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The €600, the €500, and Changes to the Architecture
Definition

This section describes the changes to the architectural specifications especialy as they relate to the e600
and €500 processor families.

NOTE

Theterm ‘ PowerPC™ architecture’ hascometo refer strictly to theoriginal
architecture definition for desktop processors that isimplemented on the
€300, e600, and others and sometimes is referred to asthe classic or AIM
(Apple, IBM, Motorola) version of the architecture.

Theterm ‘Power ISA™’ refersto the current architecture specification that
isimplemented on €500 cores.

Both the PowerPC architecture and the Power | SA are part of the more
general Power Architecture™ model, as described below.

Many of the differences between the e600 and €500 processor families exist because they were designed
to somewhat different versions of the PowerPC architecture, as follows:

The e600 family was designed to the original PowerPC architecture definition. Thefunctionality of
the e600 family coresis described in the following Freescale documents:

— The e600 Power Architecture™ Core Family Reference Manual, which describes functionality
gpecific to the e600.

— The Programming Environments Manual for 32-Bit I mplementations of the Power PC™
architecture (referred to as the PEM), which describes the functionality common to all
PowerPC devices.

The e500v1 and €500v2 processors are designed to what was originally the PowerPC Book E
architecture and Freescal €'s embedded implementation standards (EIS). Together, they replaced
many of theoriginal architecture’s desktop-centered features (most notably, operating system-level
features such as the MMU and interrupt models, as well astrue little-endian as part of a storage
model in which byte ordering is configured on a per-page basis) with features more suited to the
embedded environment for which Book E wasintended. The functionality of the €500 family cores
is described in the following Freescale documents:

— Thee500 Power Architecture™ Core Family Reference Manual, which describes functionality
specific to the €500 cores.

— The EREF: a Programmer’s Reference Manual for Freescale Embedded Devices, which
describes the functionality common to all Freescale Power ISA embedded devices.

Note that in this document, references to the €500 refer to all €500 devices. Any device-specific
differences are noted.
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The €600, the €500, and Changes to the Architecture Definition

NOTE

For any of the cores referenced in this document, resources that may be
defined at the processor level may not be fully implemented, or
implemented at all, in the system-on-a-chip (SoC) device that integratesthe
core. Also, in some cases, and in particul ar with register fields, functionality
may be defined at a genera level by the architecture and core reference
manuals, and more specifically by the SoC. Because of such differences, it
isimportant to consult the core register summary chapter in the reference
manual for the integrated device.

Both families include many extensions to the architecture versions to which they were designed, such as
the performance monitor, cache management features, and the signal processing engine (SPE). The SPE,
implemented on e500v1 and e500v2, defines an extensive set of 64-bit, two-element vector instructions
and includes a set of floating-point instructions as an alternative to the one defined by the PowerPC
architecture. To facilitate such special-purpose extensions, Book E introduced the concept of auxiliary
processing units (APUs) and allocated resources such as instruction opcode space and SPRs that
encouraged the development of such functionality.

Since the restructuring of the architecture (now referred to collectively as the Power Architecture model),
most of those APUs are now aformal part of the portion of the architecture designated for embedded
devices and published in the Power ISA specification, released in 2006. Figure 1 shows the relationship
between the different environments. Note that the e600 family is part of the Power Architecture model; the
€500 family is part of the embedded environment of the Power | SA.

It isespecially important to note that, although the structure of the architecture has changed considerably,
most of the functionality changes have been relegated to operating system-level features (such asthe
MMU and interrupt models described above). As Figure 1 illustrates, the application-level programming
model, that is the base set of instructions and registers, remains consistent across the e600, €500, and all
other Power Architecture devices.

Power Architecture Model

Power ISA Version

Server Environment

Desktop Environment (formerly PowerPC Embedded Environment
(PowerPC architecture) architecture, 2.02) (formerly Book E/EIS)
User ISA Book | (UISA) Book | (UISA) restructured and extended Book VLE
VEA Book Il (VEA) Book Il (VEA) restructured and extended (extends
OEA Book IIl (OEA) Book IlI-S: Book IlI-E: Books
(Desktop environment) (Server environment) | (Embedded environment) L)
. Example €300, 6600 G5, IBM 970 e500v1, e500v2 200
implementations

Indicates application-level features that have remained unchanged across all environments

Figure 1. Power Architecture Relationships
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Differences between €600 and e500 Cores: Overview

The Power | SA extends the modularity of the layered architecture (Books | through 111) by breaking the
functionality of the architecture into components called ‘ categories,” the broadest of which define basic
functionality common across computing environments, as follows:

» The base category defines al of those elements common to all Power Architecture processors.
Although it includes functionality defined in al three books, the Base category preserves almost
all of the user application-level resources defined in the original PowerPC Book I, the user
instruction set architecture (UISA). Other features from the original UISA, such asthe
floating-point and move assist instructions, are treated as separate categories that are not required
for every implementation.

* The embedded and server categories define mutually exclusive resources appropriate for those
environments. The €500 family devices implement embedded category resources.

Other categories address more specific features, such as the signal processing engine. Some of these
special features were optional in the PowerPC architecture. Others were previously defined as auxiliary
processing units (APUs) and were not part of the architecture. Many of those former APUs, began life as
part of Freescale’'sembedded implementation standards (EIS), alayer of architecture for features common
to Freescale processors, but outside of the formal architecture specification. The EIS continues to define
such features.

2 Differences between e600 and e500 Cores: Overview

This section provides an overview of differences between the e600 and €500 families and summarizes
functionality specific to each; more detailed information about the instruction, register, interrupt, and
MMU modelsis provided in the subsequent sections.

2.1 The Floating-Point Model and Signal Processing Engine (SPE)

The e600 implements the floating-point instruction model defined by the PowerPC architecture, and
included as a distinct category the Power |SA. This floating-point model includes a separate register file
of 32, 64-hit floating-point registers (FPRs) and afull suite of floating-point computational and |oad/store
instructions that support both single- and double-precision operations. The floating-point status and
control register (FPSCR) and condition register (CR) resources enable and track exception conditions.

The e500v1 and €500v2 implement the signal processing engine (SPE), a comprehensive set of 64-bit,
two-element, SIMD instructions that share the Ul SA-defined GPRs extended by the SPE to 64 bits, as
shown in Figure 2.

0 31 32 63
(upper) GPRO (lower)
GPR1
GPR2 General-purpose registers (The base category
defines only the lower half (bits 32—63).
e o o
GPR31

| The SPE defines the upper 32 bits of the GPRs to support 64-bit operands

€600 cores implement standard 32-bit GPRs with bits numbered 0-31

Figure 2. Extended GPRs
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Differences between €600 and e500 Cores: Overview

The SPE definition includes three dependent embedded floating-point categories:
» Embedded scalar, single-precision (e500v1/e500v2)
» Embedded scalar, double-precision (e500v2)
» Embedded vector, single-precision (e500v1/e500v2)
For systems that do not require high-end graphics and other floating-point intensive applications,

providing afloating-point instruction set that shares the integer-based GPRs rather than requiring the
implementation of FPRs simplifies the design of the processor.

2.2 e500-Only Features

The €500 implements the following features, not provided on the e600 and defined by the Power | SA:

* Multiple-level interrupt model. In addition to the standard set of save restore registers (SRRO and
SRR1) and the Return from Interrupt instruction (rfi), the Power | SA defines the following
separate resources to shorten interrupt latency and provide greater control over interrupt behavior:

— Critica interrupts—Uses separate save and restore resources, CSSR0 and CSRR1 the Return
from Critical Interrupt instruction (rfci). These resources allowed critical-type interrupts to be
taken without having to save state of any concurrent non-critical interrupts.

The following interrupts use the critical interrupt resources: critical input and watchdog timer
interrupts. On the €500, machine check interrupts may be configured to use critical interrupt
resources.

— Machine check interrupt—Implements save and restore registers (M CSRRO/M CSRR1) used to
save the return address and machine state when machine check interrupts are taken. Therfmci
instruction is used to restore state.

» Programmable interrupt vectors. The Power ISA defines the following SPRs for setting up the
interrupt vector table:

— Interrupt vector prefix register (IVPR). Provides the high-order bits for placing the interrupt
tablein memory.

— Interrupt vector offset registers (1VORS). Provides the low-order, interrupt-specific bits for
placing each interrupt handler into the interrupt table.

» Byte ordering configured on a per-page basis (the E bit in the TLBs) instead of the moded byte
ordering determined by the setting of MSR[LE,ILE]. These bits are not implemented on the e500.
The Power | SA definestrue little-endian byte ordering, replacing the version of little-endian byte
ordering defined in the PowerPC architecture.

» Cache-linelocking. Allows instructions and data to be locked into their respective caches on a
cache line basis. Locking is performed by a set of touch and lock set instructions.

The e600 cache locking functionality allows separate locking of the data and instruction cache by

setting HIDO[DLOCK,ILOCK].

» Thee600 implements an L 2 cache, which is not supported on the e500v1 or é500v2. Thereforethe
€600 registers shown in Figure 7 are not supported on the e500v1 and e500v2.

Migrating from e600- to e500-Based Integrated Devices, Rev. 0
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Freescale MMU. The embedded MM U model defines page-based, software-managed address
transl ation and memory protection using trand ation lookaside buffers (TLBS). It consists primarily
of the storage architecture defined by Book E and the Freescale EIS.

The MMU model defines the following used to configure and update the TLBs:

— Machine stateregister (MSR) fields. MSR[DS] and MSR[1S] are defined as part of the address
tranglation to designate address spaces for data and instruction storage. These bits replace
MSR[DR] and MSR[IR], which the PowerPC architecture defined to enable memory
tranglation. Note that trandation is always enabled on Power | SA devices.

Unlike the PowerPC model implemented on the e600, there isno support for real mode; that is,
translation is always enabled.

— MMU assist registers:

— €500v1: MASO-MAS4 and MAS6
— €500v2: MASO-MAS4 and MAS6-MASY

— Process identification registers PIDn.

— The TLB configuration registers, TLBOCFG-TLB3CFG

— The MMU control and status register, MMUCSRO0

— The MMU configuration register MMUCFG

Expanded hardware and software debug functions. These include instruction and data breakpoints

and program single stepping. The debug facilities include debug control registers

(DBCRO-DBCR?2) and address compare registers (IACs and DACs) for enabling and recording

various kinds of debug events and registers that support the debug interrupt-type (DSRRO and

DSRR1).

Alternate time base. An additional time base analogous to the standard time base defined by both

the Power 1SA and the PowerPC architecture (Book 11). The alternate time baseisimplemented on
the e500v2.

Additional software-use SPRs. In the Power | SA, the base category defines SPRGO-SPRGS; the
embedded category defines SPRG4-SPRG7. The PowerPC architecture defines SPRGO-SPRGS3;
€600 implements SPRG4-SPRG7, as described in Section 5.10, “ Software-Use SPR Comparison.”

Power Architecture Details

This section provides an overview of the programming, interrupt, cache, and MMU models as they are
defined by the PowerPC architecture and Power | SA architecture, noting any differences either in how the
resources are defined in the different versions of the architecture or in how those definitions are structured.

Theoriginal UISA, Book |, asit was defined in the PowerPC architecture, was cons stent with the Book E
user-level programming model and now comprises most of the base category. This ensures binary
compatibility across the 15-year legacy of applications and across the many families of desktop,
embedded, and server processors.

Migrating from e600- to e500-Based Integrated Devices, Rev. 0
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Power Architecture Details

3.1 An Overview of Categories Implemented by the e500

This section provides an overview of the categories defined by the Power I1SA and implemented on the
€500.

All devicesimplement the facilities defined by the base category. This largest category encompasses all
components common across the computing environments; for example, these include the integer
computational and load/store instructions and the GPRs. These include devices such as the e600 cores
based on the PowerPC architecture. Although the base category largely consists of the features defined in
Book | (theuser ISA), like many categories, it extends beyond Book | to include those Book Il (VEA) and
Book I11 (OEA) features common to all Power Architecture devices, such as the machine state register
(MSR), the time base, the interrupt model’s save and restore registers, and the instructions required for
accessing them.

