
Freescale Semiconductor
Application Note

AN2715
Rev. 1, 11/2004

CONTENTS

1 Core Architectures Compared 2
1.1 16 Bits Versus 24 Bits 2
1.2 Endianness and Bit Ordering........................... 3
1.3 Memory Organization...................................... 4
1.4 Bus Structure ... 5
1.5 Processing Units .. 7
2 Assembly-Level Functional Differences....... 10
2.1 Addressing Modes ... 10
2.2 Hardware Loops .. 11
2.3 Instruction Set Differences 14
3 C Programming.. 17
4 Software Tools Support................................. 20
5 Appendix ... 21

Porting Code From the DSP56300
Family of Products to the
SC140/SC1400 Core
by Iantha Scheiwe
As evolving DSP56300-based applications require additional
processing power, the natural evolution path leads to SC140-
based devices. Developers currently using products in the
DSP56300 family will find the SC140 instruction set and
programming techniques already familiar as they migrate their
application to the SC140 multi-ALU architecture. The SC140
core architecture includes features that influence how
DSP56300 software must be modified to operate efficiently on
the SC140 core.

Note: The SC140 and SC1400 cores are functionally
identical, and the information in this document applies
to both cores. For simplicity, the SC140 core is
referenced throughout this application note.

This application note highlights the SC140 architectural
features that affect software and describes how to use these
features when converting DSP56300 code, especially assembly
code. C code compiles efficiently on the SC140 core. Although
you can convert assembly code from DSP56300 to SC140, it
may be preferable to convert DSP56300 code to C code and
then program only the critical sections in StarCore™ assembly
code, if necessary. This process is discussed in Section 3.
Peripheral differences between the DSP56300 and SC140-based
families are not discussed because they are device-specific.
Finally, differences between the Suite56™ and CodeWarrior®
tools are briefly considered.
© Freescale Semiconductor, Inc., 2004. All rights reserved.

Core Architectures Compared
1 Core Architectures Compared
Both the DSP56300 core and the SC140 core are high-performance DSP architectures. Devices based on these
cores operate at high frequencies with low power and provide dedicated arithmetic support for DSP applications.
This application note focuses on porting code from any DSP56300 device to a device based on the SC140 core.
Therefore, the main interest is the core and memory expansion areas of these devices.

1.1 16 Bits Versus 24 Bits
The DSP56300 core is a 24-bit architecture, so arithmetic operations process 24-bit operands and produce 24-bit
results. The SC140 core is a 16-bit architecture that operates on 16-bit operands. This change in operand size
affects memory requirements and precision. A DSP56300 word is 24 bits, but an SC140 word is 16 bits. Both cores
support double-precision operations. The term long refers to 48 bits on the DSP56300 core and 32 bits on the
SC140 core. Both the DSP56300 and SC140 accumulators have eight extension bits. The DSP56300 core includes
an option for operating in 16-bit compatibility mode. In this mode, there is no mathematical effect in changing to
the 16-bit architecture of the SC140 core. The same holds true for a conversion from the DSP56F800 core to the
SC140 core. The DSP56F800 is a 16-bit core with the same level of precision as the SC140 core. However, if the
default 24-bit architecture of the DSP56300 core is used, you must remember that SC140 is a 16-bit architecture.
Limiting, rounding, and overflow occurs on 16 bits rather than 24 bits, and scaling may be required where it was
not on the DSP56300. Scaling mode for the SC140 core is set in the Status Register (SR).

If all 24 bits of precision are required for an application running on the DSP56300 core, the double-precision
capabilities of the SC140 core can be used to achieve the required precision. If more than 16-bit precision is
required, the SC140 core can execute addition, subtraction, and logical operations on 32 bits in a single cycle.
Example 1 shows code for these single-cycle 32-bit addition and subtraction operations in comparison with
equivalent 24-bit DSP56300 code. Notice that there is no performance or precision degradation for these
operations on the SC140 core.

Example 1. Double-Precision Addition and Subtraction Comparison

The SC140 Core Reference Manual describes how the SC140 core can emulate double and mixed precision
multiplies and multiply-accumulate operations using the mpy<su,us,uu>, mac<su,us,uu>, and
dmac<ss,su> instructions. The s refers to a signed operand and u refers to an unsigned operand. The double-
precision multiplication operation (32-bit × 32-bit) consumes four core cycles for one ALU, compared with a
single-cycle multiplication for single-precision (see Example 2). If all 64 bits of the result are needed, additional
transfers can be added, as described in the SC140 Core Reference Manual. Since the focus here is on achieving the
24-bit level of precision, the transfers are not included.

Example 2. Double-Precision Multiplication Comparison

 DSP56300 24-bit precision code:

 add x1,a

 sub y1,b

 eor y0,b

 SC140 32-bit precision code:

 add d0,d1,d2

 sub d3,d4,d5

 eor d6,d7

 DSP56300 24-bit precision code:

 mpy x0,y0,a

 SC140 32-bit precision code:

 mpyuu d0,d1,d2

 dmacsu d0,d1,d2

 macus d0,d1,d2

 dmacss d0,d1,d2
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

2 Freescale Semiconductor

Core Architectures Compared
Mixed-precision operations (32-bit × 16-bit) consume two core cycles for one ALU, as shown in Example 3.

Example 3. Mixed-Precision Multiplication Comparison

For applications exploiting instruction-level parallelism by implementing multiple operations simultaneously on
the four SC140 ALUs, the penalty for using double-precision arithmetic can be reduced, as shown in Example 4.
The DSP56300 core requires additional load/store operations that are not shown to feed the four multiplication
operations. These operations primarily use parallel moves, but require at least one additional cycle to store an
accumulator result before the previous one is overwritten. The SC140 core requires four cycles to implement this
double-precision multiplication operation. Each line of text in Example 4 corresponds to one cycle of core
execution time. This example shows that multiple high-precision operations in a DSP56300 design, such as the
four shown here, can be parallelized on the SC140 core with no cycle degradation. Four high-precision multiplies
on the DSP56300 core consume a minimum of four cycles. The same holds true for the SC140 core.

Example 4. Double-Precision Parallelism

See Section 3 for information on C programming support for these double-precision arithmetic operations. The
application note, AN2208, Implementing a Double-Precision (32-bit) Complex FIR Filter, provides additional
examples of double-precision multiplication on the SC140 core.

Division is an iterative process in which the number of cycles is based on the amount of precision required. The
divide iteration on the SC140 core is based on the 16-bit architecture. When more than 16-bits of precision are
needed for a division operation on the SC140 core, a user-defined N-bit division routine is required. The cycle
requirement for this operation varies according to the routine selected.

1.2 Endianness and Bit Ordering
The SC140 core is a big-endian core in the currently-available MSCxxxx devices. In contrast, the DSP56300 core
is a little-endian core. This difference has little impact on programming because the assemblers and compilers
arrange the opcodes according to the processor format. Also, because the DSP56300 core is word-addressable, the
byte ordering is not affected by endianness as it is on the byte-addressable SC140 core. The documentation for the
two cores does use different bit ordering conventions. Consider the hexadecimal value 0x12345678. The
DSP56300 considers the right-most bit in the 0x8 nibble to be the least significant bit and it is numbered as bit 0 in
the DSP563xx manuals. The SC140 documentation, such as the SC140 Core Reference Manual, is written for the
SC140 implemented as a little-endian core, so the documentation is numbered like the DSP56300 documentation.
However, the device-specific reference manuals may number the bits with bit 0 in the most-significant bit position.
This numbering can initially be confusing when you look at register settings, especially of peripheral registers, and
count which bit is being programmed.

