

Freescale Semiconductor Document Number: AN4145
Application Note Rev. 0, 06/2010

© 2010 Freescale Semiconductor, Inc.

Debugging Multicore StarCore DSP
Applications with Eclipse

by DevTech Support
Freescale Semiconductor, Inc.
Austin, TX

With the release of CodeWarrior for StarCore
DSPs v10, the Freescale debugging tools are
managed by the Eclipse Integrated Development
Environment (IDE). This user interface (UI)
differs from the UI of the original “Classic”
CodeWarrior IDE. In particular, the new
multicore debugging interface differs
significantly from its predecessor. This
document describes the Eclipse interface
features that are specific to multicore
debugging, and how to use them.

Contents

1 Starting the Debugger with Multiple Cores 2
2 Controlling Execution .. 12
3 Displaying the Context of a Specific Core 17
4 Breakpoints ... 18
5 Watchpoints... 20
6 Command Line Interface ... 20
7 Tracing and Profiling ... 25
8 Multi-Device Considerations 28

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
2 Freescale Semiconductor

1 Starting the Debugger with Multiple Cores
After the multicore application is built, the next step is to download/execute it on multiple cores. The
CodeWarrior debugger provides two options to accomplish this. The first option is to launch the code on
all cores simultaneously with one mouse click. The second option is to launch the code successively on
one core after the other. The requirements of the application being debugged determine which option
should be used.

1.1 Option One: Starting All Cores Simultaneously

To be able to start and debug a number of cores at the same time, a launch group must be defined. A
launch group specifies which cores to start and the debugger settings that are used during their
execution.

1.1.1 Create a Launch Group

To create a launch group:

1. Open the Debug Configuration dialog by clicking on the arrow next to the green bug icon and
selecting Debug Configuration, as shown in Figure 1.

Figure 1. Opening the Debug Configuration dialog

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 3

2. In the debug configuration dialog, select Launch Group and then click on New Launch
Configuration icon, as shown in Figure 2.

Figure 2. Creating a Launch Group

3. Specify a name for the launch group in the Name option (for this example, the
MSC8156Launch was used) and click Apply.

4. Click Add.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
4 Freescale Semiconductor

5. In the Add Launch Configuration dialog that appears, expand the CodeWarrior Download
group. For a core to execute code, it must have a launch configuration assigned to it. Each launch
configuration specifies the debugger settings used while controlling the designated core.

6. Select all of the launch configurations to be associated with this launch group. For example, to
have the launch group manage all six processor cores, choose the launch configurations
MSC8156 ISS Core 00 through MSC8156 ISS Core 05. See Figure 3.

Figure 3. Selecting the Launch Configurations that Belong to a Launch Group

7. Choose a post launch action in the Post launch action option, if necessary.

Table 1 summarizes the choices of actions that the debugger can take after it starts the launch
configuration for each core.

Table 1. Summary of Post Launch Actions

Option Description

None The debugger immediately moves on to launch the next
launch configuration. This is the recommended settings in
most of the cases.

Wait until terminated The debugger waits indefinitely until the debug session
spawned by the last launch terminates, and then it moves
on to the next launch configuration.

Delay The debugger waits for specified number of seconds
before moving on to the next launch configuration.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 5

8. Click OK.

A list of the launch configurations associated with the launch group appears, as show in Figure 4.

Figure 4. Launch Configurations That Are a Part of the MSC8156Launch Group

NOTE
Make sure that the core that manages any shared code (typically core 0)
loads first. This is necessary because the shared code is linked to the core
0 image. Since the startup code and run time library code are shared
among all the cores, if core 0 does not load first, none of the other cores
can execute any startup code and reach their respective main()functions.

9. Click Apply to use the settings, then Close to save them and dismiss the Debug Configuration
dialog.

1.1.2 Save the Launch Group’s Configuration File

By default, the steps in section 1.1.1 make a .launch file in the directory

{workspace}\.metadata\.plugins\org.eclipse.debug.core\.launches

This enables the launch group’s configuration to be available each time that the workspace loads into the
CodeWarrior IDE.

In order to make it easier to package the launch group together with the application, the group
configuration file can be saved along with the launch configuration files for each core in the
{Project}Debug_Settings\ directory.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
6 Freescale Semiconductor

This is done as follows:

1. Open the Debug Configuration dialog by clicking on the arrow next to the green bug icon and
selecting Debug Configuration.