The Power | SA floating-point category consists of the resources originally defined by the PowerPC
architecture to support single- and double-precision floating-point instructions. The e500v1 and e500v2
do not implement thisfloating-point model. Thefunctionality of these resources has not changed. Defining
them as a separate category underscores the advantages of a modular architecture, providing greater
leeway in balancing power, thermal, size, and price constraints for very specific environments.

The Integer Select instruction (isel), formerly aFreescale EISinstruction, isnow part of the base category.
Thisinstruction can be used to more efficiently handle sequences with multiple conditional branches, and
is not implemented on the e600.

The next largest categories are those that support the two computing environments to which the Power 1SA
iswritten, the embedded and server environments. The following section gives ahigh level description of
the embedded category; the remaining categories are defined in the sections that follow.

3.1.1 The Embedded Category

Asdescribed above, the embedded category largely consists of featuresformerly defined by the PowerPC
Book E architecture and the Freescale EIS. This section describes the components as defined by the Power
ISA. Note that the high level embedded category incorporates some resources defined in Book E,
including the following:

*  Write MSR External Enable instructions (wrte€fi]), which isimplemented on the €500 to update
only MSR[EE].

* The software-use SPRs (SPRG4-SPRG9), which are implemented on the e600 as
implementation-specific features.

3.1.2 Signal Processing Engine (SPE)

The SPE, implemented on the e500v1 and e500v2, is a 64-bit, two-element, single-instruction
multiple-data (SIMD) I1SA, originally designed to accelerate signal processing applications normally
suited for digital signal processing (DSP) operations. The two-element vectorsfit within the GPRs, which
the SPE extends to 64 bits. SPE also defines an accumulator register (ACC) to allow for back-to-back
operations without loop unrolling. The SPE is primarily an extension of Book | but identifies some
resources for interrupt handling in Book I11-E.

Migrating from e600- to e500-Based Integrated Devices, Rev. 0
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Instruction Model

In addition to add- and subtract-accumul ate operations, the SPE supportsanumber of multiply-accumul ate
operations, including negative-accumulate forms as summarized in Table 1. The SPE supports signed,
unsigned, and fractional forms. For these instructions, the fractional form does not apply to unsigned
forms, because integer and fractional forms are identical for unsigned operands.

Mnemonics for SPE instructions generally begin with the letters ‘ev’ (embedded vector).

Table 1. SPE Vector Multiply Instruction Mnemonic Structure

Prefix Multiply Element Data Type Element Accumulate Element
ho |half odd (16x16->32) usi |unsigned saturate integer |a write to ACC
he |half even (16x16->32) umi |unsigned modulo integer |aa |write to ACC & added ACC

hog | half odd guarded (16x16->32) |ssi |signed saturate integer an |write to ACC & negate ACC

heg | half even guarded (16x16->32) |ssf ! | signed saturate fractional |aaw |write to ACC & ACC in words

evm |(wh |word high (32x32->32) smi |signed modulo integer anw | write to ACC & negate ACC in words
wl | word low (32x32->32) smf’ signed modulo fractional
whg | word high guarded (32x32->32)
wlg |word low guarded (32x32->32)
w word (32x32->64)

T Low word versions of signed saturate and signed modulo fractional instructions are not supported.

3.1.21 SPE Embedded Vector and Scalar Floating-Point Categories

The embedded floating-point categories are dependent categories of the SPE. These include the following:
* Single-precision scalar
» Single-precision vector
» Double-precision scalar
The embedded floating-point categories, compatible with IEEE Std. 754™, provide floating-point
operations to power- and space-sensitive embedded applications. Asistrue for al Signal Processing
Engine categories, rather than implementing the FPRs defined by the PowerPC architecture, these
categories share the GPRs used for integer operations, extending them to 64 bits to accommodate vector

single-precision and scalar double-precision categories. These extended GPRs are described in
Section 5.1, “Register File Comparison.”

4 Instruction Model

This section describes the instructions and instruction classes asthey are defined as part of the Power I1SA
definition. Features defined only for the PowerPC architecture are indicated as such.

The following instructions are implemented on both the e600 and €500 cores with minimal differences:

* Integer instructions—These include arithmetic, logical, and integer load/store instructions. See
Section 4.2.1, “Integer Instructions.” The Power 1SA defines and the €500 implements the I nteger
Select instruction (isdl), which is neither provided by the earlier PowerPC architecture nor is
implemented on the e600.

Migrating from e600- to e500-Based Integrated Devices, Rev. 0
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Instruction Model

Branch and flow control instructions—These include branching instructions, CR logical
instructions, trap instructions, and other instructions that affect instruction flow. See Section 4.2.3,
“Branch and Flow Control Instructions.”

The €500 does not implement the following instructions implemented on the e600:

AltiVec | SA. The €500 implements the SPE, which defines 64-bit SIMD (single-instruction,
multiple data) instructions that operate on integer, fractional, fixed-point, and floating-point
operands. The SPE extends the GPRs to 64 bhits. See Section 3.1.2, “ Signal Processing Engine
(SPE).”

The €500 does not implement the data streaming instructions that are defined as part of the AltiVec
ISA.

Load TLB entry instructions (tIbld and tIbli) to directly access TLBs. The €500 uses these
instructions to directly configure TLBs with translation and memory protection information by
loading and storing values defined in the memory assist (MAYS) registers. Additional instructions
are provided for searching and invalidating entries and for synchronizing TLB accesses.

The following groups of instructions are implemented on both €600 and €500 family devices, but with
some differences:

Floating-point instructions—The e600 family implements the base category floating-point
instructions defined by the PowerPC architecture; the €500 family implements floating-point
vector and scalar single-precision instructions defined as part of the SPE; the e500v2 implements
the embedded double-precision instructions. See Section 4.2.2, “Floating-Point I nstructions
(e600),” and Section 2.1, “ The Floating-Point Model and Signal Processing Engine (SPE).”

Processor control instructions—These instructions, described in Section 4.3, “ Processor Control
Instructions,” include the instructions that explicitly accessregisters such as SPRs, MSR, CR, and
others. To reduce interrupt latency, the €500 implements the Write MSR External Enable
instructions (wrteeli]), which can be used instead of mtmsr to update only M SR[EE], which
enables or disables external interrupt exception conditions. The wrtee instruction has fewer
serialization requirements, and therefore shorter latency, than mtmsr.

Memory synchronization instructions—T hese instructions, described in Section 4.3.1, “Memory
Synchronization Instructions,” ensure that accesses to memory and memory resources occur in
correct order with respect to memory operations generated by other instructions or by other
memory devices.

— Book E recast the PowerPC architecture—defined sync as msync. However, the Power ISA
version defines msync as a simplified mnemonic for the sync instruction, configured to
function as the Book E—defined msync for embedded category devices.

— Theeeio instruction, Enforce In-Order Execution of 1/O, which is defined by the PowerPC

architecture and implemented on the e600, shares the same opcode with the mbar (Memory
Barrier) instruction defined by the Power | SA embedded category.

Because eieio and mbar sharethe same opcode, software designed for both environments must
assume that only the eieio functionality applies, because the functions provided by eieio area
subset of those provided by mbar. Refer to the EREF and PEM for details.

Memory control instructions—T hese instructions provide control of cachesand TLBs. See
Section 4.3.2, “Memory Control Instructions.”

Migrating from e600- to e500-Based Integrated Devices, Rev. 0
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Instruction Model

The standard UISA floating-point instructions use FPRs for single- and double-precision floating-point
operands. The SPE embedded floating point instructions, implemented on the e500v1 and e500v2, use
GPRs widened to 64 bits to support vector single-precision and scalar double-precision operands.

4.1 Simplified Mnemonics

The smplified mnemonics for instructions common to both versions of the architecture are consistent in
all implementations. Note that the Power |SA defines ssmplified mnemonics for some new instructions.

Also the msync instruction in the €500 is a simplified mnemonic for sync instruction. See Table 8.

Additional ssimplified mnemonics are provided to support access to both newly architected and
implementation-specific SPRs.

4.2 Instruction Set Overview

The tablesin this section provide a genera overview of the €500 instruction set, indicating those
instructions that either are not supported by the e600 or whose implementations have changed.

4.2.1 Integer Instructions

This section describes the integer instructions, all of which are defined in Book I. All are part of the base
category except for the load/store string and multiple instructions.
These integer instructions are grouped asfollows:

* Integer arithmetic instructions

* Integer compare instructions

» Integer logical instructions

* Integer rotate and shift instructions

* Integer select instruction (new in the Power |SA and implemented on the e500)

Integer instructions use GPRs for source operands and place resultsinto GPRsand the XER and CR fields.
Integer instructions are shown in Table 2.

Table 2. Integer Computational Instructions

Instructions Function Options

Integer arithmetic (addx, divx, mulx, negx, | Add, divide, multiply, negate, subtract | Unchanged
subx)

Integer compare (cmpx) Compare Unchanged

Integer logical (andx, cnt, eqv, extx, nand, | AND, count, equivalent, extend, Unchanged

norx, orx, Xorx) NAND, NOR, OR, XOR

Integer rotate and shift (rlwx, slwx, srwx, | Rotate left word, shift Unchanged

srawx)

Integer select (isel) Integer select Defined by the Power ISA, implemented

by the €500 but not the e600.

Migrating from e600- to e500-Based Integrated Devices, Rev. 0
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Instruction Model

Integer load and store instructions, shownin Table 3, areissued and translated in program order; however,
the accesses can occur out of order. Synchronizing instructions (see Table 8) are defined in Book 11 and
are provided to enforce strict ordering.

Table 3. Integer Load/Store Instructions

Instruction Function Comments
Integer load Load byte, word, half word, Note: The SPE defines instructions for loading and storing double-word
(Ibx, Ihx, lwx) |algebraic (half word), byte operands required for SPE vector instructions and embedded
reverse, and zero, with update, floating-point single-precision vector and double-precision scalar
indexed. instructions.
Integer load Load multiple word Base category. Implemented on both €600 and e500 cores.
multiple/string - - -
word: Imw, Iswi Load string word Move assist category. Implemented on the e600; not implemented on the
e500.
Integer store Store Note: Byte, word, half word, byte-reverse, with update, indexed. The SPE
(stbx, sthx, defines instructions for loading and storing double-word operands
stwx required for SPE vector instructions and embedded floating-point
single-precision vector and double-precision scalar instructions.
Integer store Store multiple word Base category. Implemented on both €600 and e500 cores.
multiple/string - - -
word: stmw, Store string word Move assist category. Implemented on the e600; not implemented on the
stswi e500.

4.2.2 Floating-Point Instructions (e600)

The floating-point model is written to | EEE 754, which defines conventions for single- and
double-precision arithmetic. The standard requires that single-precision arithmetic be provided for
single-precision operands.

The signal processing engine (SPE), implemented on the e500v1 and e500v2, defines an aternative
floating-point instruction set that uses GPRs rather than FPRs. See Section 3.1.2.1, “ SPE Embedded
Vector and Scalar Floating-Point Categories.”

Table 4 provides an overview of the floating-point computational instructions.

Table 4. Floating-Point Computational Instructions

Instructions Instruction Name Comments
Floating-point elementary arithmetic (faddx, | Add, divide, multiply, reciprocal, square root, subtract, Not on
fdivx, fmulx, fsubx, fsqrtx, fresx, fabs, fmr, | absolute value, move register, negative absolute value, e500v1/e500v2
fnabs, fneg) negate
Floating-point multiply-add (fmaddx) Multiply-add, multiply-subtract, negative multiply-add,

negative multiply-subtract

Floating-point rounding and conversion Convert to/from integer, round to single-precision
(fetix, frx)

Floating-point compare and select (femx) Compare, select

FPSCR (mtfx, mffx) Move to/from FPSCR

Migrating from e600- to e500-Based Integrated Devices, Rev. 0
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Table 5 showsthat the floating-point load and store instructions are required to transfer operands between
memory and the FPRs,

Table 5. Floating-Point Load and Store Instructions

Instructions Instruction Name Comments

Floating-point load (Ifx) | Load floating-point | Not on e500v1/e500v2

Floating-point store (stfx) | Store floating-point

4.2.3 Branch and Flow Control Instructions

Branch instruction functions include the following:

» Branch instructions redirect instruction execution conditionally based on the value of bitsin the
CR. For branch conditional instructions, the BO operand specifies the conditions under which the
branch is taken.

* CRlogical instructions perform logical operations on CR contents that help determine branching
conditions.