Although endianness differences do not cause big programming differences between the devices, it is important to
know that the SC140 is implemented as a big-endian core in the MSCxxxx devices. Any data sent to the device
should be sent in big-endian ordering. Otherwise, incorrect results are calculated when the core retrieves the data

 DSP56300 24-bit precision code:

 mpy x0,y0,a

 SC140 mixed precision code:

 mpysu d0,d1,d2

 dmacss d0,d1,d2

 DSP56300 24-bit precision:

 mpy x0,y0,a ; result 1

 mpy x1,y1,b ; result 2

 mpy x0,y0,a ; result 3

 mpy x1,y1,b ; result 4

 SC140 32-bit precision:

 mpyuu d0,d1,d2 mpyuu d3,d4,d5 mpyuu d6,d7,d8 mpyuu d9,d

 dmacsu d0,d1,d2 dmacsu d3,d4,d5 dmacsu d6,d7,d8 dmacsu d9,d

 macus d0,d1,d2 macus d3,d4,d5 macus d6,d7,d8 macus d9,d

 dmacss d0,d1,d2 dmacss d3,d4,d5 dmacss d6,d7,d8 dmacss d9,d

 ; four results in d2, d5, d8, d11
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 3

Core Architectures Compared
for processing. The endianness affects byte ordering between the two devices. Example 5 shows the difference in
how data bytes (for a 32-bit value) are stored in a big-endian device versus a little-endian device and the addressing
difference compared with the DSP56300 core.

Example 5. Endianness and Addressing Comparison

Note that future devices may implement the SC140 as a little-endian core, so it is best to check the specific device
reference manual to ensure the endianness implementation.

1.3 Memory Organization
Unlike the DSP56300 core, which has separate X, Y, and P (program) memory buses/banks, the SC140 core has a
unified memory architecture that holds data and program information in a single block of memory with multiple
bus ports. This unified memory architecture gives you more flexibility in placing application information.

1.3.1 Byte-Addressable Versus Word-Addressable
The 24-bit architecture of the DSP56300 core implements all calculations on word operands. Since a word is 24
bits (or 3 bytes), the memory is word-addressable. That is, each address corresponds to one word in memory.
Address $0 corresponds to the first three bytes of memory, address $1 corresponds to the next three bytes, and so
on. Although the SC140 is a 16-bit architecture, it includes flexibility to operate on both 8-bit and multi-byte
operands, with corresponding flexibility in memory addressing. The SC140 core is a byte-addressable architecture,
so address 0x0 corresponds to one byte, address 0x1 corresponds to the next byte, and so on.

Note: The DSP56300 and SC140 compilers use different conventions for representing hexadecimal
numbers. The DSP56300 compiler precedes a hexadecimal number with a $ symbol; the SC140
compiler precedes the number with a 0x notation.

The SC140 address arithmetic unit (AAU) updates pointers based on the size of data. If a pointer register is
programmed for post-increment when a 2-byte operand is accessed, it increments the pointer by 2 (that is, move.w
xx,(r0)+). If it accesses a byte operand, the pointer increments by just 1 (that is, move.b xx,(r0)+).
Therefore, the address offsets in DSP56300 code may not need to change when converted to SC140 code, but it is
important that you understand the difference in case you see strange addressing that needs to be updated.

1.3.2 Data Alignment
Because the DSP56300 core is word-addressable, data is aligned on 24-bit boundaries. However, since the SC140
core can operate on various sizes of data and uses its variety of AAU instructions to select enough data to feed all
four ALUs, data alignment becomes very important in the SC140 core. When code is converted from DSP56300 to
SC140, you must ensure that data is aligned on the appropriate boundary for the operations performed on the data.
The 16- and 32-bit operands must be aligned on 16 and 32-bit boundaries (addresses ending in $0, $2, $4, ... for 16-
bit and $0, $4, $8, ... for 32-bit).

 SC140 Little Endian:

 0x00001234 0xOD

 0x00001235 0xFO

 0x00001236 0xFE

 0x00001237 0xCA

 SC140 Big Endian:

 0x00001234 0xCA

 0x00001235 0xFE

 0x00001236 0xFO

 0x00001237 0xOD

 Store the value 0xCAFEFOOD at address 0x00001234

 DSP56300 ‘Little’ Endian:

 0x001234 0xCAFEFO
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

4 Freescale Semiconductor

Core Architectures Compared
1.3.3 Memory Grouping
For the DSP56300 core, you must select the memory configuration to place the appropriate amount of memory in
each bank. The SC140 core has a unified memory map, and no memory configuration selection is programmed.
The size and design of the memory available to the SC140 core is device-dependent, so you should be aware of
memory architecture in the device you are programming. Refer to the SC140-based device reference manuals, such
as the MSC8101 Reference Manual or the MSC8102 Reference Manual, for details on memory grouping and
simultaneous memory accesses. Contention can occur between the core program and data accesses to the same sub-
group of memory, so some memory planning is still required even though the SC140 core does not use an explicit
memory configuration switch. The compiler can examine all memory groups and place data and program
information to avoid contention. If you decide to bypass the compiler placement algorithms, then you must place
the information to avoid contention in order to get optimum performance.

1.4 Bus Structure
Figure 1 shows the SC140 core architecture, and Figure 2 shows the DSP56321 block diagram.

Figure 1. SC140 Core Block Diagram

The DSP56300 bus structure differs from the SC140 bus structure, as a comparison of Figure 1 and Figure 2
shows. The DSP56300 core has 24-bit wide X address and data buses, Y address and data buses, program address
and data buses, and DMA address and data buses. In addition, a switch on the address and data buses gives the
DSP56300 core direct access to external memory. In contrast, the SC140 address buses are 32-bits wide, the data
buses are 64-bits wide, and the program bus is 128-bits wide. The SC140 program data bus must be wide enough to
retrieve fetch sets that include more than one instruction word from memory. None of the current SC140-based
devices give the SC140 core direct access to the DMA controller. Instead, the DMA controller and any external
memories reside on a separate bus on the other side of a switch from the core. In SC140-based devices the DMA
controller has direct access to the unified memory through its own dedicated port.

X
D

B
A

X
A

B
A

Instruction Bus

P
A

B

Program
Sequencer

P
D

B

X
A

B
B

X
D

B
B

2 AAUs 4 ALUs

Data ALU
Register File

Instruction Set
AcceleratorEOnCE

Unified

128

6464323232128

128

BMU
24

Data/Program Memory

Power
Management

Clock
Generator

PLL

Address Generator
Register File
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 5

Core Architectures Compared

P

Figure 2. DSP56321 Block Diagram

YAB

XAB

PAB

YDB

XDB

PDB

GDB

MODB/IRQB

MODC/IRQC

External
Data
Bus

Switch

10

MODD/IRQD

DSP56300

616

24-Bit

24

18

DDB

DAB

Peripheral

Core

Y
M

_E
B

X
M

_E
B

P
M

_E
B

P
IO

_E
B

Expansion Area

6

5

3

RESET

MODA/IRQA

INIT/NMI

EXTAL

XTAL

Address

Control

Data

Address
Generation

Unit

Six Channel
DMA Unit

Program
Interrupt

Controller

Program
Decode

Controller

Program
Address

Generator

Data ALU

24 × 24+56→56-bit MAC

Two 56-bit Accumulators

56-bit Barrel Shifter

Power
Management

External
Bus

Interface
and

I-Cache
Control

Memory Expansion Area

DE

Program

RAM

32 K × 24 bit or X Data
RAM

80 K × 24 bit

Y Data
RAM

80 K × 24 bit

External
Address

Bus
Switch

SCI
Interface

Enhanced
Filter

(EFCOP)

CoprocessorESSI
Interface

Host

Interface
(HI08)

Triple
Timer

31 K × 24 bit and

Instruction
Cache

1024 × 24 bit

Bootstrap
ROM

Internal

Data

Bus

Switch

Clock

Generator
DPLL

OnCE™
Port

JTAG
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

6 Freescale Semiconductor

Core Architectures Compared
1.5 Processing Units
The SC140 core has three types of processing units: arithmetic logic unit (ALU), address arithmetic unit (AAU)
and bit mask unit (BMU). The DSP56300 core has an ALU and address generation unit (AGU) but does not
include a BMU. The DSP56300 can combine a single ALU calculation with two address calculations in a single
cycle of program execution. The SC140 can combine four ALU calculations with two address calculations in a
single cycle. This section describes the differences between these units on the SC140 and the DSP56300 cores.

