
AN2485/D
8/2003

HCS12 Software Stationery

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This product incorporates SuperFlash® technology licensed from SST.

By Eduardo Montañez
8/16 Bit Applications Engineering
Austin, Texas

Introduction

This application note describes a standardized software stationery that takes
advantage of system on a chip (SoC) capabilities to make software
development for the HCS12 Family of microcontrollers more efficient and
reusable.

Defining each microcontroller peripheral individually according to SoC ideology
provides a library complete with all necessary MCU parameter and definition
files. This stationery architecture promotes:

• Increased version control

• Easy upgrades

• Pre-silicon development

• Reduced development time

• Easy portability/compatibility/adaptability

• Software reuse

With all the MCU definition files readily available, you can begin developing
applications immediately.

The sofware stationery, HCS12_Stationery_VX_X.zip, and an example serial
communication project example using the stationery, AN2485SW.zip, are
available from the Freescale website, http:www.freescale.com.

NOTE: With the exception of mask set errata documents, if any other Freescale
document contains information that conflicts with the information in the device
data sheet, the data sheet should be considered to have the most current and
correct data.
© Motorol

For More Information On This Product,
 Go to: www.freescale.com

© Freescale Semiconductor, Inc., 2004. All rights reserved.

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Overview

The HCS12 software stationery was developed using Metrowerks’
CodeWarrior tool for HC(S)12 MCUs (version 1.2 or greater1) and was written
in the C programming language. The stationery displays all the necessary
project files for your target MCU in a CodeWarrior (CW) project window.

The stationery is accessible through two unique methods:

• Mass MCU Stationery (_MC9S12_ALL.mcp) — CW project that includes
all HCS12 Family definitions. You must follow MCU selection steps
discussed in Selecting a Target MCU (Steps 9, 10, 11) to select which
MCU peripheral and parameter files will be compiled for your defined
application. One advantage of using the mass MCU stationery is
increased portability. Using the CW project window, you can modify your
application’s target MCU with a few clicks.

• Single MCU Stationery (_PartNumber_Maskset.mcp) — Separate CW
projects for each supported HCS12 MCU. Project includes only the
definition files necessary for that device, so there is no need for the
target MCU selection process. An advantage of this method is that there
are fewer files in the project window.

This application note will refer to the mass MCU stationery method. However,
all stationery functionality remains the same for the single MCU stationery, with
the exception of the MCU selection steps described in Selecting a Target
MCU (Steps 9, 10, 11).

The stationery was developed to use the CodeWarrior interface, but the
stationery’s software architecture is unique and can be modified to function on
different embedded tools.

The SoC architecture of the stationery allows for easy upgrades to support
growth in the HCS12 Family. Also, the SoC structure allows you to develop
your application software for a targeted MCU prior to receiving silicon. This
advantage can boost efficiency and allow you more time for debugging and
improving your application. This concept will be explained in more detail in
System on a Chip Ideology.

1. CodeWarrior is a registered trademark of Metrowerks, Inc., a wholly owned subsidiary of
Freescale, Inc.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
System on a Chip Ideology

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

System on a Chip Ideology

The HCS12 Family is based on system on a chip ideology. SoC allows the
reuse of existing peripherals in multiple HCS12 MCU derivatives. SoC provides
design with a convenient way to mix-and-match peripherals to easily customize
an MCU. Therefore, as more and more HCS12 MCU derivatives are
introduced, compatibility across the family of parts increases.

By standardizing the software peripheral definitions, the stationery follows the
SoC method. Therefore, when you develop an application for a target MCU,
your project will include only the necessary module definitions for that part. For
example, when designing with an MC9S12DP256 (K79X) in mind, only the
module definitions listed in Table 1 would be included in the compilation:

Table 1. MC9S12DP256 (K79X) Peripherals

Peripheral Version Document Number Header File

HCS12 V1.5 Core V1.2 S12CPU15UG/D(1) S12CPU15V1_2.h

CRG V02 S12CRGV2/D S12CRGV2.h

ECT_16B8C V01 S12ECT16B8CV1/D S12ECT16B8CV1.h

ATD_10B8C V02 S12ATD10B8CV2/D S12ATD10B8CV2.h

IIC V02 S12IICV2/D S12IICV2.h

SCI V02 S12SCIV2/D S12SCIV2.h

SPI V02 S12SPIV2/D S12SPIV2.h

PWM_8B8C V01 S12PWM8B8CV1/D S12PWM8B8CV1.h

FTS256K V02 S12FTS256KV2/D S12FTS256KV2.h

EETS4K V02 S12EETS4KV2/D S12EETS4KV2.h

BDLC V01 S12BDLCV1/D S12BDLCV1.h

MSCAN V02 S12MSCANV2/D S12MSCANV2.h

PIM_9DP256 V02 S12DP256PIMV2/D S12DP256PIMV2.h

1. The HCS12 Family MCU Core User Guide has been parted into sovereign documents. The naming
convention for header files will continue to be derived from the title of the collective core document as
demonstrated. See Naming Convention for further explanation.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Naming Convention Notice in Table 1 that each peripheral name and version number corresponds
with the appropriate document order number. The HCS12 Family follows this
naming convention to create a concise correlation between the peripheral and
the corresponding documentation. In order to keep up with peripheral revisions,
the stationery module definition files (also known as header files) maintain a
standard naming convention, which directly reflects the equivalent
documentation. For example, the S12SCIV2.h definition file reflects all the
registers in the S12SCIV2/D block guide. The software stationery uses this as
a form of version control. When you develop an application based on the
HCS12 V1.5 Core V1.2, you will be well aware by the equivalent header file
(S12CPU15V1_2.h) that you do not have access to additional features like the
on-chip debug module included in the new HCS12 V1.5 Core V1.5
(S12CPU15V1_5.h). In addition, if you were to receive an MCU with a revised
mask set, the software stationery would identify any revisions in the peripherals
from a previous mask set — enabling you to correct any functionality
differences in your software. Overall, the software stationery SoC method
allows you to develop using only functionality available in your target MCU.

Early Development You can benefit from the SoC method when developing application software for
a future MCU for which you have not yet received silicon. For example, if you
wanted to program an application which involves using a 16-bit/ 8-channel
enhanced capture timer (ECT), you could use the MC9S12DP256 (K79X)
stationery to write and debug your software. In turn, when you receive your
MC9S12D64 (L86D) silicon you can easily port your 16-bit, 8-channel ECT
application that you had developed on the MC9S12DP256. In this example,
both MCUs have identical ECT peripherals. The software stationery allows you
to make easy transitions between MCUs by Selecting a Target MCU (Steps
9, 10, 11). The ability to change the target device for your development
software on the fly will also allow for convenient reuse of existing software
routines. Software written for a primary MCU can be easily transferred to a
compatible target MCU.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Software Stationery Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Software Stationery Architecture

The software stationery is composed of three stages with files that must be
included in the compilation to access all the MCU features via software:

• Definition Stage — Contains files that are consistent to MCU
documentation and need no modification by the user.
– Peripheral definition files
– Parameter files

• Control Stage — Contains files that require minimum user modification
for access to stationery features.
– Project globals file
– Project vectors file
– Driver files

• Development Stage — Contains files developed completely by the user
using stationery resources.
– Application software file

Each stage is essential to the stationery for developing a complete software
application. Figure 1 illustrates the three stages and the files creating the
software stationery. The arrows represent where the files must be included for
a successful software compilation.

Figure 1. Software Stationery Architecture

APPLICATION
SOFTWARE

PROJECT GLOBALS PROJECT VECTORS

PERIPHERAL
DEFINITIONS

PARAMETER
FILES

DRIVERS

DEVELOPMENT STAGE

CONTROL STAGE

DEFINITION STAGE
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1 demonstrates the software stationery’s pyramid structure. The
following sections will breakdown each individual stage and explain the role of
each software file in the stationery’s scheme. Also, the sections below will
describe how each software file is created for a target MCU.

Definition Stage The definition stage is the backbone of the software stationery. This stage
allows your software to access the hardware functionality of your MCU by
associating labels with all register and bit field names from the MCU data sheet.
The definition stage then sets these labels to the appropriate address and bit
positions. The definition stage is composed of both peripheral definitions and
parameter files. Both of these file types obey the HCS12 SoC architecture by
defining a complete target MCU in software, dependent on the part number and
mask set.

Peripheral Definitions The first block in the definition stage contains the peripheral definitions, which
is built in two levels:

• Module Definitions (S12ModuleVersion.h) — Create register-level
definitions per module by using structures in C programming language.
The sequential structures in header files also specify register locations.
Structure definitions allow the user access to register space via
software.