2. In the Debug Configuration dialog, expand the Launch Group folder and select your launch
group.

3. Switch to the Common tab, as shown in Figure 5.

Figure 5. Using the Common Tab to Save the Launch Group Settings

4. Choose the Shared file option.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 7

5. Click Browse and in the Folder Selection dialog and navigate to the project’s Debug
Settings folder. See Figure 6.

Figure 6. Selecting the Folder to Save the Launch Settings

6. Click OK to dismiss the Folder Selection dialog; then click Apply to save the settings.

7. Click Close to close the Debug Configuration dialog.

From now on, the .launch file for the launch group is stored in the {Project}\Debug
Settings folder.

NOTE
If you have already created the launch group in the
{workspace}\.metadata\.plugins\org.eclipse.debug.c
ore\.launches directory, it is good practice to physically delete the
file from this location and restart the CodeWarrior IDE. Otherwise you
will end up with two Launch groups with the same name in the Debug
Configuration dialog.

1.1.3 Debugging With the Launch Group

To start debugging using a previously saved launch group:

1. Open the Debug Configuration dialog by clicking on the arrow next to the green bug icon and
selecting Debug Configuration.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
8 Freescale Semiconductor

2. In the Debug Configuration dialog, expand the Launch Group folder and select the launch
group you want to debug as shown in Figure 7.

Figure 7. Selecting a Launch Group for Debugging

3. Click Debug to start the multicore debug session.

The debugger starts a multicore debug session using the specified launch group(s). Each core
executes any startup code and then halts at its main() function, unless configured otherwise.
For this example, the Debug view in Figure 8 shows the six cores halted and awaiting new
debugger commands.

Figure 8. A Multicore Debug Session as Started by the Launch Group

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 9

1.2 Option Two: Launch Cores One by One

Certain situations might require the cores to be loaded separately, particularly if something needs to
happen between the loadings of the different cores. To do so, follow these steps:

1. Open the Debug Configuration dialog by clicking on the arrow next to the green bug icon and
choosing Debug Configuration.

2. Expand the CodeWarrior Download group.

3. Select the Core 00 launch configuration and click Debug.

4. Once the download for core 0 completes, open the Debug Configuration dialog, select the
Core 01 launch configuration, then click Debug.

5. Once the download for core 1 completes, open the Debug Configuration dialog, select the
Core 02 launch configuration, then click Debug.

6. Once the download for core 2 completes, open the Debug Configuration dialog, select the
Core 03 launch configuration, then click Debug.

7. Once the download for core 3 completes, open the Debug Configuration dialog, select the
Core 04 launch configuration, then click Debug.

8. Once the download for core 4 completes, open the Debug Configuration dialog, select the
Core 05 Launch Configuration, then click Debug.

After all of the launch configurations are started, the multicore debug session the Debug view
resembles Figure 9.

Figure 9. A MultiCore Debug Session in Progress

1.3 Troubleshooting

If problems occur with the multicore sessions, check the following points:

• Make sure that the debug settings on all of the cores are identical. To check these, open the
Debugger Settings dialog, click on the Debugger tab, and study the options in the Debugger
Options group for differences.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
10 Freescale Semiconductor

⎯ For the StarCore tab shown in Figure 10, the Target Processor, Simulator/Emulator and
System Type options should be identical for all cores. The value specified in the Core Index
option should be different for each core, however.

Figure 10. StarCore Tab Options

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 11

⎯ For the Connection tab shown in Figure 11, the Connection Protocol, Physical
Connection, and CCS Advanced Settings should be identical for all cores. You can
examine the CCS Advance Settings by clicking on the Advanced button within the
Connection tab.

Figure 11. Connection Tab Options

• Always load core 0 (where all shared sections reside) first. The loading sequence for the other

cores does not matter, unless the application requires a specific sequence to start the different
cores.

• In the StarCore tab, the Execute Reset option must be checked for core 0 only. It must be
unchecked for all other cores. In addition, the Initialize target option and the Use Memory
configuration file option must be checked for core 0 only. It should be unchecked for all other
cores.

NOTE
When debugging a multi-device system:

• The Execute Reset option must be set for core 0 on first device
(processor) only.

• The Initialize Target option must be checked, and the Use Memory
configuration file option must be set for core 0 on each device. (That
is, these options should be set for core 0, core 6, and core 12 on a
MSC8156AMC board).