1.5.1 ALU
Both the DSP56300 and SC140 ALUs include a multiply-accumulate unit, a bit-field unit, and a data
shifter/limiter. The heart of both ALUs is the single-cycle multiply-accumulate unit. Because both devices provide
this unit, the programming modifications for porting algorithms from the DSP56300 to the SC140 core lie
primarily in data addressing and data register usage. The DSP56300 and SC140 ALUs differ in two primary ways:
number of ALUs and number/format of ALU data registers. The SC140 core contains four ALUs so that up to four
ALU instructions can execute in a single cycle. In contrast, the DSP56300 core executes only a single ALU
instruction each cycle.

For assembly programming, the multi-ALU capability of the SC140 can result in code that is denser and more
challenging to follow. You can attempt to fit all ALU instructions to execute in a group on a single line of code, or
you can use square brackets to group these multiple instructions. The left square bracket goes before the first
instruction, and the right square bracket follows the last instruction to be executed in a group. The line of code does
not become too wide and difficult to read, and the grouping is clear. Example 6 shows these two methods of
programming.

Functionally, the DSP56300 and SC140 ALUs use their associated registers differently. The DSP56300 has four
input registers, X0/X1/Y0/Y1. The values from these registers are input to the multiplier and then to either
accumulator A or B. The value of the accumulator is placed back on the bus for returning the value to memory. The
SC140 ALU has 16 data registers that act not only as input to the ALU processing but also as the accumulator
registers for ALU operations. Therefore, these registers are the source registers for placing final calculations back
into memory. In contrast with the X,Y, and accumulator registers of the DSP56300, the SC140 core does not have
ALU registers with different functionality. All Dn registers of the SC140 ALU are interchangeable and can be used
in all ALU instructions. Excluding the mac instruction, most DSP56300 instructions are two-operand instructions.
Because the SC140 core has an increased number of data registers, many frequently-used instructions are available
as three-operand instructions so an application can preserve the values in the source registers.

Example 6. ALU Usage Comparison

In addition, the DSP56300 core combines X0 and X1 into a single register when it works on double-word (48-bit)
operands. The 16 data registers shared among the four ALUs of the SC140 core provide double-word (32-bit)
arithmetic. They can be accessed as 16-bit registers by specifying the low (d0.l) or high (d0.h) portions of the

 DSP56300 code:

 mac x0,y0,a

 SC140 code:

 mac d0,d4,d8 mac d1,d5,d9 mac d2,d6,d10 mac d3,d7,d11

 OR:

 [

 mac d0,d4,d8

 mac d1,d5,d9

 mac d2,d6,d10

 mac d3,d7,d11

]
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 7

Core Architectures Compared
registers, or they can be referenced as a single 32-bit register (d0). While X0 is a 24-bit register in the DSP56300,
D0 of the SC140 is a 40-bit register consisting of a 16-bit low portion, 16-bit high portion, and an 8-bit extension.
Instructions are available to access portions of the SC140 data registers. The saturation instructions treat the data as
either 16-bit fractional (.f) or 32-bit long (.l) and saturate accordingly. Also, data can be sign or zero-extended to
byte (.b), word (.w), or double-word (.l). The SC140 AGU provides many different types of move operations to
transfer data in and out of the different portions of the ALU data registers.

1.5.2 Address Arithmetic Unit (AAU)
In Figure 2 on page 6, the DSP56300 core calls the AAU as an address generation unit. The AAUs of the
DSP56300 and SC140 cores are similar, so there are not many programming differences. However, the differences
that exist must be understood.

The AAUs of both the DSP56300 and the SC140 cores have two address arithmetic units. Both also have eight
address registers, R[0–7]. The DSP56300 core restricts which address registers can be used with which address
arithmetic unit. The SC140 core makes all address registers accessible to both address arithmetic units. Each
DSP56300 address register has its own dedicated address modifier register (M[0–7] and N[0–7]). In contrast, the
SC140 core provides four of each type of address modifier registers (M[0–3], N[0–3]) that can be associated with
any address register by programming the Modifier Control Register (MCTL). Stack pointer differences are
discussed in Section 1.5.4.

In addition to the original eight address registers, the SC140 core provides eight base registers (B[0–7]) to specify
the base address of modulo buffers when modulo addressing is used for one of the lower eight address registers
(R[0–7]). If modulo addressing is not enabled to use a particular base register, that base register can be used as an
additional address register. Therefore, the B[0–7] base registers can also be referred to as the R[8–15] address
registers, significantly increasing the number of available address registers.

You may wonder how the SC140 core can increase its ALU functionality four-fold over the DSP56300 core, as
shown in Example 7, and yet retain only two address arithmetic units. The answer lies in the size of its buses. The
DSP56300 code shows the two parallel AGU moves that can occur in parallel with an ALU instruction. The SC140
code shows the two parallel AAU moves that can execute in parallel with four ALU instructions. Notice that the
SC140 core can fill eight registers in a single cycle.

Example 7. AAU Code Comparison

1.5.3 Bit Mask Unit (BMU)
The BMU is actually part of the SC140 address generation unit, which includes the two AAUs described in the
previous section and one BMU. This is important to remember when grouping instructions because BMU
instructions take the place of one AAU instruction in an execution group.

When you are completing an initial port of DSP56300 code to SC140 code, the bit mask unit will probably be used
only for the logical instructions (AND, NOT, EOR, and OR). There is no explicit support for the remaining bit-
mask unit operations in the DSP56300 core. However, when you optimize the ported SC140 code, you should
consider how BMU instructions may improve efficiency in decision-making and resource sharing.

 DSP56300 code:

 move x:(r0)+,y0 move y:(r4)+,y0

 SC140 code:

 move.4w (r0)+,d0:d1:d2:d3 move.4w (r1)+,d4:d5:d6:d7
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

8 Freescale Semiconductor

Core Architectures Compared
1.5.4 Program Control
The DSP56300 core uses a program control unit (PCU) to fetch new instructions, handle exceptions, and
implement the pipeline. The SC140 core uses a program sequencer (PSeq) to perform these functions. Their
purpose is the same in each core, but there are significant differences.

In both the DSP56300 and SC140 core architectures, most instructions in DSP algorithms execute in one cycle.
The DSP56300 core has a seven-stage interlocked pipeline, and the SC140 core has a five-stage pipeline with no
interlocks between the stages. The absence of interlocks in the SC140 pipeline provides more programming
flexibility and more awareness of code optimization locations. The SC140 code development tools provide
warnings if there is a possibility of incorrect code execution due to code ordering and the pipeline. Therefore, you
are alerted when the code can be rearranged for more optimized performance—rather than having the device
transparently add NOPs, as the DSP56300 core does.

The first two stages of the SC140 pipeline are pre-fetch and fetch. This is similar to the DSP56300 core. However,
the SC140 core fetches eight instruction words (128 bits) in contrast to the DSP56300 core, which fetches only a
single instruction word (24 bits). An SC140 fetch set is not the same as an execution set. The SC140 core fetches
the maximum possible instruction words each cycle. The program sequencer detects which instructions are
grouped into an execution set. On the next stage of the pipeline, the execution set is dispatched to the execution
units. The last two stages of the pipeline are address generation and execution. The DSP56300 core has two
pipeline stages for each of these tasks.

In the dispatch stage of the pipeline, the SC140 program sequencer determines the grouping of each execution set.
The SC140 core has a variable length execution set (VLES) architecture, so each execution set can have from one
to six instructions, depending on the instruction type. There are four classifications of instruction type:

• Type 1 includes basic DALU and move instructions that are frequently used.

• Type 2 includes additional DALU, move, and AGU arithmetic instructions.

• Type 3 are two-word and three-word DALU, move, and AGU arithmetic instructions.

• Type 4 includes all other instructions such as change-of flow instructions.

Chapter 6 of the SC140 Core Reference Manual describes the restrictions on how instruction types can be grouped
for this architecture.

