
Freescale Semiconductor
Application Note

Document Number: AN3381
Rev. 0, 11/2006

Contents

© Freescale Semiconductor, Inc., 2006. All rights reserved.

1 Introduction
This application note explains how to modify any Simple
Media Access Controller (SMAC) application created by
the BeeKit Wireless Connectivity ToolkitTM to run the
application on the MC9S08QD4 microcontrollers. While
this application note is useful to import any BeeKit
Wireless Connectivity Toolkit application to other
microcontrollers, the target of this application note is the
MC9S08QD4 device.

2 Overview
The BeeKit Wireless Connectivity Toolkit is a
comprehensive codebase of wireless networking
libraries, application templates, and sample applications.
The BeeKit Graphical User Interface (GUI), part of the
BeeKit Wireless Connectivity Toolkit, allows users to
create, modify, and update various wireless networking
implementations. This application note describes the
steps to import these applications to MC9S08QD4
microcontrollers. The BeeKit Wireless Connectivity
Toolkit allows selecting demo applications from a list of
pre-loaded applications that you can configure. The
configure options include: select number of serial port,

1 Introduction . 1
2 Overview . 1
3 Where to use Low-End Microcontrollers 2
4 Functional Description . 2

4.1 Hardware Configuration. 2
5 Requirements for CodeWarrior to use the

MC9S08QD4 Microcontroller. 4
6 Create a BeeKit Wireless Connectivity Toolkit Application4
7 Import the BeeKit Wireless Connectivity Toolkit Application

to the CodeWarrior Tool4
8 Create a New Project for MC9S08QD4 in the

CodeWarrior tool . 4
9 Edit the MC9S08QD4 Project . 5
10 User Guide . 9
11 Motor Control Application . 9

11.1 Overview . 9
12 Setup Procedure . 11
13 Conclusion. 12

Using SMAC with the
MC9S08QD4 MCU
by: Juan Cazares Blanco

RTAC Guadalajara

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Where to use Low-End Microcontrollers

Freescale Semiconductor2

number of RF channel to transmit and receive, power transmission, bootloader, etc. After the application
is configured, an XML file is created by the BeeKit Wireless Connectivity Toolkit and it must be imported
to the CodeWarriorTM development tool to generate the source code. This source code can be modified at
any time in the CodeWarrior software. Using the BeeKit Wireless Connectivity Toolkit, a solution is
created, related projects are added to the solution, and software components are defined in the projects.
Then, users must export the solution from BeeKit for deployment in the CodeWarrior Integrated
Development Environment (IDE).

3 Where to use Low-End Microcontrollers
The MC9S08QD4 is a cost-effective, low-end microcontroller pin-to-pin compatible with MC9RS08KA2
and MC9S08QG4 microcontrollers. It is a perfect choice for networking applications where performance
and speed are not critical, such as in input/output (GPIO) lighting, switching, access control, air control,
etc. However, it performs perfectly with some powerful microcontrollers such as i.MX, ColdFire, and
MC9S08GT60, which can be used in nodes where the expected performance is high.

4 Functional Description

4.1 Hardware Configuration
The MC9S08QD4 microcontroller has six general-purpose pins. For the purpose of using SMAC, these
pins communicate with the transceiver MC1319x. The transceiver has seven GPIO pins; two control the
transceiver communication and the rest to sense inputs or to control some external component (LEDs,
relays, etc.). Table 1 describes the necessary connections to get the transceiver in line and transmit and
receive data using the MC9S08QD4 microcontroller. See Figure 1 for microcontroller and transceiver
connections.

