
Freescale Semiconductor
Application Note

Document Number: AN3824
Rev. 0, 2/2009

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
System Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 EEPROM Emulation Memory Layout  . . . . . . . . . . . 2
2.1.1 EEPROM Sectors . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 EEPROM Sector Scheduling . . . . . . . . . . . . 3
2.1.3 EEPROM Data Organization  . . . . . . . . . . . . 3
2.1.4 Data Update and Status Accounting. . . . . . . 4
2.1.5 Sector Status Accounting . . . . . . . . . . . . . . . 4

2.2 Cache Table Configuration . . . . . . . . . . . . . . . . . . . 5
2.3 Callback Notification . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Return Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Macros Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Functions and Calling Conventions . . . . . . . . . . . . . . . . . 6

3.1 High Level APIs (User Level APIs) . . . . . . . . . . . . . 6
3.2 Middle Level APIs . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Low Level APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
API Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 FSL_InitEeprom. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 FSL_ReadEeprom. . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 FSL_WriteEeprom. . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 FSL_ReportEepromStatus  . . . . . . . . . . . . . . . . . . . 8
4.5 FSL_DeinitEeprom  . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.6 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The EEPROM Emulation Driver for 
MC9S08LG32
by: Saurabh Jhamb

Reference Design and Applications Engineering
Microcontroller Solutions Group
1 Introduction
The MC9S08LG32 is a member of the Freescale HCS08 
family MCUs. It uses the S08 core and integrates many 
peripherals, such as LCD, SPI, IIC, SCI, and ADC. This 
document is the note of the EEPROM emulation driver 
for the MC9S08LG32 microcontroller family.

The electrically erasable programmable read only 
memory (EEPROM) can be byte, word programmed, or 
erased and is often used in automotive electronic control 
units (ECUs). This flexibility for program and erase 
operations make it suitable for data storage of application 
variables that must be maintained when power is 
removed, and need to be updated individually during 
run-time. For devices without EEPROM memory, the 
page-erasable flash memory can be used to emulate 
EEPROM through EEPROM emulation software.

1
2

3

4

5

© Freescale Semiconductor, Inc., 2009. All rights reserved.



System Architecture
The EEPROM emulation driver for the MC9S08LG32 implements the fixed-length data record emulation 
on the available MCU flash. The emulated EEPROM functions include:

• Organizing data records
• Initializing and de-initializing EEPROM
• Reporting EEPROM status reading
• Writing
• Deleting data records

2 System Architecture
The EEPROM emulation driver has three level APIs; high level, middle level, and low level.

• High level (user level) APIs provide the user's interface and program flow controlling.
• Middle level APIs provide the relative independent task unit.
• Low level APIs use the standard software driver to provide the fundamental Flash operations.

2.1 EEPROM Emulation Memory Layout

2.1.1 EEPROM Sectors

The EEPROM emulation driver adopts the HCS08 family flash to emulate as EEPROM. A minimum of 
two sectors; active, and alternative sectors are needed to emulate EEPROM. There can be more than one 
active and alternative sectors used for emulation. The number of sectors used for active and alternative 
sector set can be different. The number of sectors used as active sector is decided by the number of bytes 

User Data User Application

High Level APIs

Middle Level APIs

Low Level APIs

EED Configuration

Data

Software
Layout

EEPROM
Memory
Layout

{EEPROM
Emulation
Driver
The EEPROM Emulation Driver for MC9S08LG32, Rev. 0

Freescale Semiconductor2



System Architecture
wanting to store in the EEPROM. The number of alternative sectors can be user configurable. At least one 
alternative sector is necessary for the emulation scheme to work. Many alternative sectors can be allocated, 
depending on the availability of the memory and the requirement of the application.

2.1.2 EEPROM Sector Scheduling

All sectors in the Active sector set must be marked active. These sectors must be scheduled in a 
round-robin scheme. If one sector gets filled up, the consecutive active sector must be used to store the 
EEPROM data. If there are no active sectors available, the data from the oldest active sector must be 
compressed to the oldest alternative sector that should now be used as an active sector. The oldest active 
sector must be erased and declared as an alternative.

 

2.1.3 EEPROM Data Organization

Each emulation sector contains:
• Sector Status Field — Stores the sector status. The actual status depends on a combination of the 

status byte, erased cycles, and the first data record ID byte.
• Erasing Cycles — Store the sector's erasing cycles, because the EEPROM emulation is set up. It 

increments after each erase.