Both the DSP56300 and the SC140 cores support hardware loops. The DSP56300 core includes a single set of
hardware loop registers and allows for as much loop nesting as there is memory available to store the status of the
loop registers. The SC140 core includes four sets of hardware loop registers that can nest within each other, with a
maximum of four loop nesting levels. Details on the coding differences between hardware loops on the DSP56300
and SC140 core are discussed in Section 2.2.

The DSP56300 core has a hardware stack that can be extended into X or Y data memory. The SC140 core has two
software stack pointers: normal (NSP) and exception (ESP). The normal stack is used by tasks when the SC140
core is in the normal mode of processing. The exception stack is used by interrupts and/or an operating system
when the SC140 core is in exception mode, indicated by the EXP bit in the status register. Stacks for both cores
store the Program Counter (PC) and Status Register (SR) values when entering subroutines. These values are
restored automatically from the stack when returning from a subroutine. To retain the performance benefit of a
hardware stack while providing the flexibility of a software stack, the SC140 core includes a register called the
Return Address Stack (RAS) that is updated with the return address when a subroutine is called. Upon returning
from the routine, the return address is taken from the RAS register instead of the stack, although the SC140 core
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 9

Assembly-Level Functional Differences
also updates the stack. When subroutine calls are nested, the RAS is valid for the leaf routine. Instructions for
accessing the SC140 stack are provided in Section 2.3. It is important to initialize both values and not to forget the
ESP when you are porting code from the DSP56300 core.

2 Assembly-Level Functional Differences
At the assembly language level, architectural and design differences can have an impact on code porting between
the DSP56300 core and the SC140 core. This section provides tips on porting assembly code directly from a
DSP56300 device to assembly on an SC140 device.

2.1 Addressing Modes
As described in Section 1.5.2, there are differences between the DSP56300 and SC140 AAU registers and
therefore some differences in addressing modes. Instead of the eight modifier (Mn) and eight offset (Nn) registers
in the DSP56300, the SC140 includes four modifier and four offset registers.

The offset registers of both cores allow an address register value either to be combined with an offset register value
to calculate a variable address or to update an address register during or after an access. The SC140 offset registers
can increment or decrement address registers in register update calculations. Although there are fewer offset
registers on the SC140 core, they can be used with any of the address registers. In the DSP56300 core, the N0
register must be used to update or offset R0. In the SC140 core, any of the four offset registers can be used as an
offset with R0. There is no restriction on which offset register is used with an address register. In addition, unused
SC140 address registers can be employed as offset registers in some addressing modes.

Since the SC140 core is not word-addressable and allows access widths of varying sizes, the SC140 AAU
automatically shifts the offset value to align with the access width of a given transaction. The programmer does not
need to vary the offset size for each access size.

The Indexed By Offset, (Rn + Nn) addressing mode differs between the DSP56300 core and the SC140 core. The
DSP56300 address register, Rn, can be indexed by its associated offset register, Nn. The SC140 core allows
indexing by offset register N0 or a separate address register (R[0–7]). N1, N2, and N3 are not usable in this
particular addressing mode. While the SC140 allows unused address registers to be repurposed for this indexing,
you must ensure that this change is taken into account and that N[1–3] are not selected for this use when code is
converted from DSP56300 code.

The SC140 core does not support the predecrement by 1, -(Rn) addressing mode. It does support Postdecrement by
Offset Nn, although it does not explicitly list this mode in its address modes list. The SC140 core treats the offset
register value as a signed value, so a negative offset value used in Post-Increment by Offset, (Rn)+Nn mode
effectively implements a post-decrement by offset transaction.

Both the SC140 and DSP56300 cores support modulo addressing. However, the SC140 core simplifies the
placement and planning for modulo buffers. The DSP56300 core requires the following steps to set up the modulo
registers.

1. Set the modifier register to the size of the buffer minus 1, Mn = M –1.

2. Calculate the lower bound of the buffer.

J
Lower Bound = XX . . . XX00 . . . 00, where 2J ≥ M

Bit number 23 0
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

10 Freescale Semiconductor

Assembly-Level Functional Differences
3. Calculate the upper bound of the buffer:

4. Set the address register, .

5. Set the offset register, Nn = .

The DSP56300 core does not include an explicit buffer for defining the base address of the modulo buffer, so the
core calculates the base address using the size of the buffer and location of the address register. For the calculation
to work, the buffer must be placed at a location with the correct number of zeroes in the lower part of the address.
This process can easily result in errors if the buffer is placed incorrectly.

The SC140 core includes explicit base registers in its AAU, which greatly simplify the process of locating a
modulo buffer and thereby simplify memory management. Each address register, R[0–7], has an associated base
register, B[0–7]. If an address register is assigned to point to a modulo buffer, its associated base register must be
programmed to the base address of the buffer. Because the base address is explicitly set in a register, the
requirement for a certain number of zeros in the lower portion of the buffer base address is no longer necessary.
The SC140 core does not provide a separate buffer size register, Mn, for each address register. Often, buffer sizes
are common among buffers, so the SC140 core provides four Mn registers for use by multiple active buffers
simultaneously. The process for initializing modulo buffers on the SC140 core is as follows:

1. Program Rn to an address within the buffer.

2. Program modulus size minus 1 to the Mn register.

3. Program base register, Bn, to the modulo buffer base address.

4. Program the MCTL to indicate which address register(s), Rn, points to a modulo buffer and which
modulo size register, Mn, should be used for the buffer(s).

Example 8 shows SC140 code for setting up two modulo buffers of the same size.

Example 8. SC140 Modulo Buffer Initialization

Address register 1, r1, and address register 3, r3, each point to a modulo buffer. Both buffers are the same size.
Base address register 1, b1, stores the base address of buffer 1. Base address register 3, b3, stores the address of
buffer 2. The MCTL is programmed so that r1 uses modulo addressing with address modifier register m0. It also
programs r3 to use modulo addressing with address modifier register m0.

2.2 Hardware Loops
Both the DSP56300 and SC140 cores support hardware loops. The software syntax for initiating a loop differs
slightly between the two cores. The DSP56300 has loop count (LC) and loop address (LA) registers that are
initialized at the start of a loop. When loops are nested, the values of LC and LA are placed on the system stack as
program flow enters a new loop. Up to seven DO loops can be nested. If the system stack extension is enabled, the
number of nested DO loops is limited only by the size of the extension provided by the application programmer.
The SC140 core provides four loop start address registers (SA[0–3]), four loop counter registers (LC[0–3]), and
five loop flags in the status register. This means that the SC140 core can support up to four nested hardware loops.

J
Upper Bound = XX . . . XX00 . . . 00 + M –1.

Bit number 23 0

LowerBound AddressRegisterRn UpperBound≤ ≤

increment M≤

 move #ModBuff1Addr,r1 move #ModBuff2Addr,r3

 move #BuffSize-1,m0

 move #ModBuff1Base,b1 move #ModBuff2Base,b3

 move.l #$00008080,MCTL
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 11

Assembly-Level Functional Differences
Note: When loops are nested on the SC140 core, keep in mind that a loop can be nested only within a
loop that has a lower index (loop 3 inside of loop 2/1/0, loop 2 inside loop 1/0, loop 1 inside of
loop 0).

Example 9 and Example 10 show loop programming syntax for the DSP56300 and SC140 cores. The DSP56300
core requires a statement at the start of the loop designating the number of loop iterations and the address of the end
of the loop. The loop starts immediately after this statement.

Example 9. DSP56300 Hardware Loop Syntax

In contrast, the SC140 core requires a statement to program the loop count and loop address values for a specific
loop. In Example 10, the starting address of the loop and the number of loop iterations is programmed to the LC
and SA registers. dosetup<n> places the loop start address in the start address register (SA). doen<n> places
the number of loop iterations in the Loop Count Register (LC). Because they are dedicated to each loop, the loop
registers can be initialized at the beginning of an application and invoked when needed. The loopstart0 and
loopend0 directives are assembler directives to indicate the start and end of the loop to the assembler. These
directives do not consume core clock cycles.

Example 10. SC140 Hardware Loop Syntax

There are multiple options for converting a loop from DSP56300 assembly code to an SC140 loop:

• Perform four operations simultaneously.

• Process four of the operations in a single cycle and divide the number of loop iterations by four.

There are multiple methods for arranging loops to optimize their performance in the SC140 multi-ALU
architecture. These methods are detailed in application notes available on the SC140-based device product
summary web sites. Also, you can maximize loop efficiency even when programming in C. AN2009, Introduction
to the StarCore SC140 Tools: An Approach in Nine Exercises, is a helpful introduction to programming SC140
using the CodeWarrior tools from Metrowerks. AN2266, Developing Optimized Code for Both Size and Speed on
the SC140, is another useful application note for developing optimized code. Examples in these application notes
describe loop unrolling, split summation, and multi-sample techniques for optimizing loops in a multi-ALU device.

 do _loop_cnt,_StopLoop

 mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0

 mac x1,y1,b x:(r1)+,x1 y:(r5)+,y1

 _StopLoop

 dosetup0 _StartLoop0

 doen0 #loop0_iterations

 ; more code can go here

 loopstart0

 _StartLoop0

 mac d0,d1,d2 add d5,d6,d4 inc d6 move.2w (r0)+,d0:d1 move.2w (r1)+,d5

 sub d7,d8,d9 add d2,d4,d4 move.w (r3)+n1,d7 move.w (r4)+n2,

 move.w d4,(r2)+ move.w d9,(r5)+

 loopend0

 _EndLoop0
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

12 Freescale Semiconductor

Assembly-Level Functional Differences
2.2.1 Short Loops
The DSP56300 core includes a rep instruction for an even faster hardware loop configuration called a repeat loop,
which executes very rapidly because it allows only a single instruction to repeat. This instruction is fetched once at
the beginning of the loop, and no additional fetches are required for the loop to execute to completion. The
disadvantage of this loop is that it is not interruptible, so if an application requires program flow to respond to
interrupts immediately and a repeat loop with a large loop count is executing, there can be latency issues.

The SC140 core addresses this drawback with a mechanism called a short loop. The short loop provides the same
type of performance gain since its size is restrained to one or two execution sets so that program fetches are not
required to execute the loop to completion. However, the short loop is interruptible. Figure 11 shows the syntax for
short loops. The DSP56300 code on the left shows the single-cycle execution allowed in the repeat loop. The
SC140 code on the right shows an example of a short loop with two execution sets.

Example 11. Short Loop Syntax Comparison

2.2.2 Additional Looping Instructions
Both the DSP56300 and SC140 cores provide additional instructions for loop support. On the DSP56300 are
BRKcc, DO FOREVER, DOR, DOR FOREVER, and ENDDO. DOR is a PC-relative hardware loop. The SC140
does not include support for PC-relative hardware loops. It also does not include infinite loops such as the DO
FOREVER loop. These DSP56300 loops must be converted to standard hardware loops on the SC140 core.

The additional SC140 looping instructions are SKIPLS, CONT, CONTD, and BREAK. BREAK provides the same
functionality as BRKcc when it is combined with an IFc instruction. SKIPLS provides new functionality for
jumping the program flow to a defined label if the loop count is not a positive value to avoid the extra cycles of
initiating a loop. When loop count is greater than 1, the CONT instruction allows the program flow to bypass any
remaining portion of a loop and return to the beginning of the loop. If loop count is less than or equal to 1, the
program flow can exit the hardware loop by jumping to a designated label. CONTD has the same purpose as
CONT but includes a delay slot. Delay slots are described in Section 2.3.2. These new SC140 looping instructions
provide additional functionality to increase efficiency in assembly-coded algorithms.

falign is not a looping instruction, but an assembler directive that significantly affects loop efficiency on the
SC140 core. When loops are converted from DSP56300 to SC140 code, this directive should be placed
immediately before the SC140 loop. To optimize how the program control unit fetches a VLES at the start of a
loop, the loop must be aligned so that the VLES is aligned on a loop boundary. Fewer fetches can occur on each
loop iteration and thereby improve performance if the loop is aligned. falign adds nops in front of the loop to
align the loop. An alternative to falign is to check the loop alignment and arrange instructions before the loop so
that the loop is aligned in memory on a fetch set boundary.

 rep #N-1

 mac x0,y0,a x(r0)+,x0 y:(r4)+,y0

 doensh0 #$10

 loopstart0

 mac d0,d1,d2 move.w (r0)+,d0

 add d5,d6,d4 move.w (r1)+,d5

 loopend0
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 13

Assembly-Level Functional Differences
2.2.3 Looping Restrictions
Both the DSP56300 and the SC140 cores restrict nesting and change-of-flow instruction placement in loops. The
restrictions are similar between the two cores, but the SC140 core adds a few changes because of its VLES
architecture. If you are programming in C, the compiler generates code that avoids any restrictions. However, when
assembly code is converted, keep the following differences in mind:

• Conditional branches or jumps (Bcc/Jcc) are not allowed in the last four execution sets of a long loop
(LA-3 to LA).

• The DOEN/DOENSH instruction cannot be placed between the DOEN/DOENSH instruction and the
start address of a second loop.

• If a short loop is nested inside another loop, the last address of the short loop should not appear in the
last two execution sets of the outer loop (LA, LA-1).

• A move-like instruction that changes the loop flags in the status register is not allowed in the execution
set immediately before a DOEN/DOENSH instruction.

• Only loop instructions should update the status register during active loops.

In addition, certain operations are not allowed in short loops. Refer to the SC140 Core Reference Manual for details
on these restrictions. For converting code from the DSP56300, these operations are not an issue because they
would not occur in a repeat loop, but they should be considered when you are writing new assembly code for the
SC140 core.

2.3 Instruction Set Differences
Although the DSP56300 and SC140 instruction sets are similar, there are differences due to new architectural
features of the SC140 core. Table 3, “Instruction Set Comparison,” on page 21, is a useful reference when you are
converting assembly code between the cores. One significant difference between the cores lies in the capabilities of
their AGUs. The DSP56300 AGU is used only for moving data around the device. The SC140 AGU has expanded
arithmetic capabilities for modifying data in memory and performing arithmetic operations on AGU registers. See
Table 4, “SC140 AGU Arithmetic Instructions,” on page 24.

The SC140 core supports 5-bit or 16-bit immediate values for its immediate instructions. The DSP56300 core
generally provides 6-bit and 16-bit immediate options on its immediate instructions. If a 6-bit immediate value is
used in the DSP56300 code, the converted code should either use a 16-bit immediate value in the SC140 assembly
or the line should be modified so it can use a 5-bit immediate value.

To access the stack in the DSP56300, move instructions are used with the stack as the source or destination. The
SC140 has a normal stack pointer and an exception stack pointer. The SC140 instruction set provides explicit
instruction support for accessing the stack. The SC140 stack support instructions are listed in Table 1. Two of these
instructions can be implemented in parallel if they follow the guidelines described in chapter 5 of the SC140 Core
Reference Manual.

Table 1. SC140 Stack Support Instructions

Instruction Description

POP Pop a register from the software stack

POPN Pop a register from the software stack using the normal stack pointer

PUSH Push a register onto the software stack

PUSHN Push a register onto the software stack using the normal stack pointer

TFRA Move the other stack pointer to/from a register
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

14 Freescale Semiconductor

Assembly-Level Functional Differences
SC140 ALU support for integer arithmetic is provided in a group of arithmetic instructions with the “i” prefix.
These instructions perform calculations with the decimal point immediately to the right of the least significant bit
of the lower portion of the data register. These instructions sign-extend or zero-extend the data register based on
whether the arithmetic is signed or unsigned. Data transfer instructions are available to move data into the low
portion of the register to support this arithmetic mode. Data transfer instructions are also available to move data in
and out of the high portion of data registers for fractional arithmetic. Fractional arithmetic instructions perform
arithmetic calculations with the decimal point immediately to the right of the most significant bit of the high
portion of the register.

The DSP56300 data movement operations are based on its 24-bit architecture. All moves are related to 24 or 48 bit
operands. Because the SC140 core is byte-addressable and feeding four ALUs, it includes more flexibility in
operand sizes and quantity of data to be moved. For 16-bit operands, it uses the .w and .f suffixes. The .w suffix
indicates that a word is being moved. When a word is moved, the 16 bits are moved to/from the lower 16 bits of the
operand and the upper portion of the register is sign-extended or zero-extended, depending on whether it is a signed
or unsigned move. The .f suffix indicates that the data is fractional. Fractional data is moved to/from the upper 16
bits of the operand. The lower portion of the register is cleared. A .l suffix is also available for moving 32-bit data
into the data registers. Because the data buses are wider on the SC140 core than on the DSP56300 core, it can use
multi-operand moves, transferring two fractionals or words, four fractionals or words, or two longs in and out of
memory using a single AAU move instruction with the correct suffix.

The SC140 core includes expanded instruction support for Viterbi decoding kernels. In addition to the VSL
instruction also available in the DSP56300, the SC140 includes a MAX2VIT instruction to update two Viterbi flags
(VFs) in the status register. The application note, ANSC140VIT/D, How to Implement a Viterbi Decode on the
StarCore SC140, explains how to use these instructions as well as the ADD2 and SUB2 instructions in the context
of Viterbi decoding.

Two new instructions are available on the SC140 core for managing interrupts: ei (enable interrupts) and di
(disable interrupts). These instructions affect any maskable interrupts. In addition, their effect is immediate—even
exception-causing instructions in the same execution set with the ei/di are enabled or disabled by execution of
these interrupt instructions. These instructions can be used to protect code that should not be interrupted.

2.3.1 Conditional Operations
The DSP56300 status register includes eight condition codes in its condition code register (CCR). The SC140 core
includes a single condition bit in the status register, the true (T) bit, which changes how conditional operations are
programmed. For conditional change of flow, the DSP56300 core provides an extensive list of possible Bcc and
Jcc instructions based on each condition code. These instructions rely on a previous compare instruction to set the
appropriate status register condition bit. Then the change-of-flow instruction checks the status register bit for the
specified condition and executes a change of flow based on the result of the test. The SC140 core provides test
(TSTcc) and compare (CMPcc) instructions for testing a given condition. The difference is that the SC140 core
includes the condition being checked for in the comparison instruction rather than in the change-of-flow
instruction. If the comparison condition is true, the T bit in the status register is set. If it is false, the bit is cleared.
Conditional branches and jumps then become a simple branch-true/false (BT/BF) or jump-true/false (JT/JF). Also,
the SC140 core provides comparison instructions for both ALU and AAU accumulators/registers. Example 12
compares how the two devices handle conditional change of flow.
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 15

Assembly-Level Functional Differences
Example 12. Conditional Change-of-Flow Comparison

Both cores include a convenient conditional execution (IFcc) instruction to tell the device to execute a line of code
only if a specified condition is met. As with the change-of-flow instructions, the DSP56300 conditions are based
on the eight possible condition codes in the status register while the SC140 conditional execution statement uses
the T bit. The operation is similar between the two devices, but since the SC140 has multiple operating units it
includes a mechanism for splitting an execution set into separate subgroups. Three IF instructions support this
functionality: if-true (IFt), if-false (IFf), and if-always (IFa):

• Instructions grouped with the IFt execute if the T bit has a value of 1.

• Instructions grouped under IFf execute if the T bit has a value of 0.

• Instructions grouped with IFa execute unconditionally.

Example 13 shows a possible use of conditional execution in the SC140 core and how it contrasts with the
DSP56300 core. The mac, clr, and inc instructions execute only if the T bit is set. The lsl, neg, and dec
instructions execute regardless of the T bit setting.

Example 13. Conditional Execution Comparison

2.3.2 Delay Slot
The SC140 core includes additional change-of-flow instructions with a “d” suffix that use the delay slot and can
significantly improve code efficiency. Because of the pipeline activity when a change of flow occurs, an additional
execution set may execute before the change of flow. This additional execution set is placed into the delay slot, in
the additional line of code immediately after the change-of-flow instruction. In Example 14, the multiply-
accumulate-with-rounding is completed prior to the start of execution at BRANCH_LOCATION. When code is
converted from the DSP56300 core, it is helpful to remember these delay slot instructions because they can
improve cycle time for your application.

Example 14. Delay Slot Usage

 DSP56300 code:

 cmp x0,a

 bgt BRANCH_LOCATION

 SC140 code:

 cmphi d0,d1

 bt BRANCH_LOCATION

 DSP56300 code:

 cmp x0,a

 iflt mac x0,x1,a

 SC140 code:

 cmphi d0,d1

 [

 ift mac d0,d1,d1

 clr d5

 inc r1

 ifa lsl d4,d9

 neg d10

 dec r2

]

 SC140 code:

 cmphi d0,d1

 jtd BRANCH_LOCATION

 macr d0,d1,d1 macr d2,d3,d3 macr d4,d5,d5 macr d6,d7,d7
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

16 Freescale Semiconductor

C Programming
2.3.3 Bit Mask Instructions
In both the DSP56300 and SC140 cores, bit checking and manipulation is available to support software semaphore
handling. The primary difference between the two cores is that the bit-test-change instructions of the SC140 core
use a bit mask to define which bits can be tested and changed. Therefore, the SC140 core can test multiple bits in a
single cycle. The DSP56300 instructions test a single bit. The DSP56300 core includes two instructions for this
function: bchg (bit test and change) and bclr (bit test and clear). The SC140 can also test a bit directly in
memory, but it uses a separate instruction mnemonic to indicate this variation. Both devices implement this testing
as a read-modify-write operation that uses two memory accesses on the bus. Bit mask instructions on the SC140
core execute in the bit mask unit. This unit uses one of the AGU buses, so when these instructions are used they
take one of the AGU slots in an execution set. Table 2 lists the SC140 bit mask instructions. The SC140 bit-masked
test instructions set the T bit, so a subsequent change-of-flow operation can be used to modify the program counter
based on the status of a bit located in either a register or memory.

3 C Programming
Because C is a high-level language, conversion of C code between the DSP56300 and SC140 cores does not
require as much concern with architectural intricacies. However, most DSP56300 C code has optimizations that
make it non-ANSI-C-compliant. In addition, calling conventions between C and assembly routines in the two cores
are not the same. One method for conversion is to convert the DSP56300 code to ANSI C code and then add
device-specific optimization directives and assembly function calls as needed for an application’s performance
requirements. This section describes points to keep in mind when you are converting C code from the DSP56300
core to the SC140 core. In addition, the web site listed on the back cover of this document provides many
application notes with C programming examples for the SC140 core. This section assumes that you are using the
Tasking™ C compiler in combination with the Suite56 DSP tools for the DSP56300 and the Metrowerks
CodeWarrior compiler for the SC140 core.

For the DSP56300 core, the Tasking compiler uses an explicit fractional type, _fract. In addition, type casting
can be used in DSP56300 C code, such as _CF(X) *(_fract *)&(X), to convert a variable to fractional. For
integers, primitives are used to indicate integer arithmetic operations. The explicit type definitions, type casting,
and primitives must be carefully coded to ensure that the data is handled properly. Keep in mind that the size of an
integer in the SC140 is 32-bits, while an ‘int’ for the DSP56300 is 24-bits.

Table 2. SC140 Bit Mask Instructions

Instruction Description

BMCHG Bit-masked change a 16-bit operand

BMCHG.W Bit-masked change a 16-bit operand in memory

BMCLR Bit-masked clear a 16-bit operand

BMCLR.W Bit-masked clear a 16-bit operand in memory

BMSET Bit-masked set a 16-bit operand

BMSET.W Bit-masked set a 16-bit operand in memory

BMTSET Bit-masked test and set a 16-bit operand

BMTSET.W Bit-masked test and set a 16-bit operand in memory

BMTSTC Bit-masked test a 16-bit operand if clear

BMTSTC.W Bit-masked test a 16-bit operand if clear in memory

BMTSTS Bit-masked test a 16-bit operand if set

BMTSTS.W Bit-masked test a 16-bit operand if set in memory
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 17

C Programming
The SC140 core follows the ITU standards in defining intrinsics to handle fractional operations and allowing
integer arithmetic to be ANSI C code. Example 15 shows a comparison of how integer and fractional variables can
be defined and then used in C. Below the C code is the assembly equivalent of the code.

Example 15. Integer and Fractional with the SC140 Compiler

The C code is easy to read, and the compiler efficiently implements the code in SC140 assembly. The
prototypes.h file includes the intrinsics used by the SC140 compiler. When you are working with standard
ITU code, this file can replace the basic_op.h definition file. Prototypes.h also includes intrinsics that
support double-precision arithmetic, generating assembly code for 32-bit × 32-bit operations while remaining at
the C programming level. An option is included for translating a C statement directly into an assembly instruction
such as mpyus. Additional intrinsics translate into multi-instruction operations for a full-precision result.

As noted earlier, the SC140 stack is a software stack that operates differently from the stack on the DSP56300 core.
The stack location can be defined in the linker command file so that the compiler reserves that space for stack
usage. The CodeWarrior start-up file uses this information to initialize the stack pointer. If this method is not used,
the stack pointers must be explicitly initialized using inline assembly commands. Example 16 shows in-line
assembly for initializing both the exception and normal stack pointers to 0x30000 and 0x35000, respectively.

Example 16. Stack Initialization and Inline Assembly

Notice that the format of inline assembly is somewhat modified from the format of the DSP56300 code. In
DSP56300 code, an inline assembly line of code has the form _asm(“nop”);. The SC140 compiler allows a
label to be defined in the inline assembly, so the first space after the asm(" is for a label, if desired. Also, the _
symbol is not used with asm on the SC140 core. Tasking uses the following calling conventions for passing
parameters, saving, and restoring registers:

• First parameter: passed in A if a numeric scalar, r0 if an address.

• Second parameter: passed in B if a numeric scalar, r4 if an address.

• Third parameter: passed in X0 if a numeric scalar, r1 if an address.

• Fourth parameter: passed in X1 if a numeric scalar, r5 if an address.

• Fifth parameter: passed in Y0 if a numeric scalar, r2 if an address.

• Sixth parameter: passed in Y1 if a numeric scalar.

• Subsequent parameters: passed on the stack.

• Return value: numeric value returned in A, address value returned in r0.

 long a;

 short b,c;

 a = a + b * c;

 move.w (r0),d0

 imac d0,d1,d2

 #include “prototypes.h”

 long a;

 short b,c;

 a = L_mac(a,b,c);

 move.f (r0),d0

 mac d0,d1,d2

 asm(" move.l #$30000,r7 ");

 asm(" move.l #$35000,r6 ");

 asm(" tfra r6,osp "); /* set ESP */

 asm(" tfra r7,sp "); /* set SP */
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

18 Freescale Semiconductor

C Programming
• Calling function must save registers, unless the save-by-callee calling convention is selected with the
_callee_save keyword.

Note: If a 48-bit long data type is needed, the entire X or Y register is used.

The SC140 core uses different conventions. The SC140 Application Binary Interface document defines the rules
for passing parameters, saving, and restoring registers with the SC140 core. Code that is converted from DSP56300
core to the SC140 core must modify how the calls are made and ensure that all registers are saved appropriately.
Consider the C code in Example 17.

Example 17. C Function

Assuming that the add_nums function is implemented in assembly, you must be aware of which registers and
memory locations are to hold the passed variables. Here are some rules to keep in mind from the SC140 ABI:

• First parameter: passed in d0 if a numeric scalar, r0 if an address.

• Second parameter: passed in d1 if numeric scalar, r1 if an address.

• Subsequent parameters: passed on the stack.

• Return value: numeric value returned in d0, numeric address value returned in r0.

• Called function must save and restore the following registers (if used): d6, d7, r6, r7.

• Calling function must save and restore any other registers before and after the function call.

For Example 17, var1 is passed in d0. var2 is passed in d1. var3-var5 are passed on the stack. The result of
the function is returned in d0. The variables passed on the stack are placed on the stack prior to the status register
and return address for the change of flow. The assembly function can then use the stack for local variables and any
additional saved registers. These must be removed from the stack prior to the return from subroutine. For Example
17, a function prototype for the assembly function must be defined, as shown in Example 18.

Example 18. SC140 Function Prototype

For the DSP56300 core, this prototype is similar to Example 19. In contrast with the SC140, the Tasking C code
must inform the compiler that this is an assembly function, use the _fract type, and specify the memory bank of
the variable location. The SC140 compiler simplifies prototype definitions.

Example 19. DSP56300 Function Prototype

The SC140 assembly language function provides the function marker using the label _add_nums. The _ prefix
indicates that the function can be called from C.

 main()

 {

 ...

 sum = add_nums(var1, var2, var3, var4, var5);

 printf(“sum = %d\n”, sum);

 ...

 }

short add_nums{short var1, short var2, short var3, short var4, short var5);

 _asmfunc _fract add_nums{_fract _Y var1, _fract _Y var2,

 _fract _Y var3, _fract _Y var4, _fract _Y var5);
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 19

Software Tools Support
Example 20. SC140 Assembly Program

This example shows how interfacing between C and assembly is simpler in SC140 programming than in
DSP56300 programming. Also, the standard intrinsics for handling fractional operations make it a minor task to
run standard telecommunication algorithms on the SC140 core.

4 Software Tools Support
Suite56 tools for DSP56300 software development and CodeWarrior tools for SC140 software development both
support DSP coding, but the CodeWarrior tools are a superset of the Suite56 tools. Similar to Suite56, CodeWarrior
includes an assembler, linker, compiler, command-line debugger, and simulator. However, CodeWarrior also
includes OS support, cache performance analysis, profiling, optimized code debugging, and more—all within a
graphical user interface. CodeWarrior provides a seamless code development environment that you will find
convenient.

The heart of the software development tools is the SC140 compiler, which performs so well in benchmarks that
many DSP algorithms previously requiring hand-coding of critical sections in assembly can now remain
completely in C. If you decide to hand-code some sections in assembly, you will find that the assembly macros are
the same and that the assembly directives are very similar between the two cores. There are some changes due to
the difference in addressing size (byte-addressing on the SC140), the SC140 unified memory addressing, and
alignment directives for fetch sets. The linker and compiler of the SC140 core and DSP56300 core differ
significantly. Be sure to review the linker and compiler manuals to become familiar with the available options. For
a quick and easy start using the tools provided for the SC140 core, use any available ANSI C code and run it using
the SC140 stationary provided with the CodeWarrior tools. After the ANSI C code is running, additional study of
the C compiler options and linker directives will help you to improve code efficiency. Metrowerks provides
extensive documentation detailing the features of the CodeWarrior environment.

 section .text local

 global _add_nums

 _add_nums

 push d6 push d7

 push r6 push r7

 add d1,d0,d0 ; add var1 and var2

 move.w (sp-10),d1 ; get var3 from stack

 add d1,d0,d0 ; add var3

 move.w (sp-12),d1 ; get var 4 from stack

 add d1,d0,d0 ; add var4

 move.w (sp-14),d1 ; get var5 from stack

 add d1,d0,d0 ; add var5

 pop r6 pop r7

 pop d6 pop d7

 rts ; sum is in d0
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

20 Freescale Semiconductor

Appendix
5 Appendix
Table 3 shows the DSP56300 instructions paired with their similar SC140 instructions. The SC140 core does not
always support an instruction feature of the DSP56300 core. Also, the SC140 core supports instructions not
available in the DSP56300 core. The instruction cache control instructions are not included in the table. Use of an
instruction cache with the SC140 core is device-specific and controlled through cache implementation.