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
12 Freescale Semiconductor

• For all cores, the JTAG settings such as the configuration file, CCS
executable, JTAG clock speed, and CCS timeout must be identical in
the CCS Advanced Settings dialog, as shown in Figure 12.

Figure 12. CCS Advanced Settings Dialog

NOTE
For more information on how to configure the hardware and the
CodeWarrior IDE’s settings for debugging a board with multiple devices,
consult the application note, AN3908, “A Guide to Configuring Multiple
MSC8156 Devices on a Single JTAG Chain Using CodeWarrior
Development Studio for StarCore DSP Architectures v10.0”.

2 Controlling Execution
The CodeWarrior debugger provides a number of run-control commands that can start, step, stop, and
restart a program. Many of these commands can be applied to

• One core

• All cores

• A specific set of cores

NOTE
The stepping command can only be applied to a single core, while the run
(resume), stop (suspend), terminate (kill) commands can apply to multiple
cores.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 13

2.1 Controlling Execution in One Core

To control the code execution for a specific core, select the core you want to control in the Debug view
by clicking on one of the lines within its thread. Next, select the control action. Control actions can be
specified by clicking on one of the standard icons for Restart, Resume (Run), Suspend (Stop),
Terminate (Kill), Step into, Step over and Step out (Step Return) in the view’s toolbar, as shown in
Figure 13.

Figure 13. The Code Execution Controls

Alternatively, use the Run menu choices of Restart, Resume, Suspend, Terminate, Step Into, Step
Over or Step Return to issue control commands.

2.2 Controlling Execution on Multiple Cores

In order to apply a run-control command to a specific set of cores, a multicore group must be defined
first. There is no need to define a multicore group if you intend to debug on all the cores. Per default,
multicore run-control commands apply to all the loaded cores.

2.2.1 Define a Multicore Group

To create a multicore group:

1. Enter the Debug perspective and start a multicore debugging session.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
14 Freescale Semiconductor

2. At the top of the Debug view, click on the blue M to expand the Multicore Groups menu.
Select Edit Multicore Groups, as shown in Figure 14.

Figure 14. Using the MultiCore Groups Menu to Create a Multicore Group

3. In the Multicore Groups dialog, click New.

4. In the New Multicore Group dialog, select the target device (MSC8156 in this example). Then
click OK, as Figure 15 shows.

Figure 15. Choosing the Target Processor for a Multicore Group

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 15

5. In the Multicore Groups dialog, check those cores that should be part of the group, as shown in
Figure 16.

Figure 16. Placing Cores in the Multicore Group

6. Click Apply.

7. To define additional multicore groups, repeat steps 4, 5, and 6 for each new group.

8. Click OK when done.

Clicking on the arrow adjacent to the M icon displays the Multicore Group menu choices and the
names of available multicore groups, as shown in Figure 17.

Figure 17. The Multicore Groups Menu Displaying a List of Available Multicore Groups

2.3 Multicore Control Commands

To control the code execution on multiple cores:

1. Select which multicore group to apply the command to. To do this, click on the arrow next to the
blue M icon.

⎯ To apply the command to all cores currently in debug mode, make sure the menu choice Use
All Cores is checked.

⎯ To apply the command to one or several multicore groups, make sure the menu choices for
these groups are checked.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
16 Freescale Semiconductor

2. Once you have selected the set(s) of cores to apply the command to, click on one of multicore
control icons in the Debug view’s toolbar to issue a Multicore Restart, Multicore Resume
(Run), Multicore Suspend (Stop) and Multicore Terminate (Kill) command. These icons are
shown in Figure 18.

Figure 18. Multicore Code Execution Controls

Alternatively, use the Run menu choices of Multicore Restart, Multicore Resume, Multicore
Suspend and Multicore Terminate to issue run-control commands.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 17

3 Displaying the Context of a Specific Core
When debugging a multicore application, the content of the debugger views always reflect the context of
the core that has focus in the Debug view, as shown in Figure 19.

Figure 19. A Multicore Debug Session in Progress

In the figure, the debugger displays the context for core 4, because it is chosen in the Debug View.
Therefore, the variables displayed in the Variables view are those for core 4. Likewise, the Memory
Dump view shows content of virtual memory for core 4, as does the MMU Configurator view for the
MMU configuration.