• MCU Definitions — (per_partnumber_maskset.c and
per_partnumber_maskset.h) — Include only the necessary module
definitions per part number and mask set for a single MCU. Develops a
module memory map by defining the beginning address of each
peripheral. The C source and header file are dependent on each other
and contain almost identical information. However, the header files allow
the peripheral structures to be accessible to the application software by
making the peripheral definitions “extern.” (In the C programming
language, the label “extern” makes an object accessible by other files.)

Module Definitions

Figure 2 illustrates the construction of a register structure in a module definition
file based on the register level information provided by the MCU
documentation. The example builds a C programming structure for the serial
communication interface baud rate (SCIBD) register in the SCI peripheral. This
particular example demonstrates three register structures. The first two
structures are the SCIBDH (high byte — msb) and SCIBDL (low byte — lsb),
which allow for both byte-wise and bit-wise access to the registers via software.
The third structure concatenates SCIBDH and SCIBDL into a single SCIBD
structure, enabling word access to the SCI baud rate register.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Software Stationery Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2. Constructing the SCIBD Register Structure

Addr.
Offset

Register Name Bit 7 6 5 4 3 2 1 Bit 0

$_0 SCIBDH

Read: 0 0 0
SBR12 SBR11 SBR10 SBR9 SBR8

Write:

Reset: 0 0 0 0 0 0 0 0

$_1 SCIBDL

Read:
SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

Write:

Reset: 0 0 0 0 0 0 0 0

typedef union uSCIBDH
{
 tU08 byte;
 struct
 {
 tU08 sbr8 :1;
 tU08 sbr9 :1;
 tU08 sbr10 :1;
 tU08 sbr11 :1;
 tU08 sbr12 :1;
 tU08 :3;
 }bit;
}tSCIBDH;

typedef union uSCIBDL
{
 tU08 byte;
 struct
 {
 tU08 sbr0 :1;
 tU08 sbr1 :1;
 tU08 sbr2 :1;
 tU08 sbr3 :1;
 tU08 sbr4 :1;
 tU08 sbr5 :1;
 tU08 sbr6 :1;
 tU08 sbr7 :1;
 }bit;
}tSCIBDL;

typedef union uSCIBD
{
 tU16 word;
 struct
 {
 tSCIBDH msb;
 tSCIBDL lsb;
 }byte;
}tSCIBD;

STRUCTURE 1 STRUCTURE 2

STRUCTURE 3
S12SCIV2.h
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The module definition files characterize register structures for all peripheral
registers with an identical format to Figure 2. Figure 2 only represents one
16-bit register in the SCI module definition file. Recall that structure 1 defines a
byte-length register with three reserved bits. Next, structure 2 defines a
byte-length register with all bits defined. Then, structure 3 concatenates
structures 1 and 2 to define a word-length register.

To complete the module definition file, you must organize the registers within a
larger structure sequentially (by address) after defining all the register
structures for a peripheral. For example, the SCIBD register is the first of eight
registers for the SCI peripheral. Figure 3 shows an example structure
organizing the SCI peripheral registers in sequential order.

Figure 3. Sequentially Organizing the SCI Peripheral Registers

Offset Use Access

$_0 SCI baud rate register high (SCIBDH) Read/Write

$_1 SCI baud rate register low (SCIBDL) Read/Write

$_2 SCI baud rate register 1 (SCICR1) Read/Write

$_3 SCI baud rate register 2 (SCICR2) Read/Write

$_4 SCI status register 1 (SCISR1) Read

$_5 SCI status register 2 (SCISR2) Read/Write

$_6 SCI data register high (SCIDRH) Read/Write

$_7 SCI data register low (SCIDRL) Read/Write

typedef struct /*sci datastructure */
{
 volatile tSCIBD scibd; /*sci baud rate registers */
 volatile tSCICR1 scicr1; /*sci control register 1 */
 volatile tSCICR2 scicr2; /*sci control register 2 */
 volatile tSCISR1 scisr1; /*sci status register 1*/
 volatile tSCISR2 scisr2; /*sci status register 2*/
 volatile tSCIDRH scidrh; /*sci data register high */
 volatile tSCIDRL scidrl; /*sci data register low*/
}tSCI; S12SCIV2.h
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Software Stationery Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MCU Definitions

After all the module definition files are complete, construct the MCU definition
files. Recall that an MCU definition file includes the module definition files that
make a particular MCU. It also specifies the peripheral’s offset address from the
documented module memory map. The SoC architecture allows you to include
only the module definition files necessary to build an MCU by part number and
mask set via software. Figure 4 demonstrates how an MCU definition file is
constructed from the module definition files for an MC9S12DP256 (K79X).

The MCU definition files mold the register space for all the supported MCUs.
Note that in Figure 4, only the peripheral definitions and header files pertaining
to an MC9S12DP256 (K79X) are included in the MCU definition file. Also note
that some peripherals are duplicated within MCUs. For example, an
MC9S12DP256 (K79X) has two identical SCI peripherals. The peripheral
definition structures accommodate the presence of multiple peripherals by
allowing the structures to be renamed per peripheral occurrence. Renaming
the structure definitions allows access to a single peripheral definition by
multiple peripherals. Therefore, you can access each repeating peripheral
individually — ensuring that you modify the correct peripheral by associating
them with the appropriate name in the MCU documentation. SCI peripherals
(Sci0 and Sci1) use the same tSCI structure defined by the SCI module
definition file, but they access register space at two different memory locations.
The MCU definition file shown in Figure 4 is created for each new MCU mask
set and completes the peripheral definitions block in the definition stage.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

F
ig

u
re

 4
. B

u
ild

in
g

 a
n

 M
C

U
 D

ef
in

it
io

n
 F

ile
 f

o
r

an
 H

C
9S

12
D

P
25

6
(K

79
X

)

i
f
n
d
e
f

R
E
G
_
B
A
S
E

#
d
e
f
i
n
e

R
E
G
_
B
A
S
E

0
x
0
0
0
0

#
e
n
d
i
f

#
i
n
c
l
u
d
e

"
S
1
2
A
T
D
1
0
B
8
C
V
2
.
h
"

/
/
A
T
D

#
i
n
c
l
u
d
e

"
S
1
2
B
D
L
C
V
1
.
h
"

/
/
B
D
L
C

#
i
n
c
l
u
d
e

"
S
1
2
C
P
U
1
5
V
1
_
2
.
h
"

/
/
C
O
R
E
(
P
A
G
E
/
R
E
G
)

#
i
n
c
l
u
d
e

"
S
1
2
C
R
G
V
2
.
h
"

/
/
C
R
G

#
i
n
c
l
u
d
e

"
S
1
2
E
E
T
S
4
K
V
2
.
h
"

/
/
E
E
P
R
O
M

#
i
n
c
l
u
d
e

"
S
1
2
F
T
S
2
5
6
K
V
2
.
h
"

/
/
F
L
A
S
H

#
i
n
c
l
u
d
e

"
S
1
2
I
I
C
V
2
.
h
"

/
/
I
I
C

#
i
n
c
l
u
d
e

"
M
O
T
T
Y
P
E
S
.
h
"

/
/
T
Y
P
E

D
E
F
S

#
i
n
c
l
u
d
e

"
S
1
2
M
S
C
A
N
V
2
.
h
"

/
/
M
S
C
A
N

#
i
n
c
l
u
d
e

"
S
1
2
D
P
2
5
6
P
I
M
V
2
.
h
"

/
/
P
I
M

#
i
n
c
l
u
d
e

"
S
1
2
P
W
M
8
B
8
C
V
1
.
h
"

/
/
P
W
M

#
i
n
c
l
u
d
e

"
S
1
2
S
C
I
V
2
.
h
"

/
/
S
C
I

#
i
n
c
l
u
d
e

"
S
1
2
S
P
I
V
2
.
h
"

/
/
S
P
I

#
i
n
c
l
u
d
e

"
S
1
2
E
C
T
1
6
B
8
C
V
1
.
h
"

