data format (set_pcm_format)

• Number of channels (set_channels)

The HAL API offers the possibility of changing stream parameters, but the caller is in charge of
formatting and writing the stream to HAL accordingly. This audio processing must be done in the
'.process' function of the PPP element. An ALSA-specific scenario will firstly require a conversion of
the data stream from float to integer and interleaving the input channels to match PPP format.
Then, the converted data can be written with the following function:

ssize_t (*write)(struct audio_hal_stream_out *stream, void *buffer, size_t length);

On the Linux side, the ALSA capture parameters must match the pipeline stream configuration. A
new ALSA device “AFppp” is available to interact with this interface.

20 Chapter 5. Hardware abstraction layer

© 2021 NXP Semiconductors. All rights reserved.

Chapter 6. Control process
Please note that not all release packages provide access to the control process.

Figure 3. Audio Framework threads diagram

Audio flow control is handled by the control process thread which communicates with audio
threads through message queues. Message queues involved in the control process message
communication are blocking on incoming messages and running within their own thread.

The Immersiv3D SDK provides the source code for the main tasks performed by the control process
under sdk/public/source/cp/public/.

6.1. Control process main
The “cp_main” file implements the main thread of the control process, where it initializes the
message interface with all the other threads (input manager, decoder, post processing, and output
manager). Additionally, it initializes the other tasks of the control process: pipe, ping, and mute.
Finally, the main thread of control process will redirect all incoming messages to the correct
handler.

6.2. Control process pipe
The pipe of the control process handles the sequencing of the pipeline, depending on the state of
the control process and the messages received by the other elements. The control process integrates
the following finite state machine:

Chapter 6. Control process 21

© 2021 NXP Semiconductors. All rights reserved.

Figure 4. Control process finite state machine

The cp_pipe file specifies the handler for each state (cp_pipe_state_table). For each state, the
message determines the action to be sent to the correct element.

6.2.1. IDLE state

This is the state of the control process once it has been initialized. According to each message
received on this state, the control process will notify the correct element to start its configuration.
Once the IM_START_CONF message is received, the control process will pass to the discover decoder
state. Figure 5 shows a sequence diagram of the pipeline setup while the control process is in the
idle state.

22 Chapter 6. Control process

© 2021 NXP Semiconductors. All rights reserved.

Figure 5. Pipeline setup sequence diagram

6.2.2. Discover decoder state

During this state, the input manager will drop the audio input until it detects the type of decoder
needed for that stream. Once the type of decoder is discovered, the IM_DECODER_IND message is
passed to the control process to switch to the decoder configuration state. Figure 6 illustrates this
sequence.

Chapter 6. Control process 23

© 2021 NXP Semiconductors. All rights reserved.

Figure 6. Pipeline start sequence diagram

6.2.3. Decoder configuration state

The decoder configuration state notifies the decoder to start decoding the first frame to detect the
format of the audio stream and its configuration. Once this is done, the DEC_INFO_IND message is
passed to the control process to switch to the pipeline configuration state. This sequence is shown
in Figure 7.

Figure 7. Decoder configuration sequence diagram

6.2.4. Pipeline configuration state

During this state, the control process activates the rest of the elements of the pipeline. Notice that

24 Chapter 6. Control process

© 2021 NXP Semiconductors. All rights reserved.

the decoder is stall during this state. Figure 8 shows the sequence of this state.

Figure 8. Pipeline configuration sequence diagram

6.2.5. TX activating state

The TX activating state will unblock the decoder and once the first decoded block arrives into the
output manager, the OM_ACTIVE_IND message will make the control process pass to the active state.
Details on this are shown in Figure 9.

Figure 9. Active sequence diagram

Chapter 6. Control process 25

© 2021 NXP Semiconductors. All rights reserved.

6.2.6. Active state

This state corresponds to the systems state when audio is being streamed to the pipeline.

6.2.7. Flush transition state

The flush transition state is entered on a stream transition or when the pipeline is being stopped.
The objective of this state is to inform every element that they must flush their buffers. Figure 10
provides the sequence diagram of this state.

Figure 10. Flush transition sequence diagram

26 Chapter 6. Control process

© 2021 NXP Semiconductors. All rights reserved.

6.2.8. Stopping state

This state is entered when the pipeline must be closed. All elements are being set to the idle state
and a flush transition sequence is also called. This sequence is described in Figure 11.

Figure 11. Stopping sequence diagram

6.3. Control process ping
The ping feature of the control process allows to ping the communication interface of every
element handled by the control process. This is mainly used to make sure that the interface is
correctly configured and active.

6.4. Control process mute
The mute feature allows to send events to the output manager to notify it about the pipeline and the
decoder setup and the need to mute or unmute the output.

6.5. Frame configuration
The frame configuration details the different threads used by Immersiv3D, as well as their
properties and their entry point functions.

6.6. Control process event notifier
The purpose of this feature is to allow any entity to register a callback for events in the control

Chapter 6. Control process 27

© 2021 NXP Semiconductors. All rights reserved.

process to be notified about system states and updates.

This interface can be used as follows:

• Each entity/element will register the required callbacks for particular events.

• Callbacks will be called on a particular event.

• Entities can have information of CP state changes or other required information from any other
elements.

The API involved here is shown in the next table. Details of the structures used in these functions
are in the cp_notify.h header file.

cp_event_register Function Registers callback for getting notification from CP

cp_event_unregister Function Unregisters callback (delete entry) for getting notification
from CP

cp_notify Function Calls entity registered callback

This is an example of usage from Little Kernel console:

/* Rgister callbacks */
] cp_event register
/* Unregister callbacks */
] cp_event unregister

6.7. Control process new event management
Immersiv3D offers an API that allows elements to send arbitrary notifications to the control
process.

Following is the API that must be used:

cp_send_event Function Sends event notification to CP from external entities

cp_handle_event Function CP handler for received events

An example implementation is in Appendix B.

The corresponding header file (cp_api.h) must be included in the element when using this feature.

Here is an example of how to send an event when the gain value is changed in a volume element:

• Declare the event structure in the parser function:

 cp_event_volume_t param;

• Call the event function when the gain is updated:

28 Chapter 6. Control process

© 2021 NXP Semiconductors. All rights reserved.

 param.volume = data->gain;
 /* Send Event of gain change to CP */
 ret = cp_send_event(0, CP_EVENT_CPP_VOLUME, (void *) ¶m,
sizeof(param));
 if (ERRCODE_NO_ERROR != ret) {
 printlk(LK_ERR, "Error: Failed Send Event to CP\n");
 return PPP_ALLOC_STRING_ERROR;
 }

In this example, CP_EVENT_CPP_VOLUME is the example event created for the volume element.

Chapter 6. Control process 29

© 2021 NXP Semiconductors. All rights reserved.

Chapter 7. Board adaptation
Additionally to the custom post processing, Audio Framework provides a way to customize it and
adapt it to different boards based on the i.MX 8M SOCs. This must consider the full architecture of
the system: Linux, Little Kernel, and Jailhouse.

7.1. Linux configuration
On the Linux side, adapting Immersiv3D to a custom board implies both modifying or creating a
device tree and developing the HDMI switch and DAC drivers using the RPC interface provided by
Immersiv3D to communicate with the audio pipeline through the hardware abstraction layer.

7.1.1. Linux device tree

The Linux device tree provides the entire description of the hardware that will be configured and
used by Linux. Each hardware module is represented by a node containing different properties. A
list of current available properties specific to Immersiv3D is in Table 6. For the full list of available
properties, see the Linux BSP documentation.

NXP’s Linux BSP provides a device tree for the i.MX 8M SOCs (imx8mm.dtsi and imx8mn.dtsi) and
several other device trees for specific boards using these SOCs. Immersiv3D uses 8M platform-
specific dts (like imx8mm-evk.dts or imx8mn-evk.dts), Audio Board-specific dts (*-ab2.dts), dts specific
for jailhouse implementation (*-root.dts), and dts specific for I3D configuration (like i3d-base.dts,
*-af.dts, and the ones using RPC interface *-rpc.dts).

To adapt Immersiv3D to your board, use the imx8mm.dtsi or imx8mn.dtsi device trees and create
your own imx8mm-<user>.dts or imx8mn-<user>.dts device tree that will enable/disable and configure
the hardware resources of the board used by Linux. Finally, an audio framework device tree
imx8mm-<user>-af-rpc.dts or imx8mn-<user>-af-rpc.dts can be used to add Immersiv3D specific
nodes using the RPC interface. Please note that this implies that imx8mm-<user>-af-rpc.dts includes
imx8mm-<user>.dts, which shall include imx8mm.dtsi (the same logic can be applied for imx8mn or
imx8mnul).

Table 6. Linux device tree node properties

Immersiv3D Linux device tree properties

compatible The compatible property of a device node describes the specific binding or
bindings, to which the node complies.

id Determines the ID of the device. The interpretation of this ID might differ
depending on the compatible driver. For CIPC and RPMSG-BIN nodes, the ID
corresponds to the ID of the interface. Please notice that for these two nodes,
the ID should be the same in Linux and LK device tree.

size Determines the buffer of an IPC or RPMSG endpoint in bytes.

buffer,
buffer_bytes

Determines the buffer size of the binary interface. The buffer parameter has
the granularity of megabytes, whereas buffer_bytes has the granularity of
bytes.

30 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

In the release package, the imx8mm-evk-root.dts file specifies the memory reserved for Jailhouse and
its services. Please note that this must be aligned with the Jailhouse cell configuration.

&{/reserved-memory} {

 ivshmem_reserved: ivshmem@bbb00000 {
 no-map;
 reg = <0 0xbbb00000 0x0 0x00100000>;
 };

 ivshmem2_reserved: ivshmem2@bba00000 {
 no-map;
 reg = <0 0xbba00000 0x0 0x00100000>;
 };

 pci_reserved: pci@bb800000 {
 no-map;
 reg = <0 0xbb800000 0x0 0x00200000>;
 };

 loader_reserved: loader@bb700000 {
 no-map;
 reg = <0 0xbb700000 0x0 0x00100000>;
 };

 jh_reserved: jh@b7c00000 {
 no-map;
 reg = <0 0xb7c00000 0x0 0x00400000>;
 };

 /* 512MB */
 inmate_reserved: inmate@93c00000 {
 no-map;
 reg = <0 0x93c00000 0x0 0x24000000>;
 };
};

&{/reserved-memory/linux,cma} {
 alloc-ranges = <0 0x40000000 0 0x60000000>;
};

The imx8mm-ab2-af.dts file redefines the reserved memory for the inmate to assign it a specific
value for Immersiv3D and it disables the resources that are going to be used by Little Kernel.

Please note that the node ir_recv has been disabled even though it is not used by Little Kernel. The
IR receiver is using GPIO1 registers to handle interrupts (also used by Little Kernel) generating
conflicts in the interrupt management. This is a limitation for the current architecture which does
not allow to share the same GPIO controller between Linux and Little Kernel.

Chapter 7. Board adaptation 31

© 2021 NXP Semiconductors. All rights reserved.