To display the context of a different core:

1. In the Debug view, expand the launch configuration of the desired core.

2. Click on one of the lines within its thread in the expanded configuration display.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
18 Freescale Semiconductor

4 Breakpoints
The CodeWarrior debugger allows you to set two kinds of breakpoints:

• Software breakpoints: The debugger inserts a “debug” instruction at an instruction-aligned
address in memory that represents the source code line where a breakpoint is desired.

• Hardware breakpoints: The debugger uses the on-chip emulator (OCE) module, which is a
dedicated hardware block that manages breakpoints and their trigger conditions.

In order to set a software or hardware breakpoint:

1. Right-click in the marker bar area on the left side of an editor, beside the source line where the
breakpoint should be set.

2. In the drop down menu that appears, select Set Special Breakpoint and then select Software
Breakpoint or Hardware Breakpoint, depending on the kind of breakpoint required. See
Figure 20.

Figure 20: Special Breakpoint Menu

When a breakpoint (software or hardware) is set in shared code, it is activated on all cores by default.
That means an application stops in any core as soon as its code execution triggers the breakpoint
condition.

4.1 Applying Breakpoints to Selected Cores

The CodeWarrior debugger provides the ability to define the breakpoint on only a set of specific cores.
This is done as follows:

1. Set your breakpoint the usual way.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 19

2. Right-click on the breakpoint icon in the marker bar and select Breakpoint Properties.

The Breakpoint Properties dialog opens.

3. Switch to the Filtering Panel by clicking on the Filtering option, as shown in Figure 21.

Figure 21. Specifying the Cores That Respond to a Breakpoint

4. Uncheck the cores on which the breakpoint will not apply.

5. Click OK.

From now on, the breakpoint affects only to the selected cores. That is, it will be ignored by the
unchecked cores.

NOTE
A software breakpoint applied to specific cores that happens to be set in
shared code can break the application’s real-time execution. This is
because a software breakpoint in shared code always temporarily halts
every core that executes it. The debugger must check the core’s ID and if
it is set as disabled, the debugger resumes the core’s execution. The
overhead of this check has an impact on runtime behavior and the caches
if the processor is not running in cache coherency mode.

4.2 Applying a Breakpoint to the Current Core Only

During the debugging of an application, all future breakpoints can be limited to the current debugging
context. This is done as follows:

1. Debug the project.

2. Set the focus for the core to be debugged by clicking on one of the lines within its thread in the
Debug view.

3. Switch to the Breakpoints view.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
20 Freescale Semiconductor

4. Click the Limit New Breakpoints to Active Debug Context icon from the Breakpoint view, as
show in Figure 22.

Figure 22. Limiting the Debugging Context of Breakpoints

From now on, all breakpoints are set only in the core being debugged.

Click the same icon in the Breakpoints view to return breakpoint activity to its normal behavior. (That
is, a breakpoint is set in all of the cores).

NOTE
A software breakpoint applied to specific cores that happens to be set in
shared code can break the application’s real-time execution. This is
because a software breakpoint in shared code always halts every core that
executes it. The debugger must check the core’s ID and if it is set as
disabled, the debugger resumes the core’s execution. The overhead of this
check has an impact on runtime behavior and the caches if the processor is
not running in cache coherency mode.

5 Watchpoints
The CodeWarrior debugger’s handling of watchpoints is similar to breakpoints handling. There is one
restriction though: the debugger only allows hardware watchpoints. The tools do not support software
watchpoints. Therefore, when watchpoint is set, it applies to all of the cores.

Filtering can be specified in the same way as for breakpoints to specify those cores on which the
watchpoint should apply, or to limit a watchpoint to the current core. Refer to sections 4.1 and 4.2 for
more information.

6 Command Line Interface
The CodeWarrior debugger provides a command line interface through its Debugger Shell view. This
view is a console where you can enter debugger and Tcl commands that control the execution of the
cores. There are also commands that display or modify the contents of memory. Tcl scripts can be used
to set up complex debugging scenarios or to automate testing.

