CodeWarrior Development Studio for
Microcontrollers V10.x ColdFire
Assembler Reference Manual

Document Number: CWMCUCFASMREF
Rev 10.6, 02/2014

<&,

Z“ freescale

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

2 Freescale Semiconductor, Inc.

g |

Contents
Section number Title Page
Chapter 1
Introduction
L1 REIEASE INOLES ...ttt ettt ettt ettt et et e b bt e bt bt e bt ea e b e e b sa e e b e b saeene b e 7
1.2 I THIS BOOK....ciiiiiiiiiiiiccc ettt s 7
1.3 WHETE t0 LLEAIT IVIOT@........eeuiitietieiiett ettt ettt ettt et s h et e et e et e s bt e e e bt et e es e e bt em b e e b e en b e es e et e emeeebeenteeseenbeeneenseenes 8
1.4 Accompanying DOCUMENTALION.c..cevutiitrtirtiitieteeiteet ettt ettt ettt st e sbe e bt eat e et e e s bt e bt esbeeasesbbenbe e bt embesatesbeenbeeneeeaee 8
Chapter 2
Assembly Language Syntax
2.1 Assembly Language STAtBIMEITS.cccuirutirtiitirteriteteete ettt ettt et sb et et st e bt e bt eatesbeesbeemeeeaeesbeeaeeseesbeenbeenaeenee 11
2.2 SEALEINEINE SYNMTAX.¢euutteitieiieeiteetee et te et e sttt e stteebteebeeeabeesabee sttt e shbeesteeabaeenbeesabeesabeessbeessbeansaeeabaeeabeesabeesabeesabeenneeenbaeenseenates 12
B TN 4111010 OSSR U USSR 12
2301 LaDCIS o bbbt b e sa et be s s b e sa et 13
2.3.1.1 NoN-Local Labels........cccooiiiiiiiiiiiiiiiiicieceeee et 13
2.3.1.2 LOCAL LLADRIS. ...ttt ettt ettt ettt et h ettt ae ettt eae et e et e naeeneenean 14
2.3.1.3 Relocatable Labels..........cccuoiiiiiiiiiiiiiiiiiici e 15
2.3.2 EQUALES. ..t euteeiiteiteet ettt ettt ettt ettt h e e bt e b e h bt bt e e bt e e h bt e bt e ea bt e sa bt e bt e e b e e eabeeeht e e bt e eabee st e ehteeabeeeabeenbae s 15
2.3.3 Case-Sensitive IACNTIIIEIS.couieiiiiit ettt ettt ettt et e bt et e e te s eeeseeesbeebeenteeneeeneenbeenseans 17
2.4 CONSLANES.ouiiiieiieiieit ettt ettt sttt s e e et be bbb s bt e e s e e ettt et e et et e b e et et e s e st bt e bt bt bt ea e eh e bt bbb s ae et 17
241 INEEEET CONSTANES. ...u.eeutteiieeiteetie et ette sttt et e sttt e bt e sttt ebeesabeeabtesabeeabeesate e bteeaseeabeeesbeeaseesabeanbeesaseansaesaseanbeesnseeseenns 17
2.4.2 Floating-PoOINt CONSTANTS.cccuietieitieiietieieeteeetteteeteesteeteeteenteettesteetesaee st eneesseensesseeaseaasesseenseesseaseensesseanseansenseans 18
243 Character CONSLANES.cuiiiiiiiititeite ettt ettt sttt st et eae et et e et e e e b s e b e s b eaeeaeeaeess et esne s esaebesaens 18
2.5 B XPTESSIONS. .t eutttiutieeitteitt ettt ettt ettt ettt e bt e st e e e abe ettt et e e e at e e sa bt e bt e ea bt e e Rt e e bt e e bt e ea bt e e ab e e bt e e bt e e nb e e eat e e ehbe e bt e e beeeateenhbeebeenates 19
B I 0] 11111 1<3 £SO 20
2.7 DAt ALIZIIMEIL.c...eteiiiiiieitteie ittt ettt st b et e s bt et sb e e bt eb b e e bt et e e bt e bt eb e e bt ea bt eh e et e ea b e bt e st e eh e e bt eat e bt et ebee et enee 21
Chapter 3
Using Directives
3.1 PreprOCESSOT DITECTIVES. ...cuuieutiriiiriteriiettete ettt ettt ettt ettt e at et e bt at e ea b e b e bt ea bt e bt e s bt e bt e bt esbesbeesbe e bt emaesbtesbeenbeenaeeaee 24
Bl HAELINE. ..o e et ettt 24

