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Driving a Stepper Motor using 
the MPC56xxS SMC Module
by: Daniel McKenna

Microcontroller Solutions Group. Auto R & D
1 Introduction
The MPC56xxS microcontroller device is targeted at the 
cluster segment of the automotive market. The MCU as 
such has the capability to drive visual displays, generate 
sound and to drive the dials used for speedometers and 
tachometers. This application note provides details of 
how the latter is achieved by using the Stepper Motor 
Control (SMC) module.

The following section provides an overview of what a 
stepper motor is and the fundamental principles of how it 
operates. This is followed by an overview of the SMC 
module and a discussion on the waveforms required to 
drive a stepper motor.

The example application code in AN4037SW provides 
details of how the SMC can be used to generate these 
waveforms.
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Stepper Motor Module
2 Stepper Motor Module

2.1 Overview
As the name suggests, a stepper motor is a motor whose rotary motion can be divided into discrete steps. 
By intelligently controlling the motor using electrical pulses, it is possible to position it to a degree of 
accuracy in an open-loop configuration, which would only be possible with a standard motor if costly 
sensors were used in order to implement a closed loop system. 

Following three basic types of stepper motor are available:
• Permanent Magnet
• Variable Reluctance
• Hybrid 

This application note concentrates on the Permanent Magnet configuration as they are the most commonly 
used due to offering a good trade off between accuracy, torque and cost.

Figure 1 shows internal components of a Permanent Magnet (PM) stepper motor.

Figure 1. Permanent Magnet Bipolar Stepper Motor

It can be seen that unlike a standard motor, the coils in a stepper motor remain stationary and it is the 
magnet which actually rotates. There are actually two separate Permanent Magnet configurations, the 
above diagram shows the Bipolar setup where each coil winding has two wires, and the current flows 
through the whole coil. The other configuration, Unipolar, has six wires with each coil having an additional 
ground wire at the centre, in effect splitting each coil in two. Both of these configurations are driven in a 
similar manner using the same signals, however in the Unipolar case the current never has to be reversed. 
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Stepper Motor Module
The downside to this is that current only runs through half the length of the coil at once, making it less 
powerful (i.e. providing less torque) than the bipolar equivalent. A diagram of both configurations can be 
seen below.

Figure 2. Comparison of Unipolar and Bipolar stepper motors

There is no physical connection between the rotor magnet and the metal core, this greatly increases the 
durability of the motor unit. Motion of the rotor is generated by varying the current flowing through each 
coil and in doing so, changing the polarity of the magnetic field it creates. As shown in Figure 1, the top 
of the coil excited by Signal A is positive whereas the bottom is negative, this creates a magnetic field 
which affects the magnetic rotor, causing the south pole of the magnet to attract to the metal core closest 
to the top of the coil and the north pole to the metal core closest to the bottom. 

By varying the current direction in each of the coils it is possible to change the direction of the magnetic 
field causing the rotor to realign and thus creating rotation. The SMC module controls the current in each 
of the coils. 

Further information on the theory behind stepper motors can be found in AN2974: Quick Start for 
Beginners to Drive a Stepper Motor. 
[http://www.freescale.com/files/microcontrollers/doc/app_note/AN2974.pdf]

2.2 Stepper Motor Control
The Stepper Motor Control (SMC) module is designed to facilitate the simple creation of the waveforms 
required to drive stepper motors using microstepping. The module contains 12 Pulse Wave Modulation 
(PWM) channels, clocked by an 11-bit counter. Each channel is associated with two pins giving a total of 
24pins. The module also has the ability to detect a short circuit on any of these pins and can be configured 
to trigger an interrupt when one occurs. An optional interrupt can also be triggered upon a timer counter 
overflow.
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Stepper Motor Module
Table 1 shows which PWM each of the SMC pins is connected to. The pin names are read as follows: 
M0C0M – Motor 0, Coil 0, Minus. 

