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1 Introduction
The system designer is responsible for the correct 
operation of a microcontroller-based system. If an 
operational breakdown causes bodily harm, the system 
integrity will likely be the most important aspect of the 
design. In other cases, cost or functionality may be 
higher considerations. Many aspects of an embedded 
system’s operation can influence its operational integrity.

This application note examines how you can use the 
on-chip capabilities of the S12XE to address memory 
integrity, operational correctness, and correct software 
behavior. The S12XE MCU family introduces features 
that can improve operational robustness and allow early 
detection and prevention of potential hazards in the 
system.
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2 Memory Integrity
The application software provides most of the functionality of the system. It is the aspect of an embedded 
system with the greatest influence on system integrity. 

In most S12X applications, the CPU software and important system data are stored in the on-chip flash. 
To help maintain the integrity of the on-chip flash, the S12XE includes an automatic Error Correction 
Coding (ECC) system in hardware and a margin-checking system that checks how completely a flash cell 
is programmed or erased.

2.1 ECC System
The ECC system, always enabled, detects and corrects some errors that may arise in the flash. It is applied 
to the P-flash in groups of four consecutive words known as phrases. Each phrase is assigned a syndrome 
value that allows error correction of one error and detection of two errors across the phrase.

Each time its contents are read, the flash module checks the consistency of the data and the syndrome. If 
a single bit has changed, the error is corrected. This error correction is transparent to you and does not 
disturb the normal read process of the P-flash. The flash module also sets a single-bit error flag. You can 
choose to receive an interrupt if this occurs.

If while reading the flash the module detects that two bits are in error, it sets a double-bit fault flag. Because 
these errors cannot be corrected, the value read from memory will contain an incorrect value. To avoid this 
problem, the user software may enable an interrupt when the module finds a double-bit error. If the error 
word contains an instruction opcode, the interrupt prevents execution of the incorrect opcode and allows 
the CPU to take corrective action. The flash error detection and correction process is shown in Figure 1.
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Figure 1. Flash ECC Process

The syndrome is automatically created each time the software programs a phrase in P-flash. The P-flash 
programming operation is shown in Figure 2.
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Figure 2. P-flash Programming Sequence

The on-chip D-flash also has an automatic ECC system, but each word in D-flash is protected by its own 
syndrome. The module detects single- and double-bit errors and these errors can cause interrupts if 
necessary.

ECC errors can be detected only if the software reads the flash. Performing periodic block reads of flash 
helps find these errors, especially in infrequently accessed flash. Because ECC is always performed on an 
eight-byte phrase, reading a single 16-bit word that spans the last byte of one phrase and the first byte of 
the next phrase performs ECC checks on all bits of the two phrases.

If an ECC error occurs, you can choose a response dependent on the nature of the error. For example, a 
system with a single-bit error may continue operating, while a system with a double-bit error may perform 
a graceful power-down.

2.2 Margin Checking
The S12XE allows a detailed examination of the actual programmed or erased state of each flash cell. This 
is achieved by setting the logic margin to a different value than that of normal operation. 

The MCU determines the binary value of a flash cell by sensing the current through the cell. In normal 
operation, the MCU uses a measurement level that allows for the maximum discrimination between 
normally programmed or erased values. The charge values vary across a narrow distribution for a correctly 
programmed or erased cell. If the cell is marginally programmed or erased, the actual cell charge margin 
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may be smaller than expected (see Figure 3). This decreased margin could be further reduced by normal 
variations of the MCU caused by voltage or temperature fluctuations, or by the gradual change in charge 
on the cell over the course of many years.

Figure 3. Effect of Marginally Programmed Cells

The MCU provides two additional measurement levels that allow for a more accurate examination of the 
cell’s state. One of the two additional levels is closer to the programmed state (see Figure 4). This allows 
the user software to detect a cell with a smaller-than-expected margin, a margin that can be used to provide 
advanced warning of an incorrect reading. The erased margin level works in exactly the same way but 
towards the erased state. The alternative margin reads may be used in diagnostic routines that read the flash 
and ensure there are no ECC errors.
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Figure 4. Adjusted Margin Level

3 Correct Software Behavior
In real world systems, it is generally impossible to prove that application software is error-free. This is 
especially true when multiple software components from several suppliers are integrated into a single 
device. Individual components may operate correctly on their own, but incorrectly when used together. 
Potential errors include modification of the private variables of another task, incorrectly calling another 
task, and changing the configuration of on-chip peripherals. 