Table 1. Pin Function Description

Pin MCU Pin Name Type Pin Transceiver Pin Name Type

8 PTA0/KBI1P0 Digital output 19 Chip enable Digital input

7 PTA1/KBI1P1 Digital output 12 Reset Digital input

6 PTA2/KBI1P2 Digital input 18 MISO Digital output

5 PTA3/KBI1P3 Digital output 17 MOSI Digital input

2 PTA4/BKGD Digital output 16 SPI clock Digital clock input

1 PTA5/RST/IRQ Digital input 20 IRQ Digital output

Functional Description

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Freescale Semiconductor 3

Two more signals needed for the transceiver to work properly are RXTXEN and ANTCTL. RXTXEN
switches the mode of operation (reception, transmit, doze, hibernate or IDLE). ANTCTL manages an
antenna switch device. Designs that have the same antenna to transmit and receive use the antenna switch.
If the design has a dual antenna, one to transmit and the other to receive, the ANTCTL signal is not needed.

Because all the pins on the microcontroller manage other signals, GPIO1 and GPIO2 pins provided by the
transceiver manage RXTXEN and ANTCTL signals, respectively. Table 2 and Table 3 describe the
connections needed to control RXTXEN and ANTCTL.

Figure 1 shows the microcontroller-transceiver connections described in Table 1, Table 2, and Table 3.

Table 2. RXTXEN Connection

Pin Transceiver Pin Name Type Pin Transceiver Pin Name Type

11 GPIO1 Digital output 13 RXTXEN Digital input

Table 3. ANTCTL Connection

Pin Transceiver Pin Name Type Pin
Antenna Switch Pin

Name
Type

10 GPIO2 Digital output 4 VCONT Digital input

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Functional Description

Freescale Semiconductor4

Figure 1. Microcontroller and Transceiver Connections

Requirements for CodeWarrior to use the MC9S08QD4 Microcontroller

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Freescale Semiconductor 5

5 Requirements for CodeWarrior to use the MC9S08QD4
Microcontroller

Before starting a new project, the following software must be installed:
• CodeWarrior development tool for HC08 version 5.1 or later
• Update and patch for the MC9S08QD4, which can be found in www.freescale.com by typing

CW08 V5.1 QD4 Service Pack in the search engine labeled Enter Keyword

NOTE
Download the CodeWarrior software updates and patches from
www.freescale.com. Go to Products, select CodeWarrior Development
Tools, select Downloads from the left navigation bar, and go to Updates and
Patches.

6 Create a BeeKit Wireless Connectivity Toolkit
Application

The MC9S08QD4 microcontroller does not have an SPI peripheral. Therefore, the following
considerations must be taken to use the MC9S08QD4 with BeeKit Wireless Connectivity Toolkit:

• Selected platform must always be MC1319XSARD.
• LCD option must always be disabled.
• Security option must always be disabled.
• OTAP option must always be disabled.
• Embedded bootloader option must always be disabled.

See the BeeKit Wireless Connectivity ToolKit User's Guide (BKWCTKUG) for more details.

7 Import a BeeKit .XML Solution File to the CodeWarrior
Tool

After BeeKit successfully creates and exports a solution, there are different ways to use individual projects.
You can, as defined in Beekit, compile and download to the user-selected platform. Also, you can use the
BeeKit imported project as a template for more complex software development specific to user
requirements within the CodeWarrior IDE. The solutions are output as XML files.

8 Create a New Project for MC9S08QD4 in the
CodeWarrior tool

All SMAC projects have the same format: one folder for all SMAC files and the other for user applications.
This format is recognized by the new CodeWarrior project. A new project must be created using the
CodeWarrior tool’s project wizard option and the derivative chosen must be MC9S08QD4. After the
project is created, the folders inside it must be modified to add the SMAC files.

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Edit the MC9S08QD4 Project

Freescale Semiconductor6

9 Edit the MC9S08QD4 Project
Perform the following steps to integrate the SMAC files into the project created for the MC9S08QD4.

1. Add three new folders to the project by creating groups. To create groups, right click on the project
window and pick Create Group. Folders names must be: shared, drivers, and SMAC. See Figure 2.