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc. 3

h o
g |

|
Section number Title
312 Helifi e
B3 HLSCu ittt an
314 HENIf oo
315 HOITOL .o s
B1.0 FHE s
BT HHEACT oo
318 N
3.1.9 HNCIUAL. ..o e e
31100 HINC vttt
U111 HPTAZIMNA. ettt ettt sttt st
3,112 HUNAETING. ..o

3.2 Native Assembler Directives

3.2.1

322

323

324

325

3.2.6

3.2.7

3.2.8

329

3.2.10 .

3211 .

3212 .

3213 .

32.14 .

3.2.15

3.2.16 .

3.2.17

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
3218 HLCieeeeeee et h et a ettt 40
32019 IO .ttt b bt h et bbbt st b et bttt b et b et be st b et ene 41
32200 FUNCHOMN. ...ttt e b ettt et a et b e b e ae et e b ettt et sa e 42
3221 GLODAL ..ttt sttt 42
3222 bbb bt h et h e et h et b et b et b e bbbttt b et ene 42
3223 ittt et h et bttt h et bt a ettt 43
3224 JEAEL. ..ottt 44
TN T (1o [OOSR 44
3220 EE0u ettt et h ettt h et bt s a et et b et 45
B22T Bl e ettt ettt 45
3228 1@ttt bbbt bbb et b et bttt b et b e bbbt ene 46
3229 ettt h e et h et bttt a et bbbt b e 46
32300 EIICu ittt et ettt 47
3231 ENACT .ottt bbbt b et b ettt be e 48
3232 D8ttt h et h ettt h ettt et h et 48
3.2.33 ANCTUAC. ... bt 49
3234 HNC..eiiniitiiet et b bt h et bt h et bt E st E et h et b et h et b et b et b et bt be e 49
3235 0Nttt h et bbbt a bt h e bt e at e eh e et eh e e et eb e et b b bt e bt e b eb e bt et ebeenee 50
3230 LMACTO. ...ttt bbb e e s d et h e s e a e e b 50
TN I 11 ¢ | OSSO P PRSP 50
3238 LOTTSCE ettt bbbt b et h et h et b et 51
TR 1O B0 o] () FE OO OO U TR SOTRTUPPPT 51
32140 L0 ettt ettt h e e b et bt e bt et e e b et e eh et e bt e bt e eab e st e e eh bt e ab e e e bt e s bt et e e nateenateerae s 53
3241 PIAZIMA ..ttt ettt ettt ettt ettt et h et h et h et h bt e a et bttt h e e bt e a et bt et eh e e bt e h e s bt et sbe e bt ebbenheeibenbeen 54
3L2042 PTEVIOUS. .ecutieiutieuieetie et e ettt e et e eatte sttt e sttesateesabeeabeesa bt e saseeabeeeab e e e st e eabeeeab e e bt e e bt e eab e e e hb e e bt e ea bt e ehb e e bt e ebeeehbeebeeenbeennae s 54
TN TN 011 1o § eSS USSR 54
3244 TOUALA. ...ttt et et ettt ettt a st eh et ebe bbb 55
B2 DS e e a e b b et b e s ae s a b st 55
32040 LSDSS2. ettt b e h e bt bt e et e bt e e te e h e e bt ea bt eh e e bt e a b e eheen bt ea b e eh e et e en b e eheenbeen b e bt e teententean 55

