
Freescale Semiconductor
Application Note

Document Number: AN3492
Rev. 0, 08/2007

Contents
Overview of USB . 1

USB Communications . 2

The USB OTG Capable Controller Module 12

Using the USB OTG Module in Host Mode 16

Introduction to the CMX Stack. 20

Enumeration . 21

The USB Device-Side Driver . 30

The USB Host-Side Driver. 38

The HID Class . 67

0 PC-Side USB Host Software . 72

1 The Communication Device Class 75

2 USB On-The-Go . 80

3 Resource Usage . 81

USB and Using the CMX USB
Stack
by: Eric Gregori,

Product Specilaist—Embedded Firmware
1 Overview of USB
Universal Serial Bus (USB) is not a true bus, it is a
point-to-point star topology. There is a single host that
initiates all data transfers (USB is a polled
communication system). Up to 127 devices can be
managed by a single host, with hubs providing the
connections from the host to the devices. Electrically,
USB supports point to point connections with a max
length of 5 meters, and a maximum of 5 hubs between
the host and end device.

Low-level USB communications are implemented using
a protocol. The protocol is slightly different depending
on the type of transfer. The USB specification describes
this protocol using the terms host and function. The host
is the master of the bus and starts all data transfers. The
function (also called the device) is used to execute the
requests of the host.

The upper levels of USB communications are referred to
as classes. A class is a group of variables and methods. A
method can also be called a function because it performs

1

2

3

4

5

6

7

8

9

1

1

1

1

© Freescale Semiconductor, Inc., 2007. All rights reserved.

http://www.usb.org/developers/hidpage/

USB Communications
an action. The key to understanding USB communication is understanding the difference between a
protocol and a class. USB is not a layered communication protocol such as TCP/IP. It is a single layer
communication protocol, with various application specific classes defining the variables transferred
between hosts and devices, and the requests from the host to execute methods defined by the class.

There are various classes defined by the USB-IF: HID, CDC, mass-storage, audio, and video. Each of these
classes have unique variables (data) that are exchanged between the host and device using set data
structures. Each class also has methods that are actually implemented as function in the device that the host
requests to execute.

The USB Implementers Forum manages the USB specification, which can be found at www.usb.org

The USB-IF also distributes vendor IDs. Vendor IDs provide a unique mechanism to identify a product.
The vendor ID is sent to the host when the device is connected. Vendor IDs can be purchased from the
USB-IF for $2000.00 to $4000.00.

2 USB Communications
USB is a host-controlled communication system. All transactions are initiated by the host. Transactions
consist of three packets: a token packet (always sent by the host), a data packet (can be sent by host or
device), and a handshake packet (sent by either the host or device). Because only the host can send a token
packet, USB is essentially a polled communications protocol. The device cannot send data to the host
unless the host initiates the transfer.

Packets are a block of information with a defined data structure. The packet is the lowest level of the USB
transfer hierarchy describing the physical layer of the interface.

Only the host sends the token packet, starting every transfer.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor2

http://www.usb.org

USB Communications
2.1 Packet Structures

Figure 1. Packet Structures

2.2 Packet Identifiers (PID)
The packet identifier (PID) determines the packet type and the direction of data transfer. The PID is only
4 bits, but the packet contains both the PID and the compliment of the PID. This is a form of checksum.
The CRC is calculated on all but the PID field.

Figure 2. PID Register from Universal Serial Bus Specification, Rev. 2.0

Token Packet
Sent from HOST Only

Field PID Address Endpoint CRC

Bits 8 7 4 5

SOF Packet
Sent from HOST

Field PID Frame Number CRC

Bits 8 11 5

Data Packet
Sent from HOST or DEVICE

Field PID Data CRC

Bits 8 0–1023 16

Handshake Packet
Sent from HOST or DEVICE

Field PID

Bits 8

(LSb) (MSb)

PID0 PID1 PID2 PID3 PID0 PID1 PID2 PID3
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 3

USB Communications
Table 1. PID Description from Universal Serial Bus Specification, Rev. 2.0

PID Type PID Name PID<3:0> Description

Token OUT

IN

SOF

SETUP

0001B

1001B

0101B

1101B

Address + endpoint number in host-to-function transaction

Address + endpoint number in function-to-host transaction

Start-of-frame marker and frame number

Address + endpoint number in host-to-function transaction for
SETUP to a control pipe

Data DATA0

DATA1

DATA2

MDATA

0011B

1011B

0111B

1111B

Data packet PID even

Data packet PID odd

Data packet PID high speed, high bandwidth isochronous
transaction in a microframe (see 5.9.3 for more information)

Data packet PID high speed for split and high bandwidth
isochronous transactions (see 5.92, 11.20, and 11.21 for more
information)

Handshake ACK

NAK

STALL

NYET

0010B

1010B

1110B

0110B

Receiver accepts error free data packet

Receiving device cannot accept data or transmitting device
cannot send data

Endpoint is halted or a control pipe request is not supported

No response yet from receiver (see 8.5.1 and 11.7–11.21)

Special PRE

ERR

SPLIT

PING

Reserved

1100B

1100B

1000B

0100B

0000B

(Token) Host-issued preamble. Enables downstream bus traffic
to low-speed devices.

(Handshake) Split transaction error handshake (reuses PRE
value)

(Token) High-speed split transaction token (see 8.4.2)

(Token) High-speed flow control probe for a bulk/control
endpoint (see 8.5.1)

Reserved PID
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor4

USB Communications
2.3 Frames, Transfers, and Transactions
Packets are grouped together into transactions. Each transaction has up to three phases, or parts that occur
in sequence: token, data, and handshake. In the token phase, the host sends out a token packet. Depending
on the type of transaction, the data phases and handshake phases are optional. Transfers are groups of
transactions. Each transfer contains one or more transactions. Transfers are grouped into frames. Each
frame begins with a (start-of-frame) SOF packet. Full-speed frames are 1 ms wide.

Figure 3. A USB Frame

 Frame
Transfer

1
Transac

tion

Start of Fram
e

Transfer 2

Transaction 1

Token

D
ata

Status

Transaction 2

Token

D
ata

Status

Transaction 3

Token

Transfer 3

Transaction 1

Token

1500 bytes / 1 ms

 • Token Packet – the header that defines what follows
• Optional Data Packet – contains the data being transmitted
• Status/Handshake Packet – used to acknowledge

transactions and provide a means of error correction

Transaction Transaction
Token

D
ata

Status

Token

D
ata

Status

For each transaction there are three types of packets that
communicate the data between HOST and DEVICE:
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 5

USB Communications
2.4 The Data Toggle Bit
When a transfer contains multiple transactions, a data-toggle bit is used to keep the transmitting and
receiving devices synchronized. The data-toggle bit is included in the PID field in the token packet. When
the device is configured, the data-toggle bit is set to 0. When the receiver detects an incoming data
transaction, it compares the received data-toggle bit to the state of its own data-toggle. If the bits match,
the receiver toggles its bit and returns a ACK handshake packet to the sender. Upon receiving the ACK,
the sender toggles its bit. The data-toggle bit is a 1 bit sequence number.

Figure 4. Toggle Bit Sequence

 sender receiver

Data-toggle=0 DATA0 Data-toggle=0->1

ACK Data-toggle=1 Data-toggle=0->1

Data-toggle=1 DATA1 Data-toggle=1->0

Failed ACK Data-toggle=0

Data-toggle=1 DATA1 Data is ignored

ACK Data-toggle=0 Data-toggle=1->0
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor6

USB Communications
2.5 Transaction Types
There are three transaction types: IN, OUT, and Setup. The transaction type is determined by the PID in
the token packet. Because only the host sends token packets, the host determines the transaction type.

2.6 Transfer Types
Transactions are grouped into transfers. There are four types of transfers: control, bulk, interrupt, and
isochronous. Each transfer is optimized for a specific type of data transfer.

Table 2. Transaction Types

Transaction
Type

Source
of Data

Type of Transfers
That Uses This Transaction Type

Contents

IN Device All Generic data

OUT Host All Generic data

Setup Host Control A request

Table 3. Transfer Types

Transfer Type Stages (Transactions) Phases (Packets)

Control

Setup

Token

Data

Handshake

Data (IN or OUT)
(optional)

Token

Data

Handshake

Status (IN or OUT)

Token

Data

Handshake

Bulk Data (IN or OUT)

Token

Data

Handshake

Interrupt Data (IN or OUT)

Token

Data

Handshake

Isochronous Data (IN or OUT)
Token

Data
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 7

USB Communications
Figure 5. Putting It All Together

2.7 Control Transfer
The host sends commands and query parameters via control packets. All devices use control transfers to
Endpoint 0 for the enumeration process.

The maximum transfer rate is 832 Kbytes/second for full-speed operation.

The maximum size for a control packet is 8, 16, 32, or 64 bytes for full-speed operation. These sizes are
data only. All packets except the last one, must be the maximum packet size. The maximum packet size is
determined during the enumeration phase. It is located in the device descriptor for the default control pipe
(Endpoint 0), and the endpoint descriptor for all other pipes. If a transfer has more data then will fit in one
transaction, the host sends or requests the data in multiple transaction.

It should be noted on the following diagrams, that stall and NAK handshake packets can be sent during the
data phase.

Control transfers can have up to three stages, each stage starting with its own token packet. When not in
one of these three stages, the transfer is in the idle state.

Figure 6. Control Transfer State Machine

Transfers
Control, Bulk, Interrupt, Isochronous

Transactions
Setup, Data (IN/OUT), Status (IN/OUT)

Packets
Token, Data, Handshake

IDLE STATE

SETUP STATE

DATA TX STATE DATA RX STATE

STATUS TX STATE STATUS RX STATE
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor8

USB Communications
Figure 7. Control Transfer

Token Packet
Sent by Host Data Packet

Handshake
Packet

PID = Setup

PID = DATA0
From Host

PID = ACK
From Device

PID = DATA0
From Host

0 Length

PID = OUT
PID = NACK
From Device

PID = DATX
From Host

PID = STALL
From Device

PID = ACK
From Device

PID = IN

PID = NACK
From Device

PID = DATX
From Device

PID = STALL
From Device

PID = ACK
From Host

PID = OUT
PID = NACK
From Device

PID = STALL
From Device

PID = ACK
From Device

PID = IN

PID = NACK
From Device

PID = STALL
From Device

PID = ACK
From Host

PID = DATA0
From Device

0 Length

Setup
Transaction

Data
Transaction

Status
Transaction
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 9

USB Communications
2.8 Interrupt Transfers
Interrupt transfers occur periodically, with a period specified by the endpoint descriptor. The interrupt
transfer is different from the isochronous transfer in that the period is outside the time of a single frame.
There is not an interrupt mechanism in USB for devices. A device must always wait for a poll from the
host to send data. The maximum full-speed data rate is 64 KB per second. The time specified in the
endpoint descriptor is a maximum time. The host may poll for data at a faster rate. Because of this, there
is no guaranteed transfer rate; it may be faster then required, but not slower.

If the host polls the device, and the device has no data to send, it responds with a NAK. Interrupt transfers
contain only one transaction. Interrupt transfers are handshaked.

Bulk transfers are the same as interrupt transfers. The difference depends on how the host allocates bus
bandwidth. Bulk transfers defer bandwidth to all other transfer types.

Figure 8. Interrupt Transfers

Token Packet
Sent by Host Data Packet

Handshake
Packet

PID = OUT
PID = NACK
From Device

PID = DATX
From Host

PID = STALL
From Device

PID = ACK
From Device

PID = IN

PID = NACK
From Device

PID = DATX
From Host

PID = STALL
From Device

PID = ACK
From Host

Data
Transaction
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor10

USB Communications
2.9 Isochronous Transfers
Isochronous transfers guarantee a fixed transfer rate. Data is polled/sent on every frame at a fixed size. A
full-speed isochronous transaction can send 1023 bytes per frame. A frame is sent every 1 ms. This
translates to 1.023 megabytes per second.

The minimum is 1 byte per frame or 1 kilobyte per second. Isochronous transactions are not handshaked.
Isochronous transfers contain only one transaction.

Figure 9. Isochronous Transfers

2.10 The Start-Of-Frame (SOF) Packet
For full-speed operation, the host sends a SOF packet every 1 ms, indicating the start of a frame. The SOF
packet provides a time reference for use by synchronous devices and hubs. Because the host initiates all
transactions by sending a token packet, the device actually synchronizes to the token packet for normal
data transfers, the SOF packet can be ignored.

The SOF packet is also used as a keep-alive mechanism. As long as the host is sending SOF packets to the
device, the device cannot go into a suspend mode.

Token Packet
Sent by Host Data Packet

PID = OUT
PID = DATX
From Host

PID = IN
PID = DATX
From Host

Data
Transaction
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 11

The USB OTG Capable Controller Module
3 The USB OTG Capable Controller Module
This section describes the USB Dual-Mode (DM) controller. The On-The-Go (OTG) implementation in
this module provides limited host functionality and device FS solutions for implementing a USB 2.0
full-speed/low-speed compliant peripheral. The OTG implementation supports the On-The-Go (OTG)
addendum to the USB 2.0 Specification. Only one protocol can be active at any time. A negotiation
protocol must be used to switch to a USB host functionality from a USB device. This is known as the
master negotiation protocol (MNP).

Figure 10. USB OTG Module Block Diagram

The module supports 16 bidirectional endpoints, DMA or FIFO data stream interfaces, and OTG protocol
logic. The USB stack communicates with the hardware via buffer descriptors and EHCI compliant register
set.

3.1 EHCI Registers
The enhanced host controller interface (EHCI) specification describes the register-level interface for a host
controller for the Universal Serial Bus (USB) Revision 2.0. The EHCI specification defines two sets of
registers:
Capability registers Specify the limits, restrictions, and capabilities of a host/device controller

implementation.
Operational registers Used by the system software to control and monitor the operational state of the

host controller.

Serial
Interface
Engine

DPLL

USB
XCVR Rx FIFO

Tx FIFO

Coldfire
Core

Interface

Coldfire Core

Coldfire RAM

STAT
FIFO(4)

D+/D-

USB Block Diagram

DMA
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor12

The USB OTG Capable Controller Module
3.2 Interrupt Status Register
The Interrupt Status register is a critical part of the interface to the OTG module.

Figure 11. Interrupt Status Register

Table 4. Interrupt Status Register Field Descriptions

3.3 DATA Transfers
All USB OTG module interface/control registers are 8 bits wide. This allows the module to scale across
the 8-bit and 32-bit parts. Registers that require 32 bits (pointers) are split up into four separate registers.
An example of this is the buffer descriptor table (BDT) page register. The BDT page register is initialized
with a pointer to the start of the buffer descriptor table. The buffer descriptor table is a table of buffer
descriptors in memory, aligned to a 512 byte boundary.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 13

The USB OTG Capable Controller Module
3.4 How the Pointer into the BDT is Calculated

Figure 12. BDT Pointer

BDT_PAGE BDT_PAGE registers in the control register block
END_POINT END_POINT field from the USB TOKEN TX 1 for an TX transmit transfers and

0 for an RX receive transfers
ODD This bit is maintained within the USB-FS SIE. It corresponds to the buffer that is

currently in use. The buffers are used in a ping-pong fashion.
000 Each buffer descriptor is 8 bytes.

Data transfers between endpoints and RAM are configured via buffer descriptors. A buffer descriptor
contains a 32 bit status/control entry and a 32 bit pointer to a buffer in RAM (8 bytes). For each endpoint,
there are four buffer descriptors. Every endpoint direction requires two 8-byte buffer descriptor entries.
Therefore, a system with 16 fully bidirectional endpoints requires 512 bytes of system memory to
implement the BDT. The two buffer descriptor (BD) entries allows for an EVEN BD and ODD BD entry
for each endpoint direction. This allows the microprocessor to process one BD while the USB-FS is
processing the other BD. Double buffering BDs in this way allows the USB-FS to easily transfer data at
the maximum throughput provided by USB.

Figure 13. Buffer Descriptor

The buffer address entry points to the start of the buffer in RAM. The BC bits (10 bits) set the length of
the buffer. The OWN bit is a semaphore mechanism used to indicate whether the CPU core or the USB
module own the buffer descriptor. The USB module will not modify or use the buffer descriptor if OWN
is zero. The software should only modify the buffer descriptor when OWN is zero. After the software sets
up the buffer descriptor, the last thing it should do is set OWN to 1.

31:24 23:16 15:9 8:5 4 3 2:0

BDT_PAGE3 BDT_PAGE2 BDT_PAGE1 ENDPOINT IN ODD 000
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor14

The USB OTG Capable Controller Module
Figure 14. Buffer Descriptor Table (512 Bytes Max)

3.5 Firmware Example
Setting up the buffer descriptor table:

The following code should be inserted in the link command file to create a 512 byte aligned area
in RAM.

/* Buffer descriptor base address
 shall be aligned to 512 byte boundary.
 Size shall be 512 bytes. */

= ALIGN(512);
 __BDT_BASE = .;
 = . + 512;
 __BDT_END = .;

Then the BDT_PAGE registers can be initialized from C code using the following macros and code
snippet.

/* This macro shall evaluate to a uint32 pointer to the start address of the
 buffer descriptor table (BDT). The BDT has 32 bytes for each endpoint.
 The BDT shall be aligned to 512 byte boundary! */

extern hcc_u32 _BDT_BASE[];

#define BDT_BASE ((hcc_u32*)(_BDT_BASE))

/* Set BDT address. */
MCF_USB_BDT_PAGE_01 = (hcc_u8)(((hcc_u32)BDT_BASE) >> 8);
MCF_USB_BDT_PAGE_02 = (hcc_u8)(((hcc_u32)BDT_BASE) >> 16);
MCF_USB_BDT_PAGE_03 = (hcc_u8)(((hcc_u32)BDT_BASE) >> 24);

Buffer Descriptor Table
(512 bytes max)

USB Control Registers (8 bits)

BDT Page Ptr1

BDT Page Ptr2

BDT Page Ptr3

Status (EP and
direction)

BDT3 BDT2 BDT1 EPn
31 0

Concatenate these to form the
address into the BDT

Dir

EP1 Buffer Descriptor

EPn Buffer Descriptor

.