As shown earlier in Figure 2, bipolar motor coils have two different connectors, + and -. As each motor 
has two coils, both of which must be driven by different waveforms, each motor has 4 pins connected to 2 
separate PWM channels. Thus the SMC can be used to drive a total of 6 individual stepper motors.

Table 1. PWM Channel and Pin Assignment

Internal to the module, the pins of each PWM Channel Pair are connected to an H-bridge, allowing the 
polarity of the PWM output pins to be changed quickly, thus allowing the direction of the current to be 
altered at high frequency.

2.3 Mode of Operations
This section provides the various operating modes of the SMC Module, shows how to generate a PWM 
signal and describes the additional options which are available to alter the waveforms without the need to 
alter the duty cycle.
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Stepper Motor Module
2.3.1 Operating Modes

Each individual PWM channel in the SCM can be configured to run in one of the following 3 modes which 
are selected in the MCCC[0-11] registers.

• Half H-bridge Mode – PWM signal is output on either the Minus or Plus pin. The other pin is 
released and can be used by another module or as GPIO. This mode facilitates the creation of a 
simple PWM signal which can be used for any purpose. There are two variations of this mode, one 
outputting the PWM on the M pin, the other on the P pin.

• Full H-bridge Mode – Both pins of the channel are used, one outputs the PWM signal, the other is 
set to drive either a logic high or low based on how it is configured.

• Dual Full H-bridge Mode – This mode is identical to Full H-bridge mode except that channels are 
paired together (0&1, 2&3 etc.) so that any changes to the duty cycle of the first channel will not 
have effect on the output until the duty cycle of the second channel has also been altered. As a 
stepper motor will require 2 PWM channels to operate, this allows a smooth transition when 
altering the waveforms. 

NOTE
Any writes to the second channel in Dual Full H-bridge Mode will happen 
immediately regardless of a prior write to the first channel has been carried 
out or not.

2.4 Creating Basic PWM Signals
Pulse Width Modulation (PWM) is a method used by devices with digital outputs such as microcontrollers 
to create approximations of analog signals such as sine waves. By using this method the voltage and 
current which is supplied by output pins can be easily varied. This section shows how to use the SMC 
module to create PWM signals.

On the MPC56xxS, the SMC Module is part of Peripheral Set 1 and is therefore clocked by the System 
Clock divided by a value between 1 and 16 set in the Clock Generation Module (CGM). This value can 
then be further divided down by 1, 2, 4 or 8 within the MCR register of the SMC module. The output form 
this divider is then used as the clock for all PWM channels in the SMC.

Figure 3. Deriving the PWM clock
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Figure 4. Motor controller period register (MCPER)

The period of all PWM channels is set in the Motor Controller Period (MCPER) Register. This contains 
11-bits allowing periods of between 1 and 2047 clock cycles. Setting this register to 0 causes all PWM 
channels to be disabled.

Figure 5. Motor controller duty cycle register (MCDC0..11)

Each PWM Channel has its own Duty Cycle Register (MCDC[0-11]) which is used to set the number of 
clock cycles for which the output will remain in its initial state. Thus, the PWM duty cycle for a channel 
can be calculated by dividing the value DUTY by the Period. Setting the DUTY bits to zero or a value 
equal to or greater than the PWM Period will result in a steady state output.

Figure 6. 2 cycles of a PWM with Period = 100 and Duty = 15

The sign bit is only used in Dual/Full H-bridge mode and is used to select the pin on which PWM signal 
is to be output. The behavior of this bit is dependant on the RECIRC bit as discussed in Section 2.6, 
“Outputting the PWM signals. This bit has no effect in Half H-bridge mode (the MCOM bits in the 
MCCC[0-11] register, described below is used for this purpose in half H-bridge mode).
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Stepper Motor Module
The value in the Duty Cycle Register is double buffered to prevent the output being changed half-way 
though a PWM period. Thus the new value will only be become active once either:

• The channel is disabled.
• In Full H-bridge mode: the count reaches the Period causing the timer to overflow, resetting it to 0.
• In Dual Full H-bridge mode: the Duty Cycle Register of both channels of a PWM Channel Pair 

have been written and the count has reached the Period causing the timer to overflow, resetting it 
to 0.

