
Freescale Semiconductor
Application Note

Document Number: AN4037
Rev. 0, 02/2010

Contents

Introduction . 1
Stepper Motor Module . 2

2.1 Overview . 2
2.2 Stepper Motor Control . 3
2.3 Mode of Operations. 4
2.4 Creating Basic PWM Signals. 5
2.5 Advanced PWM functions . 7
2.6 Outputting the PWM signals 8
Waveforms required to drive stepper motor 10

3.1 Full Step . 10
3.2 Microstepping . 12
Using SMC Module to create waveforms 13

4.1 Program Structure . 15
4.2 Initialization . 15
Advanced Features . 17

5.1 Short Circuit Detection. 17
5.2 Stall Detection . 18

Driving a Stepper Motor using
the MPC56xxS SMC Module
by: Daniel McKenna

Microcontroller Solutions Group. Auto R & D
1 Introduction
The MPC56xxS microcontroller device is targeted at the
cluster segment of the automotive market. The MCU as
such has the capability to drive visual displays, generate
sound and to drive the dials used for speedometers and
tachometers. This application note provides details of
how the latter is achieved by using the Stepper Motor
Control (SMC) module.

The following section provides an overview of what a
stepper motor is and the fundamental principles of how it
operates. This is followed by an overview of the SMC
module and a discussion on the waveforms required to
drive a stepper motor.

The example application code in AN4037SW provides
details of how the SMC can be used to generate these
waveforms.

1
2

3

4

5

© Freescale Semiconductor, Inc., 2010 All rights reserved.

Stepper Motor Module
2 Stepper Motor Module

2.1 Overview
As the name suggests, a stepper motor is a motor whose rotary motion can be divided into discrete steps.
By intelligently controlling the motor using electrical pulses, it is possible to position it to a degree of
accuracy in an open-loop configuration, which would only be possible with a standard motor if costly
sensors were used in order to implement a closed loop system.

Following three basic types of stepper motor are available:
• Permanent Magnet
• Variable Reluctance
• Hybrid

This application note concentrates on the Permanent Magnet configuration as they are the most commonly
used due to offering a good trade off between accuracy, torque and cost.

Figure 1 shows internal components of a Permanent Magnet (PM) stepper motor.

Figure 1. Permanent Magnet Bipolar Stepper Motor

It can be seen that unlike a standard motor, the coils in a stepper motor remain stationary and it is the
magnet which actually rotates. There are actually two separate Permanent Magnet configurations, the
above diagram shows the Bipolar setup where each coil winding has two wires, and the current flows
through the whole coil. The other configuration, Unipolar, has six wires with each coil having an additional
ground wire at the centre, in effect splitting each coil in two. Both of these configurations are driven in a
similar manner using the same signals, however in the Unipolar case the current never has to be reversed.

PERMANENT MAGNET STEPPER MOTOR

SIGNAL B

CURRENT
i

SIGNAL A ROTOR SHAFT COMING OUT

OF PAGE

PERMANENT MAGNET DISC

WITH TWO POLES

DIRECTION OF MAGNETIC

FIELD

METAL CORE USED TO HELP CHANNEL THE

MAGNETIC FIELD
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor2

Stepper Motor Module
The downside to this is that current only runs through half the length of the coil at once, making it less
powerful (i.e. providing less torque) than the bipolar equivalent. A diagram of both configurations can be
seen below.

Figure 2. Comparison of Unipolar and Bipolar stepper motors

There is no physical connection between the rotor magnet and the metal core, this greatly increases the
durability of the motor unit. Motion of the rotor is generated by varying the current flowing through each
coil and in doing so, changing the polarity of the magnetic field it creates. As shown in Figure 1, the top
of the coil excited by Signal A is positive whereas the bottom is negative, this creates a magnetic field
which affects the magnetic rotor, causing the south pole of the magnet to attract to the metal core closest
to the top of the coil and the north pole to the metal core closest to the bottom.

By varying the current direction in each of the coils it is possible to change the direction of the magnetic
field causing the rotor to realign and thus creating rotation. The SMC module controls the current in each
of the coils.