.

Endpoint Data Buffer
Memory

ColdFire RAM

EP1 Buffer Address

31 0
Byte Count (Packet Size) + OWN

Locates the start of the BDT

Index into the
BDT

Index into the memory designated
for the USB endpoint data buffers

.

.

Data Buffer EP0

Data Buffer EP1 of
Length = Packet Size

Data Buffer EPn

EP0 Buffer Descriptor
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 15

Using the USB OTG Module in Host Mode
4 Using the USB OTG Module in Host Mode
The USB OTG module makes developing host-side USB drivers easy. The hardware does all the work.
The hardware does so much of the work that a host driver can be implemented without interrupts. The
hardware supports features such as automatic SOF packet generation and TX, device detection, and auto
transaction transfers.

Host mode allows bulk, isochronous, interrupt, and control transfers. Bulk data transfers are performed at
nearly the full USB bus bandwidth. Support is provided for ISO transfers, but the number of ISO streams
that can be practically supported is affected by the interrupt latency of the processor servicing the token
during interrupts from the SIE.

4.1 Device Detection and Speed Determination
USB communications occur over 2 wires (D+ and D–). The host pulls these wires low using 2 pulldown
resistors. A device has a pullup on either the D+ or D– line depending on the speed it supports (full or low).
The host can detect a device being plugged in by sensing when either the D+ or D– lines go high. It can
also determine the speed using this system.

Figure 15. The Physical Layer

When a device is plugged in, the USB OTG controller generates a ATTACH indication or interrupt if the
interrupt is enabled.

Table 5. Attach Interrupt Register (ATTACH)

The firmware can determine the speed of the device via the state of the JSTATE and SE0 bits in the control
register. If the JSTATE bit is 0, then the connecting device is low speed.

HOST or Hub Port

Transceiver

15K 15K

DEVICE

Transcei

ver

D+

D

VBU

1.5K

HOST or Hub Port

Transceiver

15K 15K

DEVICE

Transcei

ver

D+

D

VBU

1.5K

D+

D

D

D+

Low Speed Attach Event

Full Speed Attach Event

When no device is connected D+ and D- are at 0V
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor16

Using the USB OTG Module in Host Mode
4.2 The Start-Of-Frame Packet
The host sends a SOF packet every 1 ms (full speed) to keep the device from entering suspend mode. The
USB OTG module generates this packet automatically. The SOF threshold register is used to program the
number of USB byte times before USB controller stops initiating token packet transaction. This register
must be set to a value that ensures that other packets are not actively being transmitted when the SOF time
counts to zero. When the SOF counter reaches the threshold value, no more tokens are transmitted until
after the SOF has been transmitted. The value programmed into the threshold register must reserve enough
time to ensure the worst case transaction completes. In general, the worst case transaction is a IN token
followed by a data packet from the target followed by the response from the host. The actual time required
is a function of the maximum packet size on the bus. Typical values for the SOF threshold are: 64-byte
packets=74; 32-byte packets=42; 16-byte packets=26; 8-byte packets=18.

The SOF packet contains a 11 bit frame number. The USB OTG module automatically increments the
frame counter. The counter can be reset or read by the firmware via the FRM_NUML and FRM_NUMH
registers.

4.3 Addressing a Device
USB support up to 127 devices on a node. This is accomplished by an address field in the token packet.

When operating in Host mode (HOST_MODE_EN=1), the USB module transmits this address with a
TOKEN packet. This enables the USB module to uniquely address an USB peripheral. In either mode, the
USB_EN bit within the control register must be set. The Address register is reset to 0x00 after the reset
input becomes active or the USB module decodes a USB reset signal. This action initializes the Address
register to decode address 0x00 as required by the USB specification.

Table 6. Address Register (ADDR)

Field PID Frame Number CRC

Bits 8 11 5

Figure 16. SOF Packet

Field PID Address Endpoint CRC

Bits 8 7 4 5

Figure 17. Token Packet
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 17

Using the USB OTG Module in Host Mode
4.4 Data Transactions in Host Mode
The host starts all transactions by sending a token packet. Like device mode operation, the USB OTG
module uses buffer descriptors in a buffers descriptor table to transmit and receive data. The hardware
handles most of the transaction. A token packet is created by the USB OTG module using data from the
TOKEN register. For an OUT transaction, the host then automatically sends the DATA packet. Finally, the
hardware verifies the ACK from the device and automatically resends the data if the transaction is not
ACKed.

With the hardware doing so much of the work, the USB host-side driver can be a very simple piece of
software.

Figure 18. USB Host-Side Driver

4.5 Endpoint Control Registers
The endpoint control registers contain the endpoint control bits for each of the 16 endpoints available
within the USB module for a decoded address. The format for these registers is shown in the following
figure. Endpoint 0 (ENDPT0) is associated with control pipe 0 which is required for all USB functions.
Therefore, after a USB_RST interrupt occurs the ColdFire core should set the ENDPT0 register to contain
0x0D.

In Host mode, ENDPT0-15 is used to determine the handshake, retry, and low-speed characteristics of the
host transfer. For control, bulk, and interrupt transfers in Host mode, the EP_HSHK bit must be set to 1.
For isochronous transfers, it must be set to 0. Common values to use for ENDPT0-15 in host mode are
0x4D for control, bulk, and interrupt transfers, and 0x4C for isochronous transfers.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor18

Using the USB OTG Module in Host Mode
There are 16 endpoint registers ENDPT0-15.

Figure 19. Endpoint Register (0–15)

Table 7. Endpoint Register (ENDPT0–15)

Field Description

7
HOST_WO_HUB

This is a Host mode only bit and is only present in the control register for endpoint 0 (ENDPT0). When
set this bit allows the host to communicate to a directly connected low speed device. When cleared, the
host produces the PRE_PID then switch to low speed signaling when sending a token to a low speed
device as required to communicate with a low speed device through a hub.

6
RETRY_DIS

This is a Host mode only bit and is only present in the control register for endpoint 0 (ENDPT0). When
set this bit causes the host to not retry NAK’ed (Negative Acknowledgement) transactions. When a
transaction is NAKed, the BDT PID field is updated with the NAK PID, and the TOKEN_DNE interrupt
is set. When this bit is cleared NAKed transactions is retried in hardware. This bit must be set when the
host is attempting to poll an interrupt endpoint.

4
EP_CTL_DIS

This bit, when set, disables control (SETUP) transfers. When cleared, control transfers are enabled.
This applies if and only if the EP_RX_EN and EP_TX_EN bits are also set.

3
EP_RX_EN

This bit, when set, enables the endpoint for RX transfers

2
EP_TX_EN

This bit, when set, enables the endpoint for TX transfers

1
EP_STALL

When set this bit indicates that the endpoint is called. This bit has priority over all other control bits in
the EndPoint Enable Register, but it is only valid if EP_TX_EN=1 or EP_RX_EN=1. Any access to this
endpoint causes the USB Module to return a STALL handshake. After an endpoint is stalled it requires
intervention from the Host Controller.

0
EP_HSHK

When set this bet enables an endpoint to perform handshaking during a transaction to this endpoint.
This bit is generally set unless the endpoint is Isochronous.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 19

Introduction to the CMX Stack
5 Introduction to the CMX Stack
The CMX USB-Lite stack can be downloaded from the Freescale web site. The firmware is provided as
public source under the license included in the installation executable.

5.1 Included Projects
HID keyboard device The USB stack emulates a keyboard.
HID mouse device The USB stack emulates a mouse.
HID generic device Implements a user defined HID device
HID PC software (VC++) Used to communicate with the HID generic device.
HID host Allows the user to connect and communicate with a keyboard, mouse, or

joystick
CDC device, serial to USB The USB stack can be used as a USB to serial converter.
Mass-Storage host Using this firmware, the USB stack can read and write to a USB flash stick.

5.2 The Files in the Firmware
USB Basic device controller

Usb.c Low-level USB driver and usb_it_handler() isr
Usb.h Header for USB driver
Usb_config.h USB driver compile time configuration parameters

HID device class files
Hid.c HID device layer including the state machine
Hid.h Header for hid.c
Hid_generic.c Demo application using a generic report structure

Used to communicate with the board via the HID PC application
Hid_generic.h Header for hid_generic.c
Hid_kbd.c HID keyboard demo
Hid_kbd.h
Hid_mouse.c HID mouse demo
Hid_mouse.h
Hid_usb_config.c USB enumeration structures for keyboard, mouse, and generic HID demos
Hid_usb_config.h Header for hid_usb_config.c
Hid_main.c Initial entry point for HID device demos

CDC class files
Cdc_usb_config.c USB configuration structures for the serial to USB CDC demo
Cdc_usb_config.h Header file for cdc_usb_config.c
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor20

Enumeration
Cdc_main.c Main loop, read/writes the UART, and transfers data to the USB stack
Usb_cdc.c CDC layer for the USB driver, cdc_getch() and cdc_putch()
Usb_cdc.h Header for usb_cdc.c

USB basic host controller
Usb_host.c USB host driver
Usb_host.h Header for usb_host.c
Usb_utils.c USB host driver utility functions
Usb_utils.h Header file for usb_utils.c

HID host class files
Hid_demo.c Prints information about connected devices to the serial line
Hid_parser.c Read and write access to HID report items
Hid_parser.h Header file for hid_parser.c
Hid_usage.h HID usage codes
Host_hid.c Basic HID functionality used by HID drivers
Host_hid.h Header for host_hid.c
Host_hid_joy.c HID joystick driver
Host_hid_kbd.c HID keyboard driver
Host_hid_mouse.c HID mouse driver

Mass storage host
Mst_main.c Initial entry point for mass storage demo
Scsi.c SCSI layer for USB mass storage class host demo
Usb_mst.c USB layer of USB mass storage class host driver
Terminal.c Simple terminal interface allows users to execute commands to exercise the

mass storage stack
Mst_glue.h Links sector driver of FAT file system to SCSI Layer of mass storage driver
Thin-lib.a Limited function FAT file system library

6 Enumeration
Enumeration is the process of the host learning about the device. Enumeration occurs on Endpoint 0, using
default address 0. During the enumeration process, the host assigns another address to the device. All USB
devices must support control transfers, the standard requests, and Endpoint 0. For a successful
enumeration, the device must respond to each request by returning requested information and taking other
requested actions.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 21

Enumeration
The USB specification defines six device states. During enumeration, a device moves through four of the
states: powered, default, address, and configured. (The other states are attached and suspend.)
Attached: The device can be in an attached or detached stat; the specification only defines

the attached stat.
Powered: A USB device must be able to be addressed within a specified time period from

when power is initially applied. After an attachment to a port has been detected,
the host may enable the port, which will also reset the device attached to the port.
The host will provide up to 100 ma at this point.

Default: After the device has been powered, it must not respond to any bus transactions
until it has received a reset from the bus. After receiving a reset, the device is then
addressable at the default address (0).

Address: All USB devices use the default address when initially powered or after the device
has been reset. Each USB device is assigned a unique address by the host after
attachment or after reset. A USB device maintains its assigned address while
suspended. A USB device responds to requests on its default pipe whether the
device is currently assigned a unique address or is using the default address.

Configured: Before a USB device’s function may be used, the device must be configured.
Configuration involves correctly processing a SetConfiguration() request with a
non-zero configuration value. Configuring a device or changing an alternate
setting causes all of the status and configuration values associated with endpoints
in the affected interfaces to be set to their default values. This includes setting the
data toggle of any endpoint using data toggles to the value DATA0.

Suspended: To conserve power, USB devices automatically enter the suspended state when the
device has observed no bus traffic for a specified period (refer to Section 7, “The
USB Device-Side Driver,”). When suspended, the USB device maintains any
internal status, including its address and configuration. All devices must suspend
if bus activity has not been observed for the length of time specified in the USB
specification. Attached devices must be prepared to suspend at any time they are
powered, whether they have been assigned a non-default address or are
configured.

The enumeration process is driven by the host. The host submits USB level requests to the device, the
device responds with a action or data.

6.1 Enumeration Steps
1. The device is plugged into a host. The host provides power to the device with a current limit of

100 ma.
2. The host determines low-speed/full-speed capability by pullup resistors connected to either the D+

or D– lines. At this point, the device is in the powered state.
3. The host sends a reset to the device by setting D+ and D– low for at least 10 milliseconds. When

the host removes the reset, the device goes into the default state.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor22

Enumeration
4. In the default state, the device is ready to respond to control transfers at Endpoint 0. The host
communicates with the device using the default address of 00. The device can draw up to 100 ma
from the host.

5. The host sends a GET_DESCRIPTOR request to Endpoint 0, address 0, to learn the maximum
packet size of the default pipe. The eight-byte device descriptor contains the maximum packet size
supported by Endpoint 0.

6. The host assigns a unique address to the device by sending a SET_ADDRESS request. The device
is in the address state.

7. The host sends a GET_DESCRIPTOR request to the new address to read the full device descriptor.
8. The host then requests any additional descriptors specified in the device descriptor. Each descriptor

begins its length and type.
9. The host assigns a device driver based on the data in the descriptors. Windows® will use the

devices vendor ID and product ID to find an appropriate INF file to determine what drivers to load.
If there is no match, Windows will use a default driver according to class.

10. If the device supports multiple configurations, the host will send a SET_CONFIGURATION
request to the device to select the desired configuration.

6.2 Types of Descriptors

6.3 Device Descriptor
Because the device descriptor represents the entire device, there can be only one per device. This
descriptor specifies basic information such as: USB version supported, maximum packet size, the number
of configurations, and vendor and product ID info.

Type Value Descriptor

Standard 01
02
03
04
05
06
07
08

device
configuration
string
interface
endpoint
device qualifier
other speed configuration
interface power

Class 21
29

HID
hub

Specific to HID 22
23

report
physical

Table 8. Device Descriptors

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant Device Descriptor Type(0x01)

2 bcdUSB 2 BCD USB Specification Release Number 0x0200
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 23

Enumeration
6.4 Configuration Descriptor
When the host requests the configuration descriptor, all related interface and endpoint descriptors are
returned. Each device has at least one configuration descriptor that describes the device’s features and
abilities. The device can have multiple configurations. The host selects a specific configuration using a
SET_CONFIGURATION request.

4 bDeviceClass 1 Class Class code (see spec)

5 bDeviceSubClass 1 SubClass Subclass code (see spec)

6 bDeviceProtocol 1 Protocol Protocol code (see spec)

7 bMaxPacketSize0 1 Number Max packet size for endpoint zero (only 8, 16, 32, or 64 are valid)

8 idVendor 2 ID Vendor ID

10 idProduct 2 ID Product ID

12 bcdDevice 2 ID Device release number in BCD

14 iManufacturer 1 BCD Index of string descriptor describing manufacturer

15 iProduct 1 Index Index of string descriptor describing product

16 iSerialNumber 1 Index Index of string descriptor describing the device’s serial number

17 bNumConfigurations 1 Number Number of possible configurations

Table 9. Configuration Descriptors

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant Configuration descriptor type (0x02)

2 wTotalLength 2 Number Total length of data returned for this configuration. Includes the
combined length of all descriptors (configuration, interface,
endpoint, and class or vendor specific), returned for this
configuration.

4 bNumInterfaces 1 Number Number of interfaces supported by this configuration

5 bConfigurationValue 1 Number Value to use as an argument to themSetConfiguration() request to
select this configuration

6 iConfiguration 1 Index Index of string descriptor describing this configuration

7 bmAttributes 1 Bitmap Configuration characteristics
D7: Reserved (set to one)
D6: Self-poweredD5: Remote Wakeup
D4...0: Reserved (reset to zero)

8 bMaxPower 1 mA Maximum power consumption of the USB device from the bus in
this Specific configuration when the device is fully operational.
Expressed in 2 mA units (i.e., 50 = 100 mA).

Table 8. Device Descriptors (continued)

Offset Field Size Value Description
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor24

Enumeration
6.5 Interface Descriptor
A configuration’s interface descriptor contains information about the endpoints the interface supports.
Each configuration must support at least one interface, but can support many. The host selects the interface
with a SET_INTERFACE request.

6.6 Endpoint Descriptor
Every endpoint except 0 must have a endpoint descriptor.

Table 10. Interface Descriptors

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant Interface descriptor type (0x04)

2 bInterfaceNumber 1 Number Number of this interface.

3 bAlternateSetting 1 Number Value used to select this alternate setting for the interface
identified in the prior field

4 bNumEndpoints 1 Number Number of endpoints used by this interface (excluding endpoint
zero). If this value is zero, this interface only uses the default
control pipe.

5 bInterfaceClass 1 Class Class code

6 bInterfaceSubClass 1 SubClass Subclass code

7 bInterfaceProtocol 1 Protocol Protocol code
If this field is reset to zero, the device does not use a
class-specific protocol on this interface. If this field is set to
FFH, the device uses a vendor-specific protocol for this
interface.

Table 11. Endpoint Descriptors

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant Endpoint descriptor type(0x05)

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB device described by
this descriptor. The address is encoded as follows:

Bit 3...0: The endpoint number
Bit 6...4: Reserved, reset to zero
Bit 7: Direction, ignored for control endpoints

0 = OUT endpoint
1 = IN endpoint
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 25

Enumeration
6.7 String Descriptor
The string descriptor contains descriptive text. The specification supports string descriptors for: the
manufacture, product, serial number, configuration, and interface. String descriptors are optional.

The bString field is overloaded. For string descriptor 0, the bString is an array of 1 or more language
identifier codes. For other string descriptors, this is a unicoded string.

Unicode uses 2 bytes per character.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is capable of sending or
receiving when this configuration is selected. For all
endpoints, bits 10..0 specify the maximum packet size (in
bytes). For high-speed isochronous and interrupt endpoints:

Bits 12..11 specify the number of additional transaction
opportunities per microframe:

00 = None(1 transaction / microframe)
01 = 1 additional (2 per microframe)
10 = 2 additional (3 per microframe)
11 = Reserved Bits 15..13 are reserved and must be set

 to zero.

6 bInterval 1 Number Interval for polling endpoint for data transfers. Expressed in
frames or microframes depending on the device operating
speed (i.e., either 1 millisecond or 125 s units).

For full-/high-speed isochronous endpoints, this value must be
in the range from 1 to 16. The bInterval value is used as the
exponent for a 2bInterval-1 value; e.g., a bInterval of 4 means
a period of 8 (24-1).

For full-/low-speed interrupt endpoints, the value of this field
may be from 1 to 255. For high-speed interrupt endpoints, the
bInterval value is used as the exponent for a 2bInterval-1
value; e.g., a bInterval of 4 means a period of 8 (24-1). This
value must be from 1 to 16.

For high-speed bulk/control OUTendpoints, the bInterval must
specify the maximum NAK rate of the endpoint. A value of 0
indicates the endpoint never NAKs. Other values indicate at
most 1 NAK each bInterval number of microframes. This value
must be in the range from 0 to 255.

Table 12. String Descriptors

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant String descriptor type (0x03)

2 bString N Number Unicode encoded string

Table 11. Endpoint Descriptors (continued)

Offset Field Size Value Description
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor26

Enumeration
6.8 Common Descriptor Hierarchy

Figure 20. Common Descriptor Hierarchy

6.9 USB Standard Device Requests
The USB specification defines 11 standard requests for control transfer. These requests are used by the host
to enumerate the device. During enumeration, the hosts sends these requests to the device after the device
is reset, starting when it is in the default state. The device firmware simply responds the to requests with
either data or an action.

The data source parameter defines who is sending the data. The value column specifies the data in the value
field. The data column specifies the data transferred during the data stage of the USB transaction. The data
length specifies the number of bytes in the data field. The x specifies the descriptor length.

Table 13. USB Standard Device Requests

Request# Name Data Source Value Data Length Data

0x00 Get_Status device 0 2 status

0x01 Clear_Feature none feature 0 none

0x03 Set_Feature none feature 0 none

0x05 Set_Address none address 0 none

0x06 Get_Descriptor device type&index x descriptor

0x07 Set_Descriptor host type&index x descriptor

0x08 Get_Configuration device 0 1 configuration

0x09 Set_Configuration none config 0 none

0x0A Get_Interface device 0 1 alternate

0x0B Set_Interface none interface 0 none

0x0C Sync_Frame device 0 2 frame #

Configuration
Descriptor

Configuration
Descriptor

Interface
Descriptor

Interface
Descriptor

Interface
Descriptor

Interface
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

DEVICE
Descriptor
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 27

Enumeration
6.10 USB Standard Device Requests—Setup Transfer Data Packet
Data Format

The 11 standard device requests are sent from the host on the devices default control pipe. These requests
are made using control transfers. Control transfers have three phases: setup, data, and handshake. The
setup transaction includes a data packet sent from the host to the device (out transfer). The request is
transferred in the data packet of the setup transaction.

Figure 21. Setup Transaction on Control Transfer

Table 14. Device Request

Offset Field Size Value Description

0 bmRequestType 1 Bitmap Characteristics of request:
D7: Data transfer direction

0 = Host-to-device
1 = Device-to-host

D6 . . . 5: Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

D4 . . . 0: Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4 . . . 31 = Reserved

1 bRequest 1 Request # Specific request

2 wValue 2 Value Word-sized field that varies according to request

4 wIndex 2 Index or Offset Word-sized field that varies according to request;
typically used to pass an index or offset

6 wLength 2 Count Number of bytes to transfer if there is a Data
stage

PID = DAT0
From Host

Request Packet
8 Bytes

PID = ACK
From Device

PID = Setup
Setup

Transaction

Token Packet
Sent by Host Data Packet

Handshake
Packet
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor28

Enumeration
6.11 Decoding the Generic HID Descriptors
#define USB_FILL_DEV_DESC(usb_ver, dclass, dsubclass, dproto, psize, vid,\
 pid, relno, mstr, pstr, sstr, ncfg)

hcc_u8 geh_device_descriptor[] = {
USB_FILL_DEV_DESC(
 0x0101, // USB version 1.1
 0, // device class 0 (each interface defines it’s own class info)
 0, // device subclass 0 (each interface defines it’s own class info)
 0, // device protocol 0 (does not use class-specific protocols)
EP0_PACKET_SIZE, // endpoint 0 control packet size is 8 bytes
GEH_VENDOR_ID, // Vendor ID = 0xC1CA
GEH_PRODUCT_ID, // Product ID is 3
GEH_DEVICE_REL_NUM, // Release number 0

1, // String index 1 is manufacture name
2, // String index 2 is Product name
3, // String index 3 is Serial Number
1) // Only 1 configuration

hcc_u8 * geh_string_descriptors[] = {
 string_descriptor0, // String index 0 placeholder
 str_manufacturer, // String index 1
 geh_product, // String index 2
 geh_serail_number, // String index 3
 geh_config // String index 4
 geh_interface // String index 5
 };

#define USB_FILL_CFG_DESC(size, nifc, cfg_id, str_ndx, attrib, pow) \
 (hcc_u8)0x09u, STDD_CONFIG, (hcc_u8)(size), (hcc_u8)((size) >> 8)\
 , (hcc_u8)(nifc), (hcc_u8)(cfg_id), (hcc_u8)(str_ndx), (hcc_u8)(attrib),
 (hcc_u8)(pow)

#define USB_FILL_IFC_DESC(ifc_id, alt_set, no_ep, iclass, isubclass, iproto, strndx) \
 (hcc_u8)0x09u, STDD_INTERFACE,(hcc_u8)(ifc_id), (hcc_u8)(alt_set), (hcc_u8)(no_ep)\
 , (hcc_u8)(iclass), (hcc_u8)(isubclass), (hcc_u8)(iproto), (hcc_u8)(strndx)

#define USB_FILL_EP_DESC(addr, dir, attrib, psize, interval) \
 (hcc_u8)0x07u, STDD_ENDPOINT, (hcc_u8)((addr)&0x7f) | (((hcc_u8)(dir))<<0x7)\
 , (hcc_u8)(attrib), (hcc_u8)((psize) & 0xff), (hcc_u8)(((psize) >> 8) & 0xff)\
 , (interval)

hcc_u8 geh_config_descriptor[] = {
USB_FILL_CFG_DESC(

9+3+9+9+7, // Descriptor has 37 bytes
1, // 1 configuration
1, // This is configuration number 1
4, // String index 4 describes this configuration

CFGD_ATTR_SELF_PWR, // Device is self powered
0), // Devices requires 0*2ma of current

USB_FILL_OTG_DESC(
1, // OTG disabled
1),

USB_FILL_IFC_DESC(
GEH_IFC_INDEX,// Interface ID = 0

0, // Alternate setting = 0
1, // Number of endpoints excluding endpoint 0
0x3, // HID interface class
0x0, // subclass 0
0x0, // Protocol 0
5), // String index 5 describes this interface
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 29

The USB Device-Side Driver
USB_FILL_HID_DESC(9, 0x0100, 0x0, 1, 0x22, sizeof(geh_report_descriptor)),

USB_FILL_EP_DESC(
0x1, // Endpoint 1
1, // IN
0x3, // Interrupt transfers
8, // Packet Size = 8 bytes
0x20), // Host data polling interval = 32ms

7 The USB Device-Side Driver
The low-level USB driver interfaces directly with the USB OTG module. There are two separate drivers,
one for host and another for device. The file usb.c and its header file usb.h are the device-side USB
low-level drivers. On the host side, the files usb_host.c, and usb_host.h contain the low-level driver.

The USB device driver is in the file usb.c. The driver provides the low-level functions for initializing the
USB OTG module, and transmitting data. The heart of the driver is the ISR. The USB OTG module has
seven interrupt sources. All the interrupt sources are ORed together to create a single interrupt vector.

Figure 22. USB Module Interrupt Sources

Table 15. Bit Descriptions

Field Description

7
STALL

Stall Interrupt
In target mode this bit is asserted when a STALL handshake is sent by the SIE.
This interrupt can be use to determine if the last USB transaction was completed successfully or if it stalled.

6
ATTACH

Attach Interrupt
This bit is set when the USB module detects the attach of a USB device. This signal is only valid if
HOST_MODE_EN is true. This interrupt signifies that a peripheral is now present and must be configured.

5
RESUME

This bit is set depending upon the DP/DM signals, and can be used to signal remote wake-up signaling on
the USB bus. When not in suspend mode, this interrupt should be disabled.

4
SLEEP

This bit is set when the USB module detects a constant idle on the USB bus for three milliseconds. The
sleep timer is reset by activity on the USB bus.

3
TOK_DNE

This bit is set when the current token being processed has completed. The ColdFire core should
immediately read the STAT register to determine the endpoint and BD used for this token. Clearing this bit
(by writing a one) causes the STAT register to be cleared or the STAT holding register to be loaded into the
STAT register.

2
SOF_TOK

This bit is set when the USB module receives a SOF token. In host mode this bit is set when the SOF
threshold is reached, so that software can prepare for the next SOF.

1
ERROR

This bit is set when any of the error conditions within the ERR_STAT register occur. The ColdFire core must
then read the ERR_STAT register to determine the source of the error.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor30

The USB Device-Side Driver
The TOK_DNE interrupt occurs after a the current token is processed. This occurs in either a TX or RX.
The driver must read the status register to determine whether the last transaction was a TX or RX, and to
determine which buffer descriptor was used.

Figure 23. USB Module Status Register

The ENDP field is the endpoint number the last transaction occurred on, the TX bit determines the
direction (0 = RX, 1 = TX), and the ODD field determine which of the two buffer descriptors was used.
The driver uses this data plus the BDT_PAGE register data to calculate the buffer descriptor absolute
address.

#define BDT_CTL_RX(ep, b) (BDT_BASE[((ep)<<3)+((b)<<1)+0])
#define BDT_ADR_RX(ep, b) (BDT_BASE[((ep)<<3)+((b)<<1)+1])
#define BDT_CTL_TX(ep, b) (BDT_BASE[((ep)<<3)+((b)<<1)+4])
#define BDT_ADR_TX(ep, b) (BDT_BASE[((ep)<<3)+((b)<<1)+5])

Where ep is the ENDP field, the endpoint number. The b parameter is the ODD field.

The OWN bit is cleared by the driver to indicate that the buffer descriptor is owned by the firmware.

The driver interfaces with the next level above the stack using the ep_info data structure. There is one
ep_info structure for each endpoint. These structures are stored in a array declared in usb.c.

static ep_info_t ep_info[16];

typedef struct {
 volatile hcc_u32 tlength;
 volatile hcc_u32 maxlength;
 void * volatile address;
 volatile usb_callback_t data_func;
 hcc_u16 psize;
 hcc_u32 data0_tx;
 hcc_u32 data0_rx;
 volatile hcc_u8 state;
 volatile hcc_u8 flags;
 volatile hcc_u8 error;
 hcc_u8 next_rx;
 hcc_u8 next_tx;
 } ep_info_t;

0
USB_RST

This bit is set when the USB module has decoded a valid USB reset. This informs the microprocessor that
it should write 0x00 into the address register and enable Endpoint 0. USB_RST is set after a USB reset has
been detected for 2.5 microseconds. It is not be asserted again until the USB reset condition has been
removed and then reasserted.

Table 15. Bit Descriptions (continued)

Field Description
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 31

The USB Device-Side Driver
Table 16. ep_info Data Structure

Field Description

tlength Transfer length (the number of bytes to transfer, decremented after each packet is transferred)

maxlength Maximum length of transfer

address Pointer to data buffer

data_func If:
 • The buffer is empty and more data needs to be sent
 • All transmission is finished
 • In case of an error

psize Maximum packet size allowed for endpoint

data0_tx tx toggle bit

data0_rx rx toggle bit

state Control endpoint state machine state values
EPST_IDLE
EPST_DATA_TX
EPST_DATA_TX_LAST
EPST_DATA_RX
EPST_STATUS_TX
EPST_STATUS_RX
EPST_TX_STOP
EPST_ABORT_TX
EPST_DATA_TX_WAIT_DB
EPST_DATA_TX_EMPTY_DB

flags Endpoint flag bits
EPFL_ERROR // There was an error during the ongoing transfer.
EPFL_ZPACKET // After the last data packet an additional zero length packet needs to be transmitted
 to close the transfer.

error Error flags:
USBEPERR_NONE // No error
USBEPERR_TO_MANY_DATA // To many data received
USBEPERR_PROTOCOL_ERROR // Protocol error
USBEPERR_USER_ABORT // Transfer was aborted by the application
USBEPERR_HOST_ABORT // Host aborted the transfer

next_rx Next buffer to be used. The USB module supports two buffers / endpoint direction. This specifies the next
buffer to use.

next_tx Next buffer to be used. The USB module supports two buffers / endpoint direction. This specifies the next
buffer to use.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor32

The USB Device-Side Driver
Figure 24. USB Device-Side Driver Block Diagram

7.1 Usb_it_handler()
The heart of the USB driver is the interrupt handler. The USB module generates interrupts from eight
different events as specified by the USB module specification.

Table 17. USB Module Interrupt Sources

Interrupt usb_it_handler() Response

USB_RST The handler resets its state machine, disables all endpoints, and resets Endpoint 0. usb_state is set to
USBST_DEFAULT. The usb_reset_event() callback function is called to indicate the reset to the higher
layers of the stack.

ERROR The usb_bus_error_event() callback function is called.

RESUME The usb_wakeup_event() callback function is called.

SLEEP The usb_suspend_event() callback function is called.

STALL The control endpoint is reset.

SOF_TOK This interrupt is not used by usb_it_handler().

ATTACH This interrupt is not used by usb_it_handler().

TOK_DNE All transactions start with a token packet sent by the host. In device mode, this interrupt occurs after the
device receives the token packet from the host. This is where the communication takes place. This portion
of the interrupt processes packets for the IN (TX) endpoints, the OUT (RX) endpoint, and control endpoints.

 BDT_PAGE ODD TX interrupt
USB OTG Module

DMA

Buffers
in RAM

Buffers

Descriptors
in RAM TOK_DNE ENDP ODD TX

usb_it_handler() in usb.c

ep_info[ENDP]
BDT_PAGE[(ENDP<<3)+(ODD<<1)+(4*TX)+1]
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 33

The USB Device-Side Driver
Figure 25. TOK_DNE Interrupt Flow

After the interrupt has claimed the buffer descriptors by clearing the OWN bit, and the buffer is toggled in
the ep_info structure. If this packet is a RX packet, then the PID is checked to determine if it is a SETUP
packet. The is_stp flag is set if it is a setup packet. Setup packets for control endpoints are handled by a
state machine.

The MCF_USB_ENDPT_EP_CTL_DIS flag is located in the endpoint control registers. This bit, when
set, disables control (SETUP) transfers. When cleared, control transfers are enabled. If the packet received
is from a endpoint supporting control transfers, then the MCF_USB_ENDPT_EP_CTL_DIS flag is
cleared, allowing SETUP packets to be received on the endpoint. Control endpoints are supported by a
state machine. Control transfers contain multiple tokens: a setup token indicates the start of the transfer,
an in or out token indicates the start of data, and a handshake token for handshaking. The state machine is
entered after each of these tokens. The state machine starts in the IDLE_STATE. While in the
IDLE_STATE, it is waiting for a setup packet to indicate the start of a control transfer.

TOK_DNE
interrupt

MCF_USB_STAT &
MCF_USB_STAT_TX

BD OWN bit = 0

Toggle
Ep_info[ep].next_tx

BD OWN bit = 0

Toggle
Ep_info[ep].next_rx

TX

0 1

RX

If (PID == setup packet)
is_stp = 1

is_rx = 1

USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor34

The USB Device-Side Driver
Figure 26. Control Endpoint State Machine

Figure 27. In, Out, and Control Endpoint Processing

IDLE STATE

SETUP Packet received
usb_stm_ctrl0()

DATA TX STATE
_usb_send(ep)

DATA RX STATE
_usb_receive(ep)

STATUS TX STATE
ep_info[ep].data_func()

STATUS RX STATE
ep_info[ep].data_func()

Control
Endpoint?

is_rx _usb_receive(ep)

OUT endpoint
For interrupt, isochronous, and
bulk transfers.

Control Endpoint
state machine

_usb_send(ep)

IN endpoint
For interrupt, isochronous, and
bulk transfers.

User callback function
ep_info.data_func()

It exit

yes

no

1 0
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 35

The USB Device-Side Driver
7.2 Enumeration Support—usb_stm_ctrl0()
The setup packet contains 8 bytes of data. This data is used to support the 11 standard USB requests
required for enumeration. These requests are parsed in the usb_stm_ctrl0() function. The usb_stm_ctrl0()
function is called by the USB interrupt handler when a SETUP packet is received. The 8 bytes contain the
request, and parameters for the request. Requests are always sent from the host.

USBRQ_SET_ADDRESS
This request sets the device address for all future device accesses.
new_address = device address sent from host
The function cb_set_address() is called at the end of this transaction.

USBRQ_GET_DESCRIPTOR
This request returns the specified descriptor if the descriptor exists.
The host specifies the descriptor it is asking for. The device sends the descriptor to the host during
the data phase.

USBRQ_GET_CONFIGURATION
This request returns the current device configuration value.
If the returned value is zero, the device is not configured.

USBRQ_SET_CONFIGURATION
This request sets the device configuration.
The host specifies the configuration that the device should use.
The firmware calls set_config() with the configuration number sent by the host.

USBRQ_CLEAR_FEATURE
This request is used to clear or disable a specific feature.
The firmware disables the endpoint specified by the host.

7.3 USB Device-Side API
hcc_u8 usb_init(hcc_u8 ip, hcc_u8 use_alt_clk)

 The usb_init() function is used to initialize the usb driver.
 ip = interrupt level assigned to the USB module
 us_alt_clk = Clock source select for module

void usb_stop(void)
 Disable USB interrupts, and shutdown the USB module.

void usb_send hcc_u8 ep, usb_callback_t f, hcc_u8* data, hcc_u32 tr_length,
 hcc_u32 req_length)
 Setup a TX (IN) transfer. The data will be transferred the next time the host
 request data from the endpoint. Because all packet transmission on USB are started
 by the host, it needs to know how many bytes shall be transferred during a
 transfer. Because of this the host will always tell the device how many bytes it can
 receive (req_length). On the other hand, the the device may have less data ready
 (tr_length). Calls the _usb_send(ep) function.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor36

The USB Device-Side Driver
 ep = endpoint number
 f = pointer to user callback function. A callback will be made
 if: - the buffer is empty and more data needs to be sent
 - all transmission is finished
 - in case of an error
 data = pointer to data buffer
 buffer_size = size of data buffer
 tr_length = number of bytes to be transferred.
 req_length = the number of bytes the host wants to receive.

void usb_receive(hcc_u8 ep, usb_callback_t f, hcc_u8* data, hcc_u32 tr_length,
 hcc_u32 req_length)
 Setup a RX (OUT) transfer on the endpoint. When the host sends data the
 callback function is called. The data can be found in the ep_info structure.
 Parameters are same as usb_send().

hcc_u8 usb_ep_is_busy(hcc_u8 ep)
 returns nonzero if endpoint is busy (a transfer is ongoing).

hcc_u8 usb_get_state(void)
 returns USB state

hcc_u8 usb_ep_error(hcc_u8 ep)
 Returns endpoint (ep) specific error code.

7.4 USB Driver Callback Functions
callback_state_t usb_ep0_callback(void)
 This callback function is called when a SETUP packet is received on a
 control endpoint. The USB driver has already processed any USB standard
 packets for enumeration. This callback is used to implement class specific
 requests.

void usb_bus_error_event(void)
 USB callback function. Is called by the USB driver if an USB error event
 occurs.

void usb_wakeup_event(void)
 USB callback function. Is called by the USB driver if an USB wakeup event
 occurs.

void usb_suspend_event(void)
 USB callback function. Is called by the USB driver if an USB suspend event
 occurs.

void usb_reset_event(void)
 USB callback function. Is called by the USB driver if an USB reset event
 occurs.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 37

The USB Host-Side Driver
8 The USB Host-Side Driver
The USB host-side driver is in the files usb_host.c and usb_utils.c. The host-side driver is simple thanks
to the advanced USB hardware. The host-side driver does not require interrupts. Host mode allows bulk,
isochronous, interrupt, and control transfers. Bulk data transfers are performed at nearly the full USB bus
bandwidth. Support is provided for ISO transfers, but the number of ISO streams that can be practically
supported is affected by the interrupt latency of the processor servicing the token during interrupts from
the SIE.

8.1 Initializing the Host Controller (host_init() in usb_host.c)
1. Setup the buffer table and point to first RX / TX buffer descriptors

 // use first rx and tx buffer
 MCF_USB_CTL |= MCF_USB_CTL_ODD_RST;

 // set BDT address
 MCF_USB_BDT_PAGE_01 = (hcc_u8)(((hcc_u32)BDT_BASE) >> 8);
 MCF_USB_BDT_PAGE_02 = (hcc_u8)(((hcc_u32)BDT_BASE) >> 16);
 MCF_USB_BDT_PAGE_03 = (hcc_u8)(((hcc_u32)BDT_BASE) >> 24);

2. Configure the SOF threshold

 MCF_USB_SOF_THLDL = 74; // disable transactions 74 bytes before SOF

3. Enable pulldown resistors
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor38

The USB Host-Side Driver
 MCF_USB_OTG_CTRL = MCF_USB_OTG_CTRL_DP_LOW | MCF_USB_OTG_CTRL_DM_LOW |
 MCF_USB_OTG_CTRL_OTG_EN;
 MCF_GPIO_PQSPAR |= MCF_GPIO_PQSPAR_PQSPAR5(3) | MCF_GPIO_PQSPAR_PQSPAR6(3);

4. Enable host mode (CTL[HOST_MODE_EN]=1). Pulldown resistors enabled, pullup disabled.
SOF generation begins. SOF counter loaded with 12,000. Eliminate noise on the USB by disabling
start-of-frame packet generation by writing the USB enable bit to 0 (CTL[USB_EN]=0).

 MCF_USB_CTL = MCF_USB_CTL_HOST_MODE_EN;

5. Enable the ATTACH interrupt (INT_ENB[ATTACH]=1) or clear the ATTACH flag if polling (to
clear the flag, write a 1).

 MCF_USB_INT_STAT = MCF_USB_INT_STAT_ATTACH;

6. Wait for ATTACH interrupt (INT_STAT[ATTACH]) or poll. Signaled by USB Target pull-up
resistor changing the state of DPLUS or DMINUS from 0 to 1 (SE0 to J or K state).

 if (MCF_USB_INT_STAT & MCF_USB_INT_STAT_ATTACH) device is attached

7. (optional) Check the state of the JSTATE and SE0 bits in the control register. If the JSTATE bit is 0,
then the connecting device is low speed. If the connecting device is low speed then set the
low-speed bit in the address registers (ADDR[LS_EN]=1) and the host the host without hub bit in
Endpoint 0 register control (EP_CTL0[HOST_WO_HUB]=1).

8. Enable RESET (CTL[RESET]=1) for 10 ms.

 MCF_USB_CTL |= MCF_USB_CTL_RESET; // start reset signaling Delay 10ms
 MCF_USB_CTL &= ~MCF_USB_CTL_RESET; // stop reset signaling
 MCF_USB_INT_STAT = MCF_USB_INT_STAT_USB_RST; // clear reset event
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 39

The USB Host-Side Driver
9. Enable the SOF packet to keep the connected device from going to suspend (CTL[USB_EN=1]).

 MCF_USB_CTL |= MCF_USB_CTL_USB_EN_SOF_EN;

10. Set up the endpoint control register for bidirectional control transfers.
 EP_CTL0[4:0] = 0x0d.

8.2 usb_host_transaction() in usb_host.c
With USB, data is transferred in transactions. The hosts initiates all transactions by sending a token to the
device. There are three tokens: in, out, and setup. Setup is a special token used to start a control transfer.
The driver only supports control transfers on Endpoint 0. This is not a limitation of the USB specification,
but a limitation of the free USB stack.

The usb_host_transaction() function generates one transaction of the type specified in the command line.
For control transfers, the usb_host_function() will be called three times to support the token, data, and
handshaking phases.

static hcc_u16 usb_host_start_transaction(hcc_u8 type, hcc_u8 *buffer, hcc_u16 length,
hcc_u8 ep)

 where: type = type of transaction to initiate (define in usb_host.h)
 TRT_SETUP = SETUP transaction
 TRT_IN = IN transaction
 TRT_OUT = OUT transaction

 *buffer = Pointer to data area for transfer
 length = Size of the buffer in bytes
 ep = EndPoint handle

The ep parameter requires a little more explanation. The structure my_device, declared in usb_host.c, is
used by the host firmware to encapsulate the device information. There is only one my_device entry. The
example host firmware does not support hubs; therefore, only one device is supported.
dev_table_element_t my_device; // declared in usb_host.c

typedef struct
{
 hcc_u8 address; // Device address
 hcc_u8 low_speed; // Low Speed device flag
 device_ep_t eps[MAX_EP_PER_DEVICE]; // Device endpoints
} dev_table_element_t;
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor40

The USB Host-Side Driver
typedef struct
{
 hcc_u16 last_due; // Interval due time
 hcc_u16 psize; // Packet size
 hcc_u8 type; // Endpoint type
 hcc_u8 address; // Endpoint Address
 hcc_u8 interval; // Interrupt frame interval
 hcc_u8 tgl_rx; // RX DATA toggle state
 hcc_u8 tgl_tx; // TX DATA toggle state
} device_ep_t;

8.3 usb_host_transaction() Pseudo Code
static hcc_u16 usb_host_start_transaction(hcc_u8 type, hcc_u8 *buffer, hcc_u16 length,
hcc_u8 ep)
{

The device address is set using the ADDR register. If the device is a low-speed device, the LS_EN flag is
set to force the USB OTG module to create a preamble.

 /* Set device address. */
 MCF_USB_ADDR = (hcc_u8)(my_device.low_speed ?
 my_device.address | MCF_USB_ADDR_LS_EN :
 my_device.address);

The host firmware does not support a hub.

 /* We are not talking over a HUB. */
 MCF_USB_ENDPT0 = MCF_USB_ENDPT0_HOST_WO_HUB;
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 41

The USB Host-Side Driver
Interrupt endpoints are limited to only one transaction per x frames, where x is the interval defined for the
endpoint. The endpoint interval is defined in my_device.eps[ep].interval. The last_due variable contains
the frame number for when it is safe to send the next interrupt transaction. Because frames occur every
millisecond, frame numbers translate to time in milliseconds. Therefore, the code below waits for interval
ms after the last transaction, before sending a transaction.
 /* If this is an interrupt endpoint wait till the endpoint is due. */
 if (my_device.eps[ep].type == EPTYPE_INT)
 {
 hcc_u16 elapsed;

 /* Disable hardware retry. */
 MCF_USB_ENDPT0 |= MCF_USB_ENDPT0_RETRY_DIS;
 /* Disable software retry. */
 retry=1;

 /* wait till frame is due */
 do {
 elapsed=(hcc_u16)(MCF_USB_FRM_NUM-my_device.eps[ep].last_due);
 elapsed &= ((1<<11)-1);
 } while(elapsed < my_device.eps[ep].interval);

 Increment last_due by interval for next transaction

 my_device.eps[ep].last_due += my_device.eps[ep].interval;
 my_device.eps[ep].last_due &= ((1<<11)-1);
 }

The following switch statement will do a setup, in, or out transaction depending on the type of transaction
requested by the function call (type is a input parameter to this function).

The do loop is a software retry loop. If the transaction completes in a error, the software will attempt
retries.
 do {
 tr_error=tre_none;
 retry--;
 switch(type)
 {
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor42

The USB Host-Side Driver
8.4 usb_host_transaction()—Setup Transaction
A setup transaction consists of a setup packet, followed by data from the host, with the device sending a
handshake packet. A setup packet is part of a control transfer. The driver forces Endpoint 0 for control
transfers as a limitation of the free USB stack.
 case TRT_SETUP:
 /* Configure bidirectional communication. */
 /* Usb spec says setup packets shall be accepted
 even if the device was not able to process its packet
 buffer. Thus NAK handshake should not be given to a
 setup packet by the device. Anyway some devices will
 happily NAK setup packets :(*/

RETRY_DIS is only set for a interrupt packet (see above). Retries are enabled here to support
non-compliant devices that NAK setup transactions. Control endpoints are bidirectional, so both the RX
and TX are enabled. Handshaking is enabled.

 MCF_USB_ENDPT0 |= 0x0d;

For a setup transaction, the data toggles are reset to 1.
 /* After the setup we shall send/receive DATA1 packets. */
 my_device.eps[ep].tgl_tx=1;
 my_device.eps[ep].tgl_rx=1;

During a setup transaction, the host sends a data packet. To do this, you need to setup the buffer descriptor
appropriately. The OWN bit is set to indicate that the USB OTG module owns the buffer descriptor, and
can send the data when appropriate. There is no actual data transmission at this time, the transmission is
being setup to happen automatically after the TOKEN packet is transmitted.

The BDT_ADR_TX macro generates a pointer to a buffer descriptor address field. A pointer to buffer is
inserted into the address field.
 /* Set data buffer address. */
 WR_LE32(&BDT_ADR_TX(0, ep_info.next_tx), (hcc_u32)buffer);
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 43

The USB Host-Side Driver
The BDT_CTL_TX macro generates a pointer to a buffer descriptor control word. The byte count (BC)
field of the control word is set to eight (8 bytes of data transfer). The OWN bit is set.

 /* Set packet properties and give buffer to USB. */
 bdt_ctl=&BDT_CTL_TX(0, ep_info.next_tx);
 WR_LE32(bdt_ctl, (0x8<<16) | BDT_CTL_OWN | 0);

At this point, you must wait until the last transaction is complete. This is done by polling the TOKBUSY
bit.

 /* Wait until pending tokens are processed. */
 while(MCF_USB_CTL & MCF_USB_CTL_TXDSUSPEND_TOKBUSY)
 {
 }

At this point, begin the transaction by writing to the TOKEN register.
TOKEN_SETUP(PID) = 0x0D.

 /* Start transaction. */
 MCF_USB_TOKEN=(hcc_u8)((TOKEN_SETUP<<4) | (my_device.eps[ep].address | (0<<7)));

 break;
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor44

The USB Host-Side Driver
8.5 usb_host_transaction()—In Transaction

 case TRT_IN:
 /* Configure bi-directional communication + auto repeat. */
 MCF_USB_ENDPT0 |= 0x0d;

 /* Set RX buffer address. */
 WR_LE32(&BDT_ADR_RX(0, ep_info.next_rx), (hcc_u32)buffer);

 /* Set packet properties and give next buffer to USB. */
 bdt_ctl=&BDT_CTL_RX(0, ep_info.next_rx);
 WR_LE32(bdt_ctl, (length<<16) | BDT_CTL_OWN |
 my_device.eps[ep].tgl_rx);
 my_device.eps[ep].tgl_rx =(hcc_u8)(my_device.eps[ep].tgl_rx ? 0 :
 BDT_CTL_DATA);

 /* Wait till pending tokens are processed. */
 while(MCF_USB_CTL & MCF_USB_CTL_TXDSUSPEND_TOKBUSY)
 {
 }

 /* Start transaction. */
 MCF_USB_TOKEN=(hcc_u8)((TOKEN_IN<<4) |
 (my_device.eps[ep].address | (1<<7)));
 reak;

8.6 usb_host_transaction()—Out Transaction

 case TRT_OUT:
 /* Configure bi-directional communication + auto repeat. */
 MCF_USB_ENDPT0 |= 0x0d;

 /* Set TX buffer address. */
 WR_LE32(&BDT_ADR_TX(0, ep_info.next_tx), (hcc_u32)buffer);

 /* Set packet properties and give buffer to USB. */
 bdt_ctl=&BDT_CTL_TX(0, ep_info.next_tx);
 WR_LE32(bdt_ctl, (length<<16) | BDT_CTL_OWN |
 my_device.eps[ep].tgl_tx);
 my_device.eps[ep].tgl_tx = (hcc_u8)(my_device.eps[ep].tgl_tx ? 0 :
 BDT_CTL_DATA);

 /* Wait till pending tokens are processed. */
 while(MCF_USB_CTL & MCF_USB_CTL_TXDSUSPEND_TOKBUSY)
 {
 }

 /* Start transaction. */
 MCF_USB_TOKEN=(hcc_u8)((TOKEN_OUT<<4) |
 (my_device.eps[ep].address | (0<<7)));
 break;
 // End of switch(type)

USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 45

The USB Host-Side Driver
8.7 usb_host_transaction()—Transaction Complete
After the transaction is initiated above, wait for the entire transaction to complete by polling the
TOK_DNE bit.

 /* Wait for transaction end. */
 while((MCF_USB_INT_STAT & (MCF_USB_INT_STAT_TOK_DNE | MCF_USB_INT_STAT_STALL |
 MCF_USB_INT_STAT_ERROR)) ==0)
 {
 }

Check for errors:
 if ((MCF_USB_ERR_STAT & ~MCF_USB_ERR_STAT_CRC5_EOF) != 0)
 {
 MCF_USB_ERR_STAT = 0xff;
 MCF_USB_INT_STAT = MCF_USB_INT_STAT_ERROR;
 tr_error=tre_data_error;
 continue;
 }

Acknowledge the TOK_DNE signal:
 /* device not disconnected while waiting for an aswer */
 /* clear transfer ok event */
 MCF_USB_INT_STAT=MCF_USB_INT_STAT_TOK_DNE;
 MCF_USB_CTL &= ~MCF_USB_CTL_TXDSUSPEND_TOKBUSY;

8.8 usb_host_transaction()—Data Toggling
USB uses a one-bit sequence number, referred to as a data toggle. After transmitting or receiving data, we
toggle the toggle bit for the next transaction.
 /* switch to next buffer */
 if (type== TRT_SETUP || type == TRT_OUT)
 {
 ep_info.next_tx ^= 0x1u;
 }
 else
 {
 ep_info.next_rx ^= 0x1u;
 }
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor46

The USB Host-Side Driver
8.9 usb_host_transaction()—Transaction Status
The status of the last transaction is returned in the TOK_PID field of the buffer descriptor. The token
variable below is assigned the 4 bits in the TOK_PID field.

 /* Check transaction status.*/
 token=(hcc_u8)((RD_LE32(bdt_ctl) >> 2) & 0x0f);

token = TOK_PID for buffer descriptor from last transaction. TOK_PID contains the transfer status.
 /* transaction accepted by device */
 switch (token)
 {
 default:
 case TOKEN_ACK: // TOKEN_ACK = 0x02 defined in usb_host.c
 return((hcc_u16)((RD_LE32(bdt_ctl) >> 16u) & 0x3ffu));

 case TOKEN_NAK: // TOKEN_NAK = 0x0A defined in usb_host.c
 /* device is not ready */
 if (my_device.eps[ep].type == EPTYPE_INT)
 {
 return(0);
 }
 /* retry */
 break; // by not returning, we go around the loop again

 case TOKEN_STALL: /* endpoint stalled by device */
 /* we can not get here because we already checked
 INT_STAT_STALL. */
 tr_error=tre_stall;
 return((hcc_u16)-1u);

 case 0xf: /* data error, retry */
 tr_error=tre_data_error;
 break;

 case 0: /* no answer, retry. */
 tr_error=tre_silent;
 break;
 }
 } while(retry);

 return((hcc_u16)-1u);
 }
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 47

The USB Host-Side Driver
8.10 USB Host-Side Driver API

8.10.1 USB Host-Side Driver API—Sending / Receiving Data

These four functions are used to send data to the device, or receive data from the device. These functions
are essentially wrappers around the usb_host_start_transaction() function. These functions block until the
transfer is complete or there is an error.

8.10.1.1 hcc_u16 host_send_control(hcc_u8 *setup_data, hcc_u8* buffer,
hcc_u8 ep)

setup_data = pointer to 8 bytes of data to send in SETUP phase.
buffer = Pointer to data buffer to be sent during data phase.
ep = handle to endpoint (index into my_device.eps[ep])

The host_send_control() function performs an out control transfer. Control transfers have three phases:
setup, data, handshake. This function creates all three phases. Sending the data pointed to by buffer during
the DATA phase.

 The SETUP data size is fixed at 8 bytes.

If the number of bytes to send is > packet size, then multiple DATA transactions are performed. The
ep parameter (endpoint handle) is passed directly to the usb_host_start_transaction() function. The
ep parameter is an index into the eps array of the my_device structure. This function is used to send
requests and or data to the device.

The function returns –1 on error, or number of transmitted bytes

Pseudo code:

hcc_u16 host_send_control(hcc_u8 *setup_data, hcc_u8* buffer, hcc_u8 ep)
{
 hcc_u32 curr=0;
 hcc_u16 length=RD_LE16(setup_data+6);

 /* setup transaction. */
 usb_host_start_transaction(TRT_SETUP, setup_data, 8, ep);

 /* data transactions */
 while(curr<length)
 {
 hcc_u16 psize=(hcc_u16)(MIN(my_device.eps[ep].psize, length));
 hcc_u8 r=(hcc_u8)usb_host_start_transaction(TRT_OUT, buffer+curr, psize, ep);
 if (r != psize)
 return((hcc_u16)-1u);

 curr += psize;
 }

 /* handshake transaction */
 my_device.eps[ep].tgl_rx = BDT_CTL_DATA;
 usb_host_start_transaction(TRT_IN, (void *)0, 0, ep);
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor48

The USB Host-Side Driver
 return((hcc_u16)curr);
}

8.10.1.2 hcc_u32 host_send(hcc_u8* buffer, hcc_u32 length, hcc_u8 ep)

 buffer = pointer to data to send.
 length = # of bytes to send.
 ep = handle to endpoint (index into my_device.eps[ep])

 The host_send() function creates a OUT transfer for non-control endpoints. This function is used to
send data to the device. OUT transfers consists of three packets: TOKEN, DATA, followed by a handshake
packet from the device. The usb_host_start_transaction() function does most of the work.

Returns –1 on error, or number of bytes sent.

Pseudo code:

hcc_u32 host_send(hcc_u8* buffer, hcc_u32 length, hcc_u8 ep)
{
 hcc_u32 curr=0;

 /* data transactions */
 while(curr<length)
 {
 hcc_u16 psize=(hcc_u16)(MIN(my_device.eps[ep].psize, length));
 /* do transaction */
 usb_host_start_transaction(TRT_OUT, buffer+curr, psize, ep);
 curr += psize;
 }

 return(curr);
}

8.10.1.3 hcc_u32 host_receive(hcc_u8* buffer, hcc_u32 length, hcc_u8 ep)

 buffer = pointer to storage area for received data.
 length = size of buffer.
 ep = handle to endpoint (index into my_device.eps[ep])

The host_receive() function performs a IN transfer on a non-control endpoint. This function is used to
receive data from a device.This function is similar to host_send().

Pseudo code:

hcc_u32 host_receive(hcc_u8* buffer, hcc_u32 length, hcc_u8 ep)
{
 hcc_u32 curr=0;

 /* data transactions */
 while(curr<length)
 {
 hcc_u16 got,
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 49

The USB Host-Side Driver
 psize=(hcc_u16)(MIN(my_device.eps[ep].psize, length));
 got=usb_host_start_transaction(TRT_IN, buffer+curr, psize, ep);
 if (got == ((hcc_u16)-1u))
 break;

 curr += got;

 /* short packet means end of transfer */
 if (got != my_device.eps[ep].psize)
 break;
 }

 return(curr);
}

8.10.1.4 hcc_u16 host_receive_control(hcc_u8 *setup_data, hcc_u8* buffer,
hcc_u8 ep)

The host_receive_control() function performs a IN transfer on a control endpoint. This function is used to
receive data from a device on a control endpoint. For instance, during enumeration, this function is used
to receive a descriptor.

The DATA packet in the SETUP transaction is limited to carrying eight bytes (all USB standard requests
are eight bytes). Also, there is no data length in the parameter list because this function assumes a USB
standard request packet is being sent in the SETUP stage; therefore, the size of the data transfer is
determined from byte 6 in the setup data packet (see USB standard requests in the enumeration section).

setup_data = pointer to 8 bytes of data to send in SETUP phase.
buffer = pointer to storage area for received data.
ep = handle to endpoint (index into my_device.eps[ep])

pseudo code

hcc_u16 host_receive_control(hcc_u8 *setup_data, hcc_u8* buffer, hcc_u8 ep)
{
 hcc_u32 curr=0;
 hcc_u16 length = RD_LE16(setup_data+6);

 /* setup transaction. */
 usb_host_start_transaction(TRT_SETUP, setup_data, 8, ep);

 /* data transactions */
 while(curr<length)
 {
 hcc_u16 got,
 psize=(hcc_u16)(MIN(my_device.eps[ep].psize, length));
 got=usb_host_start_transaction(TRT_IN, buffer+curr, psize, ep);
 curr += got;
 if (got == ((hcc_u16)-1u))
 return((hcc_u16)-1u);

 /* short packet means end of transfer */
 if (got != my_device.eps[ep].psize)
 break;
 }
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor50

The USB Host-Side Driver
 /* handshake transaction */
 my_device.eps[0].tgl_tx = BDT_CTL_DATA;
 if (((hcc_u16)-1u)==usb_host_start_transaction(TRT_OUT, (void *)0, 0, ep))

return((hcc_u16)-1u);

return((hcc_u16)curr);

}

8.10.2 USB Host-Side Driver API—Endpoint Management

Each device connected to the host has an entry in the my_device array. Because the host firmware is
limited to accepting one device only, there is only one entry in the array. Each device entry in the
my_device array includes a eps array. The eps array is used to describe a endpoint. When a data transfer
function is called with a endpoint handle, the handle is an index into the eps array.
EndPoint Structure (EPS)

hcc_u16 last_due; // Set during transaction
hcc_u16 psize; // Set by functions below
hcc_u8 type; // Set by functions below
hcc_u8 address; // Set by functions below
hcc_u8 interval; // Set by functions below
hcc_u8 tgl_rx; // Set during transaction
hcc_u8 tgl_tx; // Set during transaction

There are three functions used to manage the eps array: host_add_ep(), host_remove_ep(), and
host_modify_ep().

8.10.2.1 hcc_u8 host_add_ep(hcc_u8 type, hcc_u8 address, hcc_u8 interval,
hcc_u16 psize)

type = type of endpoint (defined in usb_host.h) -> eps.type
EPTYPE_CTRL
EPTYPE_ISO
EPTYPE_BULK
EPTYPE_INT

address = address of endpoint = 0 to 0x0f -> eps.address
interval = poll interval for interrupt endpoints -> eps.interval
psize = maximum packet size for endpoint -> eps.psize

The host_add_ep() function adds an endpoint into the eps array for the device supported. The function
returns a handle that is actually an index into the eps array. The handle is not the endpoint address. If a –1
is returned, then there are no more endpoints available for the device.

8.10.2.2 void host_remove_ep(hcc_u8 ep_handle)

The host_remove_ep() function sets the eps[ep_handle].address = INVALID_ADDRESS, marking the
endpoint as empty.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 51

The USB Host-Side Driver
8.10.2.3 void host_modify_ep(hcc_u8 ep_handle, hcc_u8 type, hcc_u8 address,
hcc_u8 interval, hcc_u16 psize)

ep_handle = handle returned from host_add_ep().
type = type of endpoint (defined in usb_host.h) -> eps[ep_handle].type

EPTYPE_CTRL
EPTYPE_ISO
EPTYPE_BULK
EPTYPE_INT

address = address of endpoint = 0 to 0x0f -> eps[ep_handle].address
interval = poll interval for interrupt endpoints -> eps[ep_handle].interval
psize = maximum packet size for endpoint -> eps[ep_handle].psize
Modifies eps[ep_handle]

8.10.3 USB Host-Side Driver API—Device Management

8.10.3.1 hcc_u8 host_has_device(void)

The host_has_device() function calls the chk_dev() function. Returns a true if(my_device.address !=
INVALID_ADDRESS). This is a indication that the device remains connected.
void host_reset_bus(void)

Set the USB_CTL_RESET for 10 ms to perform reset signaling on the USB bus. If a device is detected,
configure Endpoint 0 to get device descriptor/Endpoint 0 packet size. Then set device address to 1.

8.10.3.2 void host_init(void)

See detailed description in Section 8.1, “Initializing the Host Controller (host_init() in usb_host.c).”

8.10.3.3 int host_scan_for_device(void)

Calls chk_dev() to see if device is connected, and if so, calls host_reset_bus(). Returns 1 if a device is
connected and host received device descriptor.

8.10.3.4 void host_stop(void)

Shuts down the USB OTG module.

8.10.3.5 void host_sleep(void)

Disables SOF transmissions.

8.10.3.6 void host_wakeup(void)

Enables SOF transmissions.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor52

The USB Host-Side Driver
8.11 usb_utils.c
The following functions are used during the process of enumeration.

8.11.1 void fill_setup_packet(hcc_u8* dst, hcc_u8 dir, hcc_u8 type, hcc_u8
recipient, hcc_u8 req, hcc_u16 val, hcc_u16 ndx, hcc_u16 len)

This function is used to fill out a standard USB request setup data packet.
dst = a pointer to 8 byte buffer
dir = Data Direction – macros defined in usb_utils.h
STP_DIR_IN
STP_DIR_OUT
type = Request type
STP_TYPE_STD
STP_TYPE_CLASS
STP_TYPE_VENDOR
recipient = What is requested
STP_RECIPIENT_DEVICE
STP_RECIPIENT_IFC
STP_RECIPIENT_ENDPT
STP_RECIPIENT_OTHER
req = Request ID (either standard USB requests, or HID requests)
STDRQ_GET_STATUS (usb_utils.h)
STDRQ_CLEAR_FEATURE (usb_utils.h)
STDRQ_SET_FEATURE (usb_utils.h)
STDRQ_SET_ADDRESS (usb_utils.h)
STDRQ_GET_DESCRIPTOR (usb_utils.h)
STDRQ_SET_DESCRIPTOR (usb_utils.h)
STDRQ_GET_CONFIGURATION (usb_utils.h)
STDRQ_SET_CONFIGURATION (usb_utils.h)
STDRQ_GET_INTERFACE (usb_utils.h)
STDRQ_SET_INTERFACE (usb_utils.h)
STDRQ_SYNCH_FRAME (usb_utils.h)
HIDRQ_GET_REPORT (host_hid.c)
HIDRQ_GET_IDLE (host_hid.c)
HIDRQ_GET_PROTOCOL (host_hid.c)
HIDRQ_SET_REPORT (host_hid.c)
HIDRQ_SET_IDLE (host_hid.c)
HIDRQ_SET_PROTOCOL (host_hid.c)
val = Request specific Data
STDDTYPE_DEVICE (usb_utils.h)
STDDTYPE_CONFIGURATION (usb_utils.h)
STDDTYPE_STRING (usb_utils.h)
STDDTYPE_INTERFACE (usb_utils.h)
STDDTYPE_ENDPOINT (usb_utils.h)
ndx = index or offset
len = Number of bytes to transfer
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 53

The USB Host-Side Driver
8.11.2 int get_dev_desc(void)

The get_dev_desc() function requests a device descriptor from the device. The device descriptor is stored
in dbuffer. dbuffer is a global data area of 255 bytes (declared in usb_utils.c). A setup data packet is
generated using the fill_setup_packet() function, then sent using the host_receive_control() function.
Returns 0 on success.

fill_setup_packet(
 setup, // 8 byte array to store setup packet
 STP_DIR_IN, // Data from device
 STP_TYPE_STD, // USB standard request
 STP_RECIPIENT_DEVICE, // Request for device
 STDRQ_GET_DESCRIPTOR, // Get descriptor
 (STDDTYPE_DEVICE<<8)|0, // descriptor type is device
 0, // NA for this request
 18); // Expect 18 bytes of data

host_receive_control(setup, dbuffer, 0);

Table 18. void fill_setup_packet Field Descriptions

Offset
Field/

Parameter
Size Value Description

0 bmRequestType /
(dir|type|recipient)

1 Bitmap Characteristics of request:
D7: Data transfer direction

0 = Host-to-drive
1 = Device-to-host

D6 . .. 5: Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

D4 ... 0: Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4 ... 31 = Reserved

1 bRequest / req 1 Request # Specific request

2 wValue / val 2 Value Word-sized field that varies according to request

4 wIndex / ndx 2 Index or Offset Index or Offset Word-sized field that varies according to request
typically used to pass an index or offset

6 wLength / len 2 Count Number of bytes to transfer if int get_dev_desc(void)
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor54

The USB Host-Side Driver
8.11.3 int get_cfg_desc (hcc_u8 ndx)

The get_cfg_desc() function requests a configuration descriptor from the device. The configuration
descriptor can be any size. The host has no idea how big the descriptor is until the descriptor is received.
The get_cfg_desc() function first sends a configuration request with a length of 5. Bytes 2 and 3 are the
total length (word) of the configuration descriptor. After receiving the partial configuration descriptor, a
request is made for the complete descriptor.

The configuration descriptor is stored in dbuffer. dbuffer is a global data area of 255 bytes (declared in
usb_utils.c). A setup data packet is generated using the fill_setup_packet() function, then sent using the
host_receive_control() function. Returns 0 on success.

fill_setup_packet(
setup, // 8 byte array to store setup packet
STP_DIR_IN, // Data from device
STP_TYPE_STD, // USB standard request
STP_RECIPIENT_DEVICE, // Request for device
 STDRQ_GET_DESCRIPTOR, // Get descriptor
(STDDTYPE_CONFIGURATION<<8)| // type configuration
ndx), // configuration index
0, // NA for this request
5); // Read first 5 bytes of desc

host_receive_control(setup, dbuffer, 0);

fill_setup_packet(
setup, // 8 byte array to store setup packet
STP_DIR_IN, // Data from device
STP_TYPE_STD, // USB standard request
STP_RECIPIENT_DEVICE, // Request for device
STDRQ_GET_DESCRIPTOR, // Get descriptor
(STDDTYPE_CONFIGURATION<<8)| // type configuration
ndx) // configuration index
0, // NA for this request
RD_LE16(dbuffer+2)); // Read complete descriptor

host_receive_control(setup, dbuffer, 0);

8.11.4 int set_ep0_psize(void)

The set_ep0_psize() function performs a read device descriptor operation, then calls host_modify_ep() to
configure Endpoint 0 packet size. The device descriptor is stored in dbuffer. This function is used during
enumeration to setup Endpoint 0. Returns a 0 on success.

Table 19. Configuration Descriptors

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant CONFIGURATION Descriptor Type (0x02)

2 wTotalLength 2 Number Total length of data returned for this configuration.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 55

The USB Host-Side Driver
8.11.5 int set_address(hcc_u8 address)

The set_address() function sends a set address request to the device.
fill_setup_packet(

setup, // pointer to 8 byte array
STP_DIR_OUT, // OUT transfer
STP_TYPE_STD, // Standard request
STP_RECIPIENT_DEVICE, // Request for device
 STDRQ_SET_ADDRESS, // set address request
address, // address to set device to
0, // NA
0); // NA

host_send_control(setup, dbuffer, 0);

/* we need to wait maximum 50 mS to let the device change its address. */
 host_ms_delay(45);

8.11.6 int set_config(hcc_u8 cfg)

Sets the device configuration using a set configuration request.
fill_setup_packet(

setup, // pointer to 8 byte array
STP_DIR_OUT, // OUT transfer
STP_TYPE_STD, // Standard request
STP_RECIPIENT_DEVICE, // request for device
STDRQ_SET_CONFIGURATION, // Set configuration
cfg, // config to use
0, // NA
0); // NA

 host_send_control(setup, dbuffer, 0);

8.11.7 int get_device_info(device_info_t *res)

Sends a get device descriptor request to the device using the get_dev_desc() function call. The device
descriptor is parsed into a device_info_t structure, and stored at the address pointed to by res. Returns a 0
on success.
get_dev_desc(); // Reads device descriptor into dbuffer

 /* give read values to caller */
 res->clas=DEVDESC_CLASS(dbuffer);
 res->sclas=DEVDESC_SCLASS(dbuffer);
 res->protocol=DEVDESC_PROTOCOL(dbuffer);
 res->rev=DEVDESC_REV(dbuffer);
 res->vid=DEVDESC_VID(dbuffer);
 res->pid=DEVDESC_PID(dbuffer);
 res->ncfg=DEVDESC_NCFG(dbuffer);
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor56

The USB Host-Side Driver
8.11.8 int get_cfg_info(cfg_info_t *res)

Parses a configuration descriptor into a cfg_info_t structure. The data is stored at the address pointed to by
res. This function does not request a configuration descriptor from the device. It assumes the configuration
descriptor is stored in dbuffer.

res->nifc=CONFDESC_INTRFACES(dbuffer);
res->ndx=CONFDESC_MY_NDX(dbuffer);
res->str=CONFDESC_MY_STR(dbuffer);
res->attrib=CONFDESC_ATTRIB(dbuffer);
res->max_power=CONFDESC_MAX_POW(dbuffer);

8.11.9 int get_ifc_info(ifc_info_t *res, hcc_u16 offset)

Parses the interface descriptor indexed by offset. The parsed interface descriptor is stored in the ifc_info_t
structure pointed to by res.

res->clas=IFCDESC_CLASS(&dbuffer[offset]);
res->sclas=IFCDESC_SCLASS(&dbuffer[offset]);
res->protocol=IFCDESC_PROTOCOL(&dbuffer[offset]);
res->ndx=IFCDESC_MY_NDX(&dbuffer[offset]);
res->alt_set=IFCDESC_ALTERNATE(&dbuffer[offset]);
res->str=IFCDESC_MY_STR(&dbuffer[offset]);
res->nep=IFCDESC_ENDPONTS(&dbuffer[offset]);

8.11.10 int get_ep_info(ep_info_t *res, hcc_u16 offset)

Parses the endpoint descriptor indexed by offset. The parsed endpoint descriptor is stored in the ep_info_t
structure pointed to by res.

res->address=EPDESC_ADDRESS(&dbuffer[offset]);
res->type=EPDESC_ATTRIB(&dbuffer[offset]);
res->interval=EPDESC_INTERVAL(&dbuffer[offset]);
res->psize=EPDESC_PSIZE(&dbuffer[offset]);

8.12 Host Firmware—host_scan_for_device()
The host_scan_for_device() function call performs most of the device enumeration. The majority of the
work is done in the host_reset_bus() call and the chk_dev() call.
Pseudo code

int host_scan_for_device(void)

{
if (chk_dev()) // Check for ATTACH indication
{

host_reset_bus(); // Start Enumeration
return(1);

 }

return(0);

}
Pseudo code

static hcc_u8 chk_dev(void)
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 57

The USB Host-Side Driver
{
// Verify that device is not already enumerated
if (my_device.address == INVALID_ADDRESS)
{

int x;
/* If we can not clear the attach flag, then a device is connected. */
MCF_USB_INT_STAT = MCF_USB_INT_STAT_ATTACH;

/* Some delay is needed between clearing the ATTACH flag, and checking
it again. Unfortunately there is no information about the length of
the delay. */
for(x=0; x< 10000; x++);

if (MCF_USB_INT_STAT & MCF_USB_INT_STAT_ATTACH)
evt_connect();

}

return((hcc_u8)(my_device.address != INVALID_ADDRESS));

}

The evt_connect() function verifies that device is attached, sets up Endpoint 0, and determines the speed
of the device (full or low).
static hcc_u8 evt_connect(void)
{

hcc_u8 ep;
int x;

/* debounce (100 mS) */
host_ms_delay(100);

/* clear attach event */
MCF_USB_INT_STAT = MCF_USB_INT_STAT_ATTACH;

/* Some delay is needed between clearing the ATTACH flag, and checking
it again. Unfortunately there is no information about the length of
the delay. */
for(x=0; x<10000; x++) ;

/* Is a device connected? */
if((MCF_USB_INT_STAT & MCF_USB_INT_STAT_ATTACH) == 0)

return(0); // no

/* A newly connected device shall have address 0, */
my_device.address=0;

/* and only ep0 is working. We assume packet size of
ep0 is the possible minimum. We will read the real
value during enumeration. */
host_modify_ep(0, EPTYPE_CTRL, 0, 0, MIN_EP0_PSIZE);

/* remove all endpoints except 0 */
for(ep=1;ep<MAX_EP_PER_DEVICE;ep++)

host_remove_ep(ep);

/* clear low speed bit to make JSTATE detection consistent. */
MCF_USB_ADDR=0;
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor58

The USB Host-Side Driver
/* let settle D+ and D- to the right state */
host_ms_delay(1);

/* Check if device is low or high speed. */
if ((MCF_USB_CTL & MCF_USB_CTL_JSTATE) == 0)
{

/* Low speed device. */
my_device.low_speed=1;
MCF_USB_ADDR = MCF_USB_ADDR_LS_EN;

}
else

my_device.low_speed=0;

return(1);
}
void host_reset_bus(void)
{

hcc_u8 ep=0;

/********* reset */
/* Start reset signaling. */
MCF_USB_CTL |= MCF_USB_CTL_RESET;

/* The minimum reset signal length is 10 mS. We use an 1 mS timer so it has
at least 1 mS error (1 period). USB specifies +-0.05% accuracy for frame
interval. So we are good enough if we wait for 11 SOF due times. */
host_ms_delay(11);

/* stop reset signaling */
MCF_USB_CTL &= ~MCF_USB_CTL_RESET;

/* Clear reset event. */
MCF_USB_INT_STAT = MCF_USB_INT_STAT_USB_RST;

/********* do firmware reset */
/* A reset device shall have address 0, */
my_device.address=0;

/* and only ep0 is working. We assume packet size of
ep0 is the possible minimum. We will read the real
value during enumeration. */
host_modify_ep(0, EPTYPE_CTRL, 0, 0, MIN_EP0_PSIZE);

/* remove all endpoints except 0 */
for(ep=1;ep<MAX_EP_PER_DEVICE;ep++)

host_remove_ep(ep);

/* check if we have a device connected */
/* if a device is connected, it will answer to address 0 */
if (chk_dev())
{

/* enable SOF generation */
MCF_USB_CTL |= MCF_USB_CTL_USB_EN_SOF_EN;
MCF_USB_INT_STAT = MCF_USB_INT_STAT_SLEEP |
 MCF_USB_INT_STAT_RESUME;

/* device may need max 10 mS reset recovery time */
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 59

The USB Host-Side Driver
host_ms_delay(100);

/* Read out endpoint 0 packet size. */
if (set_ep0_psize())
 return;

/* set device address */
if (set_address(1))
 return;

my_device.address=1;
 }

}

8.13 Host Firmware—Device Enumeration
After the USB OTG module is initialized via a call to host_init(), the host firmware continuously calls
host_scan_for_device().

Host_init():
1. The device is plugged into a host. The host provides power to the device with a current limit of

100 ma. The host looks for a device attach indication.
2. The host determines low-speed/full-speed capability by pullup resistors connected to either the D+

or D– lines. At this point, the device is in the powered state.
3. The host sends a reset to the device, by setting D+ and D– low for at least 10 milliseconds. When

the host removes the reset, the device goes into the default state.
4. In the default state, the device is ready to respond to control transfers at Endpoint 0. The host

communicates with the device using the default address of 00. The device can draw up to 100 ma
from the host.

5. The host sends a GET_DESCRIPTOR request to Endpoint 0, address 0, to learn the maximum
packet size of the default pipe. The eight bytes of the device descriptor contains the maximum
packet size supported by Endpoint 0.

6. The host assigns a unique address to the device by sending a SET_ADDRESS request. The device
is now in the address state.

while(!host_scan_for_device());
7. The host sends a GET_DESCRIPTOR request to the new address to read the full device descriptor.

get_dev_desc(); // The device descriptor is in dbuffer
8. The host then requests any additional descriptors specified in the device descriptor. Each descriptor

begins its length and type.
get_cfg_desc(1); // The configuration descriptor is in dbuffer

9. The host assigns a device driver based on the data in the descriptors. Windows will use the devices
vendor ID and product ID to find an appropriate INF file to determine what drivers to load. If there
is no match, Windows uses a default driver according to class.

10. If the device supports multiple configurations, the host sends a SET_CONFIGURATION request
to the device to select the desired configuration.

set_config(1);
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor60

The USB Host-Side Driver
8.14 emg_host_demo()
The following code is an example of how to enumerate a device using the host API. In this example, the
firmware prints out the device and configuration descriptors to the serial port (38400, 8, n, 1). A new
function (not part of the standard stack) was written to request the string descriptors from the device.
//
// Enumerate device, and output device / configuration descriptors to the serial port in hex
// Serial descriptors are also printed to the serial port
//
// Written by Eric Gregori (847) 651 - 1971
//
int main(void)
{

hcc_u8 cfg, str1, str2, str3;
hcc_u16 length, i;
device_info_t dev_inf;
cfg_info_t cfg_inf;

hw_init();
uart_init(38400, 1, 'n', 8);
host_init();

print("\r\nHost Demo by Eric Gregori\n\r");
print("EMG Host application started.\r\n");

while(1)
{

busy_wait();

/* a device is already connected, wait till it is disconnected */
print("Waiting for device removal.\r\n");
while(host_has_device()); // Spin waiting for !ATTACH

print("Device disconnected.\r\n");

/* At this point no device is attached. Wait till attachment. */
print("Waiting for device...\r\n");
while(!host_scan_for_device()); // Spin waiting for ATTACH

print("Device connected.\r\n");

// Read and parse device descriptor
// get_device_info() calls get_dev_desc()
if(!get_device_info(&dev_inf))
{

print("\n\rDevice Descriptor\n\r");
for(i=0; i<18; i++)
{
 emg_printbytehex(dbuffer[i]);
 print(" ");
}
print("\n\r");

str1 = dbuffer[14];
str2 = dbuffer[15];
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 61

The USB Host-Side Driver
str3 = dbuffer[16];

if(str1)
{
 print("\r\nManufacture: ");
 emg_print_str_desc(str1);
}

if(str2)
{
 print("\r\nProduct: ");
 emg_print_str_desc(str2);
}

if(str3)
{
 print("\r\nSerial Number: ");
 emg_print_str_desc(str3);
}

print("\r\n\r\nDecoded Device Descriptor");
print("\n\ridVendor = ");
emg_printwordhex(dev_inf.vid);
print("\n\ridProduct = ");
emg_printwordhex(dev_inf.pid);
print("\n\rbcdDevice = ");
emg_printwordhex(dev_inf.rev);
print("\n\rbDeviceClass = ");
emg_printbytehex(dev_inf.clas);
print("\n\rbDeviceSubClass = ");
emg_printbytehex(dev_inf.sclas);
print("\n\rbDeviceProtocol = ");
emg_printbytehex(dev_inf.protocol);
print("\n\rbNumConfigurations = ");
emg_printbytehex(dev_inf.ncfg);
print("\n\r");

}
else

print("\r\nFailure Reading Device Descriptor");

// Read all configuration descriptors
for(cfg=0; cfg < dev_inf.ncfg; cfg++)
{
// get the configuration descriptor
if (get_cfg_desc(cfg))

continue; // Descriptor cfg not found
else
{
print("\n\rConfiguration Descriptor - ");
emg_printbytehex(cfg);
length=RD_LE16(dbuffer+2);

for(i=0; i<length; i++)
{
 if((i%16) == 0)
 print("\n\r");
 emg_printbytehex(dbuffer[i]);
 print(" ");
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor62

The USB Host-Side Driver
}

str1 = dbuffer[6];

print("\n\r\n\rDecoded Configuration Descriptor");

// Call get_cfg_info() to parse configuration descriptor
get_cfg_info(&cfg_inf);

print("\n\rbNumInterfaces = ");
emg_printbytehex(cfg_inf.nifc);

print("\n\rbConfigurationValue = ");
emg_printbytehex(cfg_inf.ndx);

print("\n\riConfiguration = ");
emg_printbytehex(cfg_inf.str);

print("\n\rbmAttributes = ");
emg_printbytehex(cfg_inf.attrib);

print("\n\rbMaxPower * 2ma = ");
emg_printbytehex(cfg_inf.max_power);

if(str1)
{
 print("\r\nManufacture: ");
 emg_print_str_desc(str1);
}

}
print("\n\r\n\r");

 } // end of config descriptor read

} //
// while(1)

8.15 Displaying a String Descriptor—emg_print_str_desc()
void emg_print_str_desc(unsigned char desc)
{

unsigned chari;

if(!emg_get_str_descriptor(desc))
{

// Unicoded string is in dbuffer starting at 2
// strlen = (dbuffer[0] - 2)*2
for(i=2; i<=(dbuffer[0]-2); i+=2)

uart_putch(dbuffer[i]);
}

}

USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 63

The USB Host-Side Driver
8.16 emg_get_str_descriptor()
int emg_get_str_descriptor(unsigned char desc)
{

hcc_u8 setup[8];
hcc_u16 length=3;
hcc_u8 retry=3;

std_error=stderr_none;
do
{

// Build SETUP data packet
fill_setup_packet(setup, STP_DIR_IN, STP_TYPE_STD, STP_RECIPIENT_DEVICE,
STDRQ_GET_DESCRIPTOR, (hcc_u16)((STDDTYPE_STRING<<8)|desc), 0, length);
if (length == host_receive_control(setup, dbuffer, 0))
{

/* Check returned descriptor type and length (ignore extra bytes) */
if ((USBDSC_TYPE(dbuffer) == STDDTYPE_STRING))
{
 length=dbuffer[0];

 if(length >= DBUFFER_SIZE)
 length = DBUFFER_SIZE-1;

 // Rebuild SETUP data packet with new length
 fill_setup_packet(setup, STP_DIR_IN, STP_TYPE_STD,
 STP_RECIPIENT_DEVICE,
 STDRQ_GET_DESCRIPTOR,
 (hcc_u16)((STDDTYPE_STRING<<8)|desc),
 0, length);

 if (length == host_receive_control(setup, dbuffer, 0))
 return(0);
}

}
}while(retry--);

std_error=stderr_host;
return(1);

}

8.17 emg_host_demo()—Camera 1 Enumeration
Host Demo by Eric Gregori
EMG Host application started.
Waiting for device removal.
Device disconnected.
Waiting for device...
Device connected.

Device Descriptor
12 01 10 01 FF FF FF 08 45 05 33 83 01 00 00 00 00 01

Decoded Device Descriptor
idVendor = 0545
idProduct = 8333
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor64

The USB Host-Side Driver
bcdDevice = 0001
bDeviceClass = FF
bDeviceSubClass = FF
bDeviceProtocol = FF
bNumConfigurations = 01

Configuration Descriptor - 00
09 02 89 00 01 01 00 80 32 09 04 00 00 01 FF FF
FF 00 07 05 81 01 00 00 01 09 04 00 01 01 FF FF
FF 00 07 05 81 01 00 01 01 09 04 00 02 01 FF FF
FF 00 07 05 81 01 80 01 01 09 04 00 03 01 FF FF
FF 00 07 05 81 01 00 02 01 09 04 00 04 01 FF FF
FF 00 07 05 81 01 80 02 01 09 04 00 05 01 FF FF
FF 00 07 05 81 01 00 03 01 09 04 00 06 01 FF FF
FF 00 07 05 81 01 80 03 01 09 04 00 07 01 FF FF
FF 00 07 05 81 01 FF 03 01

Decoded Configuration Descriptor
bNumInterfaces = 01
bConfigurationValue = 01
iConfiguration = 00
bmAttributes = 80
bMaxPower * 2ma = 32

Waiting for device removal.

8.18 emg_host_demo()—Camera 2 Enumeration
Device disconnected.
Waiting for device...
Device connected.

Device Descriptor
12 01 10 01 00 00 00 40 45 0C 0D 60 01 01 00 01 00 01

Product:

Decoded Device Descriptor
idVendor = 0C45
idProduct = 600D
bcdDevice = 0101
bDeviceClass = 00
bDeviceSubClass = 00
bDeviceProtocol = 00
bNumConfigurations = 01

Configuration Descriptor - 00
09 02 17 01 01 01 00 80 FA 09 04 00 00 03 FF FF
FF 00 07 05 81 01 00 00 01 07 05 82 02 40 00 00
07 05 83 03 01 00 64 09 04 00 01 03 FF FF FF 00
07 05 81 01 80 00 01 07 05 82 02 40 00 00 07 05
83 03 01 00 64 09 04 00 02 03 FF FF FF 00 07 05
81 01 00 01 01 07 05 82 02 40 00 00 07 05 83 03
01 00 64 09 04 00 03 03 FF FF FF 00 07 05 81 01
80 01 01 07 05 82 02 40 00 00 07 05 83 03 01 00
64 09 04 00 04 03 FF FF FF 00 07 05 81 01 00 02
01 07 05 82 02 40 00 00 07 05 83 03 01 00 64 09
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 65

The USB Host-Side Driver
04 00 05 03 FF FF FF 00 07 05 81 01 A8 02 01 07
05 82 02 40 00 00 07 05 83 03 01 00 64 09 04 00
06 03 FF FF FF 00 07 05 81 01 20 03 01 07 05 82
02 40 00 00 07 05 83 03 01 00 64 09 04 00 07 03
FF FF FF 00 07 05 81 01 84 03 01 07 05 82 02 40
00 00 07 05 83 03 01 00 64 09 04 00 08 03 FF FF
FF 00 07 05 81 01 FF 03 01 07 05 82 02 40 00 00
07 05 83 03 01 00 64

Decoded Configuration Descriptor
bNumInterfaces = 01
bConfigurationValue = 01
iConfiguration = 00
bmAttributes = 80
bMaxPower * 2ma = FA

Waiting for device removal.

8.19 emg_host_demo()—Mouse Enumeration
Device disconnected.
Waiting for device...
Device connected.

Device Descriptor
12 01 00 02 00 00 00 08 6D 04 16 C0 40 03 01 02 00 01

Manufacture: Logitech
Product: Optical USB Mouse

Decoded Device Descriptor
idVendor = 046D
idProduct = C016
bcdDevice = 0340
bDeviceClass = 00
bDeviceSubClass = 00
bDeviceProtocol = 00
bNumConfigurations = 01

Configuration Descriptor - 00
09 02 22 00 01 01 00 A0 32 09 04 00 00 01 03 01
02 00 09 21 10 01 00 01 22 34 00 07 05 81 03 04
00 0A

Decoded Configuration Descriptor
bNumInterfaces = 01
bConfigurationValue = 01
iConfiguration = 00
bmAttributes = A0
bMaxPower * 2ma = 32

Waiting for device removal.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor66

The HID Class
9 The HID Class
One of the first USB classes to be adopted by the Windows operating system was the Human Interface
Device (HID) class. Originally part of Windows 98, the HID class has been supported in every version of
Microsoft Windows since. The HID class has been supported in Linux since version 2.2.7 of the kernel.
Although, it is generally considered unstable in Linux versions before kernel 2.4.

The HID class was designed to provide communications between a input or simple output device and a
computer. Example HID devices include: mouses, keyboards, joysticks, front panels, and remote controls.
Data transfers are bidirectional and acknowledged.

The HID class supports both interrupt and control transfers. If interrupt transfers are used, then the
maximum performance number mentioned above can be achieved. If control transfers are used, then the
maximum performance may be achieved but not guaranteed. The HID specification can be found at
http://www.usb.org/developers/hidpage/. At the time of publication, the specification is Device Class
Definition for HID 1.11.

All HID transfers use either the default control pipe or an interrupt pipe for communications to the host.
The specification requires that a HID device must have an interrupt in endpoint for sending data to the host.
A interrupt out endpoint to receive data from the host is optional.

Table 20. HID Speeds and Limitations

Specification Bytes/Transaction Bytes / Second

USB 1.1 Low-speed
USB 2.0 Low-speed

8 800

USB 1.1 Full-speed
USB 2.0 Full-speed

64 64999

Table 21. Data and Transfer Types

Transfer Type Source of Data Type of Data

Control Device
(IN transfer)

Data that does not have critical timing requirements

Control Device
(OUT transfer)

Data that does not have critical timing requirements, or any data if there
is no OUT interrupt pipe.

Interrupt Device
(IN transfer)

Periodic data or data that must be transferred at max rate.

Interrupt Device
(OUT transfer)

(optional)

Periodic data or data that must be transferred at max rate.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 67

The HID Class
A application can also use the default control pipe for data transfers. The control pipe for a HID is used
for standard USB requests as well as six class-specific requests. The HID specific requests used for data
transfers are Set_Report and Get_Report. The Set_Idle, Get_Idle, Set_Protocol, and Get_Protocol are the
other four HID requests sent through the default control pipe.

The HID stack uses a report structure to communicate with the application. During enumeration the device
shares report descriptors with the host. The report descriptors describe the data that will be
transmitted/received in the report structures. There are specifications for these report structures and
descriptors, but they tend to be application specific. If the user controls both sides of the communication,
and is not expecting to communicate with a standard driver on the PC side (keyboard, mouse, ..) then a
generic report structure/descriptor can be used.

9.1 HID Device Firmware
The HID device firmware is located in the file hid.c. The HID stack is initialized with a call to HID_init().
The application has to call the function hid_process() within its main loop to process HID reports through
the queuing mechanism. Report entries are created with calls to the hid_add_report() function. After a
report entry is created, data is sent with the hid_write_report() call, and received with the hid_read_report()
call.

The heart of the HID firmware is the usb_ep0_hid_callback(void) callback function. This function is
called by the USB driver Endpoint 0 handler. When a packet is received on Endpoint 0, the USB drivers

Table 22. HID Specific Requests

Request # Request Data Source Data Length Data Contents Required

0x01 Get_Report Device Report length Report Yes

0x02 Get_Idle Device 1 Idle duration No

0x03 Get_Protocol Device 1 Protocol Required for boot devices

0x09 Set_Report Host Report length Report No

0x0A Set_Idle Host 0 None No

0x0B Set_Protocol Host o None Required for boot devices

Table 23. HID Report Specifications

Specification/File Usage

Hut1_2.pdf Mouse, keyboard, joystick, simulation controls,
telephone controls, digitizers, bar code scanners,
scales, point of sale, and arcade and camera controls

Pid1_01.pdf Physical interface devices (force feedback joysticks,
steering wheels, etc.)

Pdcv10.pdf Power devices such as UPS

Usbmon10.pdf Monitor control

Oaaddataformatsv6.pdf Arcade products (coin mechanisms, bill validators,
input pads, and general-purpose I/O)

Pos1_02.pdf Point of sale devices
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor68

The HID Class
check the request type for any USB level request packets. If the packet is not a standard USB request, it is
passed up the stack via the usb_ep0_callback() which calls the us_ep0_hid callback().

The HID endpoint 0 handler processes the following HID specific requests.
/* Class specific requests. */
#define HIDRQ_GET_REPORT 0x1
#define HIDRQ_GET_IDLE 0x2
#define HIDRQ_GET_PROTOCOL 0x3
#define HIDRQ_SET_REPORT 0x9
#define HIDRQ_SET_IDLE 0xa
#define HIDRQ_SET_PROTOCOL 0xb

Data from host, interrupt driven, using Endpoint 0 (the control endpoint):

Data to the HOST is inserted directly into USB buffer descriptors for endpoint 1:

Synchronization with the USB bus is handled entirely by the USB module.

Figure 28. Request Propogation Through the Stack

 usb_it_handler(void)
usb.c

usb_stm_ctrl0()
usb.c

usb_ep0_callback()
hid.c

reports structure
hid.c

 hid_process(void)
hid.c

reports structure
hid.c

usb_send(void)
usb.c

_usb_send(void)
usb.c

usb_it_handler()

endpoint0

usb_stm_ctr10()
usb.c

USBRQ_SET_ADDRESS
USBRQ_GET_DESCRIPTOR

USBRQ_GET_CONFIGURATION
USBRQ_SET_CONFIGURATION

USBRQ_CLEAR_FEATURE

usb_ep0_hid_callback()
hid_usb_config.c

usb_ep0_hid_callback
hid.c

GHIDD_HID_DESCRIPTOR
GHIDD_REPORT_DESCRIPTOR

GHIDD_PHYSICAL_DESCRIPTOR
HIDRQ_GET_REPORT

HIDRQ_GET_IDLE
HIDRQ_SET_REPORT

HIDRQ_SET_PROTOCOL
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 69

The HID Class
The HID stack supports three type of reports: input, output, and features. The demo applications limit the
number of reports to two (MAX_NO_OF_REPORTS in hid.c). The maximum number of bytes that can
be sent through a report is limited to eight as defined by the macro MAX_REPORT_LENGTH in the file
hid.c, and the report descriptors defined in the file hid_usb_config.c.

The report descriptors are in the file hid_usb_config.c. The format for report descriptors is defined in the
HID specification. Report descriptors consist of a tag followed by parameters. There are two groups of
tags, short and long. Short tags are limited to 1–5 bytes total length. Long tags can contain as many as 262
total bytes.

The total length of the report descriptor depends on the number and type of tags used in the descriptor.

To increase the maximum amount of data allowed in a report, the MAX_REPORT_LENGTH macro must
be increased to increase the size of the report buffers, and the report descriptor must be modified so that
the host is informed of the size of the report during enumeration.

Figure 29. USB HID Stack Block Diagram

USB module (MAC / PHY)

USB Module EP Buffer Descriptors

Usb_it_handler() in
usb.c

Ep_info

End Point
Buffers

HID.c

Usb_send()
Stuffs data
directly into
EP buffers

reports

User Application
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor70

The HID Class
9.2 HID Device API
void HID_init(hcc_u16 default_idle_time, hcc_u8 ifc_number)

default_idle_time is the idle time in ms reported back to the host via a
HIDRQ_GET_IDLE request.
Causes the endpoint to NAK any polls on an interrupt in
endpoint while its current report remains unchanged. In the absence of a
change, polling will continue to be NAKed for a given time-based
duration.
For keyboards, the spec recommends a idle time of 500ms, for mice the
spec recommends a idle time of 0.
The ifc_number specifies the interface number to start the HID protocol
on.

void hid_process(void)
This function walks through the reports and sends any reports marked as
type rpt_in that are pending. This is the transmit portion of the HID protocol. Reports
are transmitted on endpoint 1.

for(x=0; x<sizeof(reports)/sizeof(reports[0]); x++)
{

if(reports[x].used
 && reports[x].pending
 && reports[x].type==rpt_in)
{

usb_send(1, (void *)0
 , reports[x].buffer
 , reports[x].size
 , reports[x].size);
while(usb_ep_is_busy(1)); // Wait for TX done
reports[x].pending=0;
break;

}

}
hcc_u8 hid_add_report(hid_report_type type, hcc_u8 id, hcc_u8 size)

Initializes a unused report in the reports array.
type is either: rpt_in, rpt_out, or rpt_feature as defined in hid.h
id attaches this report to a REPORT ID created in a report descriptor.
size is the number of byte in the report (should match report descriptor).
Returns a report number to be used with write, read, and pending function

calls.

void hid_write_report(hcc_u8 r, hcc_u8 *data)
Copy report.size (set in add report) bytes from *data into report r.
The report is marked pending, so it will be transmitted on the next
call to hid_process().

void hid_read_report(hcc_u8 r, hcc_u8 *data)
Copy report.size (set in add report) bytes from report r to *data.
The report is marked not pending.

hcc_u8 hid_report_pending(hcc_u8 r)
Returns the pending status of report r.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 71

PC-Side USB Host Software
9.3 Sample HID Main Application Loop
void hid_generic(void)
{

hcc_u8 out_report;
hcc_u8 in_report;

HID_init(500, 0); // 500ms delay between report polls

out_report=hid_add_report(rpt_out, 0, 1); // reports from host,1 byte
in_report=hid_add_report(rpt_in, 0, 1); // report to host, 1 byte

while(!device_stp)
{

hid_process(); // Send any pending rpt_in reports

if (!hid_report_pending(in_report)) // Has the last report completed TX?
{

hcc_u8 tmp=0;
hid_write_report(in_report, &tmp); // Copy tmp to in_report

}

if (hid_report_pending(out_report)) // Has host sent a report?
{

hcc_u8 rx_data;
hid_read_report(out_report, &rx_data); // copy out_report to
 // rx_data

}
}

}

10 PC-Side USB Host Software
To connect your embedded device to a PC host requires a driver on the PC side. The configuration
descriptor is used by the device to inform the PC of which driver to load. Both Linux and Windows provide
baseline drivers for the common USB classes.

10.1 Windows USB Drivers
The Windows Driver Kit (WDK) includes documentation for developing USB device drivers in a
Windows environment. The Driver Development Kit (DDK) includes the libraries and examples of USB
drivers. The DDK is included in the WDK. The Windows DDK requires Microsoft Visual Studio®. The
DDKs include two USB driver examples, the BulkUSB and IsoUSB, plus a USB filter driver and a
USBView utility. Early Win98/ME and Win2K examples are plagued by bugs, so it is recommended you
use the WinXP DDK as a foundation for your new drivers.

Windows USB drivers are kernel-mode drivers. A kernel-mode driver runs in protected kernel space. The
application cannot access protected kernel space directly. It uses a mechanism referred to as a I/O request
packet, or IRP. A IRP is a data structure used to communicate between a driver in kernel space, other
drivers in kernel space, or an application in user space.

The USB driver system contains many sub-drivers. These sub-drivers use IRPs to communicate between
them. The application communicates with the USB stack using URB’s. USB client drivers set up USB
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor72

PC-Side USB Host Software
request blocks (URBs) to send requests to the host controller driver. The URB structure defines a format
for all possible commands that can be sent to a USB device.

10.2 Windows XP® USB Driver Stack

Figure 30. Windows XP USB Driver Stack

The host controller driver consists of the port driver, usbport.sys, and one or more of three miniport drivers
that run concurrently. The port driver (usbport.sys) handles those aspects of the host controller driver's
duties that are independent of the specific protocol.

The usbehic.sys mini-port driver is the hardware driver for enhanced host controller interface (EHCI)
specific hardware.

The USB bus driver (usbhub.sys) is the driver for each USB hub. It is loaded if the PCI bus enumerator
detects a USB hub. It exposes the USB driver interface.

Each particular device is supported by a USB client driver. Client device drivers for noncomposite devices
are layered directly above the hub driver. For composite USB devices that expose multiple interfaces and
do not have their own parent class driver, the system loads an extra driver called the USB common class
generic parent driver, usbccgp.sys, between the hub driver and the client device drivers. The system
assigns a separate PDO to each interface of a composite device.

Client device drivers for composite devices are loaded above the generic parent driver. A client driver for
a composite device is no different from a client driver for a noncomposite devices, except for where it is
loaded in the driver stack. Client drivers for composite devices sit above the generic parent driver.

Additional information about the USB driver stack can be found at www.msdn2.microsoft.com

 Client Device Driver
Interface 2

Client Device Driver
Interface 1

Client Device Driver
Single Interface

Generic Parent Driver
Handles devices with multiple interfaces.

usbccgp.sys

USB Hub driver
Usbhub.sys

Host Controller driver
usbport.sys, usbehic.sys (mini-port driver)

IRP

IRP

URB

URB URB
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 73

PC-Side USB Host Software
10.3 Windows XP Supported USB Classes

10.4 Windows XP USB HID Support
The Windows DDK provides support for host-side communication with USB HID devices. The DDK
includes documentation for the HID functions, and a overview on how to use them. HID application
programming is done using these libraries and header files included in the DDK:

hid.lib
hidclass.lib
hidparse.lib
hidpi.h
hidsdi.h
hidusage.h

Using the hid libraries and example applications included in the SDK simplifies enumerating and
communicating with HID devices.

10.5 Using the HID Library
1. /* Get the HID Globally Unique ID from the OS. */

GUID HidGuid;
HidD_GetHidGuid(&HidGuid);

2. /* Get an array of structures containing information about all attached and enumerated HIDs. */
 HDEVINFO HidDevInfo;
 HidDevInfo = SetupDiGetClassDevs(&HidGuid,
 NULL,
 NULL,
 DIGCF_PRESENT|
 DIGCF_INTERFACEDEVICE);

3. /* Get information about the HID device with the 'Index' array entry. */
Result = SetupDiEnumDeviceInterfaces(HidDevInfo,
 0, &HidGuid,
 Index,
 &devInfoData);

Table 24. Windows XP Supported USB Classes

Class Driver Description

Hub Device usbhub.sys Used for managing USB hubs

Human Interface Device (HID) hidclass.sys Used to support USB HID standard devices.

Audio sysaudio.sys Audio class support

Mass Storage usbstor.sys For USB mass storage support

Printer usbprint.sys For USB printer support

Communication Device usb8023.sys Provides CDC class support

Imaging usbscan.sys manages USB digital cameras and scanners
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor74

The Communication Device Class
4. /* Get the size of the DEVICE_INTERFACE_DETAIL_DATA structure. The first call returns an
error condition, but you will get the size of the structure. */

Result = SetupDiGetDeviceInterfaceDetail(HidDevInfo,
 &devInfoData,
 NULL,
 0,
 &DataSize,
 NULL);

5. /* Open a file handle to the device. Make sure the attributes specify overlapped transactions or the
in transaction may block the input thread. */

hid_dev = CreateFile(detailData->DevicePath,
 GENERIC_READ | GENERIC_WRITE, /* read / write access*/
 0, /* exclusive access */
 NULL, /* No security */
 OPEN_EXISTING,
 FILE_FLAG_OVERLAPPED, /* overlapped I/O */
 NULL);

6. /* Get the device VID and PID to see if it is the device you want. */
if(hid_dev != INVALID_HANDLE_VALUE)
{

HIDD_ATTRIBUTES HIDAttrib;
HIDAttrib.Size = sizeof(HIDAttrib);
HidD_GetAttributes(hid_dev, &HIDAttrib);

To write or read from the device, standard file I/O functions are used: writefile(), readfile(), and
DeviceIoControl().

11 The Communication Device Class
The communication device class (CDC) is one class in a group of classes defined by the definition for
communication devices. The other two classes are the communication interface class and the data interface
class. The communication device class is a device- level definition and is used by the host to properly
identify a communication device that may present several different types of interfaces. The
communication interface class defines a general-purpose mechanism that can be used to enable all types
of communication services on the USB. The data interface class defines a genera-purpose mechanism to
enable bulk or isochronous transfer on the USB when the data does not meet the requirements for any other
class.