2.5 Advanced PWM functions
The SMC contains a number of hardware implemented features to allow greater flexibility in the 
generation of PWM signals.

2.5.1 Alignment

Each PWM channel can have its signal alignment set to left, right or centre aligned as selected by the 
MCAM bits in the MCCC[x] register. These bits are double buffered, therefore any changes will not be 
effective until the next timer overflow occurs.

The effects these bits have on the PWM signal are shown in Figure 7.

Figure 7. PWM Outputs with various alignment settings. Period = 100, Duty = 15

In all of the above waveforms, the period is set to 100 and the duty to 15, giving an active-high duty cycle 
of 85%. Note that, using centre alignment, the resultant signal has a period of 200 but still and active-high 
duty cycle of 85%. 

2.5.2 4.3.2 Delay

As all PWM channels are run from the same timer, so they will over flow on the same clock cycle, causing 
their output signal to change at the same time. This can result in a large peak current draw from the motors 
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0
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Stepper Motor Module
power supply or an excessive amount of transition-noise. To prevent this, each channel can be given a 
delay value which will stagger the PWM transitions by between 0 and 3 clock cycles. By making use of 
this the number of signals changing on a single clock can be quartered, greatly reducing the peak current 
draw and the transition noise.

The delay value is selected by the CD bits in the MCCC[0-11] registers.

2.5.3 4.3.3 Dither

Dither mode doubles the length of the minimum pulse that can be generated by the PWM, without 
affecting the PWM resolution. It is desirable to limit the distortion introduced upon the PWM changing 
state.

Figure 8. Effects for dither bit.
Top waveform: Dither = 0, Bottom: Dither =1. 

Value in PER and DUTY same in both cases (400 and 100 respectively)

Dither mode is enabled on all channels by setting the MCCTL0[DITH] bit. Once set, the value in the 
DUTY and PERIOD registers are effectively halved causing the modulation frequency to double, as shown 
in Figure 8. Hence, to create the same output in dither mode as in non-dither mode, the PWM clock must 
be halved. This can be done via the Module Prescaler, as described in Section 2.4, “Creating Basic PWM 
Signals.”

In dither mode the value in the PER will always be even – the PERIOD[0] bit is set to zero cannot be 
changed. If the DUTY value is odd then the first cycle will have a duty of (DUTY/2)-0.5 and the second 
of (DUTY/2)+0.5.

2.6 Outputting the PWM signals
The internal H-bridge is used to configure the signals sent to the P and N pins associated with each channel. 
In both Full H-bridge modes, one pin will be used to output the PWM while the other will remain static. 
Pin behavior is configured based of the PWM value and the SIGN and RECIRC bits.

The RECIRC bit can be found in the Motor Controller Control Register 1 (MCCTL1) and is used to select 
the logic output state of the static pins for all PWMs. When set to 0, the static pin is logic high, when 1 the 
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0
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static pin is logic low. This bit should only be altered when no channels are running in Dual/Full H-bridge 
mode. The bit has no effect in Half H-Bridge mode as the static channel is disabled in this case.

The SIGN bit, as discussed in Section 2.4, “Creating Basic PWM Signals is used to select the pin output 
for the PWM signal. This value is double buffered and can be changed while the channel is active.

Table 2 below shows how these bits affect the output pins.

The scope captures below show the output waveform on both P and M pins for each of the configurations 
in the table above. In each instance, the Period=100, Duty=25. The top wave is the M-Pin, the bottom the 
P-Pin.