/
/
T
I
M
E
R

e
x
t
e
r
n

t
R
E
G
I
S
T
E
R

R
e
g
s

@

(
0
x
0
0
0
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
P
A
G
E

P
a
g
e

@

(
0
x
0
0
3
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
C
R
G

C
r
g

@

(
0
x
0
0
3
4

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
T
I
M
E
R

T
i
m
0

@

(
0
x
0
0
4
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
A
T
D

A
t
d
0

@

(
0
x
0
0
8
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
P
W
M

P
w
m

@

(
0
x
0
0
A
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
S
C
I

S
c
i
0

@

(
0
x
0
0
C
8

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
S
C
I

S
c
i
1

@

(
0
x
0
0
D
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
S
P
I

S
p
i
0

@

(
0
x
0
0
D
8

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
I
I
C

I
i
c

@

(
0
x
0
0
E
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
B
D
L
C

B
d
l
c

@

(
0
x
0
0
E
8

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
S
P
I

S
p
i
1

@

(
0
x
0
0
F
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
S
P
I

S
p
i
2

@

(
0
x
0
0
F
8

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
F
L
A
S
H

F
l
a
s
h

@

(
0
x
0
1
0
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
E
E
P
R
O
M

E
e
p
r
o
m

@

(
0
x
0
1
1
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
A
T
D

A
t
d
1

@

(
0
x
0
1
2
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
M
S
C
A
N

C
a
n
0

@

(
0
x
0
1
4
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
M
S
C
A
N

C
a
n
1

@

(
0
x
0
1
8
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
M
S
C
A
N

C
a
n
2

@

(
0
x
0
1
C
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
M
S
C
A
N

C
a
n
3

@

(
0
x
0
2
0
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
P
I
M

P
i
m

@

(
0
x
0
2
4
0

+

R
E
G
_
B
A
S
E
)
;

e
x
t
e
r
n

t
M
S
C
A
N

C
a
n
4

@

(
0
x
0
2
8
0

+

R
E
G
_
B
A
S
E
)
;

M
C

9S
12

D
P

25
6

(K
79

X
)

R
eg

is
te

r
M

ap
pi

ng

A
d

d
re

ss
M

o
d

u
le

$0
00

0
–

$0
01

7
C

O
R

E
 (

P
or

ts
 A

, B
, E

, m
od

es
, i

ni
ts

, t
es

t)

$0
01

8
–

$0
01

9
R

es
er

ve
d

$0
01

A
–

$0
01

B
D

ev
ic

e
ID

 r
eg

is
te

r
(P

A
R

T
ID

)

$0
01

C
 –

 $
00

1F
C

O
R

E
 (

M
E

M
S

IZ
, I

R
Q

, H
P

R
IO

)

$0
02

0
–

$0
02

7
R

es
er

ve
d

$0
02

8
–

$0
02

F
C

O
R

E
 (

B
D

M
)

$0
03

0
–

$0
03

3
C

O
R

E
 (

P
PA

G
E

, P
or

t K
)

$0
03

4–
 $

00
3F

C
lo

ck
 a

nd
 r

es
et

 g
en

er
at

or
 (

P
LL

, R
T

I,
C

O
P

)

$0
04

0
–

$0
07

F
E

C
T

 1
6-

bi
t,

8
ch

an
ne

ls

$0
08

0
–

$0
09

F
AT

D
 1

0-
bi

t,
8

ch
an

ne
ls

 (
AT

D
0)

$0
0A

0
–

$0
0C

7
P

W
M

 8
-b

it,
 8

 c
ha

nn
el

s

$0
0C

8
–

$0
0C

F
S

C
I0

$0
0D

0
–

$0
0D

7
S

C
I1

$0
0D

8
–

$0
0D

F
S

P
I0

$0
0E

0
–

$0
0E

7
IIC

$0
0E

8
–

$0
0E

F
B

D
LC

$0
0F

0
–

$0
0F

7
S

P
I1

$0
0F

8
–

$0
0F

F
S

P
I2

$0
10

0
–

$0
10

F
F

LA
S

H
 c

on
tr

ol
 r

eg
is

te
r

$0
11

0
–

$0
11

B
E

E
P

R
O

M
 c

on
tr

ol
 r

eg
is

te
r

$0
11

C
–

$0
11

F
R

es
er

ve
d

$0
12

0–
 $

01
3F

AT
D

 1
0-

bi
t,

8
ch

an
ne

ls
 (

AT
D

1)

$0
14

0
–

$0
17

F
C

A
N

0

$0
18

0–
 $

01
B

F
C

A
N

1

$0
1C

0
–

$0
1F

F
C

A
N

2

$0
20

0
–

$0
23

F
C

A
N

3

$0
24

0
–

$0
27

F
P

IM

$0
28

0
–

$0
2B

F
C

A
N

4

$0
2C

0
–

$0
3F

F
R

es
er

ve
d

pe
r_

D
P2

56
_K

79
X.

h

HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Software Stationery Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Parameter Files Parameter files:

• Specify memory locations for a target MCU.

• Provide the development tool linker with available memory locations to
be programmed for your application software.

• Define an interrupt vector lookup table by assigning an interrupt handler
label to each exception.

The parameter files block is composed of three types of parameter files per
MCU part number. The three types of parameter files are:

• RAM parameter file (_partnumber_RAM.prm) — Specifies only RAM
and EEPROM memory locations for a target MCU. No interrupt vector
addresses are defined. File limits development of software applications
to the maximum RAM size available in your target MCU.

• FLASH parameter file (_partnumber_FLAT.prm) — Specifies RAM,
EEPROM, and non-banked FLASH memory locations for a target MCU.
Defines an interrupt vector table. Intended for development of software
applications with less than 48K of FLASH. (Does not use banked
FLASH.)

• BANKED FLASH parameter file (_partnumber_BANKED.prm) —
Specifies RAM, EEPROM, and banked FLASH memory locations for a
target MCU. File defines an interrupt vector table. Most commonly used
for development of software applications with more than 48K of FLASH
and limits development to the maximum FLASH size available in your
target MCU. File uses a PPAGE value, which allows access to multiple
16K FLASH windows. (Uses banked FLASH.)

Memory Mapping

Even though there are three types of parameter files per MCU, only one is
selected for use when developing your application software. Choose the
parameter file according to the size and requirements of your application
software. Figure 5 demonstrates how an MC9S12DP256 memory map is
translated into a BANKED FLASH parameter file.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

F
ig

u
re

 5
. B

u
ild

in
g

 a
n

 M
C

U
 P

ar
am

et
er

 F
ile

N
A
M
E
S

E
N
D

S
E
C
T
I
O
N
S

R
A
M

=

R
E
A
D
_
W
R
I
T
E

0
x
1
0
0
0

T
O

0
x
3
F
F
F
;

/
*

1
2
K

*
/

E
E
P
R
O
M

=

N
O
_
I
N
I
T

0
x
0
4
0
0

T
O

0
x
0
F
F
F

/
*

3
K

-

f
i
r
s
t

1
K

h
i
d
d
e
n

u
n
d
e
r

r
e
g
i
s
t
e
r
s

*
/

A
L
I
G
N

2

[
<
=

2
:

2
]

[
>
2
:

4
]
;

/
*

d
e
f
a
u
l
t

a
l
i
g
n
m
e
n
t

=

2

*
/

/
*

c
h
a
r

&

i
n
t

a
s
s
i
g
n
e
d

t
o

x
2

b
o
u
n
d
a
r
y

*
/

/
*

e
l
e
m
e
n
t
s

>

3

b
y
t
e
s

t
o

x
4

b
o
u
n
d
a
r
y

*
/

/
*

<

1
0
0
%

u
s
e

o
f

E
E
P
R
O
M

i
f

b
y
t
e

d
a
t
a

u
s
e
d

*
/

/
*

u
n
b
a
n
k
e
d

F
L
A
S
H

R
O
M

*
/

R
O
M
_
4
0
0
0

=

R
E
A
D
_
O
N
L
Y

0
x
4
0
0
0

T
O

0
x
7
F
F
F
;

/
*

1
6
K

*
/

R
O
M
_
C
0
0
0

=

R
E
A
D
_
O
N
L
Y

0
x
C
0
0
0

T
O

0
x
F
E
F
F
;

/
*

~
1
6
K

*
/

S
E
C
U
R
I
T
Y

=

R
E
A
D
_
O
N
L
Y

0
x
F
F
0
0

T
O

0
x
F
F
0
F
;

R
O
M
_
F
F
1
0

=

R
E
A
D
_
O
N
L
Y

0
x
F
F
1
0

T
O

0
x
F
F
7
F
;

/
*

b
a
n
k
e
d

F
L
A
S
H

R
O
M

*
/

P
A
G
E
_
3
0

=

R
E
A
D
_
O
N
L
Y

0
x
3
0
8
0
0
0

T
O

0
x
3
0
B
F
F
F
;

P
A
G
E
_
3
1

=

R
E
A
D
_
O
N
L
Y

0
x
3
1
8
0
0
0

T
O

0
x
3
1
B
F
F
F
;

P
A
G
E
_
3
2

=

R
E
A
D
_
O
N
L
Y

0
x
3
2
8
0
0
0

T
O

0
x
3
2
B
F
F
F
;

P
A
G
E
_
3
3

=

R
E
A
D
_
O
N
L
Y

0
x
3
3
8
0
0
0

T
O

0
x
3
3
B
F
F
F
;

P
A
G
E
_
3
4

=

R
E
A
D
_
O
N
L
Y

0
x
3
4
8
0
0
0

T
O

0
x
3
4
B
F
F
F
;

P
A
G
E
_
3
5

=

R
E
A
D
_
O
N
L
Y

0
x
3
5
8
0
0
0

T
O

0
x
3
5
B
F
F
F
;

P
A
G
E
_
3
6

=

R
E
A
D
_
O
N
L
Y

0
x
3
6
8
0
0
0

T
O

0
x
3
6
B
F
F
F
;

P
A
G
E
_
3
7

=

R
E
A
D
_
O
N
L
Y

0
x
3
7
8
0
0
0

T
O

0
x
3
7
B
F
F
F
;

P
A
G
E
_
3
8

=

R
E
A
D
_
O
N
L
Y

0
x
3
8
8
0
0
0

T
O

0
x
3
8
B
F
F
F
;

P
A
G
E
_
3
9

=

R
E
A
D
_
O
N
L
Y

0
x
3
9
8
0
0
0

T
O

0
x
3
9
B
F
F
F
;

P
A
G
E
_
3
A

=

R
E
A
D
_
O
N
L
Y

0
x
3
A
8
0
0
0

T
O

0
x
3
A
B
F
F
F
;

P
A
G
E
_
3
B

=

R
E
A
D
_
O
N
L
Y

0
x
3
B
8
0
0
0

T
O

0
x
3
B
B
F
F
F
;

P
A
G
E
_
3
C

=

R
E
A
D
_
O
N
L
Y

0
x
3
C
8
0
0
0

T
O

0
x
3
C
B
F
F
F
;

P
A
G
E
_
3
D

=

R
E
A
D
_
O
N
L
Y

0
x
3
D
8
0
0
0

T
O

0
x
3
D
B
F
F
F
;

/
*

P
A
G
E
_
3
E

=

R
E
A
D
_
O
N
L
Y

0
x
3
E
8
0
0
0

T
O

0
x
3
E
B
F
F
F
;

n
o
t

u
s
e
d
:

e
q
u
i
v
a
l
e
n
t

t
o

M
Y
_
R
O
M
_
1

*
/

/
*

P
A
G
E
_
3
F

=

R
E
A
D
_
O
N
L
Y

0
x
3
F
8
0
0
0

T
O

0
x
3
F
B
F
F
F
;

n
o
t

u
s
e
d
:

e
q
u
i
v
a
l
e
n
t

t
o

M
Y
_
R
O
M
_
2

*
/

E
N
D

P
L
A
C
E
M
E
N
T

_
P
R
E
S
T
A
R
T
,

S
T
A
R
T
U
P
,

R
O
M
_
V
A
R
,

S
T
R
I
N
G
S
,

N
O
N
_
B
A
N
K
E
D
,

C
O
P
Y

I
N
T
O

R
O
M
_
4
0
0
0
,
R
O
M
_
C
0
0
0
,
R
O
M
_
F
F
1
0
;

D
E
F
A
U
L
T
_
R
O
M

I
N
T
O

P
A
G
E
_
3
0
,
P
A
G
E
_
3
1
,
P
A
G
E
_
3
2
,
P
A
G
E
_
3
3
,
P
A
G
E
_
3
4
,
P
A
G
E
_
3
5
,
P
A
G
E
_
3
6
,

P
A
G
E
_
3
7
,
P
A
G
E
_
3
8
,
P
A
G
E
_
3
9
,
P
A
G
E
_
3
A
,
P
A
G
E
_
3
B
,
P
A
G
E
_
3
C
,
P
A
G
E
_
3
D
;

D
E
F
A
U
L
T
_
R
A
M

I
N
T
O

R
A
M
;

E
E
P
R
O
M
_
D
A
T
A

I
N
T
O

E
E
P
R
O
M
;

E
N
D

S
T
A
C
K
S
I
Z
E

0
x
0
6
0
0

/
*

1
.
5
K

b
y
t
e
s

=

1
/
8

o
f

R
A
M

*
/

R
EG

IS
TE

R
S

(M
ap

pa
bl

e
to

 a
ny

2K

 b
lo

ck
 w

ith
in

 th
e

fir
st

 3
2K

12
K

R
AM

(M
ap

pa
bl

e
to

 a
ny

16
K

an
d

al
ig

na
bl

e
to

 to
p

or
 b

ot
to

m
)

4K
 E

EP
R

O
M

(M
ap

pa
bl

e
to

 a
ny

4K
 b

lo
ck

)

16
K

 fi
xe

d
FL

AS
H

Pa
ge

 $
3E

 =
 6

2
(T

hi
s

is
 d

ep
en

de
nt

 o
n

th
e

st
at

e
of

 R
O

M
H

M
 b

it)

16
K

pa
ge

 w
in

do
w

16
 x

 1
6K

 F
LA

SH
EE

PR
O

M
 p

ag
es

16
K

fix
ed

 F
LA

SH
Pa

ge
 $

3F
 =

 6
3

BD
M

(If
 a

ct
iv

e)

$0
00

0

$0
3F

F

$0
00

0

$0
FF

F

$1
00

0

$3
FF

F

$4
00

0

$7
FF

F

$8
00

0

$B
FF

F

$C
00

0

$F
FF

F

$F
F0

0

$F
FF

F

_M
C

9S
12

D
x2

56
_B

AN
KE

D
.p

rm

M
C

9S
12

D
P2

56
 (K

79
X)

 M
EM

O
R

Y
M

AP
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Software Stationery Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note that each individual memory location on the memory map is allocated in
the parameter file (RAM, EEPROM, non-banked FLASH, and banked FLASH).
Because this example shows a banked parameter file, each FLASH page
window is defined to total 16 x 16K paged FLASH memory locations on the
256K FLASH device.

Vector Table

To complete the parameter file, Figure 6 illustrates how the interrupt vector
lookup table is defined. Each exception is labeled with an interrupt service
routine handler and defined with the appropriate vector address location.

Figure 6. Creating an Interrupt Vector Table for an MC9S12DP256 (K79X)

MC9S12DP256 (K79X) Vector Table

Vector Address Interrupt Source

$FFFE, $FFFF Reset

$FFFC, $FFFD Clock monitor fail reset

$FFFA, $FFFB COP failure reset

$FFF8, $FFF9 Unimplemented instruction trap

$FFF6, $FFF7 SWI

$FFF4, $FFF5 XIRQ

$FFF2, $FFF3 IRQ

$FFF0, $FFF1 Real-time interrupt

$FFEE, $FFEF Enhanced capture timer channel 0

$FFEC, $FFED Enhanced capture timer channel 1

$FFEA, $FFEB Enhanced capture timer channel 2

$FFE8, $FFE9 Enhanced capture timer channel 3

$FFE6, $FFE7 Enhanced capture timer channel 4

$FFE4, $FFE5 Enhanced capture timer channel 5

$FFE2, $FFE3 Enhanced capture timer channel 6

$FFE0, $FFE1 Enhanced capture timer channel 7

$FFDE, $FFDF Enhanced capture timer overflow

VECTOR ADDRESS 0xFFFE _Startup /* 0xFFFE Reset */
VECTOR ADDRESS 0xFFFC clockmonitor_isr /* 0xFFFC Clock monitor fail reset */
VECTOR ADDRESS 0xFFFA cop_isr /* 0xFFFA COP failure reset */
VECTOR ADDRESS 0xFFF8 trap_isr /* 0xFFF8 Unimplemented instruction trap */
VECTOR ADDRESS 0xFFF6 swi_isr /* 0xFFF6 SWI */
VECTOR ADDRESS 0xFFF4 xirq_isr /* 0xFFF4 XIRQ */
VECTOR ADDRESS 0xFFF2 irq_isr /* 0xFFF2 IRQ */
VECTOR ADDRESS 0xFFF0 rti_isr /* 0xFFF0 real Time Interrupt */
VECTOR ADDRESS 0xFFEE ect_ch0_isr /* 0xFFEE Timer channel 0 */
VECTOR ADDRESS 0xFFEC ect_ch1_isr /* 0xFFEC Timer channel 1 */
VECTOR ADDRESS 0xFFEA ect_ch2_isr /* 0xFFEA Timer channel 2 */
VECTOR ADDRESS 0xFFE8 ect_ch3_isr /* 0xFFE8 Timer channel 3 */
VECTOR ADDRESS 0xFFE6 ect_ch4_isr /* 0xFFE6 Timer channel 4 */
VECTOR ADDRESS 0xFFE4 ect_ch5_isr /* 0xFFE4 Timer channel 5 */
VECTOR ADDRESS 0xFFE2 ect_ch6_isr /* 0xFFE2 Timer channel 6 */
VECTOR ADDRESS 0xFFE0 ect_ch7_isr /* 0xFFE0 Timer channel 7 */
VECTOR ADDRESS 0xFFDE ect_overflow_isr /* 0xFFDE Timer overflow */

_MC9S12Dx256_BANKED.prm
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6 only shows a portion of the MCU interrupt vectors for an
MC9S12DP256 (K79X). Note that the labeled interrupt handler routines will be
executed when the CPU requests the corresponding interrupt.