Figure 2. Creating Groups

2. Move the drivers and SMAC folders into the folder called shared. See Figure 3.

Figure 3. New Folders Tree

Edit the MC9S08QD4 Project

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Freescale Semiconductor 7

3. Go to the path where the MC9S08QD4 project is stored and create the same three folders. See
Figure 4.

Figure 4. MC9S08QD4 Project Structure

4. The following files must be copied from the drivers folder inside the BeeKit Wireless Connectivity
Toolkit imported project to the drivers folder inside the new MC9S08QD4 project:

– APP_SMAC_API.h
– Board_config.h
– Freescale_radio_hardware.h

5. The next files must also be copied from the SMAC folder inside the BeeKit Wireless Connectivity
Toolkit project to the SMAC folder inside the new MC9S08QD4 project:

– app_config.h
– MC13192_hw_config.c
– MC13192_hw_config.h
– MC13192_regs.h
– mcu_hw_config.h
– pub_def.h
– simple_mac.h
– simple_phy.c
– simple_phy.h

6. Because the MC1319x transceiver uses an SPI bus to transfer information to the microcontroller,
this peripheral is necessary for all SMAC applications. Therefore, the SPI driver and other useful
files are found under the same application number in the www.freescale.com documentation site.
All files modified to use SMAC with the MC9S08QD4 microcontroller are listed and explained
below:

– drivers.c: the timeout management in the IRQ interrupt service routine was modified. The
SPI initialization was changed to use an SPI developed by firmware. SPIDvrWrite,
SPIDvrRead, SPIDvrRead2, RAMDvrWriteTx, and RAMDvrReadRx functions were
modified in order to use the SPI developed by firmware. VSPIRxMsg function was added.

– drivers.h: the function prototype for VSPIRxMsg function was added.

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Edit the MC9S08QD4 Project

Freescale Semiconductor8

– mcu_hw_config.c: deassert and assert RXTXEN macro was modified because this signal is
now managed by the transceiver’s GPIO1 pin. UseExternalClock and UseMcuClock
functions were modified because the MC9S08QD4 microcontroller has only an internal
source clock; consequently there is no external pin to connect an external source clock such
as crystals or oscillators. The watchdog timer and the timer routine were modified into
MCUInit function.

– simple_mac.c: MLMERXEnableRequest and MLMERXDisableRequest functions were
modified to use the transceiver’s timer1 without halting the transceiver’s timer counter.

– MC1319XSARD.c: the configuration of GPIO1 pin of the transceiver as output was added
at the radio initialization.

– MC1319XSARD.h: all macros to control input and output pins were re-defined to use the
MC9S08QD4 microcontroller. The reason for this is pin assignments and the number of pins
between MC9S08GT60 and the MC9S08QD4 microcontrollers are very different.

– vectortable.c: the complete pseudo-vector table was changed because the interrupt vectors
for MC9S08GT60 and MC9S08QD4 are mapped at different addresses.

7. A template project for MC9S08QD4 and all the files explained in the last step can be downloaded
from www.freescale.com under the application note number (AN3381SW). Copy the next
downloaded files into MC9S08QD4 project as follows:

– MC1319XSARD.c and MC1319XSARD.h files must be stored into the drivers folder.
– drivers.c, drivers.h, mcu_hw_config.c, and simple_mac.c files must be stored into the

SMAC folder.
– vectortable.c and main.c file must be stored into the Sources folder.

8. After the files are copied in the specified path, all files stored in the different folders must be added
to the project in the CodeWarrior software. Follow the instructions below.

– Right click on the drivers folder and choose the Add Files… option. On the pop-up window,
find the drivers folder path into MC9S08QD4 project and choose all files inside, then click
on open button. Repeat the same instructions for the SMAC folder.

– Right click on the Sources folder and choose the Add Files… option. On the pop-up
window, find the Sources folder path into MC9S08QD4 project and choose only
vectortable.c and main.c files, then click on the open button.

Edit the MC9S08QD4 Project

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Freescale Semiconductor 9

Figure 5. File and Folder Placement in the MC9S08QD4 Project

9. To ensure the correct code performance, all files added to the project must be linked in a specific
order. The main application file must always be linked last. Figure 6 shows the link order to follow.
The main.c file is at the end of the list. This means the main.c file is the last file linked.