Section 3.6.2.1, “Abstract Control Model Serial Emulation,” of the usbcdc version 1.1 specification
defines serial emulation. A communication class interface is used for setting up the serial parameters (baud
rate, data bits, flow control, etc.). The data class interface is used for transferring data.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 75

The Communication Device Class
11.1 CDC Serial to USB Configuration Descriptor
hcc_u8 usb_config_descriptor[] = {

USB_FILL_CFG_DESC(9+9+5+4+5+5+7+9+7+7, // descriptor size in bytes
 2, // 2 interfaces
 1, // configuration ID = 1
 4, // 4 configuration strings
CFGD_ATTR_SELF_PWR, // Device is self powered
 0), // 0*2ma = 0 ma
USB_FILL_IFC_DESC(0, // interface ID = 0
 0, // no alternate setting
 1, // This interface has 1 endpoint
 2, // Class 2 = Communication Interface Class(28)
 2, // SubClass 2 = Abstract Control Model(28)
 1, // Protocol 1 = AT command set ??? (page 28)
 5), // Description string 5
 /* Comm interface/ abstract contorl model/ 00 no class protocol*/
USB_FILL_HDR_FUNCT_DESCR(0x0110), // Spec version 1.1 (page 34)
USB_FILL_CALL_MGM_FUNCT_DESCR(0, 1), // Capability = 00, Data Class Interface=1
USB_FILL_ACM_FUNCT_DESCR(0), // No ACM requests supported (page 35)
USB_FILL_UNION_FUNCT_DESCR(0, 1),1, // Master Interface =0, Slave = 1(page 40)
USB_FILL_EP_DESC(0x1, // address = 0
 EPD_DIR_TX, // IN endpoint (device to host)
 EPD_ATTR_INT, // Interrupt Endpoint
 EP1_PACKET_SIZE, // 32 bytes
 0x2 // 2ms poll interval
USB_FILL_IFC_DESC(1, // Interface ID = 1
 0, // No alternate setting
 2, // This interface has 2 endpoints
 10, // Data Interface Class
 0, // Subclass 0
 0x0, // Protocol 0
 6), // Description string 6
 /* Data interface/0/ no class specific protocol. */
USB_FILL_EP_DESC(0x2, // Address = 2
 EPD_DIR_TX, // IN endpoint (device to host)
 EPD_ATTR_BULK, // Bulk transfer
 EP2_PACKET_SIZE, // 32 bytes
 0x0), // Ignored for Bulk endpoints
USB_FILL_EP_DESC(0x3, // Address = 3
 EPD_DIR_RX, // OUT endpoint (host to device)
 EPD_ATTR_BULK, // Bulk transfer
 EP3_PACKET_SIZE, // 32 bytes
 0x0), // Ignored for Bulk endpoints

};

The demo CDC to serial firmware uses three endpoints;, two configured for bulk transfer (one in, one out).
These endpoints are used to exchange data. The third endpoint (address 1) is a interrupt transfer endpoint
used to transfer configuration data.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor76

The Communication Device Class
11.2 CDC Specific Requests
Requests are methods or functions that the host calls to initiate a action on the device. The CDC requests
are used to adjust the serial parameters. The requests are sent down the default pipe, Endpoint 0.

11.3 CDC Serial to USB Demonstration Firmware
The CDC project uses the usb.c driver. The configuration data described above is located in the file
cdc_usb_config.c. The file usb_cdc.c contains the CDC specific methods and USB driver callbacks. The
Endpoint 0 callback function is used to capture the CDC specific requests.

The following code is a snippet of the Endpoint 0 callback function from the CDC demo. The function
handles the two CDC specific requests. When the host sends a SET_LINE_CODING request, the firmware
setups a received ep_info structure by calling the usb_receive() function. The receive expects seven bytes
from the host, and directs the driver to put the bytes into the line_coding structure. The receive also sets
the function got_line_coding() to be called after the data is received by the device. This function sets the
new_line_coding flag to indicate to the rest of the firmware that new serial parameter data is available.

The line_coding[] array is a structure defined on page 58 of the CDC specification. The function
cdc_get_line_coding(line_coding_t *l) translates.

callback_state_t usb_ep0_callback(void)
{

hcc_u8 *pdata=usb_get_rx_pptr(0);

/* A request to the command interface. */
if (STP_INDEX(pdata) == CMD_IFC_INDEX)
{

switch(STP_REQU_TYPE(pdata))
{

 /* Class specific in request. */
 case ((1<<7) | (1<<5) | 1):
 /* Host wants to get a descriptor */
 switch (STP_REQUEST(pdata))
 {
 case CDCRQ_GET_LINE_CODING:
 usb_send(0,
 (void *) 0,
 (void *)&line_coding,
 7,
 STP_LENGTH(pdata));
 r=clbst_in;
 break;
 default:

Table 25. CDC Resquest Descriptions

Request Descriptor

GET_LINE_CODING Requests current DTE rate, stop-bits, parity, and number-of-character bits.

SET_LINE_CODING Configures DTE rate, stop-bits, parity, and number-of-character bits.

Byte 0 1 2 3 4 5 6

BAUD STOP BITS PARITY # OF DATA BITS
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 77

The Communication Device Class
 break;
 }
 break;

 /* Class specific out request. */
 case ((0<<7) | (1<<5) | 1):
 switch (STP_REQUEST(pdata))
 {
 case CDCRQ_SET_LINE_CODING:
 usb_receive(0,
 got_line_coding,
 (void *)&line_coding,
 7,
 7);
 r=clbst_out;
 break;
 default:
 break;
 }
 break;

}
}

11.4 CDC Serial to USB API
void cdc_init(void)

Initialize the CDC buffers.

void cdc_get_line_coding(line_coding_t *l)
Translate the CDC line coding structure into a line_coding_t structure.

typedef struct {
 hcc_u32 bps;
 hcc_u8 ndata;
 hcc_u8 nstp;
 hcc_u8 parity;
 } line_coding_t;

int cdc_line_coding_changed(void)
The application should call this function routinely.
Returns the new_line_coding flag, then clears the flag.
Returns 1 to indicate the host has sent a new line_coding structure.

int cdc_putch(hcc_u8 c)
Inserts the byte c into a tx buffer. The character will be sent the next time the host polls the device.
This function calls usb_send().
Returns 1 if the character is successfully buffered.
Returns 0 if buffer was not available.

int cdc_input_ready(void)
The application should call this function routinely.
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor78

The Communication Device Class
Uses the usb_receive() function to setup a ep_info structure to receive data on the RX_EP_NO
endpoint.
Returns 1 if data has been received from the host, and is ready to be read by the application using
a cdc_getch().
Returns 0 if no data is ready.

char cdc_getch(void)
Returns the next character from the rx_buffer.
This function should only be called if cdc_input_ready() returns 1.

callback_state_t usb_ep0_callback(void)
USB driver controls Endpoint 0 callback function. This function intercepts the
CDC specific requests: CDCRQ_GET_LINE_CODING, and

CDCRQ_SET_LINE_CODING.

callback_state_t got_line_coding(void)
This function is called by the control Endpoint 0 interrupt after new data is received by the host.
Data from the host on endpoint 0 is configuration data for the serial port.

11.5 Example CDC Application
int main()
{

hw_init();
/* USB irq is level 2, priority = 2. */
usb_init((2<<3) | 2, 0);
/* UART irq is level 3, priority = 3. (UART needs higherpriority. */
uart_init(9600, 1, 'n', 8);
cdc_init();

/* Main application Loop */
while(1)
{

// Check for serial config change from host
if (cdc_line_coding_changed())
{

// Configuration change
line_coding_t l;
hcc_u8 parity[]="noe";
cdc_get_line_coding(&l);
uart_init(l.bps, l.nstp, parity[l.parity], l.ndata);

}

// Has the host sent data
if (cdc_input_ready())
{

// Get character from CDC buffer and copy to UART buffer
char c=cdc_getch();
uart_putch((hcc_u8)c);

}

// Is there any UART data
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 79

USB On-The-Go
if (uart_input_ready())
{

// Read data from UART, send to USB
hcc_u8 c=uart_getch();
cdc_putch(c);

}
}
return 0;

}

12 USB On-The-Go
USB On-The-Go (OTG) is defined by the On-The-Go supplement to the USB2.0 Specification. The
purpose of OTG is to allow a peripheral to be a host or a device. A good application for OTG is a camera.
After the pictures are taken, the camera is plugged into a PC to download the pictures. In this case, the
camera is a device, but he user can also plug the camera directly into a printer, to print the pictures directly.
In the second case, the camera acts as a host.

A OTG device is either a host or a device, its mode is determined when it is connected to another USB
product. The host negotiation protocol (HNP) is used to negotiate who is host. Another protocol, the
session request protocol, determines who will power the bus.

12.1 Terminology
A-Device A device with a Standard-A or Micro-A plug inserted into its receptacle. The A-device

supplies power to VBUS and is host at the start of a session. If the A-device is OTG
(equipped with a Micro-AB receptacle), it may relinquish the role of host to an OTG
B-device under certain conditions.

B-Device A device with a Standard-B, Micro-B or Mini-B plug inserted into its receptacle, or a
captive cable ending in a Standard-A plug. The B-device is a peripheral at the start of a
session. If the B-device is OTG (equipped with a Micro-AB receptacle), it may be granted
the role of host from an OTG A-device

12.2 Session Request Protocol (SRP)
The session request protocol (SRP) allows a B-device to request the A-device to turn on VBUS and start
a session. OTG-B (device) asks OTG-A (host) for a USB OTG session by signaling in one of two ways:

1. Pulsing an analog data line (D+ or D–)
2. Pulsing VBUS through a relatively high impedance (> 281 ohm)

The OTG-B (device) pulses data line first then pulses VBUS.

Per the OTG specification: “Any A-device, including a PC or laptop, is allowed to respond to SRP. Any
B-device, including a standard USB peripheral, is allowed to initiate SRP. An On-The-Go device is
required to be able to initiate and respond to SRP.”
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor80

Resource Usage
12.3 Host Negotiation Protocol
Host negotiation protocol (HNP) allows the host function to be transferred between two directly connected
OTG devices. HNP may only be implemented through the Micro-AB receptacle on a device.

1. OTG-A (host) enables OTG-B (device) to become the host by sending SetFeature (b_hnp_enable)
command to OTG-B (DEVICE).

2. OTG-A (host) suspends bus signaling so that OTG-B (device) can become host.
3. OTG-B (device) detects suspend condition and turns off pullup resistor.
4. Because HNP is enabled, OTG-A (host) interprets this disconnect as a request by the

OTG-B (device) to become host.OTG-A (HOST) turns on its pull-up resistor and becomes
peripheral/device

5. To return control back to OTG-A (host), OTG-B (device) stops using bus and becomes
peripheral/device.

6. OTG-A (host) sees lack of activity, disconnects, and becomes the host.

If the OTG-B (device) does not stall the SetFeature(b_hnp_enable) command, the OTG-A (host) must give
the OTG-B (device) an opportunity to become the host before the OTG-A (host) may turn off VBUS.

13 Resource Usage
The USB stack uses a minimum amount of RAM and flash. The numbers below represent values pulled
from the MAP files of the actual demo projects listed. These are baseline demos as distributed in the zip
file from the Freescale website. The stack RAM usage is as specified in the original distributed firmware.

The hid-demo-flash project supports a keyboard device, a mouse device, and a generic device with the
numbers listed. The primary impact of supporting all three devices is in flash size. Supporting only one
device, removing support for the other two, would have a very small (less then 16 bytes) impact on RAM
requirements. Three different configuration descriptors are stored in flash. Only one is required. Each
group of descriptors is approximately 300 bytes, so if you are building a mouse device only, or a keyboard
device only, or a generic device only, subtract 600 bytes from the flash number shown below for the
hid-demo-flash project.

Table 26. CMX USB Stack Memory Usage

HID device CDC device OTG HID host Mass storage Host

hid-demo-flash cdc-demo-flash otg-app host-hid-demo mass-storage-demo

flash 22960 18832 54128 23904 35728

RAM (total) 7680 7168 11264 7168 7680

stack 5120 5120 7168 5120 5120

bss 1621 1224 3338 1404 1760

bdt+align 939 824 758 644 800
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 81

Resource Usage
Table 27 was generated after testing the firmware with smaller stack sizes. The new stack sizes were tested by putting a marker at the end of the stack and running the demo through its paces. Demo operation was verified, and after the test the marker was checked (confirming that the stack did not overrun past the end).

Table 27. CMX USB Stack Memory Usage (Reduced Call Stack)

HID device CDC device OTG HID host Mass Storage Host

hid-demo-flash cdc-demo-flash otg-app host-hid-demo mass-storage-demo

flash 22960 18832 54128 23904 35728

Ram (total) 4608 4096 11264 4096 4608

stack 2048 2048 7168 2048 2048

bss 1621 1224 3338 1404 1760

bdt+align 939 824 758 644 800
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor82

Resource Usage
USB and Using the CMX USB Stack, Rev. 0

Freescale Semiconductor 83

Document Number: AN3492
Rev. 0
08/2007

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Overview of USB
	2 USB Communications
	2.1 Packet Structures
	2.2 Packet Identifiers (PID)
	2.3 Frames, Transfers, and Transactions
	2.4 The Data Toggle Bit
	2.5 Transaction Types
	2.6 Transfer Types
	2.7 Control Transfer
	2.8 Interrupt Transfers
	2.9 Isochronous Transfers
	2.10 The Start-Of-Frame (SOF) Packet

	3 The USB OTG Capable Controller Module
	3.1 EHCI Registers
	3.2 Interrupt Status Register
	3.3 DATA Transfers
	3.4 How the Pointer into the BDT is Calculated
	3.5 Firmware Example

	4 Using the USB OTG Module in Host Mode
	4.1 Device Detection and Speed Determination
	4.2 The Start-Of-Frame Packet
	4.3 Addressing a Device
	4.4 Data Transactions in Host Mode
	4.5 Endpoint Control Registers

	5 Introduction to the CMX Stack
	5.1 Included Projects
	5.2 The Files in the Firmware

	6 Enumeration
	6.1 Enumeration Steps
	6.2 Types of Descriptors
	6.3 Device Descriptor
	6.4 Configuration Descriptor
	6.5 Interface Descriptor
	6.6 Endpoint Descriptor
	6.7 String Descriptor
	6.8 Common Descriptor Hierarchy
	6.9 USB Standard Device Requests
	6.10 USB Standard Device Requests-Setup Transfer Data Packet Data Format
	6.11 Decoding the Generic HID Descriptors

	7 The USB Device-Side Driver
	7.1 Usb_it_handler()
	7.2 Enumeration Support-usb_stm_ctrl0()
	7.3 USB Device-Side API
	7.4 USB Driver Callback Functions

	8 The USB Host-Side Driver
	8.1 Initializing the Host Controller (host_init() in usb_host.c)
	8.2 usb_host_transaction() in usb_host.c
	8.3 usb_host_transaction() Pseudo Code
	8.4 usb_host_transaction()-Setup Transaction
	8.5 usb_host_transaction()-In Transaction
	8.6 usb_host_transaction()-Out Transaction
	8.7 usb_host_transaction()-Transaction Complete
	8.8 usb_host_transaction()-Data Toggling
	8.9 usb_host_transaction()-Transaction Status
	8.10 USB Host-Side Driver API
	8.10.1 USB Host-Side Driver API-Sending / Receiving Data
	8.10.1.1 hcc_u16 host_send_control(hcc_u8 *setup_data, hcc_u8* buffer, hcc_u8 ep)
	8.10.1.2 hcc_u32 host_send(hcc_u8* buffer, hcc_u32 length, hcc_u8 ep)
	8.10.1.3 hcc_u32 host_receive(hcc_u8* buffer, hcc_u32 length, hcc_u8 ep)
	8.10.1.4 hcc_u16 host_receive_control(hcc_u8 *setup_data, hcc_u8* buffer, hcc_u8 ep)

	8.10.2 USB Host-Side Driver API-Endpoint Management
	8.10.2.1 hcc_u8 host_add_ep(hcc_u8 type, hcc_u8 address, hcc_u8 interval, hcc_u16 psize)
	8.10.2.2 void host_remove_ep(hcc_u8 ep_handle)
	8.10.2.3 void host_modify_ep(hcc_u8 ep_handle, hcc_u8 type, hcc_u8 address, hcc_u8 interval, hcc_u16 psize)

	8.10.3 USB Host-Side Driver API-Device Management
	8.10.3.1 hcc_u8 host_has_device(void)
	8.10.3.2 void host_init(void)
	8.10.3.3 int host_scan_for_device(void)
	8.10.3.4 void host_stop(void)
	8.10.3.5 void host_sleep(void)
	8.10.3.6 void host_wakeup(void)

	8.11 usb_utils.c
	8.11.1 void fill_setup_packet(hcc_u8* dst, hcc_u8 dir, hcc_u8 type, hcc_u8 recipient, hcc_u8 req, hcc_u16 val, hcc_u16 ndx, hcc_u16 len)
	8.11.2 int get_dev_desc(void)
	8.11.3 int get_cfg_desc (hcc_u8 ndx)
	8.11.4 int set_ep0_psize(void)
	8.11.5 int set_address(hcc_u8 address)
	8.11.6 int set_config(hcc_u8 cfg)
	8.11.7 int get_device_info(device_info_t *res)
	8.11.8 int get_cfg_info(cfg_info_t *res)
	8.11.9 int get_ifc_info(ifc_info_t *res, hcc_u16 offset)
	8.11.10 int get_ep_info(ep_info_t *res, hcc_u16 offset)

	8.12 Host Firmware-host_scan_for_device()
	8.13 Host Firmware-Device Enumeration
	8.14 emg_host_demo()
	8.15 Displaying a String Descriptor-emg_print_str_desc()
	8.16 emg_get_str_descriptor()
	8.17 emg_host_demo()-Camera 1 Enumeration
	8.18 emg_host_demo()-Camera 2 Enumeration
	8.19 emg_host_demo()-Mouse Enumeration

	9 The HID Class
	9.1 HID Device Firmware
	9.2 HID Device API
	9.3 Sample HID Main Application Loop

	10 PC-Side USB Host Software
	10.1 Windows USB Drivers
	10.2 Windows XP“ USB Driver Stack
	10.3 Windows XP Supported USB Classes
	10.4 Windows XP USB HID Support
	10.5 Using the HID Library

	11 The Communication Device Class
	11.1 CDC Serial to USB Configuration Descriptor
	11.2 CDC Specific Requests
	11.3 CDC Serial to USB Demonstration Firmware
	11.4 CDC Serial to USB API
	11.5 Example CDC Application

	12 USB On-The-Go
	12.1 Terminology
	12.2 Session Request Protocol (SRP)
	12.3 Host Negotiation Protocol

	13 Resource Usage