As the Debugger Shell is not a default view, it must be started manually. This can be done in two ways:

• From the C/C++ Perspective: Choose Window > Other > Debug > Debugger Shell.
• From the Debug Perspective: Choose Window > Show View > Debugger Shell.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 21

6.1 Starting a Multicore Debugging Session

The Debugger Shell’s command line can be used to begin a multicore debug session where all of the
cores start at once, or where each core starts separately. For example, given a launch group called
MyAppMSC8156.launch, a multicore debug session can be started using the following command:

debug MyAppMSC8156

Alternatively, each launch configuration can be started separately, as follows:

debug “testMSC8156 - C_Debug_8156_HW - MSC8156 ADS Core 00”
debug “testMSC8156 - C_Debug_8156_HW - MSC8156 ADS Core 01”
debug “testMSC8156 - C_Debug_8156_HW - MSC8156 ADS Core 02”
debug “testMSC8156 - C_Debug_8156_HW - MSC8156 ADS Core 03”
debug “testMSC8156 - C_Debug_8156_HW - MSC8156 ADS Core 04”
debug “testMSC8156 - C_Debug_8156_HW - MSC8156 ADS Core 05”

Starting each core separately is useful when other commands must be issued before starting the next
core with a debug command.

6.2 Running/Stopping Multiple Cores

Like the GUI version of the multicore debugging interface, to use multicore commands with the
Debugger Shell, a multicore group must be defined first. This is necessary only if you want to apply
multicore run control commands to a subset of the cores only. Per default the multicore commands apply
to all the cores being loaded.

NOTE
All Tcl commands involved with multicore debugging have the prefix
mc::.

6.2.1 Defining a Multicore Group

To determine which architectures/types are supported by the Debugger Shell, enter following command:

mc::type

The command mc::group allows the definition of multicore groups for a specific architecture. For
example, to create a new multicore group for a StarCore MSC8156 processor architecture, use the
following command:

mc::group new MSC8156

This command can be used to create multiple groups. After a group is created, entering the command
mc::group without arguments displays a list of currently defined groups:

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
22 Freescale Semiconductor

mc::group
Index Group
----- --------------
 0 MSC8156
 0.0 MSC8156
 0.1 MSC8156
 0.2 MSC8156
 0.3 MSC8156
 0.4 MSC8156
 0.5 MSC8156

NOTE
The list shows that a multicore group for a MSC8156 processor type has
been assigned an index of 0 (the default). This index number is used in
certain multicore commands to reference the group. Also, note that each
core in the group has its own sub-index number. That is, core 0 has an
index of 0.0, core 1 has an index of 0.1, and so on. The sub-index number
provides a reference to a specific core in the group.

The command mc:group rename is used to rename the different groups and give them meaningful
names. For example, to change the previously created group from MSC8156 to cores_0_3, enter:

mc::group rename 0 “cores_0_3”

In the above command, the 0 refers to the index of the newly-created multicore group. You can obtain
group’s index using the command mc::group.

At the end of a debugger script, it is good practice to delete all multicore groups previously created
using the command mc::group remove or mc::group removeall. For instance, to remove the
group generated above, enter the following command:

mc::group remove “cores_0_3”

6.2.2 Controlling Code Execution on Multiple Cores

To control code execution on several cores:

1. Select the multicore group and cores that the commands are applied to. Use the command
mc::group enable to select the group and its cores.

⎯ To enable cores 0, 1, 2 and 3 in multicore group that has an index of 0, enter following
commands:

mc::group enable 0.0
mc::group enable 0.1
mc::group enable 0.2
mc::group enable 0.3
To enable all cores in group with index 0, enter following command:

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 23

mc::group enable 0

2. Once the set of cores is selected, every future multicore control commands issued affects only
the chosen cores. For example:

#Resume all enabled cores
mc::go
#Suspend all enabled cores
mc::stop
#Terminate all enabled cores
mc::kill
#Restart all enabled cores
mc::restart

6.2.3 Controlling Code Execution on a Single Core

The standard commands restart, go (resume), halt (suspend) and kill (terminate) are used to
control a single core. However, before using the command, the core must be selected. This is done using
command switchtarget. Like the mc::group command, when switchtarget is issued
without an argument, it displays a list of cores.