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 5

g |

Section number Title Page
B2AT SAALA. ... e b e e a e et 55
32048 .SAALAD. ...ttt ettt h bttt at e e bt e bt e bt e et e e h e e eh e e bt et e eateehe e bt e bt eneeehee bt enteenteeneetean 55
32049 iSAALAZ.c..eiiiiiieet ettt et h et bt h et h et bbbt re e 56
32500 SSECHIOM. ...ttt e e h e et a e 56
TN B B F OO O ST USTPSRIURRRRRPIO 58
3252 tSROTT. ittt h et bbb sttt 58
BL2.53 ISIZBuuuiiiiiiiie e h e a e s a e b e a e et 59
3254 ISPACE...uiteteet ettt ettt h et a e h e a e a e h e bt e a e ue bt eh e eb e eb e ebe bt e bt bt sa et be e 59
32055 XLttt et h bttt h et btk h e a et e h et bbbttt e et a et bbb e 60
TR LT 1) € [T | | OO OO OO PO TP UPPRRPTOT 60
TN 3 74 o TSRS URSUSSURPRRRO 61

3.3 Providing Debugging INFOrMAtION.cccueiiiriiiiiiiiiiiieeeeteet ettt ettt b ettt sbeesbe et sbee e eaee 61

Chapter 4
Using Macros

4.1 DETINING IMACTOS. ..c.uteitiiieitieiteett ettt ettt ettt et b e b e et e h e sb e e bt ea bt s bt e bt e st e sh e e sbeemt e eaeesbe e bt eateeb e e bt e st e ebtesueenbeenbesbnenbeens 63
411 USING MACTO ATZUIMNEIILS. c...eeiutieiieetieeieesittentteeteesteesiteebeessbee sttt esbeeeabee sttt esstesabeesabeensseeabeessseensbeebeeenbeesnseenseesnses 65
4.1.2 MACTO REPEAL DIICCIIVES. ... eeutieuietienit ettt ettt ettt ettt ettt e bt eet e bt et e et e e bt em e e et e enteesee bt emeeeseenseeneesbeeneesneenseeneas 66

O B B U< o SO OO O OO OO OO P PO PSP UP RO PORSORPRO 66

AL12.2 LDttt h ettt et 67

T G T 1y oSSR 68

4.1.3 Creating Unique Labels and EQUALES.........cccocuiriiriiiiiriiiiieeetest ettt sttt st 68
414 NUMDET OF ATGUINEILS. ¢ ..eiitiiiiiieiiiteetterite et ettt et e sttt e stbe ettt estte ettt esbteebte e baeeasteebaeebeesabeeenbeesabaesnbeesabeesaseesanes 69

4.2 TNVOKING IMACTOS. c..cveviiietieiieitetieit ettt ettt ettt ettt ettt et ettt ettt et et e et et st et e ae e et et e st et e nesae b enaesaennenee 69

Chapter 5
ColdFire Assembler General Settings
5.1 Displaying ColdFire Assembler General SEIHNES.cc.eeouiriirtiertieieeiiesieeteetie st et ete st et eteeieesbee bt eseeseeesaeeseeneeseeeeeenes 71

Chapter 6
ColdFire-Specific Information

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

Chapter 1
Introduction

The CodeWarrior IDE includes assemblers that support several specific processors. This
manual explains the corresponding assembly-language syntax and IDE settings for these
assemblers. In this chapter:

» Release Notes

* In This Book

* Where to Learn More

* Accompanying Documentation

1.1 Release Notes

Release notes contain important information about new features, bug fixes, and
incompatibilities. Release notes reside in directory:

CWInStClllDir\MCU\Release_Notes

CWinstallDir is the directory the CodeWarrior software is installed into.