Table 1. EEPROM Sector Macros

Macro Name Description

EED_SECTOR_SIZE Size of sector

EED_SECTOR_CAPACITY Number of data records that can be stored in a sector

EED_SECTOR_NUMBER Number of active sectors that are used for emulation

EED_READY_SECTORS Number of alternative sectors that are used for emulation

EED_SECTORS_ALLOTED Total number of flash sectors used for emulation
EED_SECTORS_ALLOTED = EED_READY_SECTORS + EED_SECTOR_NUMBER)

Active Sector 1

Active Sector 2

..............

.............

Active Sector n

Alternative Sector 1

.............

Alternative Sector n

Oldest
Active

Oldest

Alternative

Schedule
Direction
The EEPROM Emulation Driver for MC9S08LG32, Rev. 0

Freescale Semiconductor 3



System Architecture
• Data Records Field — Each data record has three fields: 
— Data Record Status Field — The data record status
— Data Record ID — The data record identifier
— Data — User's raw data 

• Blank Field — Used for storing new data records.

NOTE
DATA_RECORD_SIZE cannot exceed 127 (0x7F) because the AIX 
instruction does not support more than 127(0x7F).

2.1.4 Data Update and Status Accounting

The data record cannot be updated directly in the same location. Instead, a new data record with the new 
value is written to the EEPROM. The read routine reads the latest ID occurrence in the active sectors. 

When updating data, the status field, the ID, and bytes all get updated. The order of an update is as follows: 
1. Program data ID field
2. Program data field 
3. Program data status field

2.1.5 Sector Status Accounting

The status byte of the sector is a single byte field. It can hold only two values, 0xFF or any value other than 
0xFF. The status of the sector is determined by a combination of the sector status field, the sector erase 
cycle field, and the sector's first data ID field as shown in Table 4.

Table 2. EEPROM Data Macros

Macro Name Description

DATA_STATUS_SIZE Data status size has 1 byte fixed length.

DATA_ID_SIZE Data ID size is user configurable.

DATA_SIZE Data size is user configurable.

EEPROM_SIZE EEPROM size is user configurable.

DATA_RECORD_NUMBER Number of data records is calculated if the total data size is known.

DATA_RECORD_SIZE Data record size can be calculated as sum of status, ID, and size.

Table 3. Data Update and Status Accounting

Data Status Field Data ID Field Status of Data Record

$FF $FF Record in the erased state.

$FF XX Data record is under update.
Further writes are possible only in the next record 
location.

XX XX Data record contains valid data.
The EEPROM Emulation Driver for MC9S08LG32, Rev. 0

Freescale Semiconductor4



System Architecture
2.2 Cache Table Configuration
A cache table that holds the address of the latest occurrence of the most frequently used data IDs is used 
to speed up data reading and sector compression.

The cache table defines the start address of the cache. You can configure the table size using macro, 
EED_CACHETABLE_ENTRY. It is recommended to not configure a large size for the cache table.

This table must hold the address of IDs starting from 0 to (EED_CACHETABLE_ENTRY – 1). It is the 
user’s responsibility to use these IDs to store the most commonly or frequently used data records.

2.3 Callback Notification
The EEPROM emulation driver enables supplying a pointer to the CallBack() function therefore 
time-critical events can be serviced during EEPROM operations. Servicing watchdog timers is one of the 
time critical events. If it is not necessary to provide the CallBack() service, it can be disabled by a NULL 
function macro. 
NULL_CALLBACK equ $FFFF 

The job processing callback notifications must have no parameters and no return value. If a job processing 
callback notification is configured as NULL_CALLBACK, the corresponding callback routine must not 
be called.

2.4 Return Codes
Table 5 shows the return codes that must be used.

Table 4. Sector Status Accounting

Sector Status Field Sector Erase Cycles First Data ID Field Status of Sector

$FF $FFFF $FF This sector is blank.

$FF XXXX $FF This sector is an alternative sector.

$FF XXXX XX This sector is under update. Specifically, it 
is in the process of sector compression.

XX XXXX XX This is the active sector. It takes the new 
data to be stored in EEPROM.

Table 5. Return Codes

Name Value Description

EE_OK 0x00 The requested operation was successful.

EE_ERROR_ACCERR 0x10 Access error flag is set while operating the Flash.