For example, suppose a test is to be performed on a core with an index of 1 only. This is done through
following commands:

List all targets currently in debug session
switchtarget
--on-the-fly-connection-1---
 Index Status Thread Process CPU Target
 *0 Stopped 0x0 0x8000 cpuSC100Big testmsc8156.eld
 1 Stopped 0x0 0x8001 cpuSC100Big c1_testmsc8156.eld
 2 Stopped 0x0 0x8002 cpuSC100Big c2_testmsc8156.eld
 3 Stopped 0x0 0x8003 cpuSC100Big c3_testmsc8156.eld
 4 Stopped 0x0 0x8004 cpuSC100Big c4_testmsc8156.eld
 5 Stopped 0x0 0x8005 cpuSC100Big c5_testmsc8156.eld

Set core with index 1 the current core
switchtarget 1
Resume execution on current core
run

NOTE
The switchtarget command has no impact on any of the Debug
Perspective views outside of the Debugger Shell. That is, after executing a
switchtarget command, the context of the Variables, Memory, and
other views remain unchanged.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
24 Freescale Semiconductor

NOTE
When debugging a multicore application with a Tcl command script, it is
recommended that the following command be issued before the debug
session is started:

switchtarget –ResetIndex

Issuing the switchtarget –ResetIndex command before starting the debug sessions ensures that
all of the cores are always associated with the same index. That is, core 0 is associated with index 0,
core 1 with index 1, and so on.

6.3 Core-Specific Commands

Those debugger commands that do not start with a mc:: prefix apply only to the current core.
Therefore, it is important to switch to the appropriate core using the command switchtarget before
issuing a command.

Debugger commands that apply only to the default core are shown in Table 2.

Table 2. Debug Commands That Act on One Core

ca::* finish nexti setpc

caln* funcs redirect stack

change getpid reg step

copy go restart stepi

disassemble kill restore stop

display mem run var

evaluate next save

6.4 Breakpoints

When a breakpoint is set using the bp command in the Debugger Shell, it is valid for all cores.

6.5 Watchpoints

When a watchpoint is set using the watchpoint command in the Debugger Shell, it is valid for all
cores.

6.6 Example Multicore Debugging Script

Here is an example of a simple debugging script for a multicore application:

Reset core index
switchtarget -ResetIndex

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 25

start debug session
debug TestMsc8156

clear all breakpoints

bp all off

Set Breakpoints at entry point of function func1
bp func1

run till breakpoint is executed
mc::go

#wait till all cores reach the breakpoint
wait 10000

display all available target
switchtarget

activate core 1
switchtarget 1

step twice on core 1
step
step

print current value of PC
display PC

#switch to core 0
switchtarget 0

print value of PC
display PC

NOTE
More information on how to use Tcl to manage breakpoints and automate
testing can be found in the Application Note, AN4114 “CodeWarrior
Debugger TCL Scripting by Example”.

7 Tracing and Profiling
While debugging a multicore application, the code’s execution can be profiled for any number of cores:
one, a subset of cores, or all of them.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
26 Freescale Semiconductor

For each of the cores to be profiled, the following configuration must be performed:

1. Open the Debug Configuration dialog.

2. Switch to the Trace and Profile tab.

3. Check the Enable Trace and Profile option, as shown in Figure 23.

Figure 23. Activating the Code Trace and Profiling Feature

4. Adjust the other settings as required.

5. Click on Advanced Settings and check the VTB settings.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 27

6. If Compute VTB location automatically is checked, make sure the symbols _VTB_start and
_VTB_end have different values for each core you intend to profile in the application’s
application.map file, as shown in Figure 24.

⎯ If the project was created by the wizard without SmartDSP OS support, make sure
_ENABLE_VTB is set to 1, 2 or 3 in mmu_attr.l3k. Refer to comments in
mmu_attr.l3k for information on meaning of the different settings for _ENABLE_VTB.

⎯ If the project was created by the wizard with SmartDSP OS support, make sure USING_VTB
is set to 1 in os_msc815x_link.l3k. This will reserve some memory in DDR1 for VTB
with each core.

Figure 24. Configuring the VTB settings

7. If Compute location automatically is unchecked, a memory region for the VTB must be

specified. This memory region needs to be different for each core, and should not overlap with
the memory regions for application code and data.

⎯ For this configuration, it is critical that the VTB buffers occupy separate and unused memory
regions.

8. Apply the changes to all of the cores to be profiled.

9. Close the Debug Configuration dialog.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
28 Freescale Semiconductor

10. After the application executes and terminates, for all of the cores that were in use a Trace and
Profile Results view appears, as shown in Figure 25.

Figure 25. Display to Access the Various Trace Results

The data for each core profiled can be displayed by clicking on the Trace, Critical Code,
Coverage, or Performance option associated with each core in this view.