Further information on the theory behind stepper motors can be found in AN2974: Quick Start for
Beginners to Drive a Stepper Motor.
[http://www.freescale.com/files/microcontrollers/doc/app_note/AN2974.pdf]

2.2 Stepper Motor Control
The Stepper Motor Control (SMC) module is designed to facilitate the simple creation of the waveforms
required to drive stepper motors using microstepping. The module contains 12 Pulse Wave Modulation
(PWM) channels, clocked by an 11-bit counter. Each channel is associated with two pins giving a total of
24pins. The module also has the ability to detect a short circuit on any of these pins and can be configured
to trigger an interrupt when one occurs. An optional interrupt can also be triggered upon a timer counter
overflow.

Unipolar stepper motors Bipolar stepper motors

Common
COIL ENDCOIL END

COIL END

Common

COIL END

COIL END COIL END

COIL END

COIL END
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor 3

http://www.freescale.com/files/microcontrollers/doc/app_note/AN2974.pdf

Stepper Motor Module
Table 1 shows which PWM each of the SMC pins is connected to. The pin names are read as follows:
M0C0M – Motor 0, Coil 0, Minus.

As shown earlier in Figure 2, bipolar motor coils have two different connectors, + and -. As each motor
has two coils, both of which must be driven by different waveforms, each motor has 4 pins connected to 2
separate PWM channels. Thus the SMC can be used to drive a total of 6 individual stepper motors.

Table 1. PWM Channel and Pin Assignment

Internal to the module, the pins of each PWM Channel Pair are connected to an H-bridge, allowing the
polarity of the PWM output pins to be changed quickly, thus allowing the direction of the current to be
altered at high frequency.

2.3 Mode of Operations
This section provides the various operating modes of the SMC Module, shows how to generate a PWM
signal and describes the additional options which are available to alter the waveforms without the need to
alter the duty cycle.
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor4

Stepper Motor Module
2.3.1 Operating Modes

Each individual PWM channel in the SCM can be configured to run in one of the following 3 modes which
are selected in the MCCC[0-11] registers.

• Half H-bridge Mode – PWM signal is output on either the Minus or Plus pin. The other pin is
released and can be used by another module or as GPIO. This mode facilitates the creation of a
simple PWM signal which can be used for any purpose. There are two variations of this mode, one
outputting the PWM on the M pin, the other on the P pin.

• Full H-bridge Mode – Both pins of the channel are used, one outputs the PWM signal, the other is
set to drive either a logic high or low based on how it is configured.

• Dual Full H-bridge Mode – This mode is identical to Full H-bridge mode except that channels are
paired together (0&1, 2&3 etc.) so that any changes to the duty cycle of the first channel will not
have effect on the output until the duty cycle of the second channel has also been altered. As a
stepper motor will require 2 PWM channels to operate, this allows a smooth transition when
altering the waveforms.

NOTE
Any writes to the second channel in Dual Full H-bridge Mode will happen
immediately regardless of a prior write to the first channel has been carried
out or not.

2.4 Creating Basic PWM Signals
Pulse Width Modulation (PWM) is a method used by devices with digital outputs such as microcontrollers
to create approximations of analog signals such as sine waves. By using this method the voltage and
current which is supplied by output pins can be easily varied. This section shows how to use the SMC
module to create PWM signals.

On the MPC56xxS, the SMC Module is part of Peripheral Set 1 and is therefore clocked by the System
Clock divided by a value between 1 and 16 set in the Clock Generation Module (CGM). This value can
then be further divided down by 1, 2, 4 or 8 within the MCR register of the SMC module. The output form
this divider is then used as the clock for all PWM channels in the SMC.

Figure 3. Deriving the PWM clock

Mode Entry Module
Select System clock

Clock Generation
Module
Select Peripheral
Set 1
Clock Divider
(Divide by 1-16)

SMC Module
SMC Prescalar
(Divide by 1,2,4
or 8)

PWM Clock
sys_clk

pset_1_

clk
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor 5

Stepper Motor Module
Figure 4. Motor controller period register (MCPER)

The period of all PWM channels is set in the Motor Controller Period (MCPER) Register. This contains
11-bits allowing periods of between 1 and 2047 clock cycles. Setting this register to 0 causes all PWM
channels to be disabled.

Figure 5. Motor controller duty cycle register (MCDC0..11)

Each PWM Channel has its own Duty Cycle Register (MCDC[0-11]) which is used to set the number of
clock cycles for which the output will remain in its initial state. Thus, the PWM duty cycle for a channel
can be calculated by dividing the value DUTY by the Period. Setting the DUTY bits to zero or a value
equal to or greater than the PWM Period will result in a steady state output.