» Trapinstructions test for a specified set of conditions. If any of the tested conditions are met, a
system trap type interrupt is taken.

» Executing aSystem Call (sc) instruction letsauser program call on the system to perform aservice
by invoking a system call interrupt. System Call instructions can be user- or supervisor-level.

For branch conditional instructions, the BO operand specifies the conditions under which the branch is
taken. The Bl operand specifies which of the 32 CR bits to test.

All processors support simplified mnemonics that allow conditions specified by BO and BI to be
incorporated into the mnemonic. For example, the Branch Conditional instruction, bc BO,BI, target
address, can be coded to decrement the count register (CTR) and branch aslong asthe CTR is not zero
(closure of aloop controlled by a count loaded into CTR). To specify this condition, the BO field must be
coded as 16. Alternatively, a smplified mnemonic is available, bdnz, that indicates “branch while the
decremented value is non-zero.” Using the simplified mnemonic eliminates the BO and Bl operands,
smplifying ‘bc 16,0,target’ to the more easily remembered ‘ bdnz target’, which generates identical
machine code.

The supervisor-level rfi instruction is used for returning from a standard interrupt handler.

The differences between the processor families are as follows:

* Therfci instruction is part of the embedded category and is used for critical interrupts on €500
cores.

» The €500 implements the Power | SA—defined rfmci for machine check interrupts. See Section 6,
“Interrupt Model.”

Migrating from e600- to e500-Based Integrated Devices, Rev. 0
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Instruction Model

Branch and flow control instructions are shown in Table 6.

Table 6. Branch and Flow Control Instructions

Instruction Name Comments
Branch (bx, bex) | Branch Unchanged
CR logical Condition register | Unchanged
(erx, merx)
Trap (tx, twx) Trap Unchanged
System call (sc) | System call Unchanged
Return (rfx) Return from Interrupt, critical, and machine check interrupts.

4.3 Processor Control Instructions

Processor control instructions are used to read and write registers other than GPRs and FPRs that can be
accessed specifically. Theseinclude CR, XER, M SR, and SPRs. Thetime base register and some SPRsare
accessible at both the user and supervisor levels; separate SPR numbers are used for each.

Differences between implementations are as follows:

» The €500 implements the Power | SA—defined Write MSR External Enable instructions (wrte€[i]),
which updates only M SR[EE] with fewer serialization requirements, and therefore shorter latency,
than mtmsr.

Table 7 summarizes processor control instructions.

Table 7. Processor Control Instructions

Instructions Name Comments

Move (mtx, mfx) | Move to SPR, CRfields, | Note: All devices support simplified mnemonics formed by adding the
CR from XER, time abbreviated name of any SPR to the prefix ‘mf’, for example mfmas0, mfivor3,
base, MSR, PMR and mfcssri.

Move from SPR, CR
fields, CR from XER,
time base, MSR, PMR.

4.3.1 Memory Synchronization Instructions

Memory synchronization instructions control the order in which memory operations execute with respect
to asynchronous events and the order in which operations are seen by other mechanisms that access
memory. Differences between processors are highlighted in Table 8.

Table 8. Memory Synchronization Instructions

Instructions Name Comments
lwarx Load word and reserve index | Unchanged
stwex. Store word conditional index | Unchanged

Migrating from e600- to e500-Based Integrated Devices, Rev. 0
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Instruction Model

Table 8. Memory Synchronization Instructions (continued)

Instructions Name Comments
Synchronize | Memory Synchronize Book E recast PowerPC architecture—defined sync as msync. Power ISA
(sync, eieio, defines msync as a simplified mnemonic, configured to function as the
isync, Book E—defined msync.
msync, - . -
mbar) Enforce In-Order Execution | PowerPC architecture—defined (e600)
of 1/0 (e600)/Memory Barrier - —
(e500) Embedded category mbar instruction implemented on the €500. The PowerPC
architecture defines this opcode as eieio.
Instruction Synchronize isync synchronizes the instruction stream
4.3.2 Memory Control Instructions

Memory control instructions include instructions for cache management and TLB management. Mgor
differences are as follows:

The segment register instructions defined by the PowerPC architecture to support the segmented

MMU model and implemented on the e600 are not part of the embedded environment and are not
implemented on the e500.

TL B management instructions—Resources defined to support software address translation.

The 600 defines the Load Data TLB Entry (tlbld) and Load Instruction TLB Entry (tlbli)
instructions to directly access TLBs. The Power | SA definestlbwe and tlbre, which the €500 uses
to directly configure TLBs with trandation and memory protection information by loading and
storing values defined in the memory assist (MAS) registers. Additional instructions are provided
for searching and invalidating entries and for synchronizing TLB accesses.

Specific differences in these instruction sets are listed in Table 9.

Table 9. Memory Control Instructions

Instructions

Name

Comments

User-level
cache (dcbx,
icbx)

Data cache block touch,
touch for store, allocate,
clear, zero, store, flush.

The Power ISA defines additional cache lock instructions, icblc and dcblc,
implemented on the e500.

Instruction cache block
invalidate, touch

The embedded category defines additional cache touch instructions implemented
on the e500: icbtls, dcbtls, and dcbtstls.

TLB
management
(tlbx)

TLB invalidate, synchronize

Unchanged

TLB read entry

e500. Reads TLB parameters from the TLBs to the MAS registers.

TLB search indexed

e500. Searches valid TLB arrays for an entry corresponding to the virtual address
and reads appropriate values into the MAS registers.

TLB write entry

e500. Writes TLB parameters from the MAS registers to the TLBs.
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4.3.3 Instruction Set Differences

Instruction Model

Table 10 lists the instructions implemented in the e600 and €500 processors, where applicable, noting the
architecture that defines the instruction.

Table 10. List of Instructions

Mnemonic

PowerPC

Power ISA

€600

€500

addc[o][.]

<

< |

adde[o][.]

addi

addicl.]

addis

addme[o][.]

addze[o][.]

add[o].]

andcl.]

andi.

andis.

and[.]

b

ba

Ll ||| ]| 2] 2]

Ll ||| ]| 2] 2]

B P P I B B I I | | | I =

bbelr

bblels

bc

bca

bcctr

becetrl

bcl

bcla

bclr

belirl

bl

P I PN N N N = I S e

P N PN N N N o I S e

bla

brinc

cmp

cmpi

cmpl

cmpli

cntlzwl[.]

crand

crandc

creqv

crnand

crnor

P N [P I I [ N I i N e

<<<<<<<<<<<<<<<<<<<<<<|

P I [P I I I N IR I [ R i

444444444442<<<<<<<<<<<<<<<<<<<<<<<<<<

cror
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Instruction Model

Table 10. List of Instructions (continued)

Mnemonic | PowerPC Power ISA €600 e500
crorc N N N N
crxor N N N N
dcba N N N N
dcbf N N X N
dcbi V N N V
dcblc — N — N
dcbst N N N N
dcbt V V V V
dcbtls — N — N

dcbtst N N N N
dcbtstls — N — N
dcbz N N N N
divwu(o][.] N N N N
divw[o][.] N N V V
dss — N N —
dssall — N N —
dst — N N —
dstst — N N —
dststt — N N —
dstt — N N —
eciwx N — — —
ecowx N — — —
efdabs — N — v2
efdadd — N — v2
efdcfs — N — v2
efdcfsf — N — v2
efdcfsi — N — v2
efdcfuf — N — v2
efdcfui — N — v2
efdcmpeq — N — v2
efdcmpgt — N — v2
efdcmplt — N — v2
efdctsf — N — v2
efdctsi — N — v2
efdctsiz — N — v2
efdctuf — N — v2
efdctui — N — v2
efdctuiz — N — v2
efddiv — N — v2
efdmul — N — v2
efdnabs — N — v2
efdneg — N — v2
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Table 10. List of Instructions (continued)

Mnemonic | PowerPC Power ISA €600 e500
efdsub — N — v2
efdtsteq — N — v2
efdtstgt — N — v2
efdtstlt — N — v2
efsabs — N — vin2
efsadd — N — vin2
efscfsf — N — ving
efscfsi — N — ving
efscfuf — N — ving
efscfui — N — ving
efscmpeq — N — ving
efscmpgt — N — ving
efscmplt — N — ving
efsctsf — N — ving
efsctsi — N — ving
efsctsiz — N — ving
efsctuf — N — ving
efsctui — N — ving
efsctuiz — N — ving
efsdiv — N — ving
efsmul — N — ving
efsnabs — N — vin2
efsneg — N — vin2
efssub — N — viin2
efststeq — N — ving
efststgt — N — ving
efststit — N — ving
eieio N Replaced with mbar| mbar
eqv[.] N N N N
evabs — N — viin2
evaddiw — N — ving
evaddsmiaaw — N — ving
evaddssiaaw — N — vin2
evaddumiaaw — N — ving
evaddusiaaw — N — vin2
evaddw — N — ving
evand — N — ving
evandc — N — ving
evcmpeq — N — ving
evcmpgts — N — ving
evcmpgtu — N — ving
evcmplts — N — ving
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Table 10. List of Instructions (continued)

Mnemonic | PowerPC Power ISA €600 e500
evcmpltu — N — ving
evcntlsw — N — ving
evcntlzw — N — ving
evdivws — N — ving
evdivwu — N — ving

eveqv — N — ving
evextsb — N — ving
evextsh — N — ving
evfsabs — N — viin2
evfsadd — N — viin2
evfscfsf — N — ving
evfscfsi — N — ving
evfscfuf — N — ving
evfscfui — N — ving
evfscmpeq — N — ving
evfscmpgt — N — ving
evfscmplt — N — ving
evfsctsf — N — ving
evfsctsi — N — ving
evfsctsiz — N — vin2
evfsctuf — N — viin2
evfsctui — N — vin2
evfsctuiz — N — vin2
evfsdiv — N — vin2
evfsmul — N — vin2
evfsnabs — N — vin2
evfsneg — N — vin2
evfssub — N — viv2
evfststeq — N — vin2
evfststgt — N — viin2
evfststit — N — vin2
evidd — N — viiv2
eviddx — N — viv2
evidh — N — viN2
evidhx — N — viN2
evidw — N — vin2
evidwx — N — ving
evlhhesplat — N — ving
evlhhesplatx — N — ving
evlhhossplat — N — ving
evlhhossplatx — N — ving
evlhhousplat — N — ving
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Instruction Model

Table 10. List of Instructions (continued)

Mnemonic | PowerPC Power ISA €600 e500
evihhousplatx — N — ving
eviwhe — N — ving
eviwhex — N — ving
eviwhos — N — ving
evlwhosx — N — ving
eviwhou — N — ving
eviwhoux — N — ving
eviwhsplat — N — ving
evlwhsplatx — N — ving
eviwwsplat — N — ving
eviwwsplatx — N — ving
evmergehi — N — ving
evmergehilo — N — ving
evmergelo — N — ving
evmergelohi — N — ving
evmhegsmfaa — N — ving
evmhegsmfan — N — ving
evmhegsmiaa — N — ving
evmhegsmian — N — ving
evmhegumiaa — N — ving
evmhegumian — N — ving
evmhesmf — N — ving
evmhesmfa — N — ving
evmhesmfaaw — N — ving
evmhesmfanw — N — ving
evmhesmi — N — ving
evmhesmia — N — ving
evmhesmiaaw — N — ving
evmhesmianw — N — ving
evmhessf — N — ving
evmhessfa — N — ving
evmhessfaaw — N — viin2
evmhessfanw — N — vin2
evmhessiaaw — N — ving
evmhessianw — N — ving
evmheumi — N — ving
evmheumia — N — ving
evmheumiaaw — N — ving
evmheumianw — N — ving
evmheusiaaw — N — ving
evmheusianw — N — ving
evmhogsmfaa — N — ving
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Table 10. List of Instructions (continued)