The S12XE provides a protection scheme that prevents software components from inappropriately 
accessing memory and peripherals. The scheme consists of restricted permissions on CPU operation and 
access descriptors in the memory protection unit (MPU). 

3.1 CPU Permissions
In an embedded system the CPU executes software that initializes and executes the application while 
handling interrupt events. During initialization, the CPU needs to modify RAM contents and configure 
peripheral registers and interrupts. During execution of the application, the CPU should not modify or 

R
ea

d 
as

 lo
gi

c 
1

R
ea

d 
as

 lo
gi

c 
0

Normal distribution of 

programmed cells

Normal distribution of 

erased cells

Flash cell current

Normal read point

Adjusted read point

Weakly programmed cell

reads as erased with

adjusted margin



Correct Software Behavior

System Integrity Techniques for the S12XE, Rev. 0, Draft A

Freescale Semiconductor 7

access unused parts of the MCU. The CPU needs to modify the stack and clear flags when responding to 
interrupts. In general, the CPU’s required capabilities will vary according to the type of software being run.

The S12XE addresses these requirements by providing three operating states with different levels of 
permissions (see Table 1). The state is controlled by the U bit in the CCR and the SVSEN bit in the 
MPUSEL register.

3.1.1 Supervisor State and Protected Supervisor State

At reset, the MCU sets the CPU to Supervisor state and sets the MPU so that there is a descriptor for all 
memory. In Supervisor state, the CPU can access any resource on- or off-chip without restriction (as with 
CPUs in other S12 and S12X devices), making it an ideal state for initialization purposes and for use with 
kernal and interrupt tasks.

The CPU can enter Protected Supervisor state by setting the SVSEN bit in the MPUSEL register. This 
prevents the CPU from accessing areas of memory that have not been specified by the MPU; but the CPU 
can change this bit at any time and is not subject to other limitations. This state may be useful for providing 
protection in kernel or interrupt tasks.

3.1.2 User State

When the CPU sets the U bit, it enters User state. This state limits the access rights of the CPU as well as 
its ability to change its state, the U bit, the I bit or X bit (in the CCR) via any opcode, execute the STOP 
or WAI opcodes, or access areas of memory not specified by the MPU. The only way to return to 
Supervisor state from User state is to receive an interrupt. User state is used during the execution of 
standard application code, such as user tasks. After the CPU is in the appropriate protected state, the MPU 
controls the access permissions to resources on- or off-chip.

An interrupt causes the CPU to return to Supervisor state. In this state, the CPU can perform activities 
necessary for an interrupt such as modifying interrupt flags and copying data from peripherals. When the 
CPU returns from interrupt, the U-bit returns to its pre-interrupt condition. This is achieved by stacking 
the U bit as part of the CCR. It is not possible to force a return to Supervisor state by executing an RTI 
while in User state.

Table 1. CPU Operating States

State U SVSEN Restrictions

Supervisor 0 X None

Protected 
Supervisor

0 1 Descriptor ranges only

User 1 X Descriptor ranges only; 
No interrupt control; 
No low-power capability (STOP or 
WAIT)
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3.2 MPU Descriptors
The MPU provides eight descriptors, each of which defines an accessible memory range. Each descriptor 
applies to one or more bus masters. On the S12XE, the bus masters are the CPU (in Supervisor state and 
User state) and the XGATE.

A descriptor consists of a memory range (defined by a start and an end address) that applies across the 
entire global memory space with a resolution of eight bytes. It also includes one or more bus masters, a 
control to make the range read-only, and a control that allows the bus master to execute code within the 
range. Without these additional controls, every address within the range would be readable, executable, 
and writable to the relevant masters. See Figure 5 for the content of the descriptors. 

Figure 5. MPU Descriptors

In Supervisor state, the CPU configures the descriptors required by the next User state task. After 
completing the configuration, the CPU executes the User state task. The CPU typically jumps to the start 
of the task by modifying the return address on the stack and executing an RTI. This approach is shown in 
Figure 6. The CPU can alternatively set the U-bit and jump directly to the User state task.
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Figure 6. Typical Flow When Using MPU
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coding in C, the linker may add library calls to implement certain functions, so there must also be a 
descriptor that fulfills that requirement. There may also be task-specific constants stored in emulated 
EEPROM or in flash that also require a descriptor.