EE_ERROR_PVIOL 0x20 Protection violation flag is set while operating the Flash.

EE_ERROR_NOT_BLANK 0x30 The flash memories are not blank.

EE_ERROR_SECURITY_ENABLED 0x40 The part is secured.
The EEPROM Emulation Driver for MC9S08LG32, Rev. 0

Freescale Semiconductor 5



Functions and Calling Conventions
2.5 Macros Used

3 Functions and Calling Conventions
The EEPROM emulation driver (EED) provides three hierarchies of application programming interfaces 
(APIs):

• High level
• Middle level
• Low level APIs

3.1 High Level APIs (User Level APIs)
These APIs provide direct operations on the emulated EEPROM such as, initialize EEPROM, read record, 
write record, delete data record, report EEPROM status, and de-initialize EEPROM.

• FSL_InitEeprom — Initializes the flash memory used for EEPROM emulation.
• FSL_ReadEeprom — Read the specific data record from emulated EEPROM.

EE_ERROR_VERIFY 0x50 Corresponding source data and content of destination location 
mismatch.

EE_ERROR_NOMEM 0x60 Not enough EEPROM memory.

EE_ERROR_NOFND 0x70 Record not found in sector.

EE_ERROR_CLOCK_SETTING 0x80 The FLASH clock has already been initialized and the new clock 
divider does not match the value in FCDIV register.

EE_ERROR_SSTAT 0x90 Sector status error.

EE_ERROR_IDRNG 0xA0 Record identifier exceeds the valid range.

Table 6. Macros

Name Value Description

EE_SECTOR_ACTIVE 0x00 Sector status is active.

EE_SECTOR_ALTERNATIVE 0x55 Sector status is alternative.

EE_SECTOR_BLANK 0xFF Sector status is blank.

EE_SECTOR_UPDATE 0xAA Sector status is partially updated.

EFLASH_START_ADDRESS 0x40 Starting address of the flash allocated for emulation of 
EEPROM.

EFLASH_END_ADDRESS 0x50 End address of flash allocated for emulation of 
EEPROM.

EED_CACHETABLE_ENTRY 0x08 Number of entries the cache table holds. This also 
represents the maximum record ID the cache table 
holds.

Table 5. Return Codes (continued)

Name Value Description
The EEPROM Emulation Driver for MC9S08LG32, Rev. 0

Freescale Semiconductor6



Functions and Calling Conventions
• FSL_WriteEeprom — Write a data record to emulated EEPROM.
• FSL_ReportEepromStatus — Report the status of the emulated EEPROM.
• FSL_DeinitEeprom — De-initialize the flash memory used for EEPROM emulation.

3.2 Middle Level APIs
These APIs provide individual functionality to support the high level APIs for operating the emulated 
EEPROM 

• FSL_Erase — Erase the Flash pages.
• FSL_Program — Program the data into the flash memory.
• FSL_CopyRecord — Copy one data record to the flash memory.
• FSL_InitSector — Initialize one sector including erase, blank check, and update the erased cycles 

field of this sector.
• FSL_SwapSector — Copy the latest data records from the oldest active sector to the oldest 

alternative sector.
• FSL_SearchRecord — Search the required data record ID in a sector.
• DoHVCopyDown — Copy code necessary to initiate high voltage operation into RAM from flash.
• FSL_SectorStatus — Return the status of the sector.
• FSL_GetAddr — Stores the start address of the sector and calculates the end address of the sector.
• FSL_AddSectorSize — Adds the sector size to the contents of the HX register.
• FSL_SubSectorSize — Subtracts the sector size from the contents of the HX register.
• FSL_SearchLoop — Loops across all the active sectors to search for the record ID.

3.3 Low Level APIs
These APIs are basic flash operations:

• FlashErase — Erase continuous flash logical pages.
• FlashProgram — Program data into data flash.
• DataVerify — Depending on an input parameter, verify the content of the destination with the 

source or verify if the destination is blank.
• HighVoltage — This function launches the flash command written into the flash command register 

by FlashErase or FlashProgram function and waits until the command finishes. This is an internal 
function that should only be called by low level functions such as, FlashErase and FlashProgram.