1.2 In This Book

This manual explains the syntax for assembly-language statements that the CodeWarrior
assemblers use. These explanations cover macros and directives, as well as simple
statements.

NOTE
For information about the inline assembler of the CodeWarrior
C/C++ compiler, refer to the Targeting Manual for your target
processor or the C Compilers Reference.

All the assemblers share the same basic assembly-language syntax. but instruction
mnemonics and register names are different for each target processor.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 7

wnere to Learn More

To get the most from this manual, you should be familiar with assembly language and
with your target processor.

Unless otherwise stated, all the information in this manual applies to all the assemblers.
The following table lists the general chapters of this manual - the chapters that pertain to
all the assemblers. This manual also includes a chapter that is specific to your target
processor.

Table 1-1. Chapter Descriptions

Chapter Title Description
Introduction Describes an overview about this manual.
Assembly Language Syntax Describes the main syntax of assembly language statements.
Using Directives Describes the assembler directives.
Using Macros Describes how to define and invoke macros.
ColdFire Assembler General Settings Describes the assembler settings that are common among
the assemblers.
ColdFire-Specific Information Refers to the ColdFire specific information.

The code examples in the general chapters are for x86 processors. If the corresponding
code is different for your target processor, the processor-specific chapter includes
counterpart examples.

1.3 Where to Learn More

Each assembler uses the standard assembly-language mnemonics and register names that
the processor manufacturer defines. The processor-specific chapter of this manual
includes references to documents that provide additional information about your target
processor.

1.4 Accompanying Documentation

The Documentation page describes the documentation included in the CodeWarrior
Development Studio for Microcontrollers v10.x. You can access the Documentation by:

* opening the sTarT HERE.html 1N <cwWInstallpirs\ucu\Help folder,

* selecting Help > Documentation from the IDE's menu bar, or selecting the Start >
Programs > Freescale CodeWarrior > CW for MCU v10.x > Documentation
from the Windows taskbar.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

8 Freescale Semiconductor, Inc.

g |

4
Chapter 1 Introduction

NOTE
To view the online help for the CodeWarrior tools, first
select Help > Help Contents from the IDE's menu bar.
Next, select required manual from the Contents list. For
general information about the CodeWarrior IDE and
debugger, refer to the CodeWarrior Common Features
Guide 1n this folder: <cwinstallpirs\McU\Help\PDF

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 9

}{ |

Accumpanying Documentation

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

10 Freescale Semiconductor, Inc.

Chapter 2
Assembly Language Syntax

This chapter explains the syntax of assembly language statements. It consists of these
topics:

* Assembly Language Statements
e Statement Syntax

* Symbols

* Constants

e Expressions

e Comments

* Data Alignment

2.1 Assembly Language Statements

The three types of assembly language statements are:

¢ Machine instructions
e Macro calls
¢ Assembler directives

Instructions, directives, and macro names are case insensitive: the assembler considers
Mov, Mov, and mov to be the same instruction.

Remember these rules for assembly language statements:

* A statement must reside on a single line; the maximum length of a statement is 512
characters.

* You can concatenate two or more lines into one statement by typing a backslash (\)
character at the end of lines. But such a concatenated statement must not exceed the
512-character limit.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 11

3
4

4
A

|
Swaement Syntax
* There is no limit to macro expansion, but individual statements and concatenated
statements must not exceed the 512-character limit.
» Each line of the source file can contain only one statement unless the assembler is
running in GNU mode. (This mode allows multiple statements on one line, with
semicolon separators.)

The processor-specific chapter of this manual tells you where find machine instructions
for your target processor. Other chapters of this manual provide more information about
assembler directives and macros.

2.2 Statement Syntax

The following listing shows the syntax of an assembly language statement. The following
table describes the elements of this syntax.