Table 2. How RECIRC and SIGN bits affect pin outputs

RECIRC SIGN M Pin P Pin

0 0 PWM 1

0 1 1 PWM

1 0 0 \PWM

1 1 \PWM 0

RECIRC=0 SIGN=0 RECIRC=0 SIGN=1

RECIRC=1 SIGN=0  RECIRC=1 SIGN=1
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0
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Figure 9. Output waveforms with varying SIGN and RECIRC bits (M=Yellow, P=Blue)

3 Waveforms required to drive stepper motor
As previously described in Section 2, “Stepper Motor Module,” the magnetic rotor in the stepper motor is 
driven by controlling the current sent through two coils in order to create a magnetic field. The signals used 
to excite the coils need to be carefully controlled in order to create movement and are responsible for the 
direction, speed, and accuracy of the stepper motor.

This section will first discuss two common Stepping Modes which can be used to drive a stepper motor 
and show the waveforms required for each mode. The Full Step mode will be discussed first followed by 
Microstepping mode.

Although the SMC module can be used to create the Full Step waveforms, the PWMs better lend 
themselves to the more advanced Microstepping configuration and this is the mode we will use in the 
software example later in this document.

3.1 Full Step
In Full Step mode the coils go through 4 steps in order to create one full rotation of the rotor, each step 
providing 90o of motion. The position of the rotor at each step, along with the waveform applied to each 
coil for clockwise rotation is shown in Figure 10.
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0
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Figure 10. Waveform applied to each coil and corresponding state of rotor
(red denotes Vmax applied to core, black denotes GND)

In step 1, both the Positive pins are driven high, while the Minus pins are driven low, causing current to 
flow from CxP to CxM. This induces a magnetic field with the metal core at side of the coil driven high 
becoming a North pole, and the side driven low becoming a South pole. The rotor will align itself so that 
the opposite poles are aligned as can clearly be seen from the figure. The rotor will then remain in this 
position until the magnetic field is changed by altering the direction of the current flowing through the 
coils. In step 2, with the direction of current flowing through C0 being reversed causing its magnetic field 
to also reverse, in turn causing the rotor to move to a new steady state.

By repeatedly varying the current as shown in the steps, a continuous clockwise movement of the stepper 
motor will be achieved. 

Figure 10 also shows the voltage across each coil at each step. This is a binary representation of a cosine 
and sine wave. By altering these signals, it is possible to control aspects of the Stepper Motor movement 
such as:

• Direction: By reversing the signals, the steps in Figure 10 will occur in reverse order, causing the 
rotor to move in an anti-clockwise direction.

• Speed: By increasing the frequency of the sine/cosine waves the steps will be executed at a faster 
rate, causing the rotor to turn quicker. Decreasing the frequency will have the opposite effect.

The SMC module controls the voltage across the coils by varying the value of the positive and minus 
connections at each end of the coil. Thus the voltage graph in Figure 11 shows the differential between 
these connections. The actual values at the individual connections at each step are shown in the figure 
below.
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Waveforms required to drive stepper motor
Figure 11. Signals applied to each stepper motor pin

3.2 Microstepping
The full-step stepping mode breaks a single rotation down into 90o steps. This may be acceptable for some 
applications but others will require greater positional accuracy and smoothness of movement which could 
be achieved by increasing the number of steps in each full rotation. This is what microstepping allows us 
to achieve.

The number of steps chosen will increase the resolution of movement and the smoothness of motion of the 
motor (i.e. 16steps give a step size of 22.5o), more steps give more accuracy, however each stepper motor 
will have a mechanical limit on the minimum distance it can move accurately. This will be given in the 
Stepper Motors Data Sheet.

As discussed above, the Full-Step method uses binary representation of a sine and cosine wave to create 
the magnetic fields required to produce motion of the rotor. In order to microstep we must divide these 
binary waves into discrete steps and to be able to set the voltage across the coils to values between +/- 
maximum, thus varying the current flowing through the coils. The resultant waveforms, with 16 steps per 
revolution can be seen in Figure 12.