• FlashInit — This function is used to set the clock divider during the initialization of flash for the 
EEPROM emulation.
The EEPROM Emulation Driver for MC9S08LG32, Rev. 0

Freescale Semiconductor 7



API Description
4 API Description

4.1 FSL_InitEeprom
unsigned char FSL_InitEeprom (void)

Description — Performs the flash module clock initialization. This function determines active, alternative 
and brown out affected sectors, and erases or updates sectors. Initializing variables that hold active sector 
related information, for example the start and end addresses of the active sector. The blank space available 
is also in this function. The cache table is initialized in this function. If no sectors are initialized, this 
function should initialize all the sectors in a round-robin queue.

4.2 FSL_ReadEeprom
unsigned char FSL_ReadEeprom (void)

Description — This function is to read the specific data record. The starting address of the record data is 
returned.

4.3 FSL_WriteEeprom
unsigned char FSL_WriteEeprom (void)

Description — This function encapsulates data in a record and writes it to the emulated EEPROM. If there 
is not enough free space in active sector, this routine must check if the next sector available is an active 
sector. Otherwise, this routine initiates sector swapping to clean up the EEPROM.

4.4 FSL_ReportEepromStatus
unsigned char FSL_ReportEepromStatus (void)

Description — This function reports statistics, for example active emulation sector erasable cycles and 
checks the emulation sector status.

4.5 FSL_DeinitEeprom
unsigned char FSL_DeinitEeprom (void)

Description — This function releases all flash used for EEPROM emulation. After de-initialized, the flash 
pages for emulation are fully erased.

4.6 Assumptions
The descriptions in this document assumes the person reading it has full knowledge of the configuration 
registers of all blocks in MC9S08LG32, especially Flash Security.
The EEPROM Emulation Driver for MC9S08LG32, Rev. 0

Freescale Semiconductor8



References
5 References
See S08LG Product Summary Page for more information and the documents released for the 
MC9S08LG32.
The EEPROM Emulation Driver for MC9S08LG32, Rev. 0

Freescale Semiconductor 9

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=S08LG&fsrch=1


Document Number: AN3824
Rev. 0
2/2009

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022 
China 
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software 
implementers to use Freescale Semiconductor products. There are no express or 
implied copyright licenses granted hereunder to design or fabricate any integrated 
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to 
any products herein. Freescale Semiconductor makes no warranty, representation or 
guarantee regarding the suitability of its products for any particular purpose, nor does 
Freescale Semiconductor assume any liability arising out of the application or use of any 
product or circuit, and specifically disclaims any and all liability, including without 
limitation consequential or incidental damages. “Typical” parameters that may be 
provided in Freescale Semiconductor data sheets and/or specifications can and do vary 
in different applications and actual performance may vary over time. All operating 
parameters, including “Typicals”, must be validated for each customer application by 
customer’s technical experts. Freescale Semiconductor does not convey any license 
under its patent rights nor the rights of others. Freescale Semiconductor products are 
not designed, intended, or authorized for use as components in systems intended for 
surgical implant into the body, or other applications intended to support or sustain life, 
or for any other application in which the failure of the Freescale Semiconductor product 
could create a situation where personal injury or death may occur. Should Buyer 
purchase or use Freescale Semiconductor products for any such unintended or 
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and 
its officers, employees, subsidiaries, affiliates, and distributors harmless against all 
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, 
directly or indirectly, any claim of personal injury or death associated with such 
unintended or unauthorized use, even if such claim alleges that Freescale 
Semiconductor was negligent regarding the design or manufacture of the part. 

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality 
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free 
counterparts. For further information, see http://www.freescale.com or contact your 
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to 
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. 
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 System Architecture
	2.1 EEPROM Emulation Memory Layout
	2.1.1 EEPROM Sectors
	2.1.2 EEPROM Sector Scheduling
	2.1.3 EEPROM Data Organization
	2.1.4 Data Update and Status Accounting
	2.1.5 Sector Status Accounting

	2.2 Cache Table Configuration
	2.3 Callback Notification
	2.4 Return Codes
	2.5 Macros Used

	3 Functions and Calling Conventions
	3.1 High Level APIs (User Level APIs)
	3.2 Middle Level APIs
	3.3 Low Level APIs

	4 API Description
	4.1 FSL_InitEeprom
	4.2 FSL_ReadEeprom
	4.3 FSL_WriteEeprom
	4.4 FSL_ReportEepromStatus
	4.5 FSL_DeinitEeprom
	4.6 Assumptions

	5 References