8 Multi-Device Considerations
The following section discussed how to configure the CodeWarrior tools to debug a system with
multiple devices. That is, the system that has two or more StarCore processors on it.

8.1 Configuring the CodeWarrior Debugger to Use Multiple Devices

The CodeWarrior tools must be configured properly in order to debug multi-device systems without
spurious issues appearing. For information on how to do this, refer to the application note, AN3908, “A
Guide to Configuring Multiple MSC8156 Devices on a Single JTAG Chain Using CodeWarrior
Development Studio for StarCore DSP Architectures v10.0”. This document appears as the file
AN3908.Multi-DSP JTAG Chain.pdf, and can be found in the {CodeWarrior
installation}SC\Help\PDF directory.

8.2 Group Hierarchy

When debugging on multiple devices, a group hierarchy can be defined in order to debug all of the
device’s cores with a single mouse click.

Section 1.1.1 describes how to define a launch group that manages all six cores on a MSC8156 device.
If the system has multiple MSC8156 devices in the JTAG chain, a launch group can be defined for each
one. A master launch group is then defined that includes the launch group for every device in the
system.

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 29

8.2.1 Example for a MSC8156AMC Board

The MSC8156AMC board is a system that contains three MSC8156 processors. To have the
CodeWarrior debugger manage and control all eighteen cores, define a launch group that starts all
eighteen cores with a single mouse click. Proceed as follows:

1. Create a launch group named testAMC - Processor 1 that manages all of the cores on the
first device (cores 00 – 05) by following the steps outlined in section 1.1.1 and 1.1.2. The results
appear in Figure 26.

Figure 26. Making the Launch Group Processor 1 That Controls Cores 0 Through 5

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
30 Freescale Semiconductor

2. Create a launch group named testAMC - Processor 2 that manages all of the cores on the
second device (cores 06 – 11) by following the steps in section 1.1.1 and 1.1.2. See Figure 27.

Figure 27. The Launch Group Processor 2 That Manages Cores 6 Through 11

3. Create a launch group named testAMC - Processor 3 that manages all of the cores on the
third device (cores 12 – 17) by following the steps described in section 1.1.1 and 1.1.2. See
Figure 28.

Figure 28. Launch Group Processor 3 That Manages Cores 12 Through 17

 Debugging Multicore StarCore DSP Applications with Eclipse, Rev. 0
Freescale Semiconductor 31

4. Finally, create a launch group named testAMC - All Processors that incorporates the
three launch groups just made in steps 1, 2, and 3. The results are shown in Figure 29.

Figure 29. Making the Master Launch Group That Controls the Three Other Launch Groups

To start debugging on all eighteen cores, select the testAMC – All Processors launch group in
the Debug Configuration window and click on Debug. To start debugging on processor 1 only, just
select the testAMC – Processor 1 launch group in the Debug Configuration window and click
on Debug.

NOTE
When defining a launch group for multiple devices, the Execute Reset
option must be checked for only one core in the entire system (usually
core 0 on Processor 1). Make sure that the launch group for that device is
specified first in the All Processors launch group.

Document Number:
Rev:0

Date: 06/2010

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution
Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior and StarCore are trademarks of Freescale Semiconductor,
Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective
owners.

© 2010 Freescale Semiconductor, Inc.

	Debugging Multicore StarCore DSP Applications with Eclipse
	1 Starting the Debugger with Multiple Cores
	1.1 Option One: Starting All Cores Simultaneously
	1.2 Option Two: Launch Cores One by One
	1.3 Troubleshooting

	2 Controlling Execution
	2.1 Controlling Execution in One Core
	2.2 Controlling Execution on Multiple Cores
	2.3 Multicore Control Commands

	3 Displaying the Context of a Specific Core
	4 Breakpoints
	4.1 Applying Breakpoints to Selected Cores
	4.2 Applying a Breakpoint to the Current Core Only

	5 Watchpoints
	6 Command Line Interface
	6.1 Starting a Multicore Debugging Session
	6.2 Running/Stopping Multiple Cores
	6.3 Core-Specific Commands
	6.4 Breakpoints
	6.5 Watchpoints
	6.6 Example Multicore Debugging Script

	7 Tracing and Profiling
	8 Multi-Device Considerations
	8.1 Configuring the CodeWarrior Debugger to Use Multiple Devices
	8.2 Group Hierarchy