Table 3. Step number and position of rotor relative to starting point

Step No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Position 
(degrees)

0 22.5 45 67.5 90 112.5 135 157.5 180 202.5 225 247.5 270 292.5 315 337.5

C0P

C0M

C1P

C1M
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Using SMC Module to create waveforms
Figure 12. 16-step Microstepping representation of voltage across stepper motor coils

4 Using SMC Module to create waveforms
Now that we know about the waveforms that are required across the coils in microstepping mode, this 
section shows how to use the SMC to create these waves. This is done by creating the following example 
application.

The application will make use of the SMC to create the PWM signals as well as a Periodic Interrupt Timer 
(PIT) to trigger an interrupt which allows us to alter the PWM duty cycle and thus vary the current running 
through the coil. An alternative method would be to use the Timer overflow interrupt to trigger every time 
the PWM time overflows. This will prevent the need for a PIT channel but will likely require the SMC 
peripheral clock to be slow in order to limit the frequency of interrupt calls.

For this example, we will use 16 microsteps, to create the required waveforms using the 4 pins associated 
with a PWM channel to vary the potential difference across the coil. 
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0
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As with the Full-step method, the coil waveforms shown in Figure 12 will be created by varying the 
voltage applied to the coil’s associated P and M pins. Figure 13 shows the required P and M outputs for 
both coils.

Figure 13. Signal applied to each coils output pins

Table 4. PWM Duty value at each step of Figure 11

Coil0 Coil1

Microstep No. PWM Duty Sign PWM Duty Sign

0 400 0 0 0

1 300 0 100 0

2 200 0 200 0

3 100 0 300 0

4 0 1 400 0

5 100 1 300 0

6 200 1 200 0

7 300 1 100 0

8 400 1 0 1

9 300 1 100 1

10 200 1 200 1

11 100 1 300 1

12 0 0 400 1

13 100 0 300 1

14 200 0 200 1

15 300 0 100 1
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0
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The steps in the Table 4 are created using the PWM. For this example, the period of both PWMs will be 
set to 0x400. This will allow easy calculation of the PWM settings required for the other microsteps. If a 
negative step waveform be required, these steps should be reversed.

Notice that for each coil, the PWM is only output to either P or M at once while the other pin remains static. 
As previously discussed, the value of the static pin is controlled by the RECIRC bit. In this instance the 
static is set to zero, thus RECIRC = 1. 

The PWM duty value defines the duration for which the output remains in its initial state. Since 
RECIRC = 1, the initial state of the output is HIGH (see Table 2).

Apart from varying the period, it will also be necessary to change which pin to output the PWM and which 
to remain static, by altering the SIGN bit. The waveforms we have chosen for this example (Figure 13) 
requires the static pin to remain low thus the static current should be recirculated on the low side 
transistors. In this, RECIRC bit should be set to 0 during initialization.

Every fourth microstep corresponds with a changing full-step. At these points the SIGN bit may require 
changing. From Figure 13 it can be seen that selection of which output pin is static and which has the PWM 
dependant on which direction the motor is to be driven in. For example, at microstep 4 on Coil 0 - if the 
motor is to be driven clockwise then the PWM should be output on the M pin (SIGN = 1) however if the 
intention is to drive the motor anti-clockwise then the PWM should be driven onto the P-pin (SIGN=0).

As previously stated, a periodic interrupt, triggered by the PIT will be used to alter the duty and sign values 
as appropriate at each microstep.

4.1 Program Structure
The program will be divided into 2 main sections. The first of these will be the initialization covering the 
setting up of the relevant modules, the second will be the PIT interrupt which will update the duty and 
SIGN values at each microstep.

4.2 Initialization
1. Configure the pins used to drive the stepper motor using the Pad Configuration Registers (PCR) in 

the SIU module. This example will make use of 2 PWM channels to drive a single stepper motor, 
giving a requirement of 4 pins. The PCR for these pins should be set to the correct function and the 
output buffer should be enabled.

2. The SMC module configuration should then be carried out
• The required clock divider value should be configured to set the required module clock.
• The RECIRC bit should set as appropriate. In this case it is left in its reset state of 0.
• The period should then be set as appropriate.
3. The individual PWM channels should then be configured. This example will use channels 0 and 1. 

These should be configured to Dual Full H-bridge mode and set as left aligned.
4. A global variable named direction will be used to select whether the rotor should turn in a 

clock-wise or anti-clockwise direction.
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0
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5. Configure and enable PIT interrupt. The PIT interrupt will control how often the rotor will 
microstep, thus it controls the speed of the rotor. The longer the PIT period, the slower the rotor 
will rotate.

4.2.1 Periodic Interrupt

1. Clear the PIT interrupt flag to signify that interrupt is being serviced.
2. Increment/Decrement the microstep count number depending on direction. Ensure that count rolls 

over correctly i.e. incrementing 15 will cause microcount to reset to 0, decrementing 0 will result 
in a microstep value of 15.

3. Increment the duty cycle of each PWM channel. As we are operating in Dual Full H-Bridge mode, 
channel 0 should be written to first, followed by channel 1. By doing this both channels will be 
updated simultaneously after the channel 1 write.

4. If the microstep count number corresponds to a full step (i.e. if microstep = 0,4,8 or 12) then 
correctly alter the Duty cycle and SIGN values as per table 4.

4.2.2 Summary

The example code explained above is available with this Application note in AN4037SW. Additionally, 
the functions described above the code can be used to move the motor to a default position upon startup, 
accurately position the motor to the nearest microstep and vary the acceleration of movement. These 
functions are straight forward and are easy to understand with a basic grasp of Stepper Motor control.

Microstep: Alter PWM 
duty cycle

Does 
Microstep=
full step?

YesNo

Fullstep: Alter PWM duty 
cycle and sign bit for 
appropriate direction

Increment microstep 
counter

Clear interrupt flag
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5 Advanced Features

5.1 Short Circuit Detection
The SMC module has the ability to detect a short circuit on any motor controller pin. It does this by 
carrying out a comparison between the PWM or static value and the state at the corresponding output pin. 
The comparison is triggered by a change in the PWM or static channel state. If these signals not match for 
longer than a pre-defined period, then a short circuit is assumed.

The timeout period should be selected to ensure that the comparison circuitry has sufficient time to 
synchronize and sample the inputs before making the comparison. Figure 14 shows the potential lag times 
between the PWM changing and results of the comparison. As such, for a successful comparison the 
timeout register must have a value of at least 3 in order to take into account the sampling and 
synchronization delay.

Figure 14. Diagram of delay between PWM transition and sample for Short Circuit detect

Setting up short circuit detection is a straight forward process. Firstly all pins which are to be monitored 
must have the Input and Output buffers enabled in the Pad Configuration Register (PCR). The 8-bit 
timeout period is written to the “Short Circuit Detector Timeout” MCSDTO Register and the detector and 
interrupt can then be enabled in a each pin basis by using the MCSDEx and MCSDIENx registers 
respectively.

The module has a single interrupt covering every channel, therefore it is necessary to refer to the short 
circuit flag register (MCSDIx) within the interrupt service routine in order to ascertain which pin is 
affected.
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0
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5.2 Stall Detection
The MPC56xxS device contains a separate Stepper Stall Detect (SSD) module which uses the same pins 
as the SMC and can be used to detect if a driven stepper motor has ceased to move, for example, when it 
has reached either of its extremities. This is very useful upon start up, reset or in case of error, as it can 
ensure that the motor returns to its starting position.

The SSD can be given control of the Stepper Motor in these instances and return the stepper motor to its 
starting position before giving control back to the SMC.

The SSD is limited to using Full-step movement and therefore cannot obtain the same accuracy and 
smoothness of movement as the SMC. As such it is recommended that it only be used for Stall Detection 
purposes.

More details of the SSD can be found in AN3330: Introduction to the Stepper Stall Detector Module. 
[http://www.freescale.com/files/microcontrollers/doc/app_note/AN3330.pdf]
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0
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