Mnemonic | PowerPC Power ISA €600 e500
evmhogsmfan — N — ving
evmhogsmiaa — N — ving
evmhogsmian — N — ving
evmhogumiaa — N — ving
evmhogumian — N — ving

evmhosmf — N — ving

evmhosmfa — N — ving
evmhosmfaaw — N — ving
evmhosmfanw — N — ving
evmhosmi — N — ving
evmhosmia — N — ving
evmhosmiaaw — N — ving
evmhosmianw — N — ving
evmhossf — N — ving
evmhossfa — N — ving
evmhossfaaw — N — ving
evmhossfanw — N — ving
evmhossiaaw — N — viin2
evmhossianw — N — vin2
evmhoumi — N — vin2
evmhoumia — N — viin2
evmhoumiaaw — N — vin2
evmhoumianw — N — vin2
evmhousiaaw — N — viin2
evmhousianw — N — vin2
evmra — N — viin2
evmwhsmf — N — viin2
evmwhsmfa — N — vin2
evmwhsmi — N — vin2
evmwhsmia — N — viin2
evmwhssf — N — vin2
evmwhssfa — N — viin2
evmwhumi — N — vin2
evmwhumia — N — ving
evmwlsmiaaw — N — ving
evmwlsmianw — N — ving
evmwlissiaaw — N — ving
evmwlissianw — N — ving
evmwlumi — N — ving
evmwlumia — N — ving
evmwlumiaaw — N — ving
evmwlumianw — N — ving
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Table 10. List of Instructions (continued)

Mnemonic | PowerPC Power ISA €600 e500
evmwlusiaaw — N — ving
evmwlusianw — N — ving

evmwsmf — N — ving

evmwsmfa — N — ving
evmwsmfaa — N — ving
evmwsmfan — N — ving
evmwsmi — N — ving
evmwsmia — N — ving
evmwsmiaa — N — ving
evmwsmian — N — ving
evmwssf — N — ving
evmwssfa — N — ving
evmwssfaa — N — ving
evmwssfan — N — ving
evmwumi — N — ving
evmwumia — N — ving
evmwumiaa — N — ving
evmwumian — N — ving
evnand — N — ving
evneg — N — vin2
evnor — N — ving
evor — N — ving
evorc — N — ving
evriw — N — ving
evriwi — N — vin2
evrndw — N — viin2
evsel — N — vin2
evslw — N — vin2
evslwi — N — vin2
evsplatfi — N — viin2
evsplati — N — vin2
evsrwis — N — vin2
evsrwiu — N — viin2
evsrws — N — ving
evsrwu — N — ving
evstdd — N — ving
evstddx — N — ving
evstdh — N — ving
evstdhx — N — ving
evstdw — N — ving
evstdwx — N — ving
evstwhe — N — ving
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Table 10. List of Instructions (continued)

Mnemonic | PowerPC Power ISA €600 e500

evstwhex —

<
<
—
~
<
N

evstwho —_

evstwhox —

evstwwex —_

evstwwex —_

evstwwo —_

evstwwox —

evsubfsmiaaw —

evsubfssiaaw —

evsubfumiaaw —

evsubfusiaaw —

evsubfw —

evsubifw —_

evxor
extsbl.]
extshl.]
fabsl.]
faddsl.]
fadd|[.]
fefid[.]
fcmpo

fcmpu
fetidz[.]
fetid[.]
fetiwz[.]
fetiwl.]
fdivs[.]
fdiv[.]
fmadds].]
fmadd[.]
fmrl.]

fmsubs].]

fmsubl.]

fmulsl.]

fmul[.]

fnabs].]

fnegl[.]
fnmadds.]
fnmadd|.]
fnmsubs|.]

fnmsubl.]

B B R I B I L e e I B I I L L i I e I i L B I B B I I Il B [ - | P e

<<<<<<<<<<<<<<<<<<<<<<<<<<<<|
<<<<<<<<<<<<<<<<<<<<<<<<<<<<|

fresl[.]
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Table 10. List of Instructions (continued)

Mnemonic

PowerPC

Power ISA

€600

frspl[.]

\/

<

\/

frsqrte[.]

\/

fsell.]

\/

fsqrts|.]

fsqri[.]

fsubs|.]

fsubl.]

icbi

P R R I e -

icblc

icbt

2| ] = =] 2] |

icbtls

isel

isync

Ibz

Ibzu

Ibzux

Ibzx

DN N N N I I

D N RN N I I

Ifd

Ifdepx

Ifdu

Ifdux

Ifdx

Ifs

Ifsu

Ifsux

Ifsx

lha

lhau

lhaux

lhax

lhbrx

lhz

lhzu

lhzux

lhzx

Imw

Iswi

Iswx

<<<<<<<<<<<<<<<<<<<|

lvebx

lvehx

lvewx

lvsl

Ll |||l |||/ 22|22/ 2|2|2(2[2|2|=2|22 2|22 2(2/(2)
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Migrating from e600- to e500-Based Integrated Devices, Rev. 0

Instruction Model

Freescale Semiconductor

23
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Table 10. List of Instructions (continued)

Mnemonic | PowerPC Power ISA €600 e500

<
<
|

lvsr —_

lvx —_

lvxl

lwarx

lwbrx

lwz

lwzu

lwzux

P R N N R A
2lel2e| 2|22

lwzx

mbar

SN PN N N N N N e

mcrf

mcrfs

mcrxr

mfcr
mffs|.]
mfmsr

D N [P I S I

mfpmr

B B N i e L I i I B I | | P

2l 2|2l 22|22 |
2|

mfspr

mfsr

mfsrin
mftb
mfvscr —

22| ==

<

msync see sync
mtcrf N
mtfsb0].]
mtfsb1[.]
mtfsfi[.]
mtfsf.]
mtmsr

DN N [P N I I I
|

mtocrf

mtpmr

<L | 2| 2] 2| <
Pl R - I I B = - R | -

mtspr

mtsr

2| 2] <]
|

mtsrin

mtvscr

mulhwul.]

mulhw[.]

mulli

mullw[o][.]

nand[.]

neg[o][.]
norl[.]

P I N N N A R
P P N N N N N N N [ IR N

D N N e N N N
R I N s N R
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Table 10. List of Instructions (continued)

Mnemonic | PowerPC Power ISA €600 e500
orcl.] N

ori

<
<

oris

orl.]

rfci
rfi

< | 2| <

<L | 2| 2] 2| <

= |

rfmci

riwimil.]

riwinm[.]

rlwnml[.]

SC

slw[.]

srawil.]

sraw/[.]

srwl.]
stb
stbu
stbux
stbx
stfd
stfdu
stfdux
stfdx
stfiwx

<<<<<<<<<<<<g’ - N I R .

stfs

stfsu

stfsux

stfsx
sth
sthbrx
sthu

sthux

sthx

stmw

stswi

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<|

stswx

stvebx —

stvehx —_

stvewx —_

stvx —_

stvxl —

B B B [ B I I I ! i B I e R L P I B B I I I R I B ] | I I Rl ) i ) - I | P

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<|

stw N
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Table 10. List of Instructions (continued)

Mnemonic

PowerPC

Power ISA

€600

€500

stwbrx

<

<

<

<

stwcex.

stwu

stwux

stwx

subfc[o][.]

subfe[o][.]

subfic

subfme[o][.]

subfze[o][.]

Ll 2] 2| 2|2 =2] <

subf[o][.]

P A P I R I - I ) -

sync

P P R I I R = I ) | -

w

See Section 4.

tibia

tibie

P I - I D - I R R - .

=i

tibivax

tibid

tibli

2| =] |

tibre

tibsx

tibsync

<

2| =] |

tibwe

tw

twi

vaddcuw

vaddfp

vaddsbs

vaddshs

vaddsws

vaddubm

vaddubs

vadduhm

vadduhs

vadduwm

vadduws

vand

vandc

vavgsb

vavgsh

vavgsw

vavgub

vavguh

vavguw

<<<<<<<<<<<<<<<<<<<<<<<<<|

<<<<<<<<<<<<<<<<<<<<<|
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Table 10. List of Instructions (continued)

Mnemonic

PowerPC

Power ISA

€600

€500

vcfsx

<

<

vefux

vempbfpx

vempeqfpx

vempequbx

vempequhx

vcmpequwx

vempgefpx

vempgtfpx

vempgtsbx

vempgtshx

vempgtswx

vempgtubx

vempgtuhx

vempgtuwx

vctsxs

vctuxs

vexptefp

viogefp

vmaddfp

vmaxfp

vmaxsb

vmaxsh

vmaxsw

vmaxub

vmaxuh

vmaxuw

vmhaddshs

vmhraddshs

vminfp

vminsb

vminsh

vminsw

vminub

vminuh

vminuw

vmladduhm

vmrghb

vmrghh

vmrghw

vmrglb

vmrglh

Ll |||l |||/ 22|22 /2/22|2|2|2(2[2|2|=2|22|]22|2]=2|2(2(2)

Ll |||l |||/ 22|22/ |2|2|2(2[2|2|=2|22 2|22 2(2/(2)
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Table 10. List of Instructions (continued)

Mnemonic

PowerPC

Power ISA

€600

€500

vmrglw

<

vmsummbm

vmsumshm

vmsumshs

vmsumubm

vmsumuhm

vmsumuhs

vmulesb

vmulesh

vmuleub

vmuleuh

vmulosb

vmulosh

vmuloub

vmulouh

vnmsubfp

vnhor

vor

vperm

vpkpx

vpkshss

vpkshus

vpkswss

vpkswus

vpkuhum

vpkuhus

vpkuwum

vpkuwus

vrefp

vrfim

vrfin

vrfip

vrfiz

vrib

vrih

vriw

vrsqrtefp

vsel

vsl

vslb

vsldoi

vslh

Ll |||l 2|2|2(2f2(22|2|2(2|2| 2|2 (2/22|2|22|2(2[2|2|=2|22 22|22 2(2/(2)
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Table 10. List of Instructions (continued)

Mnemonic

PowerPC

Power ISA

€600

€500

vslo

<

<

vslw

vspltb

vsplth

vspltisb

vspltish

vspltisw

vspltw

vsr

vsrab

vsrah

vsraw

vsrb

vsrh

VSro

vsrw

vsubcuw

vsubfp

vsubsbs

vsubshs

vsubsws

vsububm

vsububs

vsubuhm

vsubuhs

vsubuwm

vsubuws

vsum2sws

vsumdsbs

vsumdshs

vsum4ubs

vsumsws

vupkhpx

vupkhsb

vupkhsh

vupklipx

vupkisb

vupkish

vXxor

Ll |||l ||| 2|2|2|/|2|2|22|2/2|2|2|2(222]|=2)|22]|2]2]<2

wrtee

wrteei

Ll |22l |l|l|ll|2|j|2|lf2f2|22|2[2[2| 22|22/ |2|22|2(2(2|/2|=2|22|]2|2]|2/2/(2/(2)
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5

Table 10. List of Instructions (continued)

Mnemonic | PowerPC Power ISA €600 e500
xori[.] N N J N
xor(.] v v v N

Register Model

Most registers defined in the PowerPC architecture are unchanged in the €500 implementation of the
Power Architecture model. A few have been replaced by other registers, and in some cases new fields are
added, primarily to support functionality defined by categories that have been added to the architecture.
Differences include the following:

Bit numbering. 32-bit registers in the PowerPC architecture (e600) are numbered 0-31; the same
registersin Power |SA (e500) are numbered 32-63. Any 32-bit registers that are defined as 64-bit
registersin the Power ISA are treated as the lower word of the 64-bit versions. These include the
GPRs, save/restore registers, and al registers that can hold addresses (such as the count and link
registers).

Register files. These sets of registershold operands for computational, load, and storeinstructions.
The architecture defines the following register files:

— General-purpose registers (GPRs). All cores implement GPRs.

The SPE uses the 32-bit GPRs extended to 64-bits. GPRs are often used to generate the
effective address for instructions that access memory (because GPRs are used to hold
addresses, 64-bit implementations require 64-bit GPRS). The e600 cores implement 32-hbit
GPRs. On the e600, these bits are numbered 0-31.

See Section 5.1, “Register File Comparison.”

— Floating-point registers (FPRS). All cores that support the Power Architecture model base
category floating-point instructions implement the FPRs, but the é500v1 and €500v2 do not.

— Vector registers (VRs). The AltiVec instruction set implemented on the eé600 uses VRs which
are not supported on €500 cores.

Instruction-accessible registers—Registers such as the condition register (CR), the floating-point
status and control register (FPSCR), and some SPRs are accessed as side effects of executing
certain instructions. All processors implement CRs, but processors that do not support FPRs also
do not support the FPSCRs or floating-point functionality defined inthe CR. Likewise, €500 cores
do not support VRs.