Figure 6. 2 cycles of a PWM with Period = 100 and Duty = 15

The sign bit is only used in Dual/Full H-bridge mode and is used to select the pin on which PWM signal
is to be output. The behavior of this bit is dependant on the RECIRC bit as discussed in Section 2.6,
“Outputting the PWM signals. This bit has no effect in Half H-bridge mode (the MCOM bits in the
MCCC[0-11] register, described below is used for this purpose in half H-bridge mode).

Motor Control-
ler Timer
Counter Clock

Motor Control-
ler Timer
Counter
PWM Output
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor6

Stepper Motor Module
The value in the Duty Cycle Register is double buffered to prevent the output being changed half-way
though a PWM period. Thus the new value will only be become active once either:

• The channel is disabled.
• In Full H-bridge mode: the count reaches the Period causing the timer to overflow, resetting it to 0.
• In Dual Full H-bridge mode: the Duty Cycle Register of both channels of a PWM Channel Pair

have been written and the count has reached the Period causing the timer to overflow, resetting it
to 0.

2.5 Advanced PWM functions
The SMC contains a number of hardware implemented features to allow greater flexibility in the
generation of PWM signals.

2.5.1 Alignment

Each PWM channel can have its signal alignment set to left, right or centre aligned as selected by the
MCAM bits in the MCCC[x] register. These bits are double buffered, therefore any changes will not be
effective until the next timer overflow occurs.

The effects these bits have on the PWM signal are shown in Figure 7.

Figure 7. PWM Outputs with various alignment settings. Period = 100, Duty = 15

In all of the above waveforms, the period is set to 100 and the duty to 15, giving an active-high duty cycle
of 85%. Note that, using centre alignment, the resultant signal has a period of 200 but still and active-high
duty cycle of 85%.

2.5.2 4.3.2 Delay

As all PWM channels are run from the same timer, so they will over flow on the same clock cycle, causing
their output signal to change at the same time. This can result in a large peak current draw from the motors
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor 7

Stepper Motor Module
power supply or an excessive amount of transition-noise. To prevent this, each channel can be given a
delay value which will stagger the PWM transitions by between 0 and 3 clock cycles. By making use of
this the number of signals changing on a single clock can be quartered, greatly reducing the peak current
draw and the transition noise.

The delay value is selected by the CD bits in the MCCC[0-11] registers.

2.5.3 4.3.3 Dither

Dither mode doubles the length of the minimum pulse that can be generated by the PWM, without
affecting the PWM resolution. It is desirable to limit the distortion introduced upon the PWM changing
state.

Figure 8. Effects for dither bit.
Top waveform: Dither = 0, Bottom: Dither =1.

Value in PER and DUTY same in both cases (400 and 100 respectively)

Dither mode is enabled on all channels by setting the MCCTL0[DITH] bit. Once set, the value in the
DUTY and PERIOD registers are effectively halved causing the modulation frequency to double, as shown
in Figure 8. Hence, to create the same output in dither mode as in non-dither mode, the PWM clock must
be halved. This can be done via the Module Prescaler, as described in Section 2.4, “Creating Basic PWM
Signals.”

In dither mode the value in the PER will always be even – the PERIOD[0] bit is set to zero cannot be
changed. If the DUTY value is odd then the first cycle will have a duty of (DUTY/2)-0.5 and the second
of (DUTY/2)+0.5.

2.6 Outputting the PWM signals
The internal H-bridge is used to configure the signals sent to the P and N pins associated with each channel.
In both Full H-bridge modes, one pin will be used to output the PWM while the other will remain static.
Pin behavior is configured based of the PWM value and the SIGN and RECIRC bits.

The RECIRC bit can be found in the Motor Controller Control Register 1 (MCCTL1) and is used to select
the logic output state of the static pins for all PWMs. When set to 0, the static pin is logic high, when 1 the
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor8

Stepper Motor Module
static pin is logic low. This bit should only be altered when no channels are running in Dual/Full H-bridge
mode. The bit has no effect in Half H-Bridge mode as the static channel is disabled in this case.

The SIGN bit, as discussed in Section 2.4, “Creating Basic PWM Signals is used to select the pin output
for the PWM signal. This value is double buffered and can be changed while the channel is active.

Table 2 below shows how these bits affect the output pins.

The scope captures below show the output waveform on both P and M pins for each of the configurations
in the table above. In each instance, the Period=100, Duty=25. The top wave is the M-Pin, the bottom the
P-Pin.