Listing: Statement Syntax

statement ::= [symbol] operation [operand] [,operand]... [comment]
operation ::= machine instruction | assembler directive | macro call
operand ::= symbol | constant | expression | register name

Table 2-1. Syntax Elements

Element Description
symbol A combination of characters that represents a value.
machine_instructionsymbol A machine instruction for your target processor.
assembler_directivesymbol A special instruction that tells the assembler how to process

other assembly language statements. For example, certain
assembler directives specify the beginning and end of a

macro.

macro_callsymbol A statement that calls a previously defined macro.

constantsymbol A defined value, such as a string of characters or a numeric
value.

expressionsymbol A mathematical expression.

register_namesymbol The name of a register; these names are processor-specific.

commentsymbol Text that the assembler ignores, useful for documenting your
code.

2.3 Symbols

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

12 Freescale Semiconductor, Inc.

Chapter 2 Assembly Language Syntax
A symbol is a group of characters that represents a value, such as an address, numeric
constant, string constant, or character constant. There is no length limit to symbols.

The syntax of a symbol is:
symbol ::= label | equate
In general, symbols have file-wide scope. This means:
* You can access the symbol from anywhere in the file that includes the symbol

definition.
* You cannot access the symbol from another file.

However, it 1s possible for symbols to have a different scope, as the Local Labels
subsection explains.

2.3.1 Labels

A label 1s a symbol that represents an address. A label's scope depends on whether the
label is local or non-local.

The syntax of a label is:
label ::= local label [:] | non-local label[:]

The default settings are that each label ends with a colon (:), a label can begin in any
column. However, if you port existing code that does not follow this convention, you
should clear the Labels must end with ':' checkbox of the Assembler settings panel.
After you clear the checkbox, you may use labels that do not end with colons, but such
labels must begin in column 1.

NOTE
For more information, refer to the section ColdFire Assembler
General Settings.

2.3.1.1 Non-Local Labels

A non-local label 1s a symbol that represents an address and has file-wide scope. The first
character of a non-local label must be a:

* letter (a-z or A-Z),
e period (.),

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 13

symools

 question mark (?), or an
e underscore ().

Subsequent characters can be from the preceding list or a:

e numeral (0-9), or
* dollar sign ($).

2.3.1.2 Local Labels

A local label 1s a symbol that represents an address and has local scope: the range
forward and backward within the file to the points where the assembler encounters non-
local labels.

The first character of a local label must be an at-sign (@). The subsequent characters of a
local label can be:

e letters (a-z or A-Z)
* numerals (0-9)

e underscores (_)

* question marks (?)
e dollar sign. ($)

* periods (.)

NOTE
You cannot export local labels; local labels do not appear in
debugging tables.

Within an expanded macro, the scope of local labels works differently:

» The scope of local labels defined in macros does not extend outside the macro.
* A non-local label in an expanded macro does not end the scope of locals in the
unexpanded source.

The following listing shows the scope of local labels in macros: the esxre label defined in
the macro does not conflict with the esx1p label defined in the main body of code.

Listing: Local Label Scope in a Macro

MAKEPOS .MACRO
cmp #1, dO
bne @SKIP
neg do
@SKIP: ;Scope of this label is within the macro
. ENDM
START :

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

14 Freescale Semiconductor, Inc.

g |

L __4
Chapter 2 Assembly Language Syntax

move COUNT, do

cmp #1, dO

bne @SKIP

MAKEPOS
@SKIP: ;Scope of this label is START to END
;excluding lines arising from

;macro expansion

addg #1, do
END: rts

2.3.1.3 Relocatable Labels

The assembler assumes a flat 32-bit memory space. You can use the expressions listed in
the following table to specify the relocation of a 32-bit label.

NOTE
The assembler for your target processor may not allow all of
these expressions.