Special-purpose registers (SPRs)—On-chip registersthat are part of the processor core. Although
the basic set of SPRsisimplemented across all cores, some SPRs may not be implemented on all
cores, or may have different meanings relative to the core or to the device into which the coreis
integrated. Always check the register summary chapter in the SoC reference manual for the most
specific information.

Cores also include both the architecture-defined and implementati on-specific SPRs required for
the functionality provided. These differences are summarized at the register level in the
comparison tables in the subsequent sections. Specific details are provided in the reference
manuals for the cores and the integrated devices.
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NOTE

» Performance monitor registers, or PMRs, offer an extensive set of on-chip registers similar to
SPRs. These are defined by the Power | SA and implemented on the €500. This functionality is
defined in SPRs on the e600 cores.

To optimize instruction execution, implementations typically employ duplicate space for certain heavily
used registers, such as rename and shadow registers. Such microarchitectural resources vary from device
to device and are not addressed here.

5.1 Register File Comparison

Figure 3 compares register files. Note that, as the GPRs in Figure 3 illustrate, bit numbering for 32-bit
registers differs between the PowerPC architecture and the Power Architecture model.

€600 e500
[

0 31 0 31 32 63
GPRO (upper) GPRO (lower)
GPR1 GPR1 General—%urfpose relgisthersI (The I?aI??b'

General-purpose category defines only the lower hal its e500v1/

GPR2 registers GPR2 32-63)). e500v2
e o o e o o
GPR31 GPR31

| The SPE defines the upper 32 bits for use with
64-bit operands

0 63
FPRO
FPR1 Floating-point
FPR2 registers
e o o
FPR31
0 63 64 127
VRO
VR1
e600—Vector
VR2 registers
(AltiVec)
e o o
VR31

Figure 3. Register File Comparison

Architecture-defined register files shown in Figure 3 are defined as follows:

» General-purposeregisters (GPRs)—GPRs serve as the data source or destination for all integer and
non—floating-point load/store instructions and provide data for generating addresses. The GPR file
consists of 32 GPRs designated as GPRO-GPR3L1.

The e600 implements 32-bit GPRs with bits numbered 0-31.

The SPE, implemented on e500v1 and e500v2 cores, extends the GPRs to accommodate 64-bit
operands; scalar double-precision embedded floating-point instructionstreat the 64 bitsasasingle
operand; SPE vector instructions break the registersinto two 32-bit elements, which for some
instructions are broken into half-word elements.
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5.2

Floating-point registers (FPRs)—The floating-point model defines an FPR file that consists of
thirty-two 64-bit FPRs, FPRO-FPR31. The FPRs use double-precision operand format for both
single- and double-precision data. See Section 4.2.2, “Floating-Point Instructions (e600).”

AltiVec vector registers (V Rs)—AltiVec, now part of the Power I1SA, definesaV R filethat consists
of thirty-two 128-hit VRs. The €500 does not implement these registers.

Instruction-Accessible Registers

Figure 4 shows a comparison of registers that may be updated as the by-product of instruction execution.
For example, an overflow may update the condition register (CR), the floating-point status and control
register (FPSCR), or the SPE/embedded floating-point status and control register (SPEFSCR). For some
of these registers, such as the FPSCR and CR, explicit move to/move from instructions are defined to
explicitly access these registers.

The differences in these register sets depend on whether SPE, AltiVec, and floating-point instructions are

supported.
€600 e500
[
31 0 31 32 63
Condition register Condition register
spr 1 Integer exception register spr 1 Integer exception register
Base category
spr 8 Link register spr8 Link register
spr9 CTR Count register spr9 CTR Count register
FPSCR Floating-point status/control
VSCR Vector (AltiVec) status/control spr512 | SPEFSCR | SPE FP status and control ]
SPE: e500
| ACC | Accumulator

Figure 4. Instruction-Accessible Registers Comparison

The following €500 registers support SPE and embedded floating-point instructions:

SPE floating-point status and control register (SPEFSCR). Used for status and control of SPE and
embedded floating-point instructions. It controls the handling of floating-point exceptions and
records status information resulting from the floating-point operations.

Accumulator register (ACC). Holds the results of the multiply accumulate (MAC) forms of SPE
integer instructions. The ACC allows back-to-back execution of dependent MAC instructions,
something that isfoundintheinner loops of DSP code such asfiniteimpulseresponse (FIR) filters.
The accumulator ispartially visibleto the programmer in that its results do not haveto be explicitly
read to use them. Instead, they are always copied into a64-bit destination GPR specified as part of
theinstruction. Based upon the type of instruction, thisregister can hold either asingle 64-bit value
or avector of two 32-bit elements.
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5.3 Timer Register Comparison

Figure 5 shows a comparison of timer-related registers.

€600 e500
T 1T 1
0 31 32 63
spr 268 TBL ILJser—/IeveI time base spr 268 TBL User-level time base
ower/upper
spr 269 TBU (read-oﬁﬁl) spr 269 TBU lower/upper (read-only)
spr 284 TBL Supervisor-level time spr 284 TBL Supervisor-level time Base category
spr 285 TBU base lower/upper spr 285 TBU base lower/upper
spr 22 DEC Decrementer spr 22 Decrementer
spr 54 DECAR Decrementer auto-reload |
spr 340 TCR Timer control Embedded category
spr 336 TSR Timer status
spr 526 ATBL Alternate time base
Alt te time-
spr 527 ATBU lower/upper ernate time-base

Figure 5. Time/Decrementer Registers Comparison

Both families implement the following registers:
* Timebase (TBU and TBL). Providestiming functions for the system.

» Decrementer register (DEC). Typically used as a general-purpose software timer. It is updated at
the same rate as the TB and provides away to signal a decrementer, fixed-interval timer, or
watchdog timer interrupt after a specified period.

The €500 implements Power | SA—defined registers that incorporate timing mechanisms for the
fixed-interval and watchdog timer interrupts:

» Decrementer auto-reload register (DECAR). Can be used to automatically reload a programmed
valueinto DEC. If DECAR isnot used, avalue hasto be explicitly programmed into the DEC, as
in the PowerPC architecture.

» Timer control register (TCR). Providescontrol information for the decrementer. It controlsfeatures
such as auto-reload enable and decrementer interrupt enable.
» Timer statusregister (TSR). Contains status on timer events and the most recent watchdog

timer-initiated processor reset. It controls features such as watchdog timer, fixed-interval interrupt
enable, and watchdog timer interrupt status.

* The alternate time base registers duplicate much of the functionality of the time base, but do not
support the DECAR. The alternate time base istypically clocked at a higher frequency than the
standard time base to offer afiner granularity.
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54

MMU Control and Status Register Comparison

Because the original PowerPC architecture MMU specification was cumbersome for embedded
applications, the €500 defined alternate features, especially to support software-managed page tables. See
Section 7, “Memory Management Unit (MMU) Model.”

Figure 6 compares the MMU registers.

e600 e500
. MMU Control and Status (Read/Write) I
0 31 32 63
spr528| IBATOU spr 48 PIDO — Embedded category
spr 529 IBATOL spr 633 PID1 rPer&c;?grss I(lg)_2 B
. Instruction block-address spr 634 PID2 e500v1/e500v2

spr 534 IBAT3U
spr 535 IBAT3L

spr536 | DBATOU
spr 537 DBATOL

spr542 | DBAT3U
spr543 | DBAT3L

SRO
SR1
SR2

SR31

spr 25 SDR1

spr 560 IBAT4U
spr 561 IBAT4L

spr 566 IBAT7U
spr 567 IBAT7L

spr568 | DBAT4U
spr569 | DBAT4AL

spr574 | DBAT7U
spr 575 DBAT7L

spr 981 PTEHI
spr 982 PTELO

spr980 | TLBMISS

translation registers

Data block-address
translation
registers

Segment registers

SDR1

Instruction block-address

translation registers

Data block-address
translation registers

PTE high/low

TLB miss

MMU control and
spr 1012 | MMUCSRO status register 0

spr 624 MASO
spr 625 MAS1
Spr 626 MAS2 MMU assist registers
spr 627 MAS3 0-4and 6 Embedded category
spr 628 MAS4
spr 630 MAS6
spr 944 MAS7 e500v2

MMU Control and Status (Read Only)

spr 1015 | MMUCFG MMU configuration

spr 688 | TLBOCFG
spr689 | TLB1CFG

TLB configuration 0/1

— e600-specific

Figure 6. MMU Register Comparison

Migrating from e600- to e500-Based Integrated Devices, Rev. 0

34

Freescale Semiconductor



Register Model

The e600 cores implement the following MMU registers defined by the PowerPC architecture, but not
supported by the Power ISA embedded cores:

Block address trandation registers (BATS).
SDR1

The €500 implements the following Power | SA—defined SPRs to support address translation:

Process ID registers (PIDO—PID2). Provides an identifier value associated with each effective
address (instruction or data) generated by the processor. The Power | SA supports as many as 16
PIDs.

MMU control and status register 0 (MMUCSRO0). Used for general MMU control, for example, to
invalidate TLBs.

MMU assist (MAS) registers. Used with the tibwe and tlbr e instructions to configure and manage
MMU read/write and replacement, descriptor configuration, effective page number and page
attributes, real page number and access, and hardware replacement assist configuration.

MMU configuration register (MMUCFG). Provides configuration information for the particular
MMU supplied with a version of the core. It is aread-only register that provides information on
PID register size and the number of TLBs.

TLB configuration registers (TLBOCFG-TLB1CFG). These read-only registers provide
information about each TL B that is visible to the programming model. They provide configuration
information for TLBsand describe aspects such asthe associativity, minimum and maximum page
sizes of the TLBs, and the number of entriesin the TLBs.
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5.5

Cache Register Comparison

The Freescale EIS definesthe €500 L 1 cache configuration and statusregisters, shownin Figure 7. Neither
version of the architecture defines cache registers.

€600

e500

32 63

spr 1011 ICTRL Instruction cache and interrupt control

spr 985/986
spr 987

spr 988/989
spr 990
spr 991
spr 992
spr 993
spr 994
spr 995
spr 996
spr 997

spr 1017
spr 1019

The €500 registersin Figure 7 are described as follows:

L2 Cache Registers (e600)

L2ERRINJHI/LO

L2ERRINJCTL

L2CAPTDATAHI/LO

L2CAPTECC

L2ERRDET

L2ERRDIS

L2ERRINTEN

L2ERRATTR

L2ERRADDR

L2ERREADDR

L2ERRCTL

L2CR

ICTC

L2 cache error injection mask high/low
L2 cache error injection control

L2 cache error capture data high/low
L2 cache capture ECC syndrome

L2 cache error detect

L2 cache error disable

L2 cache error interrupt enable

L2 cache error attribute

L2 cache error address

L2 cache error extended address

L2 cache error control

L2 cache control status

Instruction cache throttling

L1 Cache (Read/Write)
32 63
spr 1010 L1CSRO

spr 1011 L1CSR1

L1 cache control/status 0/1

L1 Cache (Read Only)

spr515 L1CFGO

L1 cache control/status 0/1
spr 516 L1CFG1

Figure 7. Cache Registers Comparison

* L1 cache configuration registers (L 1CFGO-L1CFG1). Read-only registers that provide
configuration information for the particular L1 data and instruction caches supplied with aversion
of the core. They include a description of the cache block size, the number of ways, the cache size,
and the cache replacement policy, among other features.

* L1cachecontrol and statusregisters(L1CSRO-L1CSR1). L1CSRsareused for genera control and
status of the L1 data and instruction caches and are read/write accessible by supervisor-level
programs. They allow the programmer to enabl e features such as cache parity and the cache itself.
They provide status on information such as cache locking and cache locking overflow.

The e600 implements the following L1 cache control bitsin HIDO:

* Instruction/data cache enable (ICE/DCE). Clearing the bit disables the cache; it can be neither
accessed nor updated. Potential cache accesses from the bus (snoop and cache operations) are

ignored and both caches are disabled at reset.

» Datalinstruction cachelock (DLOCK/ILOCK). If thishit is set, all waysof the respective cacheare
locked. A locked cache supplies data normally on ahit, but is treated as a cache-inhibited
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transaction on amiss. The €500 implements the cache locking instructions listed in Section 4.3.2,
“Memory Control Instructions.”

Instruction/data cache flash invalidate (I CFI/DCFI). Setting this bit generates an invalidate
operation that marksthe state of each instruction cache block asinvalid. Setting ICFI clearsall the
valid bits of the blocks and the PLRU bits to point to way LO of each set.

The e600 includes cache way locking fields, ICTRL[ICWL] and LDSTRCR[DCWL])
See the core and SoC reference manuals for details about fields within these registers.

5.6

Interrupt Register Comparison

The Power | SA embedded category optimizes the architected resources to improve responsiveness to
interrupts, especially for asynchronousinterrupts signal ed to the core from peripheral logic within the SoC.
As Figure 8 shows, these differences include the following:

In the PowerPC architecture which isimplemented on the 600, an interrupt vector consists of a
fixed offset prepended with avalue as determined by M SR[1P], which isnot part of the Power ISA.
On e500 cores, these offsets are programmed through the interrupt vector prefix register (IVPR),
which placestheinterrupt tablein memory, and the interrupt vector offset registers (1V ORs), which
contain the offset for individua interrupts.

IVORs hold theindex from the base address provided by the IVPR for its respective interrupt type.

IVORs provide storage for specific interrupts. The Power |SA definition allows implementations

to define IVORs to support category- and implementation-specific interrupts. For example, the

SPE defines IVOR32-1VOR35. Such IVORs are listed at the bottom of Table 11.

To manage the increased traffic from peripheral devices, the Power I SA provides analogous

resourcesfor critical input interrupt with itsown set of save and restoreregisters. Thisfunctionality

also exists asimplementation-specific functionality in some cores. The Power ISA defines similar
resources for machine check interrupts implemented on €500 cores.

Support for data related interrupts has changed, as follows:

— The €500 implements the exception syndrome register (ESR) instead of the DSI syndrome
register (DSISR). The DSISR is used for data storage and alignment interrupts. The ESR is
used to track exceptions for avariety of interrupts.

— The €500 implements the data exception address register (DEAR). DEAR is loaded with the
effective address of a data access (caused by aload, store, or cache management instruction)
that results in an aignment, data TLB miss, or DSl exception. The e600 implements the data
addressregister (DAR) for this purpose.
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Figure 8 compares the interrupt register models.

€600 e500
T 1T
0 31 32 63
spr26[  SRRO Savelrestore spr26[ SRRO ]
g Save/restore registers 0/1 Base categor
spr 27 SRR1 registers 0/1 spr 27 SRR1 9 i
spr19 DAR Data address register spr 58 CSRRO . 1
Critical SRR 0/1
spr 59 CSRR1
spr18 DSISR DSISR
. spr570 | MCSRRO .
spr256 | VRSAVE AltiVec save restore Machine check SRR 0/1
spr 571 MCSRR1
spr572 MCSR Machine check syndrome
spr 62 Exception syndrome Embedded.category
spr 61 DEAR Data exception address
spr 63 IVPR Interrupt vector prefix
spr 400 IVORO
spr 401 IVORT Interrupt vector offset
. . . registers 0-15
spr415 IVOR15
spr 528 IVOR32 ]
spr 529 IVOR33 Interrupt vector offset SPE (e500v1/e500v2)
spr530 IVOR34 registers 32-35
spr 531 IVOR35 - Performance monitor
spr573|  MCAR Machine check address Freescale EIS
spr569| MCARU | upper/lower

Figure 8. Interrupt Register Comparison

The €500 implements the following registers, defined by the Power ISA:

» The machine check interrupt model defines the following registers:
— Machine check save/restore registers (MCSRRO and MCSRR1). Analogous to SRRO and
SRR1.

— Machine check syndrome register (MCSR). When the core complex takes a machine check
interrupt, it updates MCSR to differentiate between machine check conditions. The MCSR

— Machine check address register (MCAR). When the €500 takes a machine check interrupt, it
updates MCAR to indicate the address of the data associated with the machine check.

5.7

fields.

indicates whether a machine check condition is recoverable.

Configuration/Processor Control Register Comparison

The architecture defines registers that provide control, configuration, and status information of the
machine state and process IDs. Figure 9 compares configuration registers. Note that this document does
not addressin detail all differencesin the implementation of each register, particularly regarding MSR
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€600 e500
I 0 31 . 32 63 I
Machine state Machine state
spr 287 PVR Processor version spr 287 PVR Processor version Base category
spr 286 1 SVR System version (e600-specific) spr 1023 1 SVR System version
spr 1023 Processor ID spr 286 1 Processor ID :| Freescale EIS

T Note that the SVR is SPR 1023 on the €500 and SPR 286 on the e600. The PIR is SPR 286 on the 500 and 1023 on the PIR.

Figure 9. Configuration Registers Comparison

* Machine state register (MSR). Definesthe state of the processor (that is, enabling and disabling of
interrupts and debugging exceptions, enabling and disabling somefeatures, and specifying whether
the processor isin supervisor or user mode).

The PowerPC architecture MSR (e600) defines bits that enable data address translation (IR and
DR) and modal big/little endian byte ordering (LE and ILE). On the €500 byte ordering is a page
attribute configured through the MAS registers.

The MSR includes bits for enabling and disabling asynchronous interrupts. EE for external
interrupts, CE for critical interrupts, and ME for machine check interrupts. The core user
documentation describes the behavior of these bits when the respective interrupt is taken and how
they should be treated by the interrupt handler. Note also that the Power |SA implementsthe Write
MSR External Enable instructions (wrtee[i]), which can be used to update only MSR[EE].

MSR[LE] and MSR[ILE] on the e600 are used to set configure the big- and little-endian byte
ordering; these are not implemented on the €500 and other Power 1SA devices, which handle
endianness on a per-page basis through the MAS registers.

The MSR][IP] value places the interrupt table in either high or low memory. Thisis not
implemented on the €500, which uses VPR and the IV ORsto define the interrupt table and place
it in memory.

* Processor ID register (PIR). Contains a value that can be used to distinguish the processor from
other processors in the system. Note that the PowerPC architecture and Power 1SA PIR SPR
numbers differ.

* Processor version register (PVR). Containsavalueidentifying the version and revision level of the
processor. The PV R distinguishes between processors whose attributes may affect software.

» The system version register (SVR) identifies the integrated device that implements the core.

5.8 Performance Monitor Register Comparison

The e600 and €500 cores performance monitor utility uses the set of registers shown in Figure 10. The
€600 uses SPRs to implement this functionality; the €500 processors implement this functionality in
performance monitor registers (PMRSs), which are part of the Power ISA. PMRs are similar to the SPRs
and are accessed by mtpmr and mfpmr instructions.

The counter registers, global controls, and local controls have aliasnamesand use different PMR numbers.
Accesses to PMCO-PMC15, PMGCO, PMLCa0-PMLCal5, and PMLCbO—-PMLCDb15 use the
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supervisor-level PMR number; accesses to UPM CO-UPMC15, UPMGCO, UPMLCa0-UPML Cal5, and
UPML CbO0—-UPMLCb15 use the user-level PMR number. User-level accessisread only.

It isimportant to note that the events counted can differ greatly among processors; consult the user
documentation. Also note that most integrated devices implement a similar performance monitor that
tracks events mostly involving peripheral device activities. These events may trigger an asynchronous
interrupt, typically configured as an external interrupt.

€600 and e500

€600 User PMRs (Read-Only)
32 63 3 63

spr 955 SIAR Sampled instruction address pmr 384 | [UJPMGCO Gilobal control register

spr 939 USIAR User sampled instruction address

spr 951 BAMR Breakpoint address mask pmr0-3| [UPMCO-3 | Counter registers 0-3
spr 936, 940, 928 | UMMCRO-2 | User monitor mode control 0—2 pmr 128-131 | [UJPMLCa0-3 | Local control registers a0-a3
spr 952, 956, 944 [ MMCRO—2 | Monitor mode control 0-2 pmr 256-259 | [UJPMLCbO-3 | Local control registers b0-b3
Supervisor PMRs

spr 937, 9

1 .

0 | [UIPMC1-6 | User performance monitor counter pmr 400 PMGCO Global control register
7 | [UIPMC1-6 | Performance monitor counter
R pmr 16-19 PMCO0-3 Counter registers 0-3

pmr 144-147 | PMLCa0-3 Local control a0—a3
pmr272-275 | PMLCb0-3 Local control b0-b3

942, 9
spr 953, 9
QRQ’" Q.

Figure 10. Performance Monitor Registers Comparison

The following describes the PMRs:

* Global control register (PMGCO/UPMGCO0). PMGCO controls all performance monitor counters
and isasupervisor-level register. The contents of PM GCO are reflected to UPM GCO, which can be
read by user-level software.

» Performance monitor counter registers (PMCO-PM C3/UPMCO-UPMC3). PMCO-PMC3 are
32-bit counters that can be programmed to generate interrupt signals when they overflow. Each
counter is enabled to count 128 events. The contents of PM CO-PMC3 are reflected to
UPMCO-UPMC3, which can be read by user-level software.

* Local control registers facilitate software control of the PMRs:
— PMLCa0-PMLCa3/UPMLCa0-UPMLCa3. PML Ca registers function as event selectors and

givelocal control for the corresponding performance monitor counters. Each PML Caworks
with the corresponding PML Cb register.

The contents of PMLCa0-PML Ca3 arereflected to UPMLCa0-UPML Ca3, which are read by
user-level software and are read-only.

— PMLCbO-PMLCb3/UPMLCbO-UPML Cb3. PMLCb registers specify athreshold valueand a
multiple to apply to a threshold event selected for the corresponding performance monitor
counter. Each PML Cb works with the corresponding PML Ca.

The contents of PML Cb0—PML Cb3 arereflected to UPM LCb0—UPMLCb3, which areread by
user-level software.
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5.9 Debug Register Comparison

Debug registers are accessible to software running on the processor. These registers are intended for use
by special debug tools and debug software, and not by general application or operating System code.
Figure 11 compares debug registers.

€600 e500
1T
0 31 32 63
spr 1013 DABR Data address breakpoint spr 308 DBCRO
spr 1010 IABR Instruction address breakpoint spr 309 DBCR1 Debug control registers 0-2

spr 310 DBCR2

spr 304 DBSR Debug status register

spr 312 IACT Instruction address compare
spr 313 IAC2 registers 1 and 2

spr 316 DAC1 Data address compare
spr 317 DAC2 registers 1 and 2

Figure 11. Debug Registers Comparison

The Power | SA does not implement data address breakpoint registers (DABRS) nor instruction address
breakpoint registers (IABRs), but instead architects debugging support with the following registers:

» Debug control registers (DBCRO-DBCR1). Enable debug events, reset the processor, control timer
operation during debug events, and set the debug mode of the processor.

» Debug statusregister (DBSR). Provides statusinformation for debug events and for the most recent
processor reset. The DBSR is set through hardware but is read and cleared through software.

» Instruction and data address compare registers (IACs and DACs). A debug event may be enabled
to occur on an attempt to execute an instruction or access a datalocation from an address specified
inanIAC or DAC, inside or outside arange specified by the|AC or DAC, or to blocks of addresses
specified by the combination of the IACs and DACs.

* Note that additional enhanced embedded debug interrupt resources are described in Section 5.6,
“Interrupt Register Comparison.”

5.10 Software-Use SPR Comparison

Software-use SPRs (SPRGS), shown in Figure 12, have no defined functionality, although many are added
to the register set in conjunction with other functionality, for example the Freescale MMU architecture.

SPRGs consist of the following supervisor-level read/write registers:
*  SPRGO-SPRG3—defined in both versions of the architecture.

*  SPRG4-SPRG7—implementation-specific registersimplemented on e600 cores, and also defined
by the Power 1SA.

On the 600, SPRGs are all supervisor-only, read/write registers. e500 SPRGs are defined by the Power
ISA asfollows:

* SPRGO-SPRG2—accessible only in supervisor mode.
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» SPRG3—uwrite-only in supervisor mode. It is readable in supervisor mode, but whether it can be
read in user mode is implementation-dependent. Note that, as Figure 12 shows, the SPR numbers
differ for user and supervisor accesses.

* SPRG4-SPRG7—write-only in supervisor mode but readable in supervisor or user mode. Note
that, as Figure 12 shows, the SPR numbers differ for user and supervisor accesses.