There are no restrictions on the CPU when in Supervisor state. All memory is accessible so no specific 
requirements for descriptors exist. But for a Protected Supervisor state task, the CPU must have access to 
the task code, variables, interrupt vectors, stack and register space, and library code and constants. 

The system integrator must also configure the correct type of access. The NEX-bit in each descriptor 
prevents the bus master executing code from within the descriptor range. This bit must be cleared for code 
spaces like application and library code. The WP-bit prevents the bus master from writing to the memory 
range. This is useful when sharing global variables in RAM or for allowing tasks access to the current input 
status of ports (but preventing them from changing the port configuration). See Table 2 for the 
combinations that these bits create.

It is possible to combine descriptors by overlapping their memory ranges. The overlapped region 
accumulates the restrictions of the source descriptors. In Figure 7, descriptor 0 applies to CPU User state 
from address $40_0000 to $41_BFFF with read-only and execute permissions (typically a flash code 
configuration). Descriptor 1 also applies to CPU User state, but goes from address $40_8000 to $41_FFFF 
with read/write and no execute permissions (typically a RAM data configuration). Because the descriptors 
overlap, an overlapped range is created from $40_8000 to $41_BFFF. This accumulates the restrictions 
from the two descriptors and so is a read-only and no execute region (typically flash data configuration). 
Figure 8 shows an example of the use of descriptors in a simple application that contains a scheduler, two 
CPU tasks, and an XGATE thread.

Table 2. Combinations of Permissions

WP NEX Access Example of use

0 0 Read, write, execute Executing code from RAM

0 1 Read, write Stack and data regions

1 0 Read, execute Code in flash

1 1 Read Data in flash
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Figure 7. Effect of Overlapping Descriptors
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Figure 8. Example of a Simple System Using the MPU

As seen in the figure, the tasks can call the scheduler via an interrupt opcode provided by the S12XE called 
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The XGATE is stopped if it violates the protection configuration, and an XGATE software error interrupt 
flag is set so that the CPU can manage the error. In this case, the AEF bit is not set and the MPUSTAT[0:2] 
registers are not loaded with the violation address. The CPU can read the XGATE core registers (including 
PC and CCR) directly from its register space to determine the XGATE violation condition.

When defining memory protection, you must consider an error recovery strategy. You may need to place 
the application in a known good state or perform a graceful shutdown. You may be able to shut down the 
task and give a warning to seek assistance if the error occurs during a non-critical task. Ultimately, the 
error-recovery strategy depends on the application requirements.

In Protected Supervisor state, CPU access to MCU resources is controlled by descriptors. These must be 
configured carefully to allow operation in normal and error conditions. The MCU helps in cases of CPU 
violation by automatically creating an explicit descriptor for the register space within the MCU. This 
means that the CPU recovery routine can make adjustments to the register space when in Protected 
Supervisor state even if such access is not normally allowed. Descriptors for the error interrupt vector and 
the error recovery ISR must be included to allow the CPU to process the error interrupt correctly. 

If the interrupt vector is not included in a descriptor range, then the original application violation leads to 
an interrupt that causes another interrupt when it attempts to fetch the vector and so on. This also applies 
to the ISR code and to any other resources the ISR requires.

Problems can arise because the CPU and XGATE perform pre-fetches of opcodes to maximize the 
performance of the MCU. Because the MPU cannot distinguish between pre-fetch opcodes that execute 
and those that do not, several extra bytes must be added beyond the end of the memory range. The CPU 
reference manual contains information about its queue and the microcontroller reference manual contains 
information for the XGATE.

3.4 Operational Correctness
The MPU protects against software that accesses invalid resources. However, even if a function has not 
accessed an invalid resource, it may continue to operate incorrectly. Errors causing incorrect operation or 
slow responses in the system can arise in variable contents or stacks because of unusual combinations of 
system events. You can address this type of error by providing diagnostics that can detect or correct 
undesired behavior that occurs once the system is in use. Often provided at reset, these diagnostics perform 
detailed checks on the status of the system before the operation begins. Hardware interlocks like the COP 
watchdog or ECC protection on the S12XE are two of the diagnostics available when the application is 
running. 