Table 2-2. Relocatable Label Expressions

Expression Represents

label The offset from the address of the label to the base of its
section, relocated by the section base address. It also is the
PC-relative target of a branch or call. It is a 32-bit address.

labelel The low 16-bits of the relocated address of the symbol.

label@h The high 16-bits of the relocated address of the symbol. You
can OR this with 1abelel to produce the full 32-bit relocated
address.

label@ha The adjusted high 16-bits of the relocated address of the

symbol. You can add this to 1abele@l to produce the full 32-
bit relocated address.

label@sdax For labels in a small data section, the offset from the base of
the small data section to the label. This syntax is not allowed
for labels in other sections.

labelegot For processors with a global offset table, the offset from the
base of the global offset table to the 32-bit entry for label.

2.3.2 Equates

An equate 1s a symbol that represents any value. To create an equate, use the .equ Or .set
directive.

The first character of an equate must be a:

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 15

symools

* letter (a-z or A-Z),

* period (.),

* question mark (?), or
e underscore (_)

Subsequent characters can be from the preceding list or a:

e numeral (0-9) or
* dollar sign ($)

The assembler allows forward equates. This means that a reference to an equate can be in
a file before the equate's definition. When an assembler encounters such a symbol whose
value is not known, the assembler retains the expression and marks it as unresolved. After
the assembler reads the entire file, it reevaluates any unresolved expressions. If
necessary, the assembler repeatedly reevaluates expressions until it resolves them all or
cannot resolve them any further. If the assembler cannot resolve an expression, it issues
an error message.

NOTE
The assembler must be able to resolve immediately any
expression whose value affects the location counter. If the
assembler can make a reasonable assumption about the location
counter, it allows the expression. For example, in a forward
branch instruction for a ColdFire processor, you can specify a
default assumption of 8, 16, or 32 bits.

The code of the following listing shows a valid forward equate.

Listing: Valid Forward Equate

.data

.long alloc_size

alloc_size .set rec_size + 4

; a valid forward equate on next line
rec_size .set table start-table end

.text; ...
table start:

éabié_end:
However, the code of the following listing is not valid. The assembler cannot

immediately resolve the expression in the .space directive, so the effect on the location
counter is unknown.

Listing: Invalid Forward Equate

;jinvalid forward equate on next line
rec_size .set table start-table end
.space rec_size
.text;
table start:

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

16 Freescale Semiconductor, Inc.

Chapter 2 Assembly Language Syntax

table_end:

2.3.3 Case-Sensitive Identifiers

The Case-sensitive identifiers checkbox of the Assembler settings panel lets you control
case-sensitivity for symbols:

* Check the checkbox to make symbols case sensitive - symi, sym1, and sym1 are three
different symbols.

* Clear the checkbox to make symbols not case-sensitive - syu1, sym1, and sym1 are the
same symbol. (This is the default setting.)

2.4 Constants

The assembler recognizes three kinds of constants:

* Integer Constants
* Floating-Point Constants
* Character Constants

2.4.1 Integer Constants

The following table lists the notations for integer constants. Use the preferred notation for
new code. The alternate notations are for porting existing code.

Table 2-3. Preferred Integer Constant Notation

Type Preferred Notation Alternate Notation
Hexadecimal 0x followed by a string of hexadecimal |$ followed by string of hexadecimal
digits, such as 0xdeadbeef. digits, such as $deadbeet. (For certain
processors, this is the preferred
notation.)

0 followed by a string of hexadecimal
digits, ending with h, such as

O0Odeadbeefh.
Decimal String of decimal digits, such as String of decimal digits followed by d,
12345678. such as 12345678d.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 17

vonstants
Table 2-3. Preferred Integer Constant Notation (continued)
Type Preferred Notation Alternate Notation
Binary % followed by a string of binary digits, Ob followed by a sting of binary digits,
such as $01010001. such as 0b01010001.

String of binary digits followed by b, such
as 01010001b.

NOTE
The assembler uses 32-bit signed arithmetic to store and
manipulate integer constants.

2.4.2 Floating-Point Constants

You can specify floating-point constants in either hexadecimal or decimal format. The
decