
AN2617
Rev. 0, 2/2004

A Software Interrupt Priority
Scheme for HCS12
Microcontrollers

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 By Grant M More and Daniel Malik
Applications Engineering,
Motorola, East Kilbride

Introduction

The HCS12 series of microcontrollers provides an abundance of interrupt
sources and discrete vectors to allow handling of each of the interrupts.
However, by default, nested interrupts are not permitted. Although it is possible
for nested interrupts to be enabled, any new interrupt request will interrupt a
presently active service routine. This is undesirable, as any interrupt service
routines that are designated critical can be interrupted by any other interrupt
service request. If this is unacceptable, it is necessary for interrupts to be
prioritized. This is not supported in hardware on the HCS12 series (it is
supported on the HCS12X), but can be easily implemented in software.

This application note describes a priority scheme that can be used to assign
priorities to interrupt sources, and to schedule the interrupts based on the
assigned priority. This includes the provision for an interrupt of a higher priority
halting interrupts of a lower priority, assuming core processing time and
returning control to the lower priority interrupt after the higher priority service
routine has been completed.

Overview of HCS12 Hardware Interrupt Handling Capability

This section summarizes the hardware interrupt handling capabilities of the
HCS12 microcontroller. A degree of background knowledge of the hardware
scheme is necessary to understand the implementation of the software
scheme. Full details of exception processing can be found in the appropriate
core user guide documentation.

Interrupt Sources Interrupts are handled by the microcontroller, according to the definition of the
source. Exceptions are defined as resets, software interrupts, or interrupt
© Motorola, Inc., 2004

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
fslcopyrightline

rxzb30
freescalecolorjpeg

AN2617

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

requests. The XIRQ non maskable interrupt is a special case and is defined
separately.

Reset Interrupts The resets are defined as: (1) the reset vector; (2) the computer operating
properly (COP) reset vector; and (3) the clock monitor (CM) reset vector. These
are non maskable and will always be processed when requested.

Software Interrupts The software interrupts are: (1) the SWI vector, requested when either a
software interrupt instruction is executed or a BDM vector request is asserted
(for example at a breakpoint); and (2) the unimplemented opcode trap vector,
requested when a trap instruction is executed. Again, these requests are non
maskable.

XIRQ Non Maskable
Interrupt

The XIRQ is a single special case interrupt. This vector is maskable only with
the X-bit in the condition code register (CCR). Full details can be found below.

Interrupt Requests All other interrupts fall into standard interrupt request category. These
interrupts are maskable with the I-bit in the CCR.

XIRQ – Non
Maskable Interrupt

The XIRQ input is a special non maskable interrupt which is typically used to
deal with major system failures, such as power failure. For this reason, it is
assigned high priority and, once enabled by clearing the X-bit in the core
condition code register, is capable of interrupting all other interrupt service
routines on a hardware level and can only be disabled by a system reset. All
interrupt sources are automatically disabled during the servicing of an XIRQ
request. For this reason, if enabled, the XIRQ interrupt must be considered as
an interrupt of the highest priority in any software based priority scheme —
above the priority of the highest software assigned priority.

IRQ – Maskable
Interrupts

Most interrupts on the HCS12 microcontroller fall into the maskable category.
These interrupts are masked by the I-bit in the CCR and, by default, are not
nested. The I-bit is automatically set during exception processing, when
entering a service routine. This prevents any maskable service routine being
interrupted by any other maskable routine. This is the default configuration. The
I-bit can be manually cleared upon entry to the service routine, but then any
maskable routine can interrupt, and no consideration is given to priority.

Having said that, maskable interrupts are configured on a priority launch
scheme. If two or more interrupt requests are received concurrently, the
request with the highest address (closest to $FFFF) is serviced first. For
example, if the IIC and IRQ interrupts are received simultaneously, the IRQ
interrupt will be serviced first. However, the IRQ interrupt will not be able to
interrupt the IIC interrupt if the IIC interrupt service routine is already in
2 A Software Interrupt Priority Scheme for HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2617
Interrupt Scheduling

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

progress when the IRQ interrupt is requested, unless the I-bit is cleared, and
then any interrupt can interrupt any other interrupt.

HPRIO – Highest
Priority I Interrupt
Register

This register allows one interrupt request to be given priority over any other
interrupt request. In practical terms, this means that the interrupt identified by
this register will be serviced in preference to any other requests that are active
simultaneously. However, this will not allow the identified interrupt to interrupt
any other executing interrupt service routine. In other words, the high priority
interrupt only allows prioritization of the interrupt request, not of the interrupt
service routine.

Interrupt Scheduling

Default Strategy As discussed, the default configuration of interrupts on HCS12 devices does
not support interrupt prioritization or nesting. Interrupts of a higher priority
cannot interrupt interrupts of a lower priority. The execution of the low priority
interrupt must complete before the processing of the high priority interrupt can
begin. This is shown in Figure 1.

Figure 1. Default HCS12 Interrupt Processing Strategy

Running Waiting

Waiting Running Running

Running

Interrupt B

Interrupt A

Program

Higher
Priority

Lower
Priority

Interrupt B requested

Interrupt A requested

Waiting
A Software Interrupt Priority Scheme for HCS12 Microcontrollers 3

For More Information On This Product,
 Go to: www.freescale.com

AN2617

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In this example, the requirement for a prioritization scheme is clearly shown.
The high priority interrupt, interrupt B, is delayed by low priority interrupt A
before being executed.

Allowing Maskable
Interrupts

The problem with simply enabling all maskable interrupts by clearing the I-bit is
demonstrated in Figure 2. As can be seen, the high priority interrupt is
interrupted by a low priority interrupt and again made to wait. The priority here
is governed by the timing of the interrupt requests rather than the priority. In
most applications this is an undesirable strategy.

Figure 2. Effect of Enabling Maskable Interrupts in Maskable Interrupt
Service Routines

In order to prevent interrupts of a lower priority interrupting those of a higher
priority, it is necessary for the low priority interrupts to be selectively disabled,
based on their assigned priority.

The solution to this problem is to clear the maskable interrupt I-bit at the
beginning of any interrupt service routine, allowing all interrupts, and to
implement a selective interrupt enable scheme to only allow interrupts of a
higher priority than the priority of the current interrupt. This is the idea behind
the software interrupt priority scheme. An example of this strategy is shown in
Figure 3.

Running Waiting

Running

Waiting Running Running

Running

Interrupt B

Interrupt A

Program

Higher
Priority

Lower
Priority

Interrupt A requested

Interrupt B requested

Interrupt B interrupted
4 A Software Interrupt Priority Scheme for HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2617
Setting the Priority Level

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 3. Effect of Interrupt Priority Scheme Implementation

Setting the Priority Level

Two-level Priority
Scheme

A simple interrupt priority scheme can be implemented very easily. The
suitability of this approach will depend on the demands of the application. In this
scheme, one interrupt can be assigned low priority; one or more can be
assigned high priority. The I-bit is cleared in the low priority interrupt, allowing
the high priority interrupt to interrupt it. (Note that the low priority interrupt can
also interrupt itself – handling provision should be made if this may occur.)
However, the I-bit is not cleared in the high priority interrupt service routine,
preventing the low priority interrupt from interrupting.

Multi-level Priority
Scheme

The implementation of a multi-level priority scheme takes a little more care, as
more interrupts are inevitably used across an increased number of priority
levels. A key feature of the HCS12 is that all maskable interrupts have local
enable bits as well as the global mask bit in the CCR. The local enable bits are
fundamental to assigning the interrupts to priority levels as discussed below.
An example of the listing of the interrupt vectors and associated enable bits, as
can be found in the device user guide, is shown in Table 1.

Running Waiting

Running

Waiting Running Running

Running

Interrupt B

Interrupt A

Program

Higher
Priority

Lower
Priority

Interrupt A requested

Interrupt B requested

Interrupt B resumed
A Software Interrupt Priority Scheme for HCS12 Microcontrollers 5

For More Information On This Product,
 Go to: www.freescale.com

AN2617

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The global priority level is set and varied, by setting and clearing the local mask
bits, as appropriate. For example, consider a priority scheme that requires
three interrupt priority levels (and one for the non-interrupted standard program
flow), and that has three interrupts, one on each priority level, as shown in
Figure 4.

Figure 4. Simple Priority Scheme Example

In order to move to an interrupt priority level, it is necessary to clear the mask
bits relating to all the interrupts on the current priority level and below. This
ensures that only interrupts of a higher priority than the current interrupt will be
recognized. All interrupts that occur on any lower level will be ignored until the
global priority level is lowered to the level below the assigned interrupt priority.
For example, consider the above scheme when a timer channel two interrupt
occurs. The global priority is set to level two by masking priority levels one and
two using the C0I and C1I bits. Practically, this will only allow interrupts on level
three to interrupt the timer channel 2 service routine.

Table 1. Example of Local Enable Bit Listing

Vector Address Interrupt Source CCR
Mask

Local
Enable

HPRIO Value
to Elevate

$FFEE, $FFEF
Enhanced Capture
Timer Channel 0

I-bit TIE (C0I) $EE

$FFEC, $FFED
Enhanced Capture
Timer Channel 1

I-bit TIE (C1I) $EC

$FFEA, $FFEB
Enhanced Capture
Timer Channel 2

I-bit TIE (C2I) $EA

Priority Level Interrupt Local Mask Bit

Zero (main flow) None N/A

One Timer Channel 0 TIE C0I

Two Timer Channel 1 TIE C1I

Three Timer Channel 2 TIE C2I
6 A Software Interrupt Priority Scheme for HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2617
Defining and Using Interrupt Priority Levels

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Defining and Using Interrupt Priority Levels

Global Priority Level It is necessary to define a global priority level to determine which interrupts are
enabled and disabled. The global priority level should be a global variable that
stores the value of the current interrupt priority. Only interrupts of a higher
priority can interrupt the current interrupt (or program flow). The priority level is
a global concern, and should be set at the beginning of an interrupt service
routine, before the I-bit interrupt mask is cleared. The initial priority level must
be stored (before any priority level manipulation takes place) at the very
beginning of any service routine and re-established at the end, to ensure that
the previous priority level is resumed upon completion of the interrupt service
routine.

Choosing Priority
Levels

The number of priority levels in a system should be chosen based on a number
of factors, most of which are outwith the scope of this application note (for
example, prioritization of service routines based on timing sensitivity of
interrupt tasks). However, as a guide, the number of interrupt levels will never
exceed the number of maskable interrupts plus one, as it is necessary to assign
a priority level to any code that is executed outwith the interrupt service
routines. (Do not forget that a higher priority level is also implemented if the
XIRQ is enabled.) Secondly, for minimum latency and service time overhead,
interrupts should be organized into the smallest number of priority levels
possible. The reasons for this are described below.

Assigning Priority
Levels to Interrupts

Every enabled interrupt should be assigned to a priority level based on the
various demands of the application. This will allow the relevant mask bits to be
set and cleared when moving between priority levels.

Limitations and Timing Overhead

The implementation of this scheme involves an additional degree of latency in
the processing of interrupts that are prioritized.
A Software Interrupt Priority Scheme for HCS12 Microcontrollers 7

For More Information On This Product,
 Go to: www.freescale.com

AN2617

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Timing Overhead Example

Consider the example shown in Figure 5. This instance demonstrates what
happens when three prioritized interrupts occur simultaneously. Interrupt A has
a higher interrupt hardware priority than interrupt B, and interrupt B has a higher
hardware priority that interrupt C. For this reason, interrupt A will be serviced
by the hardware first, followed by interrupt B and then finally interrupt C. This
will provide a worst case latency example, as the ISR of functions A and B must
be entered, and the software priority level raised, before service routine C can
be launched.

Fixed Overhead = Time For Exception Processing + Time To Process Priority
Manipulation Code

Worst Case Overall Increased Interrupt Latency (in this example) = Time
Spent In Interrupt A + Time Spent In Interrupt B

Time Spent In Interrupt A = Time to Finish Current Instruction + Fixed
Overhead + (Number of Interrupts at Level 1 * Time Taken to Disable Each
Interrupt)

Time Spent In Interrupt B = Time to Finish Current Instruction + Fixed
Overhead + (Number of Interrupts at Level 1 and Level 2 * Time Taken to
Disable Each Interrupt)

Execution of priority level manipulation code (one
instance per priority level).

Exception processing by core.

Execution of interrupt masking instruction (one instance
per interrupt on current priority level and below).

Completion of instruction in progress when interrupt
request recognized.

Run Waiting

Waiting

Waiting

Running

Interrupt C

Interrupt B

Interrupt A

Program

Interrupts A, B and C requested

Increased Interrupt Latency
Highest Priority

Lowest Priority

A A BD

A

B

C

D
A C D B

D B

C C
8 A Software Interrupt Priority Scheme for HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2617
Library Macro Files and Software Example

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In the example code, the fixed overhead is 20 cycles. The time to disable each
interrupt is 4 cycles. The worst case time to finish an instruction will be 13
cycles (for an EMACS instruction). Assuming there is only one interrupt on
each of levels A and B,

Time Spent in Interrupt A (worst case) = 13 + 20 + (1 * 4) = 37 cycles

Time Spent in Interrupt B (worst case) = 13 + 20 + (2 * 4) = 41 cycles

Worst Cause Overall Increased Interrupt Latency = 37 + 41 = 78 cycles

This is obviously a worst case value, assuming EMACS (extended multiply and
accumulate) instructions are being executed in both interrupted service
routines when interruption occurs. If a typical example is considered where four
cycle BSET (bit-set) instructions are executed, the increased latency is
reduced to 60 cycles. This is still worst case in terms of interrupt hardware
priority.

Library Macro Files and Software Example

A set of library files have been prepared to allow this interrupt priority scheme
to be easily incorporated into any application. The function of these library files
is demonstrated in the software written to accompany this application note. The
library files utilize macros that set the relevant bit masks based on the priority
level. The software is configured as a macro to provide the most efficient
implementation of the priority scheme. Please refer to the ‘read me’ file
included with the software for further information about the function and
configuration of the library files. The files can be simply copied out of the
example software and used in any application requiring interrupt priority
functionality.

The example software can be built and loaded directly into a 9S12Dx256
device (or any other HCS12 device, with some minor modifications). The
software implements a three-level timer interrupt prioritization example, as
described in Figure 4. Each ISR contains identical code to set the associated
port B line high, wait an identical time, and then set the port B line low. The
example contains two demonstrations that can be switched between, by
commenting and uncommenting code within the software project. Full details of
the functionality of the software example can be found in the comments within
the code. Brief descriptions of the functionality and expected results are given
below.

Simultaneous
Occurrence of
Interrupts

The timer interrupts are configured to occur simultaneously by default in the
example software. The interrupt processing priority is then arbitrated by the
priority scheme software, and the highest priority interrupt is processed first.
A Software Interrupt Priority Scheme for HCS12 Microcontrollers 9

For More Information On This Product,
 Go to: www.freescale.com

AN2617

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6 shows the priority interpretation of this situation, using the priority
decoding scheme.

Figure 6. Interrupt Priority Execution — Simultaneous Occurrence of
Interrupts

NOTE: The in-built hardware priority of the interrupts used in Figure 6 is the opposite
of the priority specified in this example. The software priority control routines
must arbitrate the priority levels in order to execute the ISRs in the correct
order, as specified by the software interrupt priority scheme.

Sequential
Occurrence of
Interrupts

The timer interrupts can be configured to occur in sequence by re-enabling the
commented code in the setup routine. The interrupts are then triggered during
the execution of the lower priority ISR (i.e. lowest priority first, middle priority
next, highest priority last). Figure 7 shows the priority interpretation of this
situation, using the priority decoding scheme.
10 A Software Interrupt Priority Scheme for HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2617
Library Macro Files and Software Example

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7. Interrupt Priority Execution — Consecutive Occurrence of
Interrupts
A Software Interrupt Priority Scheme for HCS12 Microcontrollers 11

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2617
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	Overview of HCS12 Hardware Interrupt Handling Capability
	Interrupt Sources
	Reset Interrupts
	Software Interrupts
	XIRQ Non Maskable Interrupt
	Interrupt Requests

	XIRQ - Non Maskable Interrupt
	IRQ - Maskable Interrupts
	HPRIO - Highest Priority I Interrupt Register

	Interrupt Scheduling
	Default Strategy
	Allowing Maskable Interrupts

	Setting the Priority Level
	Two-level Priority Scheme
	Multi-level Priority Scheme

	Defining and Using Interrupt Priority Levels
	Global Priority Level
	Choosing Priority Levels
	Assigning Priority Levels to Interrupts

	Limitations and Timing Overhead
	Library Macro Files and Software Example
	Simultaneous Occurrence of Interrupts
	Sequential Occurrence of Interrupts