Table 2. How RECIRC and SIGN bits affect pin outputs

RECIRC SIGN M Pin P Pin

0 0 PWM 1

0 1 1 PWM

1 0 0 \PWM

1 1 \PWM 0

RECIRC=0 SIGN=0 RECIRC=0 SIGN=1

RECIRC=1 SIGN=0 RECIRC=1 SIGN=1
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor 9

Waveforms required to drive stepper motor
Figure 9. Output waveforms with varying SIGN and RECIRC bits (M=Yellow, P=Blue)

3 Waveforms required to drive stepper motor
As previously described in Section 2, “Stepper Motor Module,” the magnetic rotor in the stepper motor is
driven by controlling the current sent through two coils in order to create a magnetic field. The signals used
to excite the coils need to be carefully controlled in order to create movement and are responsible for the
direction, speed, and accuracy of the stepper motor.

This section will first discuss two common Stepping Modes which can be used to drive a stepper motor
and show the waveforms required for each mode. The Full Step mode will be discussed first followed by
Microstepping mode.

Although the SMC module can be used to create the Full Step waveforms, the PWMs better lend
themselves to the more advanced Microstepping configuration and this is the mode we will use in the
software example later in this document.

3.1 Full Step
In Full Step mode the coils go through 4 steps in order to create one full rotation of the rotor, each step
providing 90o of motion. The position of the rotor at each step, along with the waveform applied to each
coil for clockwise rotation is shown in Figure 10.
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor10

Waveforms required to drive stepper motor
Figure 10. Waveform applied to each coil and corresponding state of rotor
(red denotes Vmax applied to core, black denotes GND)

In step 1, both the Positive pins are driven high, while the Minus pins are driven low, causing current to
flow from CxP to CxM. This induces a magnetic field with the metal core at side of the coil driven high
becoming a North pole, and the side driven low becoming a South pole. The rotor will align itself so that
the opposite poles are aligned as can clearly be seen from the figure. The rotor will then remain in this
position until the magnetic field is changed by altering the direction of the current flowing through the
coils. In step 2, with the direction of current flowing through C0 being reversed causing its magnetic field
to also reverse, in turn causing the rotor to move to a new steady state.

By repeatedly varying the current as shown in the steps, a continuous clockwise movement of the stepper
motor will be achieved.

Figure 10 also shows the voltage across each coil at each step. This is a binary representation of a cosine
and sine wave. By altering these signals, it is possible to control aspects of the Stepper Motor movement
such as:

• Direction: By reversing the signals, the steps in Figure 10 will occur in reverse order, causing the
rotor to move in an anti-clockwise direction.

• Speed: By increasing the frequency of the sine/cosine waves the steps will be executed at a faster
rate, causing the rotor to turn quicker. Decreasing the frequency will have the opposite effect.

The SMC module controls the voltage across the coils by varying the value of the positive and minus
connections at each end of the coil. Thus the voltage graph in Figure 11 shows the differential between
these connections. The actual values at the individual connections at each step are shown in the figure
below.

C0

C1

C0M C0P

C
I
P

C
I
M

C0M

C
I
M

C
I
P

C0P

C
I
M

C0M C0P

C
I
P

C
I
M

C0M C0P

C
I
P

Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor 11

Waveforms required to drive stepper motor
Figure 11. Signals applied to each stepper motor pin

3.2 Microstepping
The full-step stepping mode breaks a single rotation down into 90o steps. This may be acceptable for some
applications but others will require greater positional accuracy and smoothness of movement which could
be achieved by increasing the number of steps in each full rotation. This is what microstepping allows us
to achieve.

The number of steps chosen will increase the resolution of movement and the smoothness of motion of the
motor (i.e. 16steps give a step size of 22.5o), more steps give more accuracy, however each stepper motor
will have a mechanical limit on the minimum distance it can move accurately. This will be given in the
Stepper Motors Data Sheet.

As discussed above, the Full-Step method uses binary representation of a sine and cosine wave to create
the magnetic fields required to produce motion of the rotor. In order to microstep we must divide these
binary waves into discrete steps and to be able to set the voltage across the coils to values between +/-
maximum, thus varying the current flowing through the coils. The resultant waveforms, with 16 steps per
revolution can be seen in Figure 12.