&{/} {
 reserved-memory {
 linux,cma {
 size = < 0x0 0x8000000 >;
 };
 rpmsg_reserved: rpmsg@0xb8000000 {
 no-map;
 reg = <0 0xb8000000 0 0x400000>;
 };
 };
};

&uart4 {
 status = "disabled";
};

&sdma2 {
 status = "disabled";
};

&sdma3 {
 status = "disabled";
};

&spdif1 {
 status = "disabled";
};

&micfil {
 status = "disabled";
};

&sai1 {
 status = "disabled";
};

&sai2 {
 status = "disabled";
};

&sai3 {
 status = "disabled";
};

&sai5 {
 status = "disabled";
};

&sai6 {
 status = "disabled";
};

32 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

&{/sound-spdif} {
 status = "disabled";
};

&{/sound-ak4458} {
 status = "disabled";
};

&{/sound-ak5552} {
 status = "disabled";
};
&ecspi2 {
 status = "disabled";
};

#ifndef RPC
&i2c3 {
 status = "disabled";
};

&i2c4 {
 status = "disabled";
};
#else

&i2c3 {
 status = "okay";

 pca6416: gpio@20 {
 status = "ok";
 };

 ak4458_1: ak4458@10 {
 compatible = "nxp,af,ak4458";
 reg = <0x10>;

 ak4458,pdn-gpio = < &pca6416 4 0>;

 rpmsg_rpc = <&rpmsg_rpc_dac>;
 status = "ok";
 };

 ak4458_2: ak4458@12 {
 status = "disabled";
 reg = <0x12>;
 };

 ak4458_3: ak4458@11 {
 status = "disabled";
 reg = <0x11>;

Chapter 7. Board adaptation 33

© 2021 NXP Semiconductors. All rights reserved.

 };

 ak5552: ak5552@13 {
 compatible = "nxp,af,ak5558";
 reg = <0x13>;
 reset-gpios = <&pca6416 3 GPIO_ACTIVE_HIGH>;
 ak5558,pdn-gpio = <&pca6416 3 GPIO_ACTIVE_HIGH>;
 rpmsg_rpc = <&rpmsg_rpc_adc>;
 status = "ok";
 };
};

&i2c4 {
 clock-frequency = <100000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c4>;
 status = "ok";

 ep9x: ep9x@61 {
 compatible = "nxp,af,ep92a7e";
 reg = < 0x61 >;
 status = "ok";

 ep92a7e,pw_en-gpio = <&pca6416 6 0>;
 ep92a7e,reset-gpio = <&pca6416 7 0>;
 ep92a7e,gpio0-gpio = <&pca6416 1 0>;
 ep92a7e,gpio1-gpio = <&pca6416 3 0>;
 ep92a7e,gpio2-gpio = <&pca6416 5 0>;
 ep92a7e,irq-gpio = <&pca6416 8 0>;
 ep92a7e,tx_mute-gpio = <&pca6416 9 0>;
 rpmsg_rpc = <&rpmsg_rpc_hdmi>;
 };
};

Finally, the Linux device tree creates the nodes corresponding to the different services provided by
Immersiv3D to interact between Linux and LK. Please note that these nodes shouldn’t be modified,
because they are necessary to the internal work of Immersiv3D. These are defined in i3d_base.dts:

/ {
#ifndef RPC
 i3d_options = "no-rpc";
#else
 i3d_options = "rpc";
#endif
 ivshm_rpmsg {
 compatible = "fsl,ivshm-rpmsg";
 prio = <0x62010300 0x62010301 0x62010302 0x62010303>; /* prio 98, SCHED_FIFO,
alsa ep ids */

 rpmsg_ppp {

34 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

 compatible = "fsl,rpmsg-ppp";
 id = <1>;
 size = <8192>;
 };
 rpmsg_console {
 compatible = "fsl,rpmsg-console";
 id = <2>;
 size = <16384>;
 };
 rpmsg_alsa {
 compatible = "fsl,rpmsg-alsa";
 id = <0x300 0x301 0x302 0x303>; /* main alsa + ppp + voice + microphones
*/
 size = <131072 131072 131072 131072>;
 };
 cipc {
 compatible = "fsl,rpmsg-binary";
 id = <0x203>;
 size = <1024>; /* Endpoint buffer size (B) */
 buffer_bytes = <1024>; /* binary buffer size (B) */
 status = "disabled";
 };
 rpmsg-bin {
 compatible = "fsl,rpmsg-binary";
 id = <0x201>;
 size = <8192>; /* Endpoint buffer size (B) */
 buffer_bytes = <32768>; /* binary buffer size (B) */
 };
 audio-weaver-rpmsg {
 compatible = "fsl,rpmsg-binary";
 id = <0x204>;
 size = <8192>; /* Endpoint buffer size (B) */
 buffer_bytes = <8192>; /* binary buffer size (B) */
 status = "disabled";
 };
 rpmsg-wd {
 compatible = "fsl,rpmsg-binary";
 id = <0x202>;
 size = <512>; /* Endpoint buffer size (B) */
 buffer_bytes = <512>; /* binary buffer size (B) */
 };
 lktraces {
 compatible = "fsl,rpmsg-binary";
 id = <0x200>;
 size = <8192>; /* Endpoint buffer size (B) */
 buffer = <8>; /* binary buffer size (MB) */
 no-overwrite; /* Do not overwrite buffer when full */
 status = "disabled";
 };
 af-event {
 compatible = "fsl,rpmsg-binary";

Chapter 7. Board adaptation 35

© 2021 NXP Semiconductors. All rights reserved.

 id = <0x205>;
 size = <1024>; /* Endpoint buffer size (B) */
 buffer_bytes = <1024>; /* binary buffer size (B) */
 ascii-mode; /* read event as strings */
 };
 rpmsg_rpc_hdmi: rpmsg-rpc-hdmi {
 compatible = "fsl,rpmsg-rpc";
 id = <0x100>;
 size = <8192>;
 };
 rpmsg_rpc_dac: rpmsg-rpc-dac {
 compatible = "fsl,rpmsg-rpc";
 id = <0x101>;
 size = <8192>;
 };
 rpmsg_rpc_adc: rpmsg-rpc-adc {
 compatible = "fsl,rpmsg-rpc";
 id = <0x102>;
 size = <8192>;
 };
 };

 sound-rpmsg-main {
 compatible = "nxp,snd-af-ivshmem-pcm";
 nxp,name = "AF-main";
 nxp,card-id = <1>;
 nxp,compr;
 nxp,pcm-out;
 nxp,pcm-in;
 nxp,nb_chans = <16>;
 nxp,ep_id = <0x300>;
 };

 sound-rpmsg-ppp {
 compatible = "nxp,snd-af-ivshmem-pcm";
 nxp,name = "AF-ppp";
 nxp,card-id = <3>;
 nxp,pcm-in;
 nxp,nb_chans = <16>;
 nxp,ep_id = <0x301>;
 };

 sound-rpmsg-voice {
 compatible = "nxp,snd-af-ivshmem-pcm";
 nxp,name = "AF-voice";
 nxp,card-id = <2>;
 nxp,pcm-out;
 nxp,nb_chans = <2>;
 nxp,ep_id = <0x302>;
 nxp,period_time_min = <10666>;
 nxp,period_time_max = <21332>;

36 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

 };

 sound-rpmsg-mic {
 compatible = "nxp,snd-af-ivshmem-pcm";
 nxp,name = "AF-mic";
 nxp,card-id = <4>;
 nxp,pcm-in;
 nxp,nb_chans = <8>;
 nxp,ep_id = <0x303>;
 };
};

7.1.2. RPC interface

Immersiv3D provides a Hardware Abstraction Layer (HAL) to isolate the audio pipeline from the
different types of input and output sources. However, input and output source drivers still need to
communicate and configure the audio pipeline. For this, the RPC interface provides a set of
callbacks that allows to align the configuration of those modules and the configuration of the audio
pipeline.

Immersiv3D exposes an RPC API to allow the communication between Linux drivers and the HAL
on LK side. This API is shown in Table 7.

Table 7. RPC Linux API

RPC API

rpmsg_rpc_register_client (unsigned id, struct
rpc_client_callback **cb, void *cookie)

This function registers the RPC client on Linux
side. Please note that the ID must match the one
defined in Linux and LK device tree (0x100 for
HDMI, 0x101 for DAC, and 0x102 for ADC).
Additionally, the cookie argument should be
“linux-hdmi” for HDMI, “linux-dac” for DAC, and
“linux-adc” for ADC.

rpmsg_rpc_unregister_client (struct
rpmsg_rpc_dev *rpcdev)

This function unregisters the RPC client on
Linux side.

rpmsg_rpc_get_cookie (struct rpmsg_rpc_dev
*rpcdev)

This function retrieves the cookie associated to
an RPC client.

is_rpmsg_rpc_ready (unsigned id) This functions signals if the RPC interface is
ready to send and receive data.

rpmsg_rpc_call (struct rpmsg_rpc_dev *rpcdev,
unsigned rpc_id, void *in, size_t len, void *out,
size_t *out_len)

This function allows to initiate an RPC transfer
by sending a pointer with information or to be
filled by the receiver.

rpmsg_rpc_reply (struct rpmsg_rpc_dev *rpcdev,
struct rpc_client_callback *cb, void *d, size_t len)

This function allows to reply to an RPC call.

RPMSG_RPC_CALLBACK (_id, _fn) This macro allows to register the callback
functions of the driver in the RPC interface.

Chapter 7. Board adaptation 37

© 2021 NXP Semiconductors. All rights reserved.

To use the RPC interface for the HDMI/DAC/ADC drivers, the correct Little Kernel device tree must
be used. More information on this device tree are in Section 7.2.

7.1.2.1. HDMI switch driver

The HDMI switch driver must register some callbacks that allow the HAL to correctly configure the
audio pipeline. These callbacks are registered with the “RPMSG_RPC_CALLBACK” macro and the
correct callback ID. In addition to the callbacks, a set of events must be sent from Linux to LK to
notify changes on the stream.

An example code is available in jailhouse_all/linux-kernel/src/jailhouse-services/rpmsg-rpc-
linux.c.

7.1.2.1.1. HDMI RPC callbacks

• RPC_HDMI_INIT_ID

This callback is called when LK is initializing the platform’s hardware resources. The main
objective of this function is to initialize the HDMI switch and all related modules. In the scenario
where the HDMI switch driver is a module different from the RPC, this callback can be used to
initialize the communication between the two modules.

Please note that if there is no initialization to be done, this callback should only return the RPC
reply message.

• RPC_HDMI_OPEN_ID

This callback is called when the HDMI device is opened by LK. This function can be used to set a
default configuration or to get the current configuration of the HDMI switch, to unmask HDMI
related interruptions, or provide handlers for the different events that must be sent to Immersiv3D
during streaming. Be aware that the HDMI device is opened at initialization and when changing the
source device to hdmi-input.

Please note that if there is no configuration to be done here, this callback should only return the
RPC reply message.

• RPC_HDMI_CLOSE_ID

This callback is called when the HDMI device is closed by LK. This function can be used to properly
handle all configurations done when opening the device.

Please note that if there is no configuration to be done here, this callback should only return the
RPC reply message.

• RPC_HDMI_G_CAP_ID

This callback is called after the HDMI switch initialization. The objective of this function is to
provide the capabilities of the HDMI switch to Immersiv3D.

The Audio Framework must know how the HDMI switch is sending the audio data through the I2S
lines. Immersiv3D currently supports 3 protocols:

38 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

• IEC 60958 (HDMI_CAP_AUDIO_FMT_60958): standard for linear PCM digital audio interfaces.

• IEC 61937 (HDMI_CAP_AUDIO_FMT_61937): Based on IEC 60958 for non-linear PCM encoded audio
bitstreams.

• Custom (HDMI_CAP_AUDIO_FMT_CUSTOM): This specifies that the HDMI driver supports a custom
protocol based on IEC 60958. The provided structure iec60958_custom_fmt_layout_t in the
RPC_HDMI_G_CUSTOM_FMT_ID callback specifies the bit position of each field in the sub-frame. Please
note that if the custom protocol doesn’t have a particular field, its bit position should be set to -1.

In addition to the format of the audio bitstreams, the HDMI switch driver can inform Immersiv3D
of its capabilities to detect changes or specific information on the stream:

• Sampling rate (HDMI_CAP_AUDIO_SAMPLE_RATE_CHANGE): The HDMI driver can detect a change on the
sampling rate and inform the system.

• Stream type (HDMI_CAP_AUDIO_STREAM_TYPE_CHANGE): The HDMI driver can detect a change on the
stream type:

◦ HDMI_AUDIO_PKT_STD for Standard audio packets LPCM or 60958/61937

◦ HDMI_AUDIO_PKT_HBR for HBR packets LCPM or 60958/61937

◦ HDMI_AUDIO_PKT_DSD for Direct Stream Digital packets. Note that this is not currently
supported.

◦ HDMI_AUDIO_PKT_DST for Direct Stream Transfer packets. Note that this is not currently
supported.

• Channel status (HDMI_CAP_AUDIO_CHANNEL_STATUS): The HDMI driver can extract the channel status
and provide it to the system.

• Link (HDMI_CAP_AUDIO_LINK_CHANGE): The HDMI driver can detect a link change and inform the
system.

• InfoFrame (HDMI_CAP_AUDIO_INFOFRAME): The HDMI driver can extract the InfoFrame and provide
it to the system.

• Layout (HDMI_CAP_AUDIO_LAYOUT_CHANGE): The HDMI driver can detect a change on the layout:

◦ HDMI_AUDIO_PKT_LAYOUT_0_2CH for up to 2 channels

◦ HDMI_AUDIO_PKT_LAYOUT_1_8CH for up to 8 channels

• RPC_HDMI_G_CUSTOM_FMT_ID

This callback is called when the HDMI driver only supports a custom sub-frame format based on
IEC60958 (HDMI_CAP_AUDIO_FMT_CUSTOM). This function will allow Immersiv3D to know the details of
the frame structure to correctly extract the needed elements. Therefore, the RPC HDMI driver must
provide a iec60958_custom_fmt_layout_t structure indicating the bit position of each field. If the
custom protocol doesn’t have a particular field, its bit position should be set to -1.

Please note that if the HDMI driver doesn’t support any custom format, this callback should only
return the RPC reply message.

• RPC_HDMI_G_PKT_LAYOUT_ID

This callback is mainly called just after the HDMI driver is opened. The objective of this function is

Chapter 7. Board adaptation 39

© 2021 NXP Semiconductors. All rights reserved.

to provide Immersiv3D the current layout configuration: HDMI_AUDIO_PKT_LAYOUT_0_2CH for up to 2
channels and HDMI_AUDIO_PKT_LAYOUT_1_8CH for up to 8 channels. Some streams (like PCM and Dolby
Digital) use the HDMI_AUDIO_PKT_LAYOUT_0_2CH layout and others (like Dolby TrueHD) use the
HDMI_AUDIO_PKT_LAYOUT_1_8CH layout. The HDMI driver must send this information to Immersiv3D to
listen to the correct I2S RX lines.

• RPC_HDMI_G_PKT_TYPE_ID

This callback is mainly called just after the HDMI driver is opened. The objective of this function is
to provide Immersiv3D with the current packet type: HDMI_AUDIO_PKT_STD for Standard audio packets
LPCM or 60958/61937, HDMI_AUDIO_PKT_HBR for HBR packets LCPM or 60958/61937,
HDMI_AUDIO_PKT_DSD for Direct Stream Digital packets (this is not currently supported), and
HDMI_AUDIO_PKT_DST (this is not currently supported). The HDMI switch can send audio data as
standard LPCM (for PCM) or HBR (for encoded streams).

• RPC_HDMI_G_INFOFRAME_ID

This callback is mainly called just after the HDMI driver is opened. The objective of this function is
to provide Immersiv3D with the current InfoFrame. Some information needed by Immersiv3D (like
the number of channels) is in the InfoFrame. Note that even if the HDMI driver can send an event
to provide the InfoFrame, this callback must be correctly implemented, because it is used to
configure the pipeline at initialization and when switching the source device.

• RPC_HDMI_G_CS_ID

This callback is mainly called just after the HDMI driver is opened. The objective of this function is
to provide Immersiv3D with the current channel status. Some information needed by Immersiv3D
(like the sample rate) is contained in the channel status. Note that even if the HDMI driver can send
an event to provide the channel status (or the information contained in the channel status), this
callback must be correctly implemented, because it is used to configure the pipeline at initialization
and when switching the source device.

• RPC_HDMI_S_FORMAT_ID

This callback is called just after the RPC_HDMI_G_CAP_ID callback to select a format to be used by the
HDMI switch. Once Immersiv3D has collected the supported formats from the HDMI driver, it will
notify the HDMI driver to configure the HDMI switch to use a particular format. Note that the order
of preference for the supported protocols is as follows:

1. IEC 60958

2. IEC 61937

3. Custom format

◦ RPC_HDMI_S_IF_ID

This callback allows Immersiv3D to specify the audio interface to be used by the HDMI driver.

• RPC_HDMI_S_PKT_ID

This callback allows Immersiv3D to specify the packet type to be used by the HDMI driver.

40 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

7.1.2.1.2. HDMI RPC Events

Besides the callbacks, the HDMI driver must provide a set of events to notify Immersiv3D of
changes during playback. This events must also use the RPC API.

• HDMI_EVENT_AUDIO_SAMPLE_RATE

This event must be sent to Immersiv3D to notify a change on the current sampling rate.

• HDMI_EVENT_AUDIO_STREAM_TYPE

This event must be sent to Immersiv3D when the stream type has changed.

• HDMI_EVENT_AUDIO_LINK

This event must be sent to Immersiv3D to notify a change on the current physical connection.

• HDMI_EVENT_AUDIO_MCLK

This event must be sent to Immersiv3D to notify a change on the status of the master clock.

• HDMI_EVENT_AUDIO_INFOFRAME

This event must be sent to Immersiv3D when a new InfoFrame is available.

• HDMI_EVENT_AUDIO_CHANNEL_STATUS

This event must be sent to Immersiv3D when a new channel status is available.

• HDMI_EVENT_AUDIO_LAYOUT_CHANGE

This event must be sent to Immersiv3D to notify a change on the layout used by the HDMI switch.

• HDMI_EVENT_ERROR

This event must be sent to Immersiv3D when the HDMI switch encounters an error.

7.1.2.1.3. HDMI RPC sequence

There are two main ways to implement the HDMI driver with the RPC interface. The first one is
integrating the RPC APIs into the HDMI driver. The second one is to have the HDMI driver
communicate with the HDMI Linux Control driver (or HDMI RPC driver) and have only this last
driver implementing the RPC APIs. Please note that for the second type of implementation, the
HDMI driver can be on Linux or it can even be on an external microcontroller. Please be aware that
having the HDMI driver in an external microcontroller will increase the latency of the control
interface between the driver and Little Kernel. The requirement for Immersive3D is that Little
Kernel must be notified of any change in the physical interface 10 ms before the change is effective.

• HDMI and RPC in a single driver

Figure 12 shows an example of the sequence diagram at initialization.

Chapter 7. Board adaptation 41

© 2021 NXP Semiconductors. All rights reserved.

Figure 12. HDMI driver – initialization

Figure 13 shows an example of the sequence diagram at playback. Note that the IRQs sent by the
HDMI switch notify changes on the stream configuration.

Figure 13. HDMI driver – playback

Finally, Figure 14 shows an example of the sequence diagram when changing the source device to
HDMI. Note that the GET callbacks are needed to correctly configure the pipeline until a new
stream configuration is detected.

42 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

Figure 14. HDMI driver – switching to HDMI source device

7.1.2.1.4. External HDMI driver and HDMI Linux Control driver

Figure 15 shows an example of the sequence diagram at initialization.

Chapter 7. Board adaptation 43

© 2021 NXP Semiconductors. All rights reserved.

Figure 15. External HDMI driver - initialization

Figure 16 shows an example of the sequence diagram at playback. Note that the IRQs sent by the
HDMI switch notify changes on the stream configuration.

44 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

Figure 16. External HDMI driver - playback

Figure 17 shows an example of the sequence diagram when changing the source device to HDMI.
Note that the GET callbacks are needed to correctly configure the pipeline until a new stream
configuration is detected.

Chapter 7. Board adaptation 45

© 2021 NXP Semiconductors. All rights reserved.

Figure 17. External HDMI driver – switching to HDMI source device

7.1.2.2. DAC driver

As for the HDMI switch driver, the DAC driver must register some callbacks that allow the HAL to
correctly configure the audio pipeline. These callbacks are registered with the RPMSG_RPC_CALLBACK
macro and the correct callback ID.

7.1.2.2.1. RPC_DAC_INIT_ID

This callback is called when LK is initializing the platform’s hardware resources. The main
objective of this function is to initialize the DAC and all related modules. In the scenario where the
DAC driver is a module different from the RPC, this callback can be used to initialize the
communication between the two modules.

Please note that if there is no initialization to be done, this callback should only return the RPC
reply message.

7.1.2.2.2. RPC_DAC_OPEN_ID

This callback is called when the DAC device is opened by LK. This function can be used to set a
default or get the current configuration of the DAC or to unmask DAC-related IRQs. Be aware that
DAC device is opened at initialization and when changing the sink device to dac-output.

46 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

Please note that if there is no configuration to be done, this callback should only return the RPC
reply message.

7.1.2.2.3. RPC_DAC_CLOSE_ID

This callback is called when the DAC device is closed by LK. This function can be used to properly
handle all configurations done when opening the device.

Please note that if there is no configuration to be done, this callback should only return the RPC
reply message.

7.1.2.2.4. RPC_DAC_G_CAP_ID

This callback is called after the DAC initialization. The objective of this function is to provide the
capabilities of the DAC to Immersiv3D.

Audio Framework must know how to send audio data to the DAC through the I2S lines. Please note
that the only supported capability for outputting PCM data is DAC_CAP_PKT_PCM.

7.1.2.2.5. RPC_DAC_S_FORMAT_ID

This callback allows Immersiv3D to notify the DAC driver to configure the DAC to use a particular
format. Note that the rpc_dac_s_format_s structure is composed of:

• PCM format (dac_audio_pcm_format_t) specifying if the outputted data is in 16, 24, or 32 bits

• Audio format (dac_audio_fmt_t) specifying if the audio format is I2S, Left J, Right J, DSP A, DSP B,
AC97, or PDM

• Audio packet (dac_audio_pkt_t) specifying if the packet type is standard PCM or DSD

7.1.2.2.6. DAC RPC sequence

Figure 18 shows an example of the sequence diagram at initialization.

Figure 18. DAC driver – initialization

Figure 19 shows an example of the sequence diagram when changing the source device to DAC.

Chapter 7. Board adaptation 47

© 2021 NXP Semiconductors. All rights reserved.

Figure 19. DAC driver – switching sink device to DAC

7.1.2.3. ADC driver

Similar to HDMI and DAC, the ADC driver must register some callbacks that allow the HAL to
correctly configure the audio pipeline. These callbacks are registered with the RPMSG_RPC_CALLBACK
macro and the correct callback ID.

7.1.2.3.1. RPC_ADC_INIT_ID

This callback is called when LK is initializing the platform’s hardware resources. The main
objective of this function is to initialize the ADC and all related modules. In the scenario where the
ADC driver is a module different from the RPC, this callback can be used to initialize the
communication between the two modules.

Please note that if there is no initialization to be done, this callback should only return the RPC
reply message.

7.1.2.3.2. RPC_ADC_OPEN_ID

This callback is called when the ADC device is opened by LK. This function can be used to set a
default or get the current configuration of the ADC or to unmask ADC related IRQs. Be aware that
the ADC device is opened at initialization and when changing the source device to adc-input.

Please note that if there is no configuration to be done, this callback should only return the RPC
reply message.

7.1.2.3.3. RPC_ADC_CLOSE_ID

This callback is called when the ADC device is closed by LK. This function can be used to properly
handle all configurations done when opening the device.

Please note that if there is no configuration to be done, this callback should only return the RPC
reply message.

7.1.2.3.4. RPC_ADC_G_CAP_ID

This callback is called after the ADC initialization. The objective of this function is to provide the
capabilities of the ADC to Immersiv3D.

48 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

Audio Framework must know how to receive audio data from the ADC through the I2S lines. Please
note that the only supported capability is ADC_CAP_PKT_PCM for receiving PCM data.

7.1.2.3.5. RPC_ADC_S_FORMAT_ID

This callback allows Immersiv3D to notify the ADC driver to configure the ADC to use a particular
format. Note that the rpc_adc_s_format_s structure is composed of:

• PCM format (adc_audio_pcm_format_t) specifying if the outputted data is in 16, 24, or 32 bits

• Audio format (adc_audio_fmt_t) specifying if the audio format is I2S, Left J, Right J, DSP A, DSP B,
AC97, or PDM

• Audio packet (adc_audio_pkt_t) specifying if the packet type is standard PCM or DSD

7.1.2.3.6. ADC RPC sequence

Figure 20 shows an example of the sequence diagram at initialization.

Figure 20. ADC driver – initialization

Figure 21 shows an example of the sequence diagram when changing the source device to ADC.

Figure 21. ADC driver – switching source device to ADC

Chapter 7. Board adaptation 49

© 2021 NXP Semiconductors. All rights reserved.

7.2. Little Kernel configuration
On the LK side, adapting Immersiv3D to a custom board implies both modifying or creating a
device tree and implementing a callback to initialize the custom board.

7.2.1. Little Kernel device tree

As for Linux, LK provides a device tree that specifies the entire description of the hardware that
will be configured and used by LK. Each hardware module is represented by a node containing
different properties. A list of currently available properties is in Table 8.

Immersiv3D provides a device tree for i.MX 8M SOCs (imx8mm.dtsi or imx8mn.dtsi), another for the
i.MX 8M platforms (imx8mm-cm.dts or imx8mn-cm.dts), another specific to the i.MX Audio Board
(imx8mm-ab2.dts, imx8mn-ab2.dts, or imx8mnul-ab2.dts), and another using the RPC interface (imx8mm-
ab2-rpc.dts, imx8mn-ab2-rpc.dts, or imx8mnul-ab2-rpc.dts).

Users willing to adapt Immersiv3D to their boards should use the imx8mm.dtsi device tree and create
their own imx8mm-<user>.dts device tree that will enable/disable and configure the hardware
resources of the board used by LK. Finally, an audio framework device tree imx8mm-<user>-rpc.dts,
including af.dtsi, can be used to add Immersiv3D specific nodes and the RPC interface. Please note
that this implies that imx8mm-<user>-rpc.dts includes imx8mm-<user>.dts, which shall include
imx8mm.dtsi (the same logic can be applied for imx8mn or imx8mnul).

Table 8. LK device tree node properties

LK device tree properties

address-cells Determines the number of cells for addresses used for addressable devices.

size-cells Determines the number of cells for the length of the addressable device.

reg Lists the address ranges used by the device through one or more cells.

reg-names Provides a name to each reg cell. Please note that the order of each element
indicates the association between them (reg 1 will get reg-names 1).

compatible The compatible property of a device node describes the specific binding or
bindings to which the node complies.

status Determines if the device is enabled (status = “okay”) or disabled (status =
“disabled”).

id Determines the ID of the device. The interpretation of this ID may differ,
depending on the compatible driver. For CIPC and RPMSG-BIN nodes, the ID
corresponds to the ID of the interface. Please note that for these two nodes, the
ID should be the same in Linux and LK device tree.

settings Determines the PLL clock configuration.

interrupt-
controller

Defines the device as interrupt controller (a device that receives interrupt
signals).

interrupt-cells This is a property of the interrupt controller node. It is used to define how
many cells are in an interrupt specifier for the interrupt controller.

50 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

LK device tree properties

interrupt-parent This is a property of a device node containing a handle to the interrupt
controller to which it is attached. Nodes without an interrupt-parent property
can inherit the property from their parent node.

interrupts This is a property of a device node containing a list of interrupt specifiers; one
for each interrupt output signal.

interrupt-names Provides a name to each interrupt listed on the interrupts property.

bus-id Determines the bus ID to be used by the device.

bus-id-spdif Determines the bus ID to be used by the SPDIF device.

bus-id-sai Determines the bus ID to be used by the SAI device.

bus-id-i2c Determines the bus ID to be used by the I2C device.

clock-cfg Determines the configuration for each clock of the device. Please note that the
configuration is as follows: <[clock source] [PLL divider] [pre-divider] [post-
divider] [clock gating] [rate in Hz]>.

clock -names Provides a name to each clock being configured by the clock-cfg property.

dma-cells Determines the number of cells for the DMA device.

dmas Determines DMA value for each associated name.

dma-names Provides a name to each DMA device.

dma-period-length Determines DMA period length for the SPDIF device.

dma-nr-period Determines the number of DMA periods for the SPDIF device.

disable-dma Disables the DMA device.

gpio-controller Defines the device as the GPIO controller.

gpio-cells This is a property of the GPIO controller node. It is used to define how many
cells are in an GPIO specifier for the GPIO controller.

ngpios Determines the number of GPIO instances.

enable-gpio Enables the GPIO. The syntax is as follows: <[gpio controller] [gpio number]
[initial configuration].

pinctrl-<id> Determines the IO muxing configuration for a specific pin. The syntax is as
follows: <[pin mux register] [mux mode] [input register] [input daisy]
[configuration register] [Input on field] [configuration value]>.

pinctrl-names Provides a name to each pin ID.

init Determines the GPR initial configuration.

event-ids Determines the IDs of latency events.

event-names Provides a name to each event ID.

push-gpio Determines the GPIO used for the “push” event for latency measurements
(Obsolete).

Chapter 7. Board adaptation 51

© 2021 NXP Semiconductors. All rights reserved.

LK device tree properties

autodetect-gpio Determines the GPIO used for the “autodetect” event for latency
measurements (Obsolete).

hdmi Determines the HDMI device to be used as the HDMI input.

adc Pointer to ADC IP node (ADC stream device).

alsa Determines the ALSA device to be used by the HAL node.

alsa-cpp Determines the ALSA device to be used for sending audio data from CPP to
Linux.

hdmi-sai Determines the SAI lines to be used for the HDMI device.

hdmi-i2s-fmt Determines the I2S format for each supported protocol. Please note that the
configuration is as follows: <[I2S format for IEC60958] [I2S format for custom
format] [I2S format for IEC61937]>. Please note that a value of 0xFF means
that the protocol is not supported. The available I2S formats are:

- 0: Left justified

- 1: Right justified

- 2: I2S

- 3: PCM A

- 4: PCM B

- 5: AES3

hdmi-polarity Determines the polarity of the HDMI device.

hdmi-latency Determines the hardware latency of the HDMI device.

hdmi-settling-time Determines the settling time of the HDMI device.

hdmi-bitrate-
period

Determines the bitrate period of the HDMI device.

hdmi-bitrate-mode Determines the bitrate mode of the HDMI device. The supported values are:

- 1: Async mode

- 2: Sync mode

- 4: Cumulative mode

spdif Determines the SPDIF device to be used as the SPDIF input.

spdif-latency Determines the hardware latency of the SPDIF device. The default value is
5000 us.

spdif-sai Determines the SAI lines to be used for the SPDIF device.

52 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

LK device tree properties

spdif-bitrate-
period

Determines the bitrate period of the SPDIF device.

spdif-bitrate-mode Determines the bitrate mode of the SPDIF device.

dac Determines the DAC device to be used as the DAC output. This property is
optional.

dac-sai Determines the SAI lines to be used for the DAC device.

dac-i2s-fmt Determines the I2S format for each supported protocol. Please note that the
configuration is as follows: <[I2S format for IEC60958] [I2S format for custom
format] [I2S format for IEC61937]>. Please note that a value of 0xFF means
that the protocol is not supported. The available I2S formats are:

- 0: Left justified

- 1: Right justified

- 2: I2S

- 3: PCM A

- 4: PCM B

- 5: AES3

dac-polarity Determines the polarity of the DAC device.

dac-nch Determines the maximum number of channels supported for the DAC device.

dac-latency Determines the hardware latency of the DAC device.

dac-bitrate-period Determines the bitrate period of the DAC device.

dac-bitrate-mode Determines the bitrate mode of the DAC device.

dac-bitrate-sai-dev Determines the DAC to use a different SAI for the DAC bitrate computation.

dac-disable-sai-
counters

Disables the SAI counters for DAC device.

dac-slave Configures the SAI port connected to the DAC as a slave. The default SAI mode
is master.

dac2 Determines the secondary DAC device to be used as the DAC2 output. All DAC
properties must be assigned in a similar way as for the main DAC.

sai Determines the SAI to be used by the input and output Hardware Abstraction
Layer.

rx,bcp Determines the Rx Bit Clock polarity of the SAI node. 0 is active high (sampled
on falling edge) and 1 is active low (sampled on rising edge).

tx,bcp Determines the Tx Bit Clock polarity of the SAI node. 0 is active high (sampled
on falling edge) and 1 is active low (sampled on rising edge).

Chapter 7. Board adaptation 53

© 2021 NXP Semiconductors. All rights reserved.

LK device tree properties

size Determines the buffer of IPC or RPMSG endpoints in bytes.

buffer,
buffer_bytes

Determines the buffer size of the binary interface. The buffer parameter has
granularity of megabytes and buffer_bytes has granularity of bytes.

cs-gpio Determines the specific GPIO for CS pin of ADV7627 HDMI switch.

reset-gpio Determines the specific GPIO for Reset pin of ADV7627 HDMI switch.

int1-gpio Determines the specific GPIO for Interrupt 1 pin of ADV7627 HDMI switch.

int2-gpio Determines the specific GPIO for Interrupt 2 pin of ADV7627 HDMI switch.

pdn-gpio Determines the specific GPIO for PDN pin of AK4458 DAC.

rpc,service-id Determines the ID of the RPC interface used by the device.

i2s-fmt Determines the I2S format for each supported protocol. Please note that the
configuration is as follows: <[I2S format for IEC60958] [I2S format for custom
format] [I2S format for IEC61937]>. Please note that a value of 0xFF means
that the protocol is not supported. The available I2S formats are as follows:

- 0: Left justified

- 1: Right justified

- 2: I2S

- 3: PCM A

- 4: PCM B

- 5: AES3

ch_max Determines the maximum channel number for the node.

sai-hdmi Determines the clock mode.

Available options: 0 (Default) and 1 (external clock).

Please note that mode 1 cannot be configured by default on the EVK < - > Audio
Board hardware. It requires the CPLDv2.4 update. For more information,
please contact the I3D support team.

gpr-<component> Determines the gpr register setting for each component (hdmi, spdif, alsa, adc)
in this format: offset, mask, value.

pci_cfg Determines the PCI start address and size in the following format: < <addr>,
<size> >.

om-gpio Determines the GPIO used for the “om” event for latency measurements.

fade-gpio Determines the GPIO used for the “fade” event for latency measurements.

voice Determines the voice device to be used as the voice input (voice path).

54 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

LK device tree properties

pdm Determines the PDM device to be used as the PDM input.

pdm-latency Determines the hardware latency of the PDM device.

adc-sai Determines the SAI lines to be used for the ADC input.

adc-nch Determines the maximum number of channels supported for ADC.

adc-polarity Determines the polarity of the ADC device.

adc-i2s-fmt Determines the I2S format for each supported protocol. Please note that the
configuration is as follows: <[I2S format for IEC60958] [I2S format for custom
format] [I2S format for IEC61937]>. Please note that a value of 0xFF means
that the protocol is not supported. The available I2S formats are:

- 0: Left justified

- 1: Right justified

- 2: I2S

- 3: PCM A

- 4: PCM B

- 5: AES3

adc-latency Determines the hardware latency of the ADC input device.

adc-sampling-rate Determines the sampling rate of the ADC input device.

adc-slave Configures the SAI port connected to the ADC as slave. This is an optional
property. The default SAI mode is master.

adc-enable-sai-
counters

When the SAI is configured as slave, this option allows monitoring the input
frequency and detect any changes to force the pipeline flush.

adc-start-lane This property allows using a different RXDi start lane, instead of the default
RXD0. The example for 4 channels RX using 2 slots is as follows:

- sai-start-lane missing or set to 0: will use RXD0 + RXD1

- sai-start-lane = < 1 > : will use RXD1 + RXD2

adc2-* Same options as above, for second ADC input.

pll-cfg Determines the configuration for each PLL clock. Please note that the
configuration is as follows: <[rate] [main divider] [p-divider] [s-divider] [k-
divider] [reference clock] [pll control id]>.

pll-names Provides a name to each PLL clock being configured by the pll-cfg property.

pll-names-
<component>

Determines which PLLs can be assigned for each component (hdmi, spdif, alsa,
adc).

Chapter 7. Board adaptation 55

© 2021 NXP Semiconductors. All rights reserved.

LK device tree properties

pll-mask-
<component>

Determines the mask for the pll-names-<component> list (hdmi, spdif, alsa,
adc).

polling-rate-ms Determines the polling rate for the SPDIF channel status.

mclk-tx-config-
names

Determines the PLL names used on TX for 44k, 48k, and 32k multipliers (in
this specific order) for the SAI node.

mclk-rx-config-
names

Determines the PLL names used on RX for 44k, 48k, and 32k multipliers (in
this specific order) for the SAI node.

rx,mclk-select Determines the RX MCLK of the SAI node: 0: bus clock, 1: MCLK1, 2: MCLK2, 3:
MCLK3.

tx,mclk-select Determines the TX MCLK of the SAI node: 0: bus clock, 1: MCLK1, 2: MCLK2, 3:
MCLK3.

tx, sync-mode Enables the sync-with-other-direction mode for SAI TX so that both TX and RX
paths of the same SAI use the same RX clocks.

mclk,is-output Determines if MCLK is set as output for the SAI node.

clock-audio Determines the audio clock management component to be used.

pll-id Determines the PLL ID for the PLL loop configuration node.

pll-polling-rate Determines the PLL polling rate value for the PLL loop configuration node.

status-spdif Enables the PLL loop configuration for the SPDIF input.

status-hdmi Enables the PLL loop configuration for the HDMI input.

pll-loop-config Determines the PLL configuration node to be used in the audio clock manager.

spdif-cs Determines the SPDIF channel status node to be used for channel status
extraction.

output,dly,size Determines the maximum buffer size allocated used for delay adjustment per
output paths.

common, channels Determines the maximum concurrent channels in a pipeline [2-32].

input,settling-time Determines the settling time in ms before returning PCM as fallback.

input,zero-
detection-time

Determines the zeros duration to be considered as pause (zero is infinite).

input,ade-dtscd-
detection-disable

Disables the DTS-CD detection while running PCM streams.

output,voice,hal When specified, this option allows changing the HAL stream used as a voice
source for voice mixing. This is an optional property. The default voice stream
is the ALSA voice input. Other stream (such as adc-input or adc2-input) can be
used as well.

<ep_name>-stack-
kb

This optional device tree property can be used to configure the endpoint
thread stack size to a user-defined value. This must be configured under the
ivshmem node from the device tree. For example, to allocate 48 KB stack size to
the ppp ivshmem enpoint thread, you can define: ppp-stack-kb = <48>;.

56 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

LK device tree properties

uart-disabled This optional device tree property disables UART configuration for I3D.

afe*, ref-buf-size Specifies the buffer size (in bytes) used by AFE to store its input reference data,
both before and after SSRC downsampling. This must be large enough with
respect to the AFE period size and the number of input channels.

afe*, ref-mic-
latency-us

Specifies the latency control (in microseconds) for the AFE path.

afe*, sample-rate Specifies the AFE processing sample rate.

afe*, period-size Specifies the AFE processing period size (in number of samples per channel).

afe*, sample-size Specifies the AFE sample size (in bytes) for AFE processing. Only 4 is supported
for the time being.

afe*, design-in-
mic-channels

Specifies how many input microphone channels are supported by the loaded
DSPC design.

afe*, design-in-ref-
channels

Specifies how many input reference channels are supported by the loaded
DSPC design.

afe*, design-out-
channels

Specifies how many output channels are supported by the loaded DSPC design.

afe*,profile-msec Defines the profiling period for AFE (in milliseconds). 0 means disabled.

afe*, ref-ssrc-
quality

Determines the SSRC quality used for reference data downsampling.

afe*, mic-input-
name

Determines which input stream is used as the microphone (instead of
compiled-time fixed value, typically "mic-swpdm-input"). For example: "adc-
input".

asrc**: resampler-
taps

Determines the number of taps considered for the asrc resampler step. This is
an optional parameter. It uses the default value (128), if it’s not defined. The
allowed values are 64 and 128 (default).

asrc**: dma-buf-
length

Determines the size of the DMA output buffer size in bytes. The default value
is 128 KB.

asrc**: dma-rx-nr-
period

Determines the number of buffers descriptors used by the DMA on rx
transfers. The default value is 8.

asrc**: dma-tx-nr-
period

Determines the number of buffers descriptors used by the DMA on tx
transfers. The default value is 8.

asrc**: disable-
dma

Disables the DMA transfer and uses the CPU copy to/from the hardware ASRC
module. It can be either defined or not. By default, it is not defined.

asrc**: inout-wait Adds some active wait time (in microsecond) at the end of the start process.
This is an optional property. The default value is 0.

tx-channel-status Transmits the channel status as part of the SPDIF TX signal.


Please note that AFE related properties are used on release packages supporting
the audio front end feature.

Chapter 7. Board adaptation 57

© 2021 NXP Semiconductors. All rights reserved.


Please note that ASRC related properties are used only on i.MX 8M Nano and Nano
UL platforms, because these are used to configure the hardware ASRC module
present on Nano/NanoUL only.

7.2.2. Board callback

The device tree also allows to register a callback to initialize the audio board by placing a
“compatible” property on the board root node. The "board.c" file shows an example on how to
export this callback so that Little Kernel can call it during boot. Particularly, this is done with the
“BOARD_EXPORT” macro. The syntax is as follows:

BOARD_EXPORT(#board_name, compatible, callback)

7.2.3. SAI configuration

Immersiv3D provides specific types of configuration for the SAI to correctly transport the I2S audio
stream. For this, the LK device tree provides two main properties:

• The SAI node should contain the “rx,bcp” and the “tx,bcp” properties that indicate the Bit Clock
Polarity. When configured to 0, the bit clock is active high with drive outputs on the rising edge
and sample inputs on the falling edge. When configured to 1, the bit clock is active low with
drive outputs on the falling edge and sample inputs on the rising edge.

• The HDMI node should contain the “i2s-fmt” property for the supported protocols. This property
is an array specifying the SAI configuration as follows: i2s-fmt = < [SAI config for IEC60958] [SAI
config for Custom Protocol] [SAI config for IEC61937] >. Note that if a protocol is not supported,
the corresponding “i2s-fmt” value should be 0xFF.

The available SAI configurations and values for “i2s-fmt” are as follows:

• Left justified (Figure 22) with a value of 0

Figure 22. SAI configuration – Left Justified

• Right justified with a value of 1

Figure 23. SAI configuration – Right Justified

• Standard I2S with a value of 2

58 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

Figure 24. SAI configuration – Standard I2s

• PCM A with a value of 3

Figure 25. SAI configuration –PCM A

• PCM B with a value of 4

Figure 26. SAI configuration –PCM B

• AES3 with a value of 5

Figure 27. SAI configuration – AES 3

7.2.4. Multiple SAI TX configuration

Multiple-SAI allows transmitting data using several SAIs, thus allowing to use more lanes than a
single SAI instance would allow. As of today, this feature is enabled only on the TX side of the SAI
driver.

This feature has been introduced mainly for i.MX 8M Nano, because this SoC does not instantiate
any 8-lane SAI (what i.MX 8M Mini did on SAI1). Because it is available as part of Audio Framework,
it can be used also on i.MX 8M Mini.

As an example, Audio Framework can output 8 channels in I2S format using 4 lanes: 2 lanes on
SAI3, 1 lane on SAI6, 1 lane on SAI7.

To enable multiple-SAI, you must declare a master SAI and one or more (up to 3) SAI as slaves. Be
aware that BCLK and LRCK signals must be sent from a master SAI to slave SAIs, either internally to
the SoC (when allowed, see Reference Manual, Chapter Multiple SAI Synchronous mode for reference)
or externally (via board layout).

In the Audio Framework context, the multi-SAI enablement is done by describing a SAI chain, from
the first (master) down to the other slave SAIs. This is achieved by adding the tx,sai_chained

Chapter 7. Board adaptation 59

© 2021 NXP Semiconductors. All rights reserved.

property into each related SAI node.

For example, if you want to declare a SAI3 → SAI6 → SAI7 chain:

&sai3{
 tx,sai_chained = <&sai6>;
};

&sai6{
 tx,sai_chained = <&sai7>;
 tx,slave_mode;
};

&sai7{
 /* no SAI chain, as SAI7 is the last one on the SAI chain */
 tx,slave_mode;
};

Please note that in addition to the SAI chain property, you must consequently adapt the
master/slave property of the related SAIs, to force all secondary SAIs to slaves (master is the default
configuration when not specified). This is achieved by adding the tx,slave_mode property to the
related nodes.

Because the multi-SAI feature requires using DMA to feed data across the various SAI IPs, you must:

• enable DMA

• make sure that the 0-copy cached mode is used:

◦ tx,dma-mode = < SDMA_MODE_ZEROCOPY_CACHED_BUF >;

• use the SDMA_PERIPHERAL_TYPE_MULTI_SAI_TX SDMA script on the associated channel

For example:

&sai3{
 tx,sai_chained = <&sai6>;
 tx,dma-mode = < SDMA_MODE_ZEROCOPY_CACHED_BUF >;
 dmas = <&sdma3 SDMA_REQ_SAI3_RX SDMA_PERIPHERAL_TYPE_MULTI_FIFO_SAI_RX 2>,
 <&sdma3 SDMA_REQ_SAI3_TX SDMA_PERIPHERAL_TYPE_MULTI_SAI_TX 2>;
};

 current implementation does not support more than 4 SAIs in a chain.

The multi-SAI feature can be combined with the TDM feature. This allows support for high number
of channels spread across several SAIs. To do so, see the TDM feature description in the User Guide
to enable the TDM for DAC output. The same number of slots will be used for all SAIs involved in
the DAC SAI chain.

60 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

 Check the CPLD mode settings when configuring this feature.

7.2.5. Audio clock configuration

Immersiv3D uses a specific node in the device tree to generate the assignments of audio clock for
better management: audio_mclk.

Each needed clock configuration is assigned with a clock name that reflects its usage: audio
component – sai number. This is then attributed to the component that needs that specific clock
configuration.

The following is an example for HDMI. In this scenario, hdmi-mclk-sai1 and spdif-cs-sai3 are
configured when using HDMI.

clock-names =
 "spdif-mclk-sai1",
 "alsa-mclk-sai1",
 "hdmi-mclk-sai1",
 "adc-mclk-sai3",
 "spdif-cs-sai3";
clock-cfg = <
 kCLOCK_Idx_RootSai1 kCLOCK_SaiRootmuxAudioPll2 1 16 kCLOCK_Sai1
24576000
 kCLOCK_Idx_RootSai1 kCLOCK_SaiRootmuxAudioPll2 1 16 kCLOCK_Sai1
24576000
 kCLOCK_Idx_RootSai1 kCLOCK_SaiRootmuxAudioPll2 1 16 kCLOCK_Sai1
24576000
 kCLOCK_Idx_RootSai3 kCLOCK_SaiRootmuxAudioPll1 1 8 kCLOCK_Sai3
49152000
 kCLOCK_Idx_RootSai3 kCLOCK_SaiRootmuxAudioPll1 1 8 kCLOCK_Sai3
49152000
>;
config-names = "spdif", "hdmi", "alsa", "adc";
config-spdif = "spdif-mclk-sai1","spdif-cs-sai3";
config-hdmi = "hdmi-mclk-sai1","spdif-cs-sai3";
config-alsa = "alsa-mclk-sai1","spdif-cs-sai3";
config-adc = "adc-mclk-sai3";

The audio clock configuration node also contains the definitions of the PLLs that locks them to the
expected sample rate. The representative names are placed inside the pll-names property and the
actual values are in pll-cfg. These values are actually written in PLL registers to obtain the
corresponding frequency. Below is an example with the associated correspondence:

Chapter 7. Board adaptation 61

© 2021 NXP Semiconductors. All rights reserved.

pll-names =
 "mclk-48k-pll2",
 "mclk-44k-pll2",
 "mclk-32k-pll2",
 "mclk-48k-pll1",
 "mclk-44k-pll1",
 "mclk-32k-pll1";
pll-cfg = <
 393215995U 262 2 3 9437 kANALOG_PllRefOsc24M kCLOCK_AudioPll2Ctrl
 361267196U 361 3 3 17511 kANALOG_PllRefOsc24M kCLOCK_AudioPll2Ctrl
 262143997U 262 3 3 9437 kANALOG_PllRefOsc24M kCLOCK_AudioPll2Ctrl
 393215995U 262 2 3 9437 kANALOG_PllRefOsc24M kCLOCK_AudioPll1Ctrl
 361267196U 361 3 3 17511 kANALOG_PllRefOsc24M kCLOCK_AudioPll1Ctrl
 262143997U 262 3 3 9437 kANALOG_PllRefOsc24M kCLOCK_AudioPll1Ctrl
>;

Having these definitions simplifies the PLL rate assignments for each component. For example, if a
48k rate is required for the HDMI clock using PLL2, then ‘pll-mask-hdmi' must be set according to
the ‘pll-names’ property.

pll-names-hdmi =
 "mclk-48k-pll1",
 "mclk-44k-pll1",
 "mclk-32k-pll1",
 "mclk-48k-pll2",
 "mclk-44k-pll2",
 "mclk-32k-pll2";
pll-mask-hdmi = <0x4>;

PLL names are also used in the SAI nodes for the mclk-tx-config-names and mclk-rx-config names
properties to retrieve the corresponding PLL multiplier. There are tree values that must be filled
for each mclk-* property: the first one is for the 44k rate, the second one is for 48k, and the last one
is for 32k. Please note that this is a fixed order from the driver.

The following is an example for setting PLL1 rates on both RX and TX and making multiplies of 32k
using mclk-48k-pll:

/* mclk config names, in order 44k, 48k, 32k configurations */
mclk-tx-config-names = "mclk-44k-pll1", "mclk-48k-pll1", "mclk-48k-pll1";
mclk-rx-config-names = "mclk-44k-pll1", "mclk-48k-pll1", "mclk-48k-pll1";

7.2.6. Channel status support

The channel status can be transmitted as part of the SPDIF TX signal. Its value is specified via the
device tree using the tx-channel-status property.

The following is an example:

62 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

&spdif1 {
 clock-names = "bus", "clk-tx";
 clock-cfg = <
 kCLOCK_Idx_RootNone 0 kCLOCK_Divider_None kCLOCK_Divider_None kCLOCK_None
200000000
 kCLOCK_Idx_RootSpdif1 kCLOCK_SpdifRootmuxAudioPll2 1 8 kCLOCK_None 49152000
 >;

 /* PCM, copyright, 48kHZ (dynamically updated), 24 bits samples */
 tx-channel-status = < 0x04 0x0 0x0 0x2 0xdb 0x0 0x40 0x0 >;
};

Please note that the transmitted channel status value, specifically the bits containing the sampling
rate, will be updated dynamically to reflect the actual pipeline output sampling rate. As such, the
sampling rate bits specified in device tree property must be considered only as a default value,
which may be overwritten internally as soon as the pipeline output starts.

7.3. Jailhouse configuration
In Immersiv3D, Jailhouse is used to separate and isolate the i.MX 8M SOC hardware resources
between the Linux and LK worlds. For this, two main configuration files are needed: the Root cell
configuration and the Little Kernel configuration.

7.3.1. Root cell

The root cell (imx8mm.c - imx8mm.cell for i.MX 8M Mini, imx8mn.c - imx8mn.cell for i.MX 8M Nano, and
imx8mnul.c - imx8mnul.cell for i.MX 8M Nano UL) specifies the hardware resources accessible by
Jailhouse. This hypervisor needs access to all the hardware to properly isolate it for LK. Therefore,
all resources of the i.MX 8M SOC should be added in this file. Particularly, in the mem_regions field to
access them and the irqchips field to receive the corresponding interruptions.

7.3.2. Little Kernel cell

The LK cell (imx8mm-lk-rpc.c – imx8mm-lk-rpc.cell, as well as imx8mn-lk-rpc.c – imx8mn-lk-rpc.cell,
and imx8mnul-lk-rpc.c – imx8mnul-lk-rpc.cell) specifies the hardware sources that Jailhouse will
allow LK to access. Please note that this must be aligned with LK and the Linux device tree. Giving
access to the same modules from Linux and LK can cause unexpected behavior. The mem_regions
and irqchips fields must be correctly modified and adapted to the user’s board.

7.4. Memory configuration
The memory configuration provided in the release is made for the reference i.MX 8M Mini SOC (X-
8MMINILPD4), respectively i.MX 8M Nano SOC (X-8MNANOD4) and i.MX 8M Nano UltraLite SOC (X-
8MNANOD3L) with the i.MX Audio Board (MCIMX8M-AUD). For any custom hardware
configuration, Linux kernel, Little Kernel, and Jailhouse related memory regions can be
reconfigured.

Chapter 7. Board adaptation 63

© 2021 NXP Semiconductors. All rights reserved.

7.4.1. Memory usage overview

The global Little Kernel memory footprint required for I3D is approximately the sum of:

• Static memory from LK binary (lk.elf / lk.bin files): includes code (.text section), constants
(.rodata section), and variables (.data and .bss section);

• Dynamic memory (heap): the consumption depends on the actual need for dynamic allocations
via malloc(), calloc(), realloc(), and so on. Therefore, it varies according to the actual use case.

The static memory footprint depends on the build configuration. A consolidated value for all
sections can be obtained by multiple ways, for example using the 'size' GNU binary utility. In the
example below, the total static footprint is 21378208 bytes (20.4 MB).

$ /opt/toolchains/gcc-linaro-7.3.1-2018.05-x86_64_aarch64-elf/bin/aarch64-elf-size
build-imx8mm-af-virt/lk.elf
text data bss dec hex
filename
11061224 8710032 1606952 21378208 14634a0 build-imx8mm-af-virt/lk.elf

The dynamic memory is allocated from the heap, which is the space mapped in the LK memory
after the image. The heap size grows as memory allocations add up and require more total memory.
It does not shrink, even if a part of the dynamic memory is later freed, so that it is available for
reuse. The heap size and freed memory segments can be listed from the LK kernel console using
'heap info' from the shell. The example below shows a heap size of 0x2aa5000 (42.6 MB) with
multiple free memory segments.

] heap info
[79341.894127] shell > Heap dump (using miniheap):
[79341.894132] shell > base 0xffff0000014de000, len 0x2aa5000
[79341.894136] shell > free list:
[79341.894138] shell > base 0xffff000002e68448, end 0xffff000002e68468, len
0x20
[79341.894139] shell > base 0xffff000002e68488, end 0xffff000002e684b8, len
0x30
[79341.894142] shell > base 0xffff000002ec9228, end 0xffff000002ec9288, len
0x60
[...]

The heap can grow as long as there are pages (4 KB) still available in the physical allocator and the
physical memory manager (pmm). The physical allocators keep track of memory areas (arenas)
consisting in a number of contiguous pages. At runtime, the remaining pages are available for the
heap to grow to serve additional dynamic allocation. Remaining number of pages can be monitored
using the 'pmm arenas' command from the LK shell. The following example has 1899 pages (7.4 MB)
left and available to the heap out of a single arena of 0x4000000 (64 MB).

64 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

] pmm arenas
[80256.454344] shell > arena 0xffff000000a9d038: name 'ram' base 0x80000000 size
0x4000000 priority 0 flags 0x1
[80256.454348] shell > page_array 0xffff00000147e000, free_count 1899
[80256.454348] shell > free ranges:
[80256.454532] shell > 0x83895000 - 0x84000000

The PMM memory arena size can be changed through the LK device tree using the meminfo node.

7.4.2. Jailhouse memory configuration

This section provides information about the memory configuration for both Linux and Little Kernel
corresponding changes and Jailhouse cells.

Each memory region is represented by physical and virtual start addresses, size, and flags. Below is
an example for the IO node.

/* IO */ {
 .phys_start = 0x00000000,
 .virt_start = 0x00000000,
 .size =
 0x40000000,
 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
 JAILHOUSE_MEM_IO,
},

7.4.2.1. Linux root cell

On the Jailhouse side, the layout of the memory regions for Linux is defined in imx8mm.c, imx8mn.c,
or imx8mnul.c under configs/arm64/ from Jailhouse sources. This must be clearly delimited with no
overlapping regions.

The following is an example of the memory configuration for the Linux root cell on 8M Mini:

Table 9. Memory layout in 8M mini Linux root cell

Resource Memory range

IO 0x00000000 - 0x40000000

RAM 00 0x40000000 – 0xb3c00000

RAM 01 0xb8000000 – 0xbb700000

RAM 02 0xbbc00000 - 0xbe000000

Inmate memory 0xb3c00000 - 0xb7c00000

Ivshmem 0xbba00000 - 0xbbc00000

Hypervisor memory 0xb7c00000 – 0xb8000000

Loader 0xbb700000 - 0xbb800000

Chapter 7. Board adaptation 65

© 2021 NXP Semiconductors. All rights reserved.

Resource Memory range

PCI 0xbb800000 - 0xbba00000

OP-TEE memory 0xbe000000 – 0xc0000000

When memory regions are reconfigured, please consider the memory alignment constraints from
the reserved-memory node from Linux dts files.

Please note that each element must be consistent with the corresponding child node from the
reserved memory.

The memory resources in the Jailhouse configuration cell must be in the Linux memory range
defined in the memory node in Linux dts files.

Specifically for I3D, the Linux Root Cell’s memory regions “inmate” and “Loader” aren’t needed.
Therefore, these regions can be removed.

7.4.2.2. Little Kernel cell

The Little Kernel Jailhouse configuration is found in imx8mm-lk.c, imx8mn-lk.c, or imx8mnul-lk.c cell
file under configs/arm64/ from jailhouse sources. This cell file configures the hardware resources
used by LK and also memory regions specific to Jailhouse, like IVSHMEM and communication
regions.

The RAM size of the LK must be consistent with the meminfo node from the Little Kernel dts.

The following is an example of the changes that must be done when resizing the RAM for the Little
Kernel cell:

• Little Kernel cell configuration file (imx8mm-lk.c):

/* RAM: 256MB */ {
 .phys_start = 0x93c00000,
 .virt_start = 0x80000000,
 .size = 0x10000000 ,
 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
 JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_LOADABLE,
},

• Little Kernel dts file (imx8mm-ab2.dts):

meminfo {
 phys_start = < 0x93c00000 >;
 size = < 0xfc00000 >; /* 252 MiB */

 phys_db_offset = < 0xfc00000 >; /* 252 MiB */
};

66 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

• Linux dts file (imx8mm-ab2-af.dts):

&inmate_reserved {
 no-map;
 reg = <0 0x93c00000 0x0 0x10000000 ;
}

Please note that after applying these custom changes, the corresponding files must be rebuilt
(imx8mm-lk-rpc.cell, imx8mm-ab2-rpc.dtb, and imx8mm-ab2-af-rpc.dtb) and updated on the target. A
similar file hierarchy must be updated for i.MX 8M Nano and i.MX 8M Nano UltraLite SOC.

The starting address for the Little Kernel can be reconfigured to map Little Kernel to a different
physical address.

The following is an example for the changes that must be done when changing the RAM physical
address for the Little Kernel cell:

• Little Kernel cell configuration file (imx8mm-lk.c):

/* RAM: 512MB */ {
 .phys_start = 0x70000000,
 .virt_start = 0x80000000,
 .size = 0x20000000,
 .flags = JAILHOUSE_MEM_READ | JAILHOUSE_MEM_WRITE |
 JAILHOUSE_MEM_EXECUTE | JAILHOUSE_MEM_LOADABLE,
},

• Little Kernel dts file (imx8mm-ab2.dts):

meminfo {
 phys_start = < 0x70000000 >;
 size = < 0x1fc00000 >; /* 508 MiB */

 phys_db_offset = < 0x1fc00000 >; /* 508 MiB */
};

• Linux dts file (imx8mm-ab2-af.dts):

&inmate_reserved {
 no-map;
 reg = <0 0x70000000 0x0 0x24000000>;
};

Please note that after applying these custom changes, the corresponding files must be rebuilt
(imx8mm-lk-rpc.cell, imx8mm-ab2-rpc.dtb, and imx8mm-ab2-af-rpc.dtb) and updated on the target. A

Chapter 7. Board adaptation 67

© 2021 NXP Semiconductors. All rights reserved.

similar file hierarchy must be updated for i.MX 8M Nano and i.MX 8M Nano UltraLite SOC.

7.4.3. Little Kernel memory configuration

In addition to the memory regions, memory usage by Little Kernel can be reduced depending on
the use cases that must be supported. The following nodes are not mandatory and specific to
certain use cases:

Table 10. LK I3D node description

Node Use case

af_event:bin-device205 Endpoint for event manager.

rpmsg-bin Endpoint for Linux filesystem read/write. The
application buffer must be large enough to hold
a complete file read.

rpmsg-wd Endpoint for watchdog events.

cipc Use I3D’s CIPC interface to exchange data from
Linux to LK through Linux’s filesystem.

alsa_main:alsa-device300 Use I3D’s ALSA main interface to playback audio
from Linux or to capture audio from LK.

alsa_cpp:alsa-device301 Use I3D’s CPP ALSA interface to capture audio
from LK. This implies implementing a CPP that
will send the audio content to the CPP ALSA
interface.

alsa_voice:alsa-device302 Use I3D’s voice interface to playback voice from
Linux to LK.

alsa_mic:alsa-device303 Mic interface to capture microphone from LK.

audio-weaver-rpmsg Default I3D doesn’t include audio weaver.
Therefore, this node can be removed.

spdif1 I3D SPDIF device.

Please note that some of these endpoints are also present at the Linux side, so they must be
disabled there as well.

Besides Little Kernel/Linux configurable nodes, there are also pipeline configurable properties
which are listed in the af.dtsi device tree:

Table 11. Pipeline memory configuration

Node Comment

68 Chapter 7. Board adaptation

© 2021 NXP Semiconductors. All rights reserved.

common0:af_common0 Defines the maximum concurrent channels in
the pipeline [2-32]. Impact on lipsync buffer size
(192 kHz max, 500 ms maximum):

- 16 MB for 32 channels;

- 8 MB for 16 channels.

Default value is 16.

om0:af_om0 Defines the output/channel buffer delay per
channel, definition per output path. The default
value is 1 MB (64 KB x 16 channels).

Chapter 7. Board adaptation 69

© 2021 NXP Semiconductors. All rights reserved.

Chapter 8. Revision history
Revision number Date Substantive changes

Rev 2.5 06/24/2019 Update HAL API and binary path.

Rev 2.6 06/26/2019 Update Board Adaptation chapter with more detail.

Rev 2.7 06/27/2019 Add Control Process Chapter.

Added missing fields in LK device tree.

Rev 2.8 07/22/2019 Add SAI configuration section.

Rev 2.9 07/29/2019 Add Memory Configuration chapter.

Rev 2.10 09/02/2019 Update Memory Configuration chapter.

Rev 2.11 09/19/2019 Add new event management in CP.

Add event notifier in CP.

Rev 2.12 09/29/2019 Remove af_sink/af_source references.

Add start() and stop() callbacks for PP element.

Update CP event handling information.

Rev 2.13 12/17/2019 Add ADC RPC information.

Rev 2.14 01/09/2020 Update device tree examples.

Add audio clock configuration node details.

Rev V2 2.0.0 10/08/2020 Add i.MX 8M Nano and i.MX Audio Board.

Update I3D PP Level and Parser API.

Update memory configuration section.

Update RPC interface support.

Update CIPC endpoint API.

Rev V2 3.0.0 15/12/2020 Add Multiple SAI TX Configuration chapter.

Update LK device tree options.

Update Control process Event Notifier.

Merge Stream/Control endpoints for ALSA path.

70 Chapter 8. Revision history

© 2021 NXP Semiconductors. All rights reserved.

Revision number Date Substantive changes

Rev V2 4.0.0 24/03/2021 Update New event handling example.

Update Jailhouse Memory Configuration.

Update LK device tree properties.

Rev V2 5.0.0 26/05/2021 Update LK device tree properties from Little Kernel Device
Tree chapter.

Rev V2 5.1.0 13/07/2021 Update LK device tree properties from Little Kernel
configuration chapter.

Update Flush transition sequence diagram from Control
process chapter.

Rev V2 6.0.0 3/11/2021 Add support for i.MX 8M Nano UltraLite platform.

Update LK device tree properties from Little Kernel
configuration chapter.

Add Channel status support chapter.

Chapter 8. Revision history 71

© 2021 NXP Semiconductors. All rights reserved.

Annex A: CIPC custom post processing
example

/*
 * Copyright (c) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved
 * Copyright 2021 NXP
 *
 * NXP Confidential. This software is owned or controlled by NXP and may only
 * be used strictly in accordance with the applicable license terms found in
 * file LICENSE.txt
 *
 */

/*!
 * @file volume.c
 * @brief This file contains an example of Post Processing
 * Plugin (PPP). It controls the volume of an audio stream
 */
#include <string.h>

/*
 * Include Audioframwork header files
 */
#include "ppp_provider.h"
#include "ppp_api_parser.h"
#include "osa_common.h"
#include "cp_api.h"
#include "debug.h"

/**
 * @defgroup DBG_MACROS Debug Macros
 *
 * @{
 */

/**
 * Maximum Audio channels Macro
 */
#define AUDIO_CHANNELS_MAX CASCFG_PP_AUDIO_CHANNELS_MAX

/**
 * @brief User Data structure
 */
struct volume_data {
 float gain;/**< @brief Gain to be added to the audio stream */
};

72 Annex A: CIPC custom post processing example

© 2021 NXP Semiconductors. All rights reserved.

/**
 * @brief This function will do the link between key-value from the REST API and the C
structure.
 * It can create/delete a Volume element and get/put the gain of the PPP
 *
 * @param context Pointer to the structure representing the context of the Volume PPP
 * @param cmd Rest Command to be handled
 * @param command Pointer to user's string command
 *
 * return PPP_ALLOC_STRING_SUCCESS
 * return PPP_ALLOC_STRING_ERROR
 */
static char *volume_parser(struct cowbell_context *context,
 enum ppp_command_type cmd, char *command)
{
 struct volume_data *data;
 int property_ret = 0, ret = 0;
 char *ptr_key = NULL;
 char *ptr_value = NULL;
 char *return_string = NULL;
 bool ppp_error = false;
 char *data_string = NULL;
 char *saveptr = NULL;
 cp_event_volume_t param;

 switch (cmd) {
 case PPP_COMMAND_POST:
 printlk(LK_DEBUG, "'%s' received POST command\n", context->name);
 data = osa_malloc(sizeof(struct volume_data));
 if (!data)
 return PPP_ALLOC_STRING_ERROR;

 context->user_data = data;
 /* Set default values */
 data->gain = 1.0f;
 break;
 case PPP_COMMAND_DELETE:
 osa_free(context->user_data);
 break;
 case PPP_COMMAND_PUT:
 data = (struct volume_data *) context->user_data;
 /* Proposed helper to parse command line */
 property_ret = ppp_read_next_property_to_set(command, &ptr_key, &ptr_value,
&saveptr);
 while (property_ret == ERRCODE_NO_ERROR && ppp_error == false) {
 PPP_SWITCH (ptr_key) {
 PPP_CASE ("gain"):
 /* Proposed helper to convert string to expected type */
 ret = ppp_set_string_to_type(ptr_value, &data->gain, "float");
 if (ERRCODE_NO_ERROR != ret) {
 printlk(LK_ERR, "Error: Invalid command \"%s=%s\"\n", ptr_key,

Annex A: CIPC custom post processing example 73

© 2021 NXP Semiconductors. All rights reserved.

ptr_value);
 return PPP_ALLOC_STRING_ERROR;
 }
 param.volume = data->gain;
 /* Send Event of gain change to CP */
 ret = cp_send_event(0, CP_EVENT_CPP_VOLUME, (void *) ¶m,
sizeof(param));
 if (ERRCODE_NO_ERROR != ret) {
 printlk(LK_ERR, "Error: Failed Send Event to CP\n");
 return PPP_ALLOC_STRING_ERROR;
 }

 PPP_BREAK;

 PPP_DEFAULT:
 printlk(LK_ERR, "Error: Key \"%s=%s\" not found\n", ptr_key,
ptr_value);
 ppp_error = true;
 PPP_BREAK;
 }
 property_ret = ppp_read_next_property_to_set(NULL, &ptr_key, &ptr_value,
&saveptr);
 }

 return (ppp_error == false) ? PPP_ALLOC_STRING_SUCCESS :
PPP_ALLOC_STRING_ERROR;
 case PPP_COMMAND_GET:
 data = (struct volume_data *) context->user_data;
 /* Proposed helper to parse command line */
 property_ret = ppp_read_next_property_to_get(command, &ptr_key, &saveptr);
 while (property_ret == ERRCODE_NO_ERROR) {
 PPP_SWITCH (ptr_key) {

 PPP_CASE ("gain"):
 /* Proposed helper to convert type to expected string */
 data_string = ppp_get_string_from_type(ptr_key, &data->gain, "float");
 PPP_BREAK;

 PPP_DEFAULT:
 printlk(LK_ERR, "Error: Key \"%s\" not found\n", ptr_key);
 data_string = PPP_ALLOC_STRING_ERROR;
 PPP_BREAK;
 }

 /* Concatenate current string to return string */
 ppp_add_to_return_string(&return_string, data_string);
 /* Free memory allocated by ppp_get_string_from_type() */
 osa_free(data_string);
 property_ret = ppp_read_next_property_to_get(NULL, &ptr_key, &saveptr);
 }

74 Annex A: CIPC custom post processing example

© 2021 NXP Semiconductors. All rights reserved.

 printlk(LK_DEBUG, "PPP_COMMAND_GET returns = %s\n", return_string);

 return return_string ? return_string : PPP_ALLOC_STRING_ERROR;
 default:
 return PPP_ALLOC_STRING_ERROR;
 }

 return PPP_ALLOC_STRING_SUCCESS;
}

/**
 * @brief This function will do the post processing.
 * It adds a gain to the audio stream.
 *
 * @param context Pointer to the structure representing the context of the Volume PPP
 *
 * return "OK"
 */
static const char *volume_process(struct cowbell_context *context, size_t len)
{
 struct volume_data *data = (struct volume_data *) context->user_data;
 float *psink;
 size_t samples_count;
 size_t i, j;

 if (len % sizeof(float)) {
 printlk(LK_ERR, "Do not support this buffer len :%lu\n", len);
 return PPP_FIX_STRING_ERROR;
 }

 samples_count = len / sizeof(float);
 for (i = 0; i < AUDIO_CHANNELS_MAX; i++) {
 psink = (float *) ppb_get_sink(context, i);

 if (psink == NULL)
 continue;

 for (j = 0; j < samples_count; j++)
 *psink++ *= data->gain;
 }

 return PPP_FIX_STRING_SUCCESS;
}

/**
 * @brief This function is called before starting stream
 *
 * @param context Pointer to the structure representing the context of the Volume PPP
 */

Annex A: CIPC custom post processing example 75

© 2021 NXP Semiconductors. All rights reserved.

static void volume_start(struct cowbell_context *context)
{
 struct volume_data *data = (struct volume_data *)context->user_data;

 printlk(LK_DEBUG, "volume start:%f\n", data->gain);
}

/**
 * @brief This function is called after stream has stopped
 *
 * @param context Pointer to the structure representing the context of the Volume PPP
 */
static void volume_stop(struct cowbell_context *context)
{
 struct volume_data *data = (struct volume_data *)context->user_data;

 printlk(LK_DEBUG, "volume stop:%f\n", data->gain);
}

/**
 * @brief This function will return the PPP capabilities.
 *
 *
 * return PPP capabilities
 */
static const char *volume_get_caps(void)
{
 return "numsink=32&numsrc=32&gain=property";
}

/**
 * Driver structure containing PPP name and callbacks
 */
static struct cowbell_driver ppp_volume = {
 .compat = "volume.elt",
 .ops = {
 .start = volume_start,
 .stop = volume_stop,
 .parser = volume_parser,
 .process = volume_process,
 .get_caps = volume_get_caps,
 },
};

/**
 * Initilization function to register Volume PPP
 */

76 Annex A: CIPC custom post processing example

© 2021 NXP Semiconductors. All rights reserved.

static void __attribute__ ((constructor)) volume_init(void)
{
 register_ppp_driver(&ppp_volume);
}

Annex A: CIPC custom post processing example 77

© 2021 NXP Semiconductors. All rights reserved.

Annex B: New event handling example
SDK has implemented an example event CP_EVENT_CPP_VOLUME, which requires modification in two
files:

• Modification in the sap_cp.h:

/*
 * Event identifiers
 */
enum CP_EVENT_ID {
 CP_EVENT_CPP_VOLUME, // event example
};

typedef struct {
 float volume;
} cp_event_volume_t;

typedef struct {
 frm_msg_header_t hdr;

 unsigned id; /* command identifier */
 cp_cmd_sync_t sync; /* sync object for blocking call */
 union {
 cp_event_volume_t volume_config; /* Volume param */
 } param;
} cp_event_ind_t;

CP_EVENT_CPP_VOLUME is the ID used for the example volume event and cp_event_volume_t is the data
structure associated with the event.

• Modification in the cp_event.c:

 case CP_EVENT_CPP_VOLUME:
 printlk(LK_NOTICE, "CP_EVENT_CPP_VOLUME [DATA] volume = %f \r\n", event_req-
>param.volume_config.volume);
 break;

The event CP_EVENT_CPP_VOLUME is handled by adding a switch case in cp_handle_event API.

78 Annex B: New event handling example

© 2021 NXP Semiconductors. All rights reserved.

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted here under to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right
to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each customer
application by customer’s technical experts. NXP does not convey any license under its patent
rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are
the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, Jazelle, Keil,
SecurCore, Thumb, TrustZone, and μVision are registered trademarks of Arm Limited (or its
subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight,
DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of
Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2018 NXP B.V.

Annex B: New event handling example 79

© 2021 NXP Semiconductors. All rights reserved.

http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	i.MX 8M Immersiv3D Application Note
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Overview of i.MX 8M Audio Framework
	Chapter 3. Post processing plugin
	3.1. Architecture
	3.2. Post Processing API
	3.3. Implementing and integrating a custom plugin
	3.3.1. Creating a custom post processing plugin
	3.3.2. Integrating a PPP to the pipeline
	3.3.3. Compiling and running a new post processing plugin

	3.4. Custom post processing example

	Chapter 4. Little Kernel services
	4.1. General purpose timer
	4.2. Custom IPC
	4.2.1. Provided CIPC endpoint
	4.2.1.1. File interface
	4.2.1.2. Direct device access

	4.2.2. Adding a new CIPC endpoint

	Chapter 5. Hardware abstraction layer
	5.1. Input and output abstraction
	5.2. HAL API
	5.3. Audio data from LK

	Chapter 6. Control process
	6.1. Control process main
	6.2. Control process pipe
	6.2.1. IDLE state
	6.2.2. Discover decoder state
	6.2.3. Decoder configuration state
	6.2.4. Pipeline configuration state
	6.2.5. TX activating state
	6.2.6. Active state
	6.2.7. Flush transition state
	6.2.8. Stopping state

	6.3. Control process ping
	6.4. Control process mute
	6.5. Frame configuration
	6.6. Control process event notifier
	6.7. Control process new event management

	Chapter 7. Board adaptation
	7.1. Linux configuration
	7.1.1. Linux device tree
	7.1.2. RPC interface
	7.1.2.1. HDMI switch driver
	7.1.2.1.1. HDMI RPC callbacks
	7.1.2.1.2. HDMI RPC Events
	7.1.2.1.3. HDMI RPC sequence
	7.1.2.1.4. External HDMI driver and HDMI Linux Control driver

	7.1.2.2. DAC driver
	7.1.2.2.1. RPC_DAC_INIT_ID
	7.1.2.2.2. RPC_DAC_OPEN_ID
	7.1.2.2.3. RPC_DAC_CLOSE_ID
	7.1.2.2.4. RPC_DAC_G_CAP_ID
	7.1.2.2.5. RPC_DAC_S_FORMAT_ID
	7.1.2.2.6. DAC RPC sequence

	7.1.2.3. ADC driver
	7.1.2.3.1. RPC_ADC_INIT_ID
	7.1.2.3.2. RPC_ADC_OPEN_ID
	7.1.2.3.3. RPC_ADC_CLOSE_ID
	7.1.2.3.4. RPC_ADC_G_CAP_ID
	7.1.2.3.5. RPC_ADC_S_FORMAT_ID
	7.1.2.3.6. ADC RPC sequence

	7.2. Little Kernel configuration
	7.2.1. Little Kernel device tree
	7.2.2. Board callback
	7.2.3. SAI configuration
	7.2.4. Multiple SAI TX configuration
	7.2.5. Audio clock configuration
	7.2.6. Channel status support

	7.3. Jailhouse configuration
	7.3.1. Root cell
	7.3.2. Little Kernel cell

	7.4. Memory configuration
	7.4.1. Memory usage overview
	7.4.2. Jailhouse memory configuration
	7.4.2.1. Linux root cell
	7.4.2.2. Little Kernel cell

	7.4.3. Little Kernel memory configuration

	Chapter 8. Revision history
	Annex A: CIPC custom post processing example
	Annex B: New event handling example