Using SMAC with the MC9S08QD4 MCU, Rev. 0

User Guide

Freescale Semiconductor10

Figure 6. Shows the link order to follow

10. Now the project is complete and ready to work, just press click on the Make button and load the
code in the MC9S08QD4 microcontroller.

10 User Guide
Up to now, this document explained only how to connect the transceiver and the microcontroller and how
to import code for the MC9S08QD4 device. The section below will explain an example created for the
MC9S08QD4 device called MotorControl and provided as software for this application note.

11 Motor Control Application

11.1 Overview
This application is a step motor controller where each motor coil is managed with one GPIO provided by
the transceiver. As was said in a previous section, the transceiver has seven GPIOS. Two of them control
the transceiver. This means the application can use the five other transceiver’s GPIOs. The application

Motor Control Application

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Freescale Semiconductor 11

manages a step motor that has four coils. Table 4 describes which general purpose pins of the transceiver
control the step motor coils.

Each coil must be energized in the correct sequence to move the motor in the desired direction. If the
sequence is inverted, the motor direction is changed.

Table 5 shows the coils sequence to move the motor clockwise and counterclockwise.

As Table 5 shows, if the sequence order is 1 – 4, the motor moves clockwise. If the sequence order changes
to 4 – 1, the motor moves counterclockwise.

The SMAC protocol receives information from any other SMAC compliant wireless device. The motor
control application has a set of commands where each one executes a different action to control the step
motor. The commands to control the step motor are listed in Table 6.

Table 4. Step Motor Connections

Pin Transceiver Pin Name Type Power interface

25 GPIO7 Digital Output Coil1

24 GPIO6 Digital Output Coil2

23 GPIO5 Digital Output Coil3

8 GPIO4 Digital Output Coil4

Table 5. Coils Sequence

Sequence GPIO7 GPIO6 GPIO5 GPIO4 Coils

1 0 0 0 1 Only Coil4 energized

2 0 0 1 0 Only Coil3 energized

3 0 1 0 0 Only Coil2 energized

4 1 0 0 0 Only Coil1 energized

Table 6. Commands

Command Character received Description

A command A Stop motor

B command B Low speed

C command C Medium speed

D command D High speed

E command E Counterclockwise direction

F command F Clockwise direction

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Setup Procedure

Freescale Semiconductor12

12 Setup Procedure
1. To test the motor control application, use the wireless UART application loaded on THE SRB,

NCB, SARD, or EVB board. Make sure the wireless UART application uses channel 7 to transmit
and receive.

2. Connect the board to the serial port.
3. Open HyperTerminal. Port settings must be:

— Bits per second: 38400
— Data bits: 8
— Parity: None
— Stop bits: 1
— Flow control: None

4. Turn on the wireless UART application. Wireless Typematic Demo is displayed in the
HyperTerminal.

5. Turn on motor control application. The message MOTOR1 is displayed in the HyperTerminal.
6. Try any command described in the Table 6. To do so, type any uppercase letter between A and F

in the hyperterminal window. For example, type B and the GPIO pins start to generate the sequence
described in Table 5.

Figure 7. Device MOTOR1 Detected on the Wireless Network

NOTE
All characters typed must be uppercase. No command displays information
on the HyperTerminal.

Conclusion

Using SMAC with the MC9S08QD4 MCU, Rev. 0

Freescale Semiconductor 13

13 Conclusion
This application note shows any SMAC application can be used with almost any 8-bit Freescale
microcontrollers from low-end to the high-end. This document did not discuss the BeeKit Wireless
Connectivity Toolkit software in detail, but does demonstrate that BeeKit Wireless Connectivity Toolkit
is and easy and fast way to develop SMAC applications. Sometimes, developers do not use low-end
microcontrollers because these microcontrollers have hardware limitations such as communication
peripherals or number of pins. See the BeeKit Wireless Connectivity ToolKit User's Guide
(BKWCTKUG) for more details. However, as this application note shows, you can find the way to solve
any kind of limitation. Here the unique limitation is your imagination. Think big.

Document Number: AN3381
Rev. 0
11/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