Control Stage The purpose of the control stage is to construct the software stationery. The
stage provides a bridge between the development and definition stages. The
settings defined in the control stage enable you to specify the definition files
necessary for your application software. Also, this stage gives you flexibility to
mold your projects by providing an area to define global parameters, macro
definitions, driver inclusions, and interrupt service routines. The control stage
is comprised of three blocks:

• Project globals

• Software drivers

• Project vectors

Project Globals The project globals block is made up of a single file labeled projectglobals.h,
which gives you the option to select which MCU to include in the compilation
with your application software (for mass MCU method only). Recall from the
Definition Stage that an MCU definition file is created per MCU, which in turn
includes each corresponding module definition file and the relative base
address for each peripheral. Figure 7 demonstrates the piece of software in
projectglobals.h in which the user selects an MCU/maskset for software
development (for mass MCU method only). For step-by-step instructions on
how to set up your software application for development on a specific MCU,
refer to Developing Using the HCS12 Software Stationery.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Software Stationery Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7. MCU/Mask Set Selection

#ifdef Dx512_L00M
#include "per_Dx512_L00M.h"
#define Flash_Sector_Size 0x400
#endif /*Dx512_L00M*/

#ifdef DP256_K79X
#include "per_DP256_K79X.h"
#define Flash_Sector_Size 0x200
#endif /*DP256_K79X*/

#ifdef Dx256_L91N
#include "per_Dx256_L91N.h"
#define Flash_Sector_Size 0x200
#endif /*Dx256_L91N*/

#ifdef Dx128_L40K
#include "per_Dx128_L40K.h"
#define Flash_Sector_Size 0x200
#endif /*Dx128_L40K*/

#ifdef Dx64_L86D
#include "per_Dx64_L86D.h"
#define Flash_Sector_Size 0x200
#endif /*Dx64_L86D*/

#ifdef A512_L00M
#include "per_A512_L00M.h"
#define Flash_Sector_Size 0x400
#endif /*A512_L00M*/

#ifdef A256_L91N
#include "per_A256_L91N.h"
#define Flash_Sector_Size 0x200
#endif /*A256_L91N*/

#ifdef A128_L40K
#include "per_A128_L40K.h"
#define Flash_Sector_Size 0x200
#endif /*A128_L40K*/

#ifdef A64_L86D
#include "per_A64_L86D.h"
#define Flash_Sector_Size 0x200
#endif /*A64_L86D*/

#ifdef H256_K78X
#include "per_H256_K78X.h"
#define Flash_Sector_Size 0x200
#endif /*H256_K78X*/

#ifdef H128_K78X
#include "per_H128_K78X.h"
#define Flash_Sector_Size 0x200
#endif /*H128_K78X*/

#ifdef E128_L15P
#include "per_E128_L15P.h"
#define Flash_Sector_Size 0x400
#endif /*E128_L15P*/

#ifdef C32_L45J
#include "per_C32_L45J.h"
#define Flash_Sector_Size 0x200
#endif /*C32_L45J*/

//*************************
//* MCU_Maskset Selection:
//*************************

/*D-Family*/
//#define Dx512_L00M
//#define DP256_K79X
//#define Dx256_L91N
//#define Dx128_L40K
//#define Dx64_L86D

/*A-Family*/
//#define A512_L00M
//#define A256_L91N
//#define A128_L40K
//#define A64_L86D

/*H-Family*/
//#define H256_K78X
//#define H128_K78X

/*E-Family*/
//#define E128_L15P

/*C-Family*/
//#define C32_L45J

projectglobals.h

To define the device and mask set for your application,
remove the comment indicator (“//”) in front of “#define”.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The second function of the projectglobals.h file allows you to identify any global
parameters or macro definitions. Since the definition stage is standardized and
should remain unmodified until any module revisions, the control stage is used
to develop additional definitions directly related to the application software and
not the MCU. Figure 8 illustrates some example macro definitions that would
be created within the projectglobals.h file.

/***/
/*Macro Definitions */
/***/

#define int_enable() {asm andcc #0xEF;} //interrupts enabled
#define int_disable() {asm orcc #0x10;} //interrupts disabled
#define wait() {asm wait;} //enter wait mode
#define stop_enable() {asm andcc #0x7F;} //stop mode enabled
#define stop() {asm stop;} //enter stop mode
#define nop() {asm nop;} //enter NOP asm instruction
#define bgnd() {asm bgnd; asm nop;} //enter BGND asm instruction
#define ON 1 //ON
#define OFF 0 //OFF

Figure 8. Macro Definition Samples

The third function of the projectglobals.h file allows you to add software drivers
to the compilation of your application software. The addition of software drivers
is not necessary in all applications, but an area in the projectglobals.h file is
allocated for the selection of software drivers, if available. The majority of
software drivers included in an application serve as low-level drivers made up
of module initialization subroutines, which set up the MCU modules so they can
function when executing the application. Figure 9 demonstrates how a
software driver can be included in the application. For more information on how
to develop using additional software drivers, refer to Developing Using the
HCS12 Software Stationery.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Software Stationery Architecture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 9. Software Driver Selection Examples

Software Drivers The drivers block is directly related to the software driver selection in the project
globals block. It provides an accessible directory in the stationery architecture
to maintain a library of software drivers, which can be included in your
application software via the projectglobals.h file as mentioned in Project
Globals. Once the driver is included in the application project, you can access
any driver subroutine.

Project Vectors The project vectors block stores both projectvectors.c and projectvectors.h
files. These two files establish an interrupt vector handler corresponding to all
the supported HCS12 MCU exceptions declared in the parameter files (when
using the mass MCU method). In single MCU method, only the vectors
pertaining to that MCU are included. Usually, interrupt vector handlers would
be labeled as an unused interrupt service routine (unused_isr) or a dummy
interrupt service routine (dummy_isr) if they were not applied in the application
software. These routines would not execute a trap in order to capture an
unexpected interrupt and would be left to you to declare.

This stationery predefines all the interrupt vector handler labels per MCU.
Therefore, the stationery reduces the amount of user effort to re-label the
interrupts for different software applications. Also, the stationery places these
interrupt vector handlers within non-banked memory so they can be accessed
regardless of the executing banked address. Refer to Figure 10 for an example
interrupt service handler declared in a parameter file and made accessible
within the projectvectors.c file. Note that the interrupt vector handler in
Figure 10 is unimplemented. Therefore the interrupt includes only a subroutine

#ifdef ECT
#include "ectdrv.h"
#endif /*ECT*/

#ifdef LCD
#include "lcddrv.h"
#endif /*LCD*/

#ifdef PWM
#include "pwmdrv.h"
#endif /*PMW*/

//****************************
//*Software Driver Selection:
//*
//****************************

//#define ECT
//#define LCD
//#define PWM

To include software drivers in your application,
remove the comment indicator (“//”) in front of “#define”.

projectglobals.h
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

labeled software_trap (), which executes a trap if it unexpectedly occurs. This
routine is a safeguard to prevent software runaway. For more information on
how to set up an interrupt service routine in your software application, refer to
Developing Using the HCS12 Software Stationery.

Figure 10. Example Unimplemented Interrupt Service Handler

Development Stage The development stage allows you the ability to focus strictly on developing
your application. With the standardized module definitions in the definition
stage and the predetermined global settings in the control stage, the user can
begin development almost immediately. This stage initially includes only a
single main.c file, which is made accessible to build routines and functionality
for the target MCU. Due to the stationery architecture, all module registers are
readily accessible in the development stage.

For a complete software project example using all the features in the HCS12
Software Stationery, refer to Developing Using the HCS12 Software
Stationery.

VECTOR ADDRESS 0xFFF6 swi_isr /* 0xFFF6 SWI */

_MC9S12Dx256_BANKED.prm

#pragma CODE_SEG NON_BANKED
interrupt void swi_isr(void){ (void) software_trap(); }
#pragma CODE_SEG DEFAULT

projectvectors.c
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Developing Using the HCS12 Software Stationery

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Developing Using the HCS12 Software Stationery

This section will provide:

• Step-by-step instructions on how to set up the stationery

• Detailed steps on how to develop an application using the stationery

• Example using the stationery’s features (low-level drivers, global
variables, interrupt vectors, macro definitions, and register accesses) to
write a serial communication software example

• Demonstration on how to port your application software from one target
MCU to another target MCU

Setting Up the
Stationery

The steps below assume that Metrowerks’ CodeWarrior for HC(S)12 (version
1.2 or greater) is installed on your computer.

1. Download the HCS12 software stationery.

2. Extract HCS12_Stationery.zip file into any directory.

3. Open the generated HCS12_Stationery root directory.

NOTE: Steps 4-6 are not necessary. However, they allow the user to create a working
directory while preserving the stationery template for subsequent applications.

4. Create a new project using either the mass or single MCU stationery
method by duplicating (copy and paste) the appropriate directory within
the HCS12_Stationery root directory.

– Mass MCU - duplicate the _MC9S12_ALL directory generating a
working copy labeled Copy of _MC9S12_ALL.

– Single MCU - duplicate the _PartNumber_Maskset directory
generating a working copy labeled Copy of _PartNumber_Maskset.

5. Rename the new project directory (Copy of _MC9S12_ALL or Copy of
_PartNumber_Maskset) to a name more appropriate to your project. (ex.
ProjectName_PartNumber -> MotorControlDemo_E128)

6. Open the new project directory (ProjectName_Partnumber ->
MotorControlDemo_E128) and rename the *.mcp file to match the new
project directory name (ex. ProjectName_PartNumber.mcp ->
MotorControlDemo_E128.mcp)

7. Open the *.mcp file (CW project file) in the new project directory (if you
executed Steps 4-6) or in the original Mass or Single MCU directories as
shown in Fig. 11. This will load a ready-to-go template project using the
stationery (Mass or Single MCU) that you selected.

8. Select build target among RAM, FLASH and BANKED applications from
the drop-down menu at the top of the CW project window.
MOTOROLA HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE: Steps 9 through 11 are not necessary in the single MCU stationery method.
Selections are already configured.

9. Select the target MCU within the projectglobals.h file under the
MCU/mask set selection area by removing the “//” in front of the #define
statement of your MCU.

10. Select the target MCU peripheral file by clicking under the red bull’s eye
column next to your desired MCU peripheral file (included file is marked
by a bullet) in the CW project window.

11. Select the target MCU parameter file by clicking under the red bull’s eye
column next to your desired MCU parameter file (included file is marked
by a bullet) in the CW project window.

12. Begin application software development within the unimplemented
main.c file. Interrupt vectors can be added within the projectvectors.c
file.
20 HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Developing Using the HCS12 Software Stationery

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Download, Extract,
and Open
(Steps 1, 2, 3)

The first three steps of setting up the stationery consist of attaining and placing
the stationery on the computer that you use for software development.
Figure 11 illustrates the first three steps.

Figure 11. Downloading, Extracting, and Opening Stationery

Note: To open stationery through the single MCU method,
open the directory that pertains to your target MCU
instead of the mass MCU method shown here.

Double click to open stationery
in Metrowerks’ CodeWarrior tool.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note that by extracting the HCS12_Stationery.zip, a root folder labeled
HCS12_Stationery is created with the following subdirectories:

• _MC9S12_All directory — Contains main project source files for mass
MCU stationery method (*.c and *.mcp)

• _PartNumber_Maskset — Contains main project source files
for single MCU stationery method (*.c and *.mcp)

• Support_Files directory — Contains the following subdirectories
– Definitions directory — Contains all module definition files (*.h files)
– Documentation directory — Contains stationery documentation

(guides)
– Parameter directory — Contains all MCU parameter files (*.prm files)
– Peripherals directory — Contains all MCU definition files (*.h files)

Duplicate Template
(Optional Steps 4–6)

If you decide to duplicate the stationery template to preserve it for subsequent
use, follow the steps detailed in steps 4–6 of Setting Up the Stationery. The
examples and instructions in this document refer to files by their original
template names. These names may differ from the names used in your project
if you follow these steps.

Open the Project File
(Step 7)

By double-clicking on the MC9S12_All.mcp file (mass MCU method) in the
HCS12_Stationery_MC9S12_All directory, the stationery opens in the
Metrowerks’ CodeWarrior environment and brings up the main project window
and displays all necessary global, source, peripheral, parameter, and definition
files needed to develop your application (as shown in Figure 12).

Recall that the *.mcp file that you double-click to open the project might differ
in name or location if you follow the optional steps 4–6.
22 HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Developing Using the HCS12 Software Stationery

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 12. CodeWarrior Main Project Window
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Selecting a Build
Target (Step 8)

Once you have established the stationery in your desired directory and have
launched the project in the Metrowerks’ CodeWarrior environment, you can
focus on selecting the correct files to develop for your target MCU. Step 4
requires that you select the desired build target for your application. A build
target is the intended memory space for which the compiler will build your
software. When selecting a build target, you should match the target with the
corresponding parameter file. For example, the available build targets listed
below match up with the parameter files associated next to them.

• Archive_Target — None (used as a null target and not used for
development)

• Ram application — RAM parameter file (_partnumber_RAM.prm)

• Flash application — FLASH parameter file (_partnumber_FLAT.prm)

• Banked_Flash — BANKED FLASH parameter file
(_partnumber_BANKED.prm)

To determine which build target best fits your application, refer to Parameter
Files.

Figure 13 demonstrates how to select your build target via the Metrowerks’
CodeWarrior main project window. Note that the build target is selected via a
pull-down menu.

Figure 13. Selecting a Build Target
24 HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Developing Using the HCS12 Software Stationery

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Selecting a Target
MCU (Steps 9, 10, 11)

Following the selection of the build target, you must set up the stationery to
include all necessary definition files for your application’s target device. To
complete step 5, you must select your MCU part number and mask set within
the projectglobals.h file. To do so, open projectglobals.h by double-clicking on
the file as shown in Figure 14 and scroll down to the MCU_maskset selection
area.

NOTE: Steps 9 through 11 are not necessary in the single MCU stationery method.
Selections are already configured.

Figure 14. Opening Project Globals File

To include and compile MCU files for a device, remove the double forward
slashes (“//”) in front of the #define command for that device. See Figure 15.

Figure 15. Selecting a Target MCU

DOUBLE CLICK

TO OPEN

TO SELECT YOUR TARGET MCU FOR YOUR YOUR APPLICATION,
REMOVE THE COMMENT INDICATOR (“//”) IN FRONT OF “#DEFINE”.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

You must include the respective MCU definition and parameter files that are
necessary for the tool to compile and link your application software successfully
for your chosen target MCU. Step 6, illustrated by Figure 16 shows how to add
the MCU definition file by placing a bullet next to the file name. For this
example, continue to select an MC9S12DP256 (K79X) for your target MCU by
selecting the per_DP256_K79X.c file.

Figure 16. Selecting an MCU Definition File

Click in the red bull’s eye
column next to the desired
file. A bullet indicates which
file(s) will be included.
26 HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Developing Using the HCS12 Software Stationery

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Complete the stationery setup process by selecting the MCU parameter file
corresponding to your chosen target MCU. Recall that the MCU parameter file
must match the target build chosen. Include the MCU parameter file by placing
a bullet next to the relevant file. Figure 17 shows step 7 (selecting the MCU
parameter file), and lists the relationship between the target build and
parameter files. Note, that an MC9S12DP256 (K79X) is still our primary device
for development when the user selects the MC9S12Dx256_BANKED.prm file.

Figure 17. Selecting an MCU Parameter File

Click in the red bull’s eye
column next to the desired
file. A bullet indicates which
file(s) will be included.

Note: Only select a *.prm file
matching the build target.

RAM.prm — RAM application
FLAT.prm — FLASH application
BANKED.prm — BANKED_FLASH
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Developing Software
Using the Stationery
Features

This section will use a serial communication application example built on the
HCS12 software stationery to highlight the following features:

• Developing a main routine — Including calls to function subroutines,
references to global variables, and application sequences

• Using global variables — Allowing access to variables throughout the
software project

• Using software drivers — Including initialization routines and function
subroutines

• Accessing register space — Reading and writing to memory registers
via words, bytes, and bits

• Using macro definitions — Creating memory masks for register
initialization, conditional statements, and in-line assembly inclusion

• Using interrupt service routines — Developing routines that service a
CPU interrupted request

Overview of Serial
Communication
Application Example

The example used in this application note is a serial communication project
built on a MC9S12DP256 (K79X) target MCU and uses a banked FLASH target
build. The project initializes an SCI module to transmit and receive data at
19200 baud rate via an RS-232 interface connected to a computer’s serial port.
The project is similar to the common “Hello World” C++ programming language
example. The difference is that this project uses the MCU’s SCI module to
output characters to a display on a computer terminal window. Characters are
also received by the MCU through computer keyboard inputs entered on the
terminal window display. These input characters are echoed back through the
SCI module for display on the terminal window.

This example project prompts you for your name. Following the input, the MCU
recalls the user’s name and returns a greeting using the input name. Figure 18
captures the complete terminal window display following the user’s input.

Figure 18. Serial Communication Example — Terminal Window Display
28 HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Developing Using the HCS12 Software Stationery

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Developing a Main
Routine

To commence a software application, the flow of events must be programmed
in the main source file (main.c). The main source file is considered to be the top
level of development since it contains the main routine. The main routine
typically calls initialization and other function routines in a specific order to fulfill
the application. To begin your software, open the main.c file by double clicking
on the filename in the main project window. The file should initially look like
Figure 19.

#include "main.h"

void main ()
{
 //Insert Application Software Here.
 for (;;);

}

Figure 19. Unimplemented Main Source File

A header file (*.h) should be created for each application source file (*.c). In this
example, the corresponding header file for main.c file is named main.h file. You
should include the header file (main.h) in the corresponding source file
(main.c). The example above shows the main.h file being included within the
main.c file through the #include “filename” declaration. The corresponding
header file is typically used to list the function prototypes for any routines
programmed in the source file. These function prototypes are commonly
prefixed with an “extern” command, which allows the functions to be accessible
by other files in the project. The header file is also used to include project files
that contribute routines or variables to the source file. For example, the main.h
file includes the projectglobals.h file, which in turn includes all the necessary
MCU peripheral definitions, global variables, and software drivers included in
the projectglobals.h file. When using the stationery, a common header file
would include the projectglobals.h file as shown in Figure 20.

#ifndef MAIN_H /*prevent duplicated includes*/
#define MAIN_H

#include "projectglobals.h"

#endif /*MAIN_H*/

Figure 20. Traditional Main Header File

main.c

main.h
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

All function prototypes would be inserted in the header file, between the #ifndef
and #endif condition commands. Those commands are to prevent duplicate
file, subroutine, and variable includes.

Next in the development of the serial communication example, we insert the
appropriate local variables and fill in the main routine with functions that create
the communication described in Overview of Serial Communication
Application Example. Refer to Figure 21 for the updated main.c file.

/***
 * DESCRIPTION: Serial Communication Application Example
 * SOURCE: main.c
 * COPYRIGHT: © 04/2003
 * AUTHOR: rat579
 **/

#include "main.h"

/* Local Variable Declarations */
uchar temp_string[20]; // Temporary Array to Store ASCII Characters

/* Main Routine */
void main ()
{
 SEI(); // Disable Interrupts
 oscclk = 16000; // Set Oscillator Freq. = 16 MHz
 busclk = oscclk/2; // Set Bus Freq. = (1/2) * Oscillator Freq.
 (void) InitSCI(19200); // Initialize SCI module @ 19200 Baud Rate
 CLI(); // Enable Interrupts

 for (;;) // Interactive Terminal Display Prompt
 {
 (void) printf("***\n\r\n\r");
 (void) printf("Hello!!, Please Enter Your Name > ");
 (void) scanf("%s",&temp_string); // Gets User Info
 (void) printf("\n\r\n\rWelcome ");
 (void) printf("%s",&temp_string); // Displays User Info
 (void) printf("\n\r\n\rEnjoy the HCS12 Software Stationery!!\n\r\n\r");
 }
}

Figure 21. Implemented Main Source File
30 HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Developing Using the HCS12 Software Stationery

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note that the implemented main.c file contains several C programming
language basics. For example, the main.c file demonstrates the use of a local
variable declaration, macro definitions, references to global variables, calls to
external routines, and a conditional “for” loop.

Also, notice that the global variables, macro definitions, and routines are not
defined within the main.c file, so an additional source file (typically called a
software driver) must be existent in the project. This driver consists of the
external routines called by the main.c file. Also, the projectglobals.h file
maintains the global variables and macro definitions referenced in the main.c
file. In the creation of the software driver for the serial communication example,
several stationery methods will be covered.

Using Global
Variables

Global variables are very common in projects involving MCUs that allocate
memory space associated with a label. They differ from local variables,
because multiple functions in a project reference them as opposed to being
reference by a single function. In the serial communication example, there are
two global variables referenced, which are oscclk (oscillator clock frequency)
and busclk (bus clock frequency). Both of these variables are referenced in
main.c and sci.c files. In the main.c file, you set the variables to a specific value.
In the sci.c file, the values are used to calculate the SCI baud rate value to write
into the SCI baud rate register (SCIBD). The sharing of both these variables by
multiple functions means that they must be declared globally. To declare a
global variable in the stationery, the variable declaration must be made within
the projectglobals.h file. By placing the variable declaration within the
projectglobals.h file, the variable becomes propagated throughout all the
source files that include the projectglobals.h file in their corresponding header
files as recommended in Developing a Main Routine. Refer to Figure 22 for
the source code line declaring these two global variables.

extern ulong oscclk, busclk;

Figure 22. Global Variable Declaration

Using Software
Drivers

Notice that the main routine in the main.c file called a routine labeled (void)
InitSCI (19200). The InitSCI routine is intended to initialize the SCI module to
communicate at a 19200 baud rate. The InitSCI routine is not defined within the
main.c file, but it is defined at a lower level, within a software driver (sci.c).
Software drivers are source files most commonly used to define function
routines, which either initialize an MCU peripheral or execute a series of
instructions. Drivers are intended to be like stationery definition files and
typically remain untouched by the user. These files, when included in
projectglobals.h, allow your main routine in main.c to call specific routines

projectglobals.h
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

defined in the drivers. Refer to Figure 23 for an illustration of how to include a
software driver (like the sci.c file) in your application project.

Figure 23. Including a Software Driver

You must include all the necessary software drivers with any global parameters
needed by your application. Notice that the #include “sci.h” instruction makes
all the routines within the SCI driver available to any file, which includes the
projectglobals.h file. The instructions declared by the #define are macro
definitions used within the SCI software driver. These macro definitions are
specific to the SCI driver, but were made global in this example in order to
adjust them without modifying the sci.c file. When including a software driver,
you must add the file to the CodeWarrior main project window and select the
source file (*.c) by placing a bullet next to the file’s label. For the serial
communication example, we will place a bullet next to the only driver labeled
sci.c.

Accessing Register
Space

There are three main types of register accesses using the module definition
files. They are provided with a prototype and example from our serial
communication example project, showing how they would be entered in a C
language program:

• Word (16-bit) access
– Modulename.registername.word = 0x1234;

• Sci0.scibd.word = 0x1234;
• Sci0.scibd.word = (uint)((((busclk/16)*1000)/baud));

#ifdef SCI

#include "sci.h"

extern int sprintf (const char *format, ...);
extern int printf (const char *format, ...);
extern int scanf (const char *format, ...);

extern ulong oscclk, busclk;

#define XOn 0x11
#define XOff 0x13
#define RxBufSize 64
#define TxBufSize 32
#define XOnCount RxBufSize - 8
#define XOffCount 18

#endif /*SCI*/

//****************************
//*Software Driver Selection:
//*
//****************************

#define SCI

Within projectglobals.h, define a label associated
with the driver, which includes the file and any
global parameters or macro definitions.

sci.c
32 HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Developing Using the HCS12 Software Stationery

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Byte (8-bit) access
– Modulename.registername.byte = 0x12;

• Sci0.scicr2.byte = 0x2C;
• Sci0.scicr2.byte = TE + RE + RIE;

• Bit (1-bit) access
– Modulename.registername.bit.bitname. = 1;

• Sci0.scicr2.bit.te = 1;

The types of register accesses above write to a register location in memory, but
differ in the amount (words, bytes, bits) that they manipulate. These registers
can be written to with a numerical value of that type size, solutions to equations
(SCIBD = ((busclk/16)*1000)/baud), or masked with predefined macro
definitions (TE + RE + RIE). For more information regarding the use of macro
definitions, refer to Using Macro Definitions. These structures can also be
read and stored in local variables of equal type size. These examples, showing
methods for using structures in order to access registers in memory, are used
in the sci.c file to initialize the SCI module. For more information on how these
module definition files are constructed, refer to MCU Definitions.

There are a few exceptions within the module definition files that require a
slightly different method for accessing register space:

• Modulename.registername[index].word = 0x1234;
– Tim0.tc[3].word = 0x1234;

• Modulname.registername[index].byte = 0x12;
– Pwm.pwmper[4].byte = 0x12;

• Modulename.registername.byte.msb.byte = 0x12;
– Sci0.scibd.byte.msb.byte = 0x12;

• Modulename.registername.byte.lsb.byte = 0x34;
– Sci0.scibd.byte.lsb.byte = 0x34;

The exceptions listed above differ from the main types in two ways. The first
two examples use an array structure with an index to a single word or byte in a
series of multiple registers. The last two examples access the most significant
byte (msb) or least significant byte (lsb) individually within a word register
structure. These four structure examples are not commonly used and are
unique to a few modules.

Using Macro
Definitions

Macro definitions are labels associated with a value or instructions that are
inserted within your software to take the place of the defined parameter. They
are useful when an instruction is used repetitively. Their symbolic
representation also simplifies the visibility of your software by making it more
self-documented. Macro definitions are usually used as memory masks for
register initialization, conditional statements, and in-line assembly inclusion.
Refer to Figure 24 for several examples using macro definitions. These
examples come directly from the serial communication example project.
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 24. Macro Definitions in Software

Note that macro definitions can be declared for local or global use, depending
on where they are included. For global use, you should place macro definitions
within the projectglobals.h file. Also, each module definition file contains macro
definitions for each register structure intended to be memory masks most
commonly used for register initialization.

Sci0.scicr2.byte = TE + RE + RIE;

#define CLI() {asm cli;}

#define CLI() {asm cli;}
#define SEI() {asm sei;}

SEI();
oscclk = 16000;
busclk = oscclk/2;
(void) InitSCI(19200);
CLI();

#define XOn 0x11
#define XOff 0x13
#define RxBufSize 64
#define TxBufSize 32

if (c == XOff)
{
 Sci0.scicr2.byte &= ~TIE;
 XOffRcvd = 1;
 return;
}
else if (c == XOn)
{
 if (TxBAvail != TxBufSize)
 Sci0.scicr2.byte |= TIE;
 XOffRcvd = 0;
 return;
}
 }

typedef union uSCICR2
{
 tU08 byte;
 struct
 {
 tU08 sbk :1;
 tU08 rwu :1;
 tU08 re :1;
 tU08 te :1;
 tU08 ilie :1;
 tU08 rie :1;
 tU08 tcie :1;
 tU08 tie :1;
 }bit;
}tSCICR2;

#define SBK 0x01
#define RWU 0x02
#define RE 0x04
#define TE 0x08
#define ILIE 0x10
#define RIE 0x20
#define TCIE 0x40
#define TIE 0x80

INITIALIZING REGISTERS CONDITIONAL STATEMENTS IN-LINE ASSEMBLY
34 HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Developing Using the HCS12 Software Stationery

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Using Interrupt
Service Routines

Interrupt service routines (ISRs) in the stationery are managed like an ordinary
function routine. The difference is that the ordinary function routine gets called
in a specific location in software as instructed by the program sequence, but an
ISR occurs when a predetermined combination of events becomes true. This
combination of events messages the CPU for permission to interrupt the
ongoing program sequence. Once the CPU grants the interrupt request, the
interrupt’s vector address is fetched. Within the interrupt vector address is
stored the location of the service routine, which will service the request. The
stationery dictates the vector handler label for the ISR associated with that
interrupt in the MCU parameter file. The ISRs for all the HCS12 MCUs are
located in the projectvectors.c file. For more information regarding the
projectvectors.c file, refer to Control Stage.

To demonstrate setting up an ISR within a project, we will use the same serial
communication example, which only calls for a single SCI module interrupt.
The routine that services the interrupt should be written within the software
driver and the prototype should be labeled “extern” in the driver’s
corresponding header file. This enables easier portability of your software
routines. Once the routine that services the interrupt is written ((void)
sci0_handler ()), you can enter the prototype label within the corresponding
ISR (interrupt void sci0_isr ()) in the projectvectors.c file. Note that the
unimplemented ISRs initially have a software trap routine in them. You must
remove this routine prior to adding your new routine. Figure 25 shows how a
routine to service an interrupt is set up to execute when an ISR is fetched.

Figure 25. Implementing an ISR

extern void sci0_handler(void);

void sci0_handler(void)
{

/* Begin Function SCIISR() */

if (Sci0.scisr1.byte & (RDRF + ORF))
 RxISR();
if ((Sci0.scicr2.byte & TIE) && (Sci0.scisr1.byte & TDRE))
 TxISR();

} /* end SCIISR */

#pragma CODE_SEG NON_BANKED
interrupt void sci0_isr(void)
{
 sci0_handler();
}
#pragma CODE_SEG DEFAULT

SERVICE
ROUTINE

PROTOTYPE

SERVICE
ROUTINE

SERVICE
ROUTINE

INTERRUPT
HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Porting Your
Application
Software to a Target
MCU

The stationery makes porting an application from one HCS12 device to another
easy. Before porting your software onto another MCU, you must first check that
both devices are compatible. Each MCU contains a set of peripherals that
might not match in type or version. Only the peripherals accessed by your
software application must be compatible. For example, the serial
communication example only uses a single SCI module. Because this example
application was developed for the MC9S12DP256 (K79X) as a target MCU, it
can be ported to any MCU with the identical SCI module with no software
modifications. The SCI module definition file pertaining to this target MCU is the
S12SCIV2.h file. A compatible MCU that contains at least a single SCI module
(S12SCIV2.h) is the MC9S12E128 (L15P). To port your software (when using
mass MCU stationery method) to the new MCU, you must repeat the steps
described in Selecting a Target MCU (Steps 9, 10, 11). Make sure that when
you select a different target MCU within projectglobals.h, you add the comment
indicator “//” in front of the label for any previously selected MCU(s) that you
want to exclude. Also, when adding a bullet next to the label for the new MCU
peripheral and parameter files, make sure to remove the bullet next to the
previously selected MCU peripheral and parameter files by clicking on the
respective bullet in the red bull’s eye (see Figure 17).

Software applications that do not contain identical peripherals between MCUs
can also be ported within the software stationery. However, software
modifications will be necessary to guarantee proper software execution.

Conclusion

The HCS12 software stationery enables you to develop software applications
for your target MCU faster and with more ease. All the MCU definition files are
readily available, enabling you to begin software development immediately.
The stationery provides a standardized architecture that produces well
organized and better documented software. Plus, the strict file naming
convention eliminates confusion during development. By following the SoC
ideology, the stationery will accommodate new HCS12 MCUs and future
stationery platforms. This application note introduces the stationery
architecture, explains the SoC ideology used by the HCS12 Family, and gives
detailed examples covering the proper methods for developing your application
using the stationery. Overall, this software stationery improves on limitations
encountered on previous software stationery while emphasizing a more
comfortable development environment for the user.

The sofware stationery, HCS12_Stationery_VX_X.zip, and an example serial
communication project example using the stationery, AN2485SW.zip, are
available from the Freescale website, http:www.freescale.com.
36 HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D
Conclusion

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

AN2485/D

38 HCS12 Software Stationery

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2485/D
Conclusion

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

HCS12 Software Stationery

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2485/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Overview
	System on a Chip Ideology
	Naming Convention
	Early Development

	Software Stationery Architecture
	Definition Stage
	Peripheral Definitions
	Module Definitions
	MCU Definitions

	Parameter Files
	Memory Mapping
	Vector Table

	Control Stage
	Project Globals
	Software Drivers
	Project Vectors

	Development Stage

	Developing Using the HCS12 Software Stationery
	Setting Up the Stationery
	Download, Extract, and Open (Steps 1, 2, 3)
	Duplicate Template (Optional Steps 4–6)
	Open the Project File (Step 7)
	Selecting a Build Target (Step 8)
	Selecting a Target MCU (Steps 9, 10, 11)

	Developing Software Using the Stationery Features
	Overview of Serial Communication Application Example
	Developing a Main Routine
	Using Global Variables
	Using Software Drivers
	Accessing Register Space
	Using Macro Definitions
	Using Interrupt Service Routines

	Porting Your Application Software to a Target MCU

	Conclusion