Table 3. Step number and position of rotor relative to starting point

Step No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Position
(degrees)

0 22.5 45 67.5 90 112.5 135 157.5 180 202.5 225 247.5 270 292.5 315 337.5

C0P

C0M

C1P

C1M
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor12

Using SMC Module to create waveforms
Figure 12. 16-step Microstepping representation of voltage across stepper motor coils

4 Using SMC Module to create waveforms
Now that we know about the waveforms that are required across the coils in microstepping mode, this
section shows how to use the SMC to create these waves. This is done by creating the following example
application.

The application will make use of the SMC to create the PWM signals as well as a Periodic Interrupt Timer
(PIT) to trigger an interrupt which allows us to alter the PWM duty cycle and thus vary the current running
through the coil. An alternative method would be to use the Timer overflow interrupt to trigger every time
the PWM time overflows. This will prevent the need for a PIT channel but will likely require the SMC
peripheral clock to be slow in order to limit the frequency of interrupt calls.

For this example, we will use 16 microsteps, to create the required waveforms using the 4 pins associated
with a PWM channel to vary the potential difference across the coil.
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor 13

Using SMC Module to create waveforms
As with the Full-step method, the coil waveforms shown in Figure 12 will be created by varying the
voltage applied to the coil’s associated P and M pins. Figure 13 shows the required P and M outputs for
both coils.

Figure 13. Signal applied to each coils output pins

Table 4. PWM Duty value at each step of Figure 11

Coil0 Coil1

Microstep No. PWM Duty Sign PWM Duty Sign

0 400 0 0 0

1 300 0 100 0

2 200 0 200 0

3 100 0 300 0

4 0 1 400 0

5 100 1 300 0

6 200 1 200 0

7 300 1 100 0

8 400 1 0 1

9 300 1 100 1

10 200 1 200 1

11 100 1 300 1

12 0 0 400 1

13 100 0 300 1

14 200 0 200 1

15 300 0 100 1
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor14

Using SMC Module to create waveforms
The steps in the Table 4 are created using the PWM. For this example, the period of both PWMs will be
set to 0x400. This will allow easy calculation of the PWM settings required for the other microsteps. If a
negative step waveform be required, these steps should be reversed.

Notice that for each coil, the PWM is only output to either P or M at once while the other pin remains static.
As previously discussed, the value of the static pin is controlled by the RECIRC bit. In this instance the
static is set to zero, thus RECIRC = 1.

The PWM duty value defines the duration for which the output remains in its initial state. Since
RECIRC = 1, the initial state of the output is HIGH (see Table 2).

Apart from varying the period, it will also be necessary to change which pin to output the PWM and which
to remain static, by altering the SIGN bit. The waveforms we have chosen for this example (Figure 13)
requires the static pin to remain low thus the static current should be recirculated on the low side
transistors. In this, RECIRC bit should be set to 0 during initialization.

Every fourth microstep corresponds with a changing full-step. At these points the SIGN bit may require
changing. From Figure 13 it can be seen that selection of which output pin is static and which has the PWM
dependant on which direction the motor is to be driven in. For example, at microstep 4 on Coil 0 - if the
motor is to be driven clockwise then the PWM should be output on the M pin (SIGN = 1) however if the
intention is to drive the motor anti-clockwise then the PWM should be driven onto the P-pin (SIGN=0).

As previously stated, a periodic interrupt, triggered by the PIT will be used to alter the duty and sign values
as appropriate at each microstep.

4.1 Program Structure
The program will be divided into 2 main sections. The first of these will be the initialization covering the
setting up of the relevant modules, the second will be the PIT interrupt which will update the duty and
SIGN values at each microstep.

4.2 Initialization
1. Configure the pins used to drive the stepper motor using the Pad Configuration Registers (PCR) in

the SIU module. This example will make use of 2 PWM channels to drive a single stepper motor,
giving a requirement of 4 pins. The PCR for these pins should be set to the correct function and the
output buffer should be enabled.

2. The SMC module configuration should then be carried out
• The required clock divider value should be configured to set the required module clock.
• The RECIRC bit should set as appropriate. In this case it is left in its reset state of 0.
• The period should then be set as appropriate.
3. The individual PWM channels should then be configured. This example will use channels 0 and 1.

These should be configured to Dual Full H-bridge mode and set as left aligned.
4. A global variable named direction will be used to select whether the rotor should turn in a

clock-wise or anti-clockwise direction.
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor 15

Using SMC Module to create waveforms
5. Configure and enable PIT interrupt. The PIT interrupt will control how often the rotor will
microstep, thus it controls the speed of the rotor. The longer the PIT period, the slower the rotor
will rotate.

