

Quick Start Guide
Battery Management System (BMS)
with MPC5775B-EVB and RD33771CDSTEVB

NXP evaluation boards for high-voltage battery management

REQUIRED HARDWARE FOR THE DEMO

Board Part Number	Description	Weblink
MPC5775B-EVB	MPC5775B EVB with MC33664 TPL interface support	NXP link
RD33771CDSTEVB	MC33771C based Battery Cell Controller Evaluation board	NXP link
BATT-14CEMULATOR	14 Cell battery emulator board	NXP link
PCAN-USB adapter	CAN monitor	<u>PHYTools</u>

MPC5775B-EVB

RD33771CDSTEVB

BATT-14CEMULATOR

PCAN-USB

REQUIRED SOFTWARE FOR THE BMS DEMO

Item	Description	Weblink
S32 Design Studio IDE	NXP S32 Design Studio IDE for PowerPC V2.1	NXP link
MPC5775B-BatterySystem SDK	S32DS based Jump start demo software for the MPC5775B-EVB using SDK 3.0.0 with FreeRTOS	NXP link
MPC5775B-BatterySystem GUI	Graphic User Interface software to monitor battery status via CAN interface.	NXP link
Python 3.7 64-bit with PyQt5 and NumPy	Install the Python 64-bit version, then install the PyQt5 and NumPy packages	Python link

1 Download Software

Download installation software and documentation under "Jump Start Your Design" at nxp.com/MPC5775B-BatterySystem

GET TO KNOW THE BMS DEMO

Note: Numbers correspond to the steps to follow for setup.

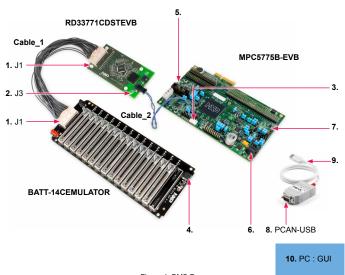
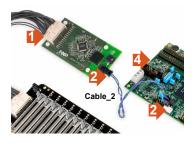


Figure 1: BMS Demo

STEP-BY-STEP INSTRUCTIONS FOR BMS DEMO SETUP

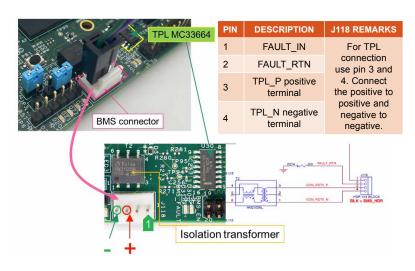
1 Connect BATT-14CEMULATOR and RD33771CDSTEVB

Connect the battery cell emulator board (BATT-14CEMULATOR) and the cell controller board (RDCV33771C) using Cable_1.


2 Connect RD33771CDSTEVB and MPC5775B-EVB for TPL link

Connect the cell controller board with battery management board using the Cable_2 as shown in the figure to the right. This will establish the TPL link for communication.

Either J1 or J2 can be connected to the RD33771CDSTEVB.


User must connect positive (+) terminal of MPC5775B-EVB's BMS interface connector (J118 – pin 3,4) to BMS cell controller module positive (+) terminal and negative terminal to negative terminal as shown in the pext slide

BMS APPLICATION SPECIFIC CONNECTIONS

APPLICATION SPECIFIC ITEM	MPC5775B-EVB	MPC5775E-EVB
Battery management connector	J118	Not supported

Power up BATT-14CEMULATOR & RD33771CDSTEVB

Connect the power supply to the BATT-14CEMULATOR. Powering the emulator board also powers the RDCV33771C cell controller board.

4 Connect the USB serial cable to MPC5775B-EVB and PC

Connect the micro-USB cable to J116 micro-USB port for OpenSDA connection for programming and debug.

Connect the USB side to the computer.

Refer MPC5775B-EVB QSG for more information.

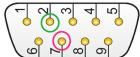
5 Power the MPC5775B-EVB

Connect 12V power supply to power socket on the Development board.

Make sure the status LEDs D14, D15, D16 and D32 for voltage levels 3.3V, 5V, 1.25V and 12V supply respectively are glowing green on the board

Connect the CAN with PCAN tool
Connect CAN High and Low signals of J78
to PCAN tool CAN high and low.

MPC5775B-EVB: J78 pin 2 is CAN0_High J78 pin 3 is CAN0_Low

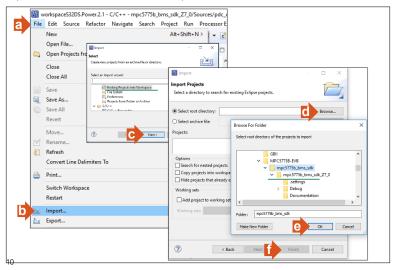

PIN	DESCRIPTION	REMARKS
1	5V	TJA1145T PHY
2	CAN1_0H	need to be enabled
3	CAN1_0L	via DSPI_B, Chip
4	GND	select CSB1. Use J58 & J60 for CAN module selection. By default connected to FlexCAN A/MCAN0.

7 Connect the CAN with PCAN tool

Connect the CAN H and CAN L signals of J78 of MPC5775B-EVB to PCAN USB CAN_H (pin 7) and CAN-L (pin 2) via two jumper cables.