* USPRGO—can be accessed in supervisor or user mode. Note that USPRGO is a separate physical

register from SPRGO.
€600 e500
[ 1T 1
Supervisor SPRGs User SPRGs
Architecture-Defined General SPRs (Read-Only)
0 31 32 63
spr 272 SPRGO spr 259 SPRG3
spr 273 SPRG1 . spr 260 SPRG4 .
SPR general registers 0-3 SPR general registers 3-7
spr 274 SPRG2 LA
spr 275 SPRG3 spr 263 SPRG7
e600-Specific User SPRGs (Read/Write)

spr 276 SPRG4 spr 256 USPRGO User SPR general 0
spr 277 SPRG5 .
spr279 | SPRG6 SPR general registers 4-7 Supervisor SPRGs (Read/Write)
spr 279 SPRG7 spr 272-279 | SPRGO0-7 General SPRs 0-7

Figure 12. General SPRs (SPRGs)

5.11 Miscellaneous Implementation-Specific Register Comparison

To handle specia functions, implementations typically have SPRs not defined by the architecture, some
of which may appear on multiple implementations with similar functionality. In particular,
implementations define hardware implementation-dependent registers (HIDs) that typically control
hardware-related functionality as shown in Figure 13.

e600 e500
1
0 31 32 63
spr 1008 HIDO Hardware im : spr 1008 HIDO
plementation Hardware implementation dependent register 0’1
spr 1009 HID1 dependent registers spr 1009 HID1 P P 9
spr 1019 ICTC Instruction cache throttling control spr 1009 BUCSR Branch unit control and status
spr513 BBEAR Branch buffer entry address (e500v1/e500v2)
spr514 BBTAR Branch buffer target address (e500v1/e500v2)

Figure 13. Implementation-Specific Registers Comparison

6 Interrupt Model

Both architecture versions of the interrupt model are similar with respect to the interrupts that are defined
and the kind of exceptions that can cause them. Thisis especialy true for those interrupts that are closely
related to program execution. The Power 1SA extends the interrupt model somewhat both to provide
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greater responsiveness and lower interrupt latency critical to an embedded environment and to
accommodate changes in the MMU model.

NOTE

Note that é600 documentation uses the terms ‘exception’” and ‘interrupt’
differently than the Power 1SA and Freescale’'s e500 documentation. This
document uses the terms as follows:

* Anexception isthe event that, if enabled, causes the processor to take
an interrupt. Exceptions are generated by signals from internal and
external peripherals, instructions, the internal timer facility, debug
events, or error conditions.

* Aninterrupt is the action in which the processor saves its context
(typically the machine state register (M SR) and next instruction
address) and begins execution at a predetermined interrupt handler
address with a modified M SR.

Most of the general characteristics of the interrupt model are common across all architecture versions; the
interrupt mechanism allows the processor to change to supervisor state as aresult of external signals,
errors, or unusual conditions arising in the execution of instructions. When interrupts occur, information
about the state of the processor is saved to certain registers and the processor begins execution at an
address (interrupt vector) predetermined for each interrupt.

The conditions that cause exceptions can vary from processor to processor and some may be mode
dependent. Consult the user documentation.

Generad differences between the PowerPC architecture and the Power 1SA are as follows:

The Power 1SA embedded environment does not define, and €500 processors do not implement, a
system reset interrupt. On Power |SA embedded cores, a system reset is typically initiated in one
of the following ways:

— Assertion of asignal that resets the internal state of the core complex

— By writing a1 to DBCRO[34], if MSR[DE] =1

Interruptsin the PowerPC architecture 1.10 definition—The PowerPC interrupt model uses fixed
addresses as vector offsets to map to physical memory locations with the base address determined
by the MSR[IP]. If IPis zero, vector offsets are added to the physical address 0x000n_nnnn. If IP
is set, vector offsets are added to the physical address OxFFFn_nnnn. Table 11 shows the vector

off sets associated with each interrupt type. Finally, the PowerPC architecture includes the system
reset, trace, and floating-point assist interrupts which are not part of the Power ISA.
MSR[IR,DR] are cleared when the e600 takes an interrupt, putting it in real mode. Because Power
ISA devices do not implement real mode, the €500 core is always translating effective addresses.
Interruptsin the Power | SA embedded category. Definesinterrupt vector offset registers (1IVORS),
interrupt vector prefix registers (IVPRS), and critical interrupts. An IVOR isassigned to each
interrupt type. The IVPR provides the base address location to which the offset in the IVORSsis
added. Table 11 shows the IVORs associated with each interrupt type.

Thesave andrestoreresources are part of thearelargely identical to those defined by the OEA. Save
and restore registers (shown in Figure 8) save the return address and machine state when they are
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taken. A returnfrominterrupt instruction (rfi, rfci, or rfmci) restores state at the end of the interrupt

routine.

The Power | SA resources are defined as follows:

— Critica interrupts—To reduce interrupt response time to crucial interrupts, Book E defined a
second interrupt type, the critical interrupt, with separate save and restore resources, CSSRO
and CSRR1 the Return from Critical Interrupt instruction (rfci). These resources allowed
critical-type interrupts to be taken without having to save state of any concurrent non-critical
interrupts.
The Power | SA version defines the critical input, watchdog timer, and debug interrupts as
critical interrupts (although debug interrupts may be implemented as separate interrupt types).

— Machine check interrupt—Analogous to critical interrupt with separate save and restore
registers (MCSRRO/MCSRR1) and rfmci instruction.

Table 11 lists other differences.

» Other categories, such asthe SPE and performance monitor, define non-critical interruptsto handle
category-specific program interrupts.

Table 11 shows a comparison of the interrupt models.

Table 11. Interrupts and Conditions—Overview

Interrupt Type

Vector Offset
(‘— Indicates not
implemented)

€600

€500

Cause/Description

System reset

0x100

Not implemented on €500

Critical input

IVORO

Assertion of cint typically managed by a programmable interrupt controller
integrated into the SoC and enabled through MSR[CE]. Similar to external
interrupt.

Machine check

0x200

IVOR1

Causes are implementation-dependent but typically related to conditions such as
bus parity errors or attempts to access an invalid physical address. Typically,
these interrupts are triggered by an input signal to the processor. Disabled when
MSRI[ME] = 0; if a machine check interrupt condition exists, the processor goes
into checkstop.

e500 provides separate resources MCSRR0O, MCSRR1, and rfmci. An address
related to the machine check may be stored in MCAR. MCSR reports the cause
of the machine check.

Data storage interrupt

0x300

IVOR2

A data memory access cannot be performed. On the €500, the ESR reports the
cause and DEAR holds the EA of the data access.

e600: DSISR reports the cause; DAR is set based on DSISR settings.
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Table 11. Interrupts and Conditions—Overview (continued)

Interrupt Type

Vector Offset
(‘— Indicates not
implemented)

€600

€500

Cause/Description

Instruction storage
interrupt

0x400

IVOR3

Instruction fetch cannot be performed. Causes include the following:

e The EA cannot be translated. For example, when there is a page fault for this
portion of the translation, an ISI must be taken to retrieve the page (and
possibly the translation), typically from a storage device.

¢ An attempt is made to fetch an instruction from a no-execute memory region
or from guarded memory when MSRJ[IR] = 1.

* The fetch access violates memory protection.

e500: ISI assists implementations that:

¢ cannot dynamically switch byte ordering between consecutive accesses

* do not support the byte order for a class of accesses

* do not support misaligned accesses using a specific byte order. ESR reports
the cause.

External interrupt

0x500

IVOR4

Generated only when an external interrupt is pending (typically signaled by a
signal specified by the implementation) and the interrupt is enabled (MSR[EE]=1).

Alignment

0x600

IVOR5

The processor cannot perform a memory access because of one of the following:

* The operand of a load or store is not aligned.

* a dcbz referenced storage that is write-through required or cannot be
established in the data cache.

e500: ESR reports the interrupt cause; DEAR holds the EA of the data access.

e600: DSISR reports the cause; DAR is set based on DSISR. Implementations

may vary with respect to taking interrupts for certain exception conditions. Consult
the user documentation.

Program

0x700

IVOR6

One of the following conditions occurs during instruction execution:

* Floating-point enabled exception—Generated when MSR[FEO,FE1] # 00 and
FPSCRI[FEX]is set. Not implemented on the e500v1 or e500v2. Caused when
a floating-point instruction causes an enabled exception or by the execution of
a Move to FPSCR instruction that sets both an exception condition bit and its
corresponding FPSCR enable bit. DSISR reports the cause of the program
interrupt; DAR is set based on DSISR settings.

* lllegal or unimplemented instruction—Generated when execution of an
instruction is attempted with an illegal opcode or illegal combination of opcode
and extended opcode fields, or when execution of an optional instruction not
provided in the specific implementation is attempted (these do not include
optional instructions treated as no-ops).

* Privileged instruction—User-level code attempts execution of a supervisor
instruction.

* Trap—Any of the conditions specified in a trap instruction is met.

e500: an unimplemented operation exception may occur if an unimplemented,
defined instruction is encountered. Otherwise, an illegal instruction interrupt
occurs. ESR reports the cause.

Floating-point
unavailable

0x800

IVOR7

e600: Caused by an attempt to execute a floating-point instruction (including
floating-point load, store, and move instructions) when the floating-point available
bit is cleared, MSR[FP] = 0.
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Table 11. Interrupts and Conditions—Overview (continued)

Vector Offset
(‘— Indicates not

Interrupt Type implemented) Cause/Description
e600 e500

Decrementer 0x900 IVOR10 | As defined by the PowerPC architecture: occurs when the msb of the DEC
changes from 0 to 1 and MSR[EE] = 1.
e500: implements the additional Power ISA—defined resources: TSR records
status on timer events. An auto-reload value in the DECAR is written to DEC
when it decrements from 0x0000_0001 to 0x0000_0000.

System call 0xCO00 IVOR8 | Occurs when a System Call (sc) instruction is executed.

Trace 0xD00 — e600: MSR[SE] =1 or a branch instruction is completing and MSR[BE] =1. The
€600 core operates as specified in the OEA by taking this exception on an isync.
e500: not implemented

Instructiontranslation | 0x1000 — €600: The EA for an instruction fetch cannot be translated by the ITLB.
miss e500: Not implemented. See instruction TLB error (IVOR14)
Data load translation | 0x1100 — e600: The EA for a data load operation cannot be translated by the DTLB.

miss €500: Not implemented. See data TLB error (IVOR13)

Data store translation | 0x1200 — e600: The effective address for a data store operation cannot be translated by the
miss DTLB, or when a DTLB hit occurs and the change bit in the PTE must be set due
to a data store operation.
e500: Not implemented. See data TLB error (IVOR13)
Instruction address 0x1300 — The address (bits 0-29) in the IABR matches the next instruction to complete in
breakpoint the completion unit, and IABR[30] is set.
Systemmanagement | 0x1400 — MSRI[EE] = 1 and the smiinput is asserted.
interrupt e500: Not implemented.

AltiVec assist 0x1600 — AltiVec assist. May occur if an AltiVec floating-point instruction detects
denormalized data as an input or output in Java mode. After this exception
occurs, execution resumes at offset 0x01600 from the physical base address
indicated by MSR][IP].

Performance monitor | O0xOF00 | IVORS35 |An interrupt-enabled event defined by the performance monitor occurred. The
€600 implements performance monitor registers using SPRs; the €300 uses
PMRs.
Fixed interval timer — IVOR11 | A fixed-interval timer exception exists (TSR[FIS] = 1), and the interrupt is enabled
(TCRIFIE] = 1 and MSR[EE] = 1).
Watchdog timer — IVOR12 | Critical interrupt. Occurs when a watchdog timer exception exists (TSR[WIS] = 1),
and the interrupt is enabled (TCR[WIE] = 1 and MSR[CE] = 1).
Data TLB error — IVOR13 | A virtual address associated with an instruction fetch does not match any valid
TLB entry.
Instruction TLB error — IVOR14 | A virtual address associated with a fetch does not match any valid TLB entry.
Debug — IVOR15 | Critical interrupt. A debug event causes a corresponding DBSR bit to be set and

debug interrupts are enabled (DBCRO[IDM] = 1 and MSR[DE] = 1).
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Table 11. Interrupts and Conditions—Overview (continued)

Vector Offset
(‘— Indicates not

Interrupt Type implemented) Cause/Description
€600 e500
Vector (SPE/AltiVec) | 0xOF20 | IVOR32 | MSR[SPE]is cleared and an SPE or embedded floating-point instruction is

unavailable executed.
MSRI[SPV] is cleared and an SPE/embedded floating-point category instruction
is executed. The Power ISA defines this interrupt for use with future
implementations that support AltiVec. On the €600, this occurs due to an attempt
to execute any non-streaming AltiVec instruction when MSR[VEC] = 0. This
exception is not taken for data streaming instructions (dstx, dss, or dssall).