Table 3. Instruction Set Comparison

DSP56300 SC140 Description

Arithmetic Instructions

ABS ABS Absolute value

ADC ADC Add long with carry

ADD ADD Add

— ADD2 Add two words

ADDL — Shift left and add

— ADDNC.w Add without changing carry bit in status register

ADDR — Shift right and add

— ADR Add and round

ASL ASL Arithmetic shift left

ASL ASLL Multi-bit arithmetic shift left

— ASLW Word arithmetic shift left (16-bit shift)

ASR ASR Arithmetic shift left

ASR ASRR Multi-bit arithmetic shift right

— ASRW Word arithmetic shift right (16-bit shift)

CLR CLR Clear accumulator

CMP/CMPM/CMP
U

CMPEQ/CMPGT/CMP
HI

Compare instructions

DEC DECEQ/DECGE Decrement by one

DIV DIV Divide iteration

DMAC DMACSS/DMACSU Double-precision multiply-accumulate with right
shift

— IADD Add integers

— IMAC Multiply-accumulate integers

— IMACLHUU Multiply-accumulate unsigned integers

— IMACUS Multiply-accumulate unsigned integer and signed
integer

— IMPY.w Multiply integer

— IMPYHLUU Multiply unsigned integer and unsigned integer

— IMPYSU/IMPYUU Multiply mixed signed/unsigned integers

INC INC Increment by one (integer)

— INC.f Increment by one (fractional)

MAC MAC Signed multiply-accumulate
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 21

Appendix
MAC MACSU/MACUS/MAC
UU

Multiply-accumulate with mixed signed/unsigned

MACI MAC Signed multiply-accumulate with immediate
operand

MACR MACR Signed multiply-accumulate with round

MACRI MACR Signed multiply-accumulate and round with
immediate

MAX MAX Transfer maximum signed value

— MAX2 Transfer two 16-bit maximum signed values

— MAX2VIT Special MAX2 version for Viterbi kernel

MAXM MAXM Transfer maximum magnitude value

— MIN Transfer minimum signed value

MPY MPY Signed multiply

MPY MPYSU/MPYUS/MPY
UU

Multiply with mixed signed/unsigned

MPYI — Multiply with immediate operand

MPYR MPYR Multiply signed fractions and round

MPYRI — Multiply signed fractions and round with immediate

NEG NEG Negate accumulator

NORM — Norm accumulator iteration

NORMF — Fast accumulator normalization

RND RND Round accumulator

— SAT.F Saturate fraction value

— SAT.L Saturate long value

SBC SBC Subtract long with carry

— SBR Subtract and round

SUB SUB Subtract

— SUB2 Subtract two words

SUBL SUBL Shift left and subtract

— SUBNC.w Subtract without changing carry bit in status
register

SUBR — Shift right and subtract

Tcc TFRT/TFRF Transfer conditionally

TFR TFR Transfer data ALU register

TST TSTEQ/TSTGE/TSTGT Test accumulator

Logical Instructions

AND AND Logical AND

ANDI AND Logical AND

CLB CLB Count leading bits

EOR EOR Logical exclusive OR

EXTRACT EXTRACT Extract bit field

Table 3. Instruction Set Comparison (Continued)

DSP56300 SC140 Description
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

22 Freescale Semiconductor

Appendix
EXTRACTU EXTRACTU Extract unsigned bit field

INSERT INSERT Insert bit field

LSL LSLL Logical shift left

LSR LSR Logical shift right by one bit

LSR LSRR Multi-bit logical shift right by

— LSRW Word logical shift right (16-bit shift)

MERGE — Merge two half words

NOT NOT One’s complement

OR OR Logical OR

ORI — OR immediate with control register

ROL ROL Rotate one bit left through the carry bit

ROR ROR Rotate one bit right through the carry bit

— SXT.b, SXT.l, SXT.w Sign extend byte/long/word

— ZXT.b, ZXT.l, ZXT.w Zero extend byte/long/word

Bit Manipulation Instructions

BCHG BMCHG Bit test and change/Bit-mask change

BCLR BMCLR Bit test and clear/Bit-mask clear

BSET BMTSET Bit test and set/Bit-mask test and set

— BMSET Bit-mask set a 16-bit operand

BTST BTSTS/BTSTC Bit test if set, if clear

Loop Instructions See Section 2.2, Hardware Loops, on page 11

Move Instructions See Section 2.3, Instruction Set Differences, on page 14

Change-of-Flow Instructions

Bcc BT/BF, BTD/BFD Branch conditionally, see Section 2.3.1 for details

BRA BRA, BRAD Branch always

BRCLR — Branch if bit clear

BRSET — Branch if bit set

BScc — Branch to subroutine conditionally

BSCLR — Branch to subroutine if bit clear

BSR BSR, BSRD Branch to subroutine

BSSET — Branch to subroutine if bit set

Jcc JT/JF, JTD/JFD Jump conditionally

JCLR — Jump if bit clear

JMP JMP, JMPD Jump

JScc — Jump to subroutine conditionally

JSCLR — Jump to subroutine if bit clear

JSET — Jump if bit set

JSR JSR, JSRD Jump to subroutine

Table 3. Instruction Set Comparison (Continued)

DSP56300 SC140 Description
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 23

Appendix
Table 4 lists the AGU arithmetic instructions that are new on the SC140 core.

JSSET — Jump to subroutine if bit set

RTI RTE, RTED Return from interrupt/exception

RTS RTS, RTSD Return from subroutine

— RTSTK, RTSTKD Force restore PC from the stack, updating SP

Program Control Instructions

DEBUG DEBUG Enter debug mode

DEBUGcc — Enter debug mode conditionally

— DEBUGEV Signal debug event

— DI Disable interrupts

— EI Enable interrupts

IFcc — Execute conditionally without CCR update

IFcc.U IFA,IFF,IFT Execute conditionally, see Section 2.3.1 for
details

ILLEGAL ILLEGAL Trigger an imprecise illegal instruction exception

— MARK Push the PC into the trace buffer

NOP NOP No operation

REP — Repeat next instruction

RESET — Reset on-chip peripheral devices

STOP STOP Stop processing

TRAP TRAP Execute a precise software exception

TRAPcc — Conditional software interrupt

WAIT WAIT Wait for interrupt

Table 4. SC140 AGU Arithmetic Instructions

Instruction Description

ADDA Add (affected by the modifier mode)

ADDL1A Add with 1-bit left shift of source operand (affected by modifier mode)

ADDL2A Add with 2-bit left shift of source operand (affected by modifier mode)

ASL2A Arithmetic shift left by 2 bits (32-bit)

ASLA Arithmetic shift left (32-bit)

ASRA Arithmetic shift right (32-bit)

CMPEQA Compare for equal

CMPGTA Compare for greater than

CMPHIA Compare for higher (unsigned)

DECA Decrement register

DECEQA Decrement and set T if zero

DECGEA Decrement and set T if equal of greater than zero

INCA Increment register

Table 3. Instruction Set Comparison (Continued)

DSP56300 SC140 Description
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

24 Freescale Semiconductor

Appendix
LSRA Logical shift right (32-bit)

SUBA Subtract

SXTA.B Sign extend byte

SXTA.W Sign extend word

TFRA Register transfer

TSTEQA Test for equal

TSTEQA.w Test for equal on lower 16 bits

TSTGEA Test for greater than or equal

TSTGTA Test for greater than

ZXTA.b Zero extend byte

ZXTA.w Zero extend word

Table 4. SC140 AGU Arithmetic Instructions (Continued)

Instruction Description
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 25

Appendix
NOTES:
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

26 Freescale Semiconductor

Appendix
NOTES:
Porting Code From the DSP56300 Family of Products to the SC140/SC1400 Core, Rev. 1

Freescale Semiconductor 27

AN2715

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2004.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Rev. 1
11/2004

	1 Core Architectures Compared
	1.1 16 Bits Versus 24 Bits
	1.2 Endianness and Bit Ordering
	1.3 Memory Organization
	1.4 Bus Structure
	1.5 Processing Units

	2 Assembly-Level Functional Differences
	2.1 Addressing Modes
	2.2 Hardware Loops
	2.3 Instruction Set Differences

	3 C Programming
	4 Software Tools Support
	5 Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