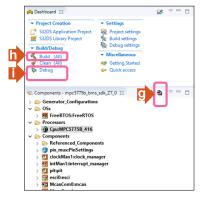
Pin Configuration

- +12V/+5V/Not Connected
- 2 CAN-L
- 3 CAN-GND/Not Connected 8 Not Connected
- 4 Not Connected
- 5 Not Connected


Pin Configuration

- CAN-GND/Not Connected
- 7 CAN-H
- - +12V/+5V/Not Connected

Import the MPC5775B_BMS_SDK_SW project to S32DS


Run the S32DS for PowerPC 2.1 and follow the steps "a to f" to import the MPC5775B_BMS_ SDK_SW project.

Generate Processor Expert Codes and Compile the binary image

Then build and run the program.

Follow the steps "g" to "i" to generate the processor expert codes, compile and build the image. Refer the MPC5775B-E EVB QSG for debug/flash the image.

10 Connect the PCAN tool USB to the PC

Connect the USB connector of PCAN tool to the computer USB port.

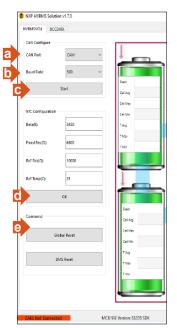
HOW TO RUN YOUR FIRST HELLO WORLD PROGRAM CONTINUED

Run the GUI software

Open the windows "Command Prompt" and execute the "Py Main.py" in the command shell.

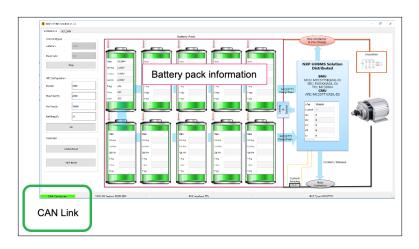
"Main.py" python file included in the GUI folder.

Make sure you first install the Python 3.7 64-bit version and necessary packages PyQt5 and NumPy prior to the above step. Refer the readme file in the downloaded software GUI folder.


Command Prompt 5.2(Virtualizer Runtime) - Py Main.py

C:\Users\nxa20245\Downloads\MPC5775B-PDC\Powertrain domain controller V 1.5.0\SW\GUI>Py Main.py

HOW TO RUN YOUR FIRST HELLO WORLD PROGRAM CONTINUED


12 Setup the GUI link

- a. Select CAN1
- b. Set CAN baud rate to 500Kbps
- c. Click "Start", now the CAN link establish with the main controller board
- d. Click "OK"
- e. Initiate global reset to BMS system by clicking "Global Reset"
- f. User able to observe the battery pack information shown in next slide

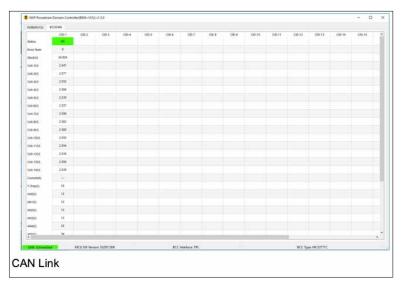

GUI INTERFACE 1/2

Figure below shows the GUI interface after communication has been established.

GULINTERFACE 2/2

Adjust the battery levels via BATT-14CEMULATOR and observe the GUI for individual cell data in "BCCDATA" tab.

REFERENCES

DOCUMENT	DESCRIPTION	LOCATION
MPC5775B-E-EVB-QSG	Quick Start Guide of MPC5775B-EVB	NXP web site
AN12875	Getting Started with MPC5775E-EVB and MPC5775B-EVB	NXP web site
MPC5775E RM	MPC5775E/MPC5775B Reference Manual	NXP web site
MPC5775E DS	MPC577E/MPC5775B Data Sheet	NXP web site
OpenSDA	OpenSDA User's guide	NXP web site
S32DS	S32 Design Studio for Power Architecture v2.1 - Windows/Linux	NXP web site
MC33FS6520LAE	MC33FS6520 System Basis Chip (Power supply and drivers) Data Sheet	NXP web site
FS65SBC-SDK-SW	FS6500/FS4500 Generic Embedded Software Driver (Software Development Kit)	NXP web site
TJA1100	TJA1100 100BASE-T1 PHY For Automotive Ethernet	NXP web site
TJA1145	High-speed CAN transceiver for partial networking	NXP web site
MC33664_SDS	Isolated Network High-Speed Tranceiver Short Data Sheet	NXP web site
MC33664	Isolated Network High-Speed Tranceiver Full Data Sheet	NXP web site
MC33771C	Battery Cell Controller Full Data Sheet	NXP web site
RD33771CDSTEVB	Evaluation Board for MC33771C BCC with Isolated Daisy Chain Communication	NXP web site
BATT-14CEMULATOR	14-Cell Battery Pack Emulator to Supply MC33771C BCC EVBs	NXP web site
HM2102NL	Pulse Electronics Dual BMS transfomer	Pulse Electronics
HM2103NL	Pulse Electronics Single BMS transformer	Pulse Electronics

SUPPORT

Visit <u>www.nxp.com/support</u> for a list of phone numbers within your region.

WARRANTY

Visit <u>www.nxp.com/warranty</u> for complete warranty information.

AUTOMOTIVE COMMUNITY

Visit https://community.nxp.com/community/s32

PRODUCT COMMUNITY

Visit https://community.nxp.com/community/s32/MPC5xxx

software and documentation under "Jump Start Your Design" at nxp.com/MPC5775B-BatterySystem

nxp.com/MPC5775B-BatterySystem

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by NXP Semiconductors is under license.© 2020 NXP B.V.

Document Number: BMSSOLQSG REV 0