Embedded — IVOR33 | Embedded floating-point invalid operation, underflow or overflow exception

floating-point data
Embedded — IVOR34 | Embedded floating-point inexact or rounding error

floating-point round

7 Memory Management Unit (MMU) Model

The MMU, together with the interrupt-processing mechanism, makes it possible for an operating system
to implement a paged virtual-memory environment and to define and enforce characteristics of that
memory space, such as cache coherency and memory protection. Virtual memory management permits
execution of programs larger than the size of physical memory; the term ‘ demand-paged’ implies that
individual pages are loaded into physical memory from backing storage only asthey are accessed by an

executing program.
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The flow diagram in Figure 14 gives a high-level comparison of the address translation mechanisms.

0 31
| Effective Address |
I d I
€500 €600
: . Address translation disabled
Translations Translations ~ (MSR[IR] = 0, or MSR[DR] = 0)
A
Address space | PID | byte address
\
Segment descriptor Match with
located BAT registers
Page address Block address Real addressing mode
translation translation Effective address = physical address
0 A l 51

Virtual Address |

|

Look up in
pagetable | 1o e500v2 supports 36-bit The e600 supports 36-bit
physical addresses using physical addresses using
the same general translation the same general translation
mechanism. mechanism.
0 \i 31 0 y 31 0 31
| Physical Address | | Physical Address | | Physical Address |

Figure 14. Address Translation Types

Figure 12 outlines general differences between the PowerPC architecture 1.10 and the Power Architecture
model embedded category MMU models.

Generally, the address translation mechanism is defined in terms of mapping an effective-to-physical
address for memory accesses. The effective address is converted to an interim virtual address and a page
tableis used to translate the virtual addressto a physical address.

In addition to instruction accesses and data accesses generated by load and store instructions, addresses
specified by cache instructions al so require address translation.

Translation lookaside buffers (TLBs) are commonly implemented to keep recently used page address
transl ations on-chip.

The MMU models shares many general characteristics, particularly those related to memory protection
and cache coherency and the general concepts of pages and TLBs. Differences are described in
Section 7.1, “MMU Features in the PowerPC Architecture Definition.”
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71 MMU Features in the PowerPC Architecture Definition

The e600 supports three types of address trandation: page-address trand ation, block address trandation
and real mode (where the hardware translation mechanism is turned off and the effective addressis used
asthe physical address). Power |SA devices, including the €500, do not support real mode.

Page address translation is defined in terms of segment descriptors implemented as a set of 16 segment
registers (SRs). The segment information translates the effective addressto an interim virtual address, and
the page-table information trand ates the virtual addressto aphysical address. Effective address spaces are
divided into 256-Mbyte segments. Segments that correspond to memory-mapped areas are divided into
4-Kbyte pages. As shown in Section 5.4, “MMU Control and Status Register Comparison,” Power 1SA
devices do not support SRs.

The definition of the segment and page-table data structures provides significant flexibility for arange of
computing environments. Therefore, the methods for storing segment or page-table information on-chip
vary from implementation to implementation. For example, the @600 providestheimplement-specific load
TLB entry instructions (tIbld and tIbli) to directly access TLBs. The Power |SA definestlibwe and tlbre,
which the €500 uses to directly configure TLBs with translation and memory protection information by
loading and storing values defined in the memory assist (MAYS) registers. The €500 implements additional
instructions for searching and invalidating entries and for synchronizing TLB accesses.

The PowerPC architecture describes a hardware model for providing page address configuration,
protection, and trand ation, but the flexibility of the architecture also allows implementation-specific,
software-managed MMUSs, such as that implemented on e300 devices. The Power |SA defines an
architecture for software MMU management, which is likewise flexible and may vary somewhat among
implementations, described in Section 7.2, “MMU Features in the Embedded Category Definition.”

The MMU then uses segment descriptorsto generate the physical address, the protection information, and
other access-control information each time an address within the page is accessed. Address descriptorsfor
pages reside in tables (as PTEs) in physical memory; for faster accesses, the MM U often caches on-chip
copies of recently used PTEs in an on-chip TLB.

The PowerPC architecture block address translation (BAT) mechanism allows the operating system to
configure attributes for blocks of memory through a set of paired SPRs, described in Section 5.4, “MMU
Control and Status Register Comparison.” The BATs aso contain protection and memory coherency
information. As Figure 6 shows, separate BATs are defined for instruction memory (IBATS) and the data
memory (DBATS). Also as Figure 6 shows, BATs and block address trand ation are not defined by the
Power 1SA and not implemented on the e500.

7.2 MMU Features in the Embedded Category Definition

Note that the Power ISA does not support the Power Architecture translation enable bits, MSR[IR,DR];
thus there is no default real mode in which the effective address (EA) is the same as the physical address.
Translation is always enabled.

The embedded MMU model supports demand-paged virtual memory as well as avariety of management
methods that depend on precise control of effective-to-real address translation and configurable memory
protection. Address translation misses and protection faults cause precise exceptions. Sufficient
information is available for system software to correct the fault and restart the faulting instruction.
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Each program on a 32-hit implementation can access 232 bytes of effective address space, subject to
limitations imposed by the operating system. In atypical system, each program’s EA space is a subset of
alarger virtual address (VA) space managed by the operating system. Note that the €500v1 supports 32-bit
effective addresses; the e500v2 supports 36-bit effective addresses.

Each effective (logical) addressistranslated to areal (physical) address before being used to access
physical memory or an I/O device. The operating system manages the physically addressed resources of
the system by setting up the tables used by the address translation mechanism.

The effective address space is divided into pages. The page represents the granularity of effective address
tranglation, permission control, and memory/cache attributes. Multiple page sizes may be simultaneously
supported. They can be as small as 1 Kbyte. The maximum size depends on the implementation. For an
effective-to-real addresstrandlation to exist for apage, avalid entry containing the effective address must
bein atranslation lookaside buffer (TLB). Addresses for which no TLB entry exists cause TLB miss
exceptions (instruction or data TLB error interrupts).

The MMU model defines aset of MMU assist (MAS) registers that can be programmed via the mtspr
instructionsto update the TLBsdirectly with translation and configuration information. The configuration
datainthe MASregistersiswrittento the TLBson theexecution of aTL B Write Entry (tlbwe) instruction.
Likewise, TLB contents can be saved back to the MAS registers by executing a TLB Read Entry (tlbre)
instruction. The TLB Search Indexed instruction (tlbsx) searches valid TLB arraysfor an entry
corresponding to the virtual address and reads appropriate values into the MAS registers.

The operating system can restrict access to virtual pages on a per-page basis by selectively granting
permissions for user state read, write, and execute; and supervisor state read, write, and execute. These
permissions can be set up for a particular system (for example, program code might be execute-only, data
structures may be mapped as read/write/no-execute) and can also be changed by the operating system
based on application requests and operating system policies.

Table 12. PowerPC Architecture and Power ISA Embedded MMU Models

€600 e500: Power ISA Embedded Environment

Support for block address translation, page address | Enhanced page address translation, no block address translation or real
translation, and real mode. mode

Fixed 4-Kbyte pages Supports both fixed- and variable-sized page address translation
mechanisms
Segmented memory model Segments not defined

Hardware page address translation definition with | Hardware table hashing is not defined. Additional features are defined
little architected support for software management. |that support management of page translation and protection in TLBs in
The e600 supports software table searches. software. Two instructions, TLB Read Entry (tlbre) and TLB Write Entry
(tibwe), are defined that provide direct software access to page
translation and configuration.

Byte ordering. Modal, big-endian and little-endian | Support for big- and true little-endian byte ordering provided on a
support provided through MSR[LE] and MSR[ILE]. |per-page basis, programmed through the TLBs

DSl and ISl interrupts taken when an address In addition to the DSI and ISI interrupts, data and instruction TLB error
cannot be translated or a protection violation occurs | interrupts are taken if there is a TLB miss.
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The €500 processor executesthe TLB Read Entry and TLB Write Entry instructions (tlbre and tibwe) by
reading or writing the contents of a set of MMU assist (MAS) SPRsinto the TLBs. The MAS registers
provide the translation, protection, byte-ordering, and cache characteristics for the relevant pages.

8 Revision History

Table 13 provides arevision history for this application note.
Table 13. Document Revision History

Rev. )
Number Date Substantive Change(s)
0 10/31/2007 | Initial release.

Migrating from e600- to e500-Based Integrated Devices, Rev. 0

Freescale Semiconductor 51



How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217

+1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN3531
Rev. 0
10/2007

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org. The
PowerPC name is a trademark of IBM Corp. and is used under license. IEEE 754, is a
registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
(IEEE). This product is not endorsed or approved by the IEEE. All other product or
service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2007. Printed in the United States of
America. All rights reserved.

BUILTON |

freescale"

semiconductor




	Migrating from e600- to e500-Based Integrated Devices
	1 The e600, the e500, and Changes to the Architecture Definition
	Figure 1. Power Architecture Relationships

	2 Differences between e600 and e500 Cores: Overview
	2.1 The Floating-Point Model and Signal Processing Engine (SPE)
	Figure 2. Extended GPRs

	2.2 e500-Only Features

	3 Power Architecture Details
	3.1 An Overview of Categories Implemented by the e500
	3.1.1 The Embedded Category
	3.1.2 Signal Processing Engine (SPE)
	Table 1. SPE Vector Multiply Instruction Mnemonic Structure
	3.1.2.1 SPE Embedded Vector and Scalar Floating-Point Categories



	4 Instruction Model
	4.1 Simplified Mnemonics
	4.2 Instruction Set Overview
	4.2.1 Integer Instructions
	Table 2. Integer Computational Instructions
	Table 3. Integer Load/Store Instructions

	4.2.2 Floating-Point Instructions (e600)
	Table 4. Floating-Point Computational Instructions
	Table 5. Floating-Point Load and Store Instructions

	4.2.3 Branch and Flow Control Instructions
	Table 6. Branch and Flow Control Instructions


	4.3 Processor Control Instructions
	Table 7. Processor Control Instructions
	4.3.1 Memory Synchronization Instructions
	Table 8. Memory Synchronization Instructions

	4.3.2 Memory Control Instructions
	Table 9. Memory Control Instructions

	4.3.3 Instruction Set Differences
	Table 10. List of Instructions



	5 Register Model
	5.1 Register File Comparison
	Figure 3. Register File Comparison

	5.2 Instruction-Accessible Registers
	Figure 4. Instruction-Accessible Registers Comparison

	5.3 Timer Register Comparison
	Figure 5. Time/Decrementer Registers Comparison

	5.4 MMU Control and Status Register Comparison
	Figure 6. MMU Register Comparison

	5.5 Cache Register Comparison
	Figure 7. Cache Registers Comparison

	5.6 Interrupt Register Comparison
	Figure 8. Interrupt Register Comparison

	5.7 Configuration/Processor Control Register Comparison
	Figure 9. Configuration Registers Comparison

	5.8 Performance Monitor Register Comparison
	Figure 10. Performance Monitor Registers Comparison

	5.9 Debug Register Comparison
	Figure 11. Debug Registers Comparison

	5.10 Software-Use SPR Comparison
	Figure 12. General SPRs (SPRGs)

	5.11 Miscellaneous Implementation-Specific Register Comparison
	Figure 13. Implementation-Specific Registers Comparison


	6 Interrupt Model
	Table 11. Interrupts and Conditions-Overview

	7 Memory Management Unit (MMU) Model
	Figure 14. Address Translation Types
	7.1 MMU Features in the PowerPC Architecture Definition
	7.2 MMU Features in the Embedded Category Definition
	Table 12. PowerPC Architecture and Power ISA Embedded MMU Models


	8 Revision History
	Table 13. Document Revision History