You can also add functional checks to running systems. In traditional single-core MCUs, this capacity is 
limited by the additional load the checks place on the CPU as well as the fact that they are running on the 
processor whose performance they are checking. With these limitations in mind, you can see why the dual 
core S12X family brings specific advantages for embedded diagnostics. 



System Integrity Techniques for the S12XE, Rev. 0, Draft A

Correct RAM contents

Freescale Semiconductor14

4 Correct RAM contents

4.1 Errors in Embedded Systems 
The operational times for many embedded systems extend to weeks or even longer between resets. These 
systems are at risk of accumulating small errors that eventually disrupt normal operation. These errors 
affect volatile memory and are caused by memory leaks, stack overflow, array index overrun, and invalid 
pointer values. The number of errors can be reduced in embedded systems, though, because dynamic 
memory may be allocated on the stack and so this can be classified as a stack overrun. Similarly, it is 
possible to combine array overruns and invalid variable values because the overrun is an issue only if it 
damages another variable.

It is possible for the MPU to detect these errors if the software stack and variables have some natural 
separation in memory. This makes it easier to separate protection descriptors. It is common practice, 
however, to group a task’s RAM requirements under a single descriptor.

4.2 XGATE Co-Processor
Because the XGATE co-processor shares access to RAM, it can validate its contents and identify some of 
the errors listed above. In Figure 9, the XGATE verifies the correct extent of the stack by examining the 
contents of a buffer zone.

Figure 9. Stack Overflow Testing

Figure 10 shows how a secondary processor can validate variable contents and detect errors on the primary 
core. The code declaration shows an array and a far (24-bit) pointer placed beside each other in memory. 
There is no range checking on the received message length, and a message longer than four bytes causes 
an overflow into the pointer. Because the pointer is used rarely and because a five byte message is rarely 
received, the error can go undetected for an extended time. 

The XGATE code checks the pointer value and sends an interrupt to the CPU to signal that the value is 
incorrect. It can also restore the pointer to a known good value, can ensure that peripheral configuration 
registers have the correct values, and can verify that the CPU is operating at a functional level.

@interrupt void XG_StackCheck(void) 
{ 

char i; 
/* Check that each word in the stack buffer zone is 
at the default value */ 
for (i=0;i<stackMax;i++) 
if (stackBuffer[i] != stackDefault) 
/* Call response function to handle */ 
XG_StackFail(i); 

} 
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Figure 10. Variable Validation

4.3 Functional Correctness
A dual core system provides opportunities for functional correctness that do not exist in single-core 
systems, such as the double-checking of algorithms, dual-key authorization, and challenge-response 
authentication.

You should ensure that the outcome of an algorithm is correct in all circumstances for certain applications, 
particularly in environments where the microcontroller affects the active or passive safety of a system. 
Figure 11 shows an example in which both cores compute the outcome of an algorithm but must agree on 
it before it is used. Run different versions of the algorithm on each core to ensure independent outcomes. 
In some cases, an approximation of the correct outcome may be sufficient as a margin check. Even if 
identical high-level code is used for both algorithms, the machine-dependent implementation is 
completely different because of the architectural differences between the CPU and XGATE on the S12XE. 
This provides an added measure of protection against algorithmic or compiler errors.

CPU Code

unsigned char message[4];
far char* menu;
interrupt void SCIRx()
{

char byte;
/Assume no receive errors
byte = SCI->scisr1.byte;
byte = SCI->scidrl.byte;
if (index == 0)
{
index = 1;
message[0] = byte
} else
{
message[index] = byte;
index++;
}
if (message[0] == index)
index = 0;}

XGATE Checking Code

union u_farptr
{
unsigned long l;
unsigned int i[2];
}farptr;

interrupt void Checker(void)
{
// Check far pointers are valid

farptr = menu;
if (farptr.i[0] != 

menupage)
_SIF(SW1);

}
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Figure 11. Example of Algorithm Checking

In the approach illustrated above, a single core determines the validity of the algorithm output. If an error 
occurs during the operation of this hardware or software, it is conceivable that this decision may not be 
correctly evaluated. In this case, a dual-key approach may offer additional integrity. Seen in Figure 12, this 
approach allows both cores to present their calculated results to an independent checkpoint such that both 
can agree on the conclusion before the specified activity occurs.
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Figure 12. Dual-Key Output

You can use a variation of the cryptographic challenge-response approach to assess the accuracy of the 
primary core’s activity. The secondary core can challenge the primary core to provide information on its 
status, and then check that the response was provided in a correct and timely manner. One useful challenge 
might be to return its program counter, stack the pointer values and any other useful internal registers, 
perform a checksum on a fixed area of memory, and verify the interrupt vector locations. The returned 
information would be checked against the values known to or calculated by the secondary core.