4.2.1 Periodic Interrupt

1. Clear the PIT interrupt flag to signify that interrupt is being serviced.
2. Increment/Decrement the microstep count number depending on direction. Ensure that count rolls

over correctly i.e. incrementing 15 will cause microcount to reset to 0, decrementing 0 will result
in a microstep value of 15.

3. Increment the duty cycle of each PWM channel. As we are operating in Dual Full H-Bridge mode,
channel 0 should be written to first, followed by channel 1. By doing this both channels will be
updated simultaneously after the channel 1 write.

4. If the microstep count number corresponds to a full step (i.e. if microstep = 0,4,8 or 12) then
correctly alter the Duty cycle and SIGN values as per table 4.

4.2.2 Summary

The example code explained above is available with this Application note in AN4037SW. Additionally,
the functions described above the code can be used to move the motor to a default position upon startup,
accurately position the motor to the nearest microstep and vary the acceleration of movement. These
functions are straight forward and are easy to understand with a basic grasp of Stepper Motor control.

Microstep: Alter PWM
duty cycle

Does
Microstep=
full step?

YesNo

Fullstep: Alter PWM duty
cycle and sign bit for
appropriate direction

Increment microstep
counter

Clear interrupt flag
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor16

Advanced Features
5 Advanced Features

5.1 Short Circuit Detection
The SMC module has the ability to detect a short circuit on any motor controller pin. It does this by
carrying out a comparison between the PWM or static value and the state at the corresponding output pin.
The comparison is triggered by a change in the PWM or static channel state. If these signals not match for
longer than a pre-defined period, then a short circuit is assumed.

The timeout period should be selected to ensure that the comparison circuitry has sufficient time to
synchronize and sample the inputs before making the comparison. Figure 14 shows the potential lag times
between the PWM changing and results of the comparison. As such, for a successful comparison the
timeout register must have a value of at least 3 in order to take into account the sampling and
synchronization delay.

Figure 14. Diagram of delay between PWM transition and sample for Short Circuit detect

Setting up short circuit detection is a straight forward process. Firstly all pins which are to be monitored
must have the Input and Output buffers enabled in the Pad Configuration Register (PCR). The 8-bit
timeout period is written to the “Short Circuit Detector Timeout” MCSDTO Register and the detector and
interrupt can then be enabled in a each pin basis by using the MCSDEx and MCSDIENx registers
respectively.

The module has a single interrupt covering every channel, therefore it is necessary to refer to the short
circuit flag register (MCSDIx) within the interrupt service routine in order to ascertain which pin is
affected.
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor 17

Advanced Features
5.2 Stall Detection
The MPC56xxS device contains a separate Stepper Stall Detect (SSD) module which uses the same pins
as the SMC and can be used to detect if a driven stepper motor has ceased to move, for example, when it
has reached either of its extremities. This is very useful upon start up, reset or in case of error, as it can
ensure that the motor returns to its starting position.

The SSD can be given control of the Stepper Motor in these instances and return the stepper motor to its
starting position before giving control back to the SMC.

The SSD is limited to using Full-step movement and therefore cannot obtain the same accuracy and
smoothness of movement as the SMC. As such it is recommended that it only be used for Stall Detection
purposes.

More details of the SSD can be found in AN3330: Introduction to the Stepper Stall Detector Module.
[http://www.freescale.com/files/microcontrollers/doc/app_note/AN3330.pdf]
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor18

http://www.freescale.com/files/microcontrollers/doc/app_note/AN3330.pdf

THIS PAGE IS INTENTIONALLY BLANK
Driving a Stepper Motor using the MPC56xxS SMC Module, Rev. 0

Freescale Semiconductor 19

Document Number: AN4037
Rev. 0
02/2010

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2010. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Stepper Motor Module
	2.1 Overview
	2.2 Stepper Motor Control
	2.3 Mode of Operations
	2.3.1 Operating Modes

	2.4 Creating Basic PWM Signals
	2.5 Advanced PWM functions
	2.5.1 Alignment
	2.5.2 4.3.2 Delay
	2.5.3 4.3.3 Dither

	2.6 Outputting the PWM signals

	3 Waveforms required to drive stepper motor
	3.1 Full Step
	3.2 Microstepping

	4 Using SMC Module to create waveforms
	4.1 Program Structure
	4.2 Initialization
	4.2.1 Periodic Interrupt
	4.2.2 Summary

	5 Advanced Features
	5.1 Short Circuit Detection
	5.2 Stall Detection