Even if a system is behaving correctly, there may be an issue with its response time.

4.4 Timeliness
The overall loading of the processor influences the timeliness of a system response. A system designer 
must ensure that the highest priority tasks can directly access the CPU while also preventing lower priority 
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tasks from being blocked. This can be difficult to achieve in a fixed priority scheme. Dynamic scheduling 
schemes allow you to modify a task’s priority based on the overall system loading.

XGATE can help improve the system performance by adjusting task and request priorities dynamically. A 
general benefit of a second processing core is that the kernel’s task priority algorithm can execute on the 
second core, which in turn reduces the execution time of the kernel itself. This reduces the task-switching 
time of the system. A more specific benefit of the second core can be in dynamically allocating and changing 
priorities of the service requests in the system.

Consider a system where a very important task must be completed by a given deadline. A standard approach 
would be to disable interrupts during this period, which makes the system completely unresponsive to 
external requests. As seen in Figure 13, the S12XE allows the XGATE to manage service requests differently 
during this period. A typical response may be to acknowledge the request and indicate that the system will 
deal with it when it is less busy. This approach relies on the CPU being aware that it is under heavy load.

This approach may not be possible, for example, in systems where there are several tasks that all need to 
execute with interrupts active. In this case the XGATE can monitor the interrupt response time of the CPU 
and adjust the priority of the incoming requests such that they are all serviced within a known time. The 
XGATE can monitor interrupt flag states and determine if the servicing of these is slower than expected.
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Figure 13. Request Handling in High-Load Conditions

4.5 Error Recovery
Depending on the application requirements, XGATE has several options if it discovers a CPU software 
malfunction. The least intrusive action would be to set a flag to warn the CPU that there is, for example, 
evidence of a small excursion into the stack buffer. The CPU may be able to execute a recovery algorithm 
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that re-initializes the dynamic memory and interrupts stack pointers. If the CPU program flow is defective, 
then this flag may not be tested, in which case the XGATE could detect this condition and escalate the 
response. See Figure 14 for a potential flow of this approach.

Figure 14. Potential Response to Low Level Defect

Sending a low-priority interrupt to the CPU would be quicker and would increase the likelihood of the 
CPU responding at the cost of using the stack space. A defective CPU flow could prevent the servicing of 
this interrupt, interrupts could be disabled incorrectly, or a high-priority interrupt could block the core. But 
the XGATE could still detect this null response and escalate the recovery activity. Remove the low-level 
interrupt before taking this action. See Figure 15 for a potential flow.
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Figure 15. Potential Second-Level Response

By reserving the highest-priority interrupt for problem recovery, the MCU can ensure that interrupt 
blocking is kept to a minimum. However, non-maskable and disabled interrupts would remain blocked. 
Unlike the low-priority approach, this interrupt interferes with high-level activities on the CPU. For 
example, the execution of an important communications interrupt could be stalled while the diagnostic 
interrupt was being serviced with the potential loss of data. As with the low-level approach, the XGATE 
can monitor the lack of a CPU response to the interrupt and escalate again afterwards. In the ultimate step, 
the XGATE can force the whole MCU to reset if necessary, but this aborts all current operations and can 
cause data loss and disruption. In some embedded systems this may not be a permitted behavior. As shown 
in Figure 16, the most convenient method for resetting the MCU is to violate the watchdog servicing 
conditions. This results in an instant reset and subsequent reconfiguration of the system.
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Figure 16. Potential Fourth-Level Response

5 Summary of Techniques
This application provides a summary of hardware and software resources available to you on the S12XE 
family of microcontrollers. Many of the techniques require no more than configuration of the hardware 
provided by the S12XE, while others use software techniques and the unique architecture of the family.

Ultimately, the requirements of the application determine how many of these approaches are required and 
how much effort the system designer must put into the integrity of the system. 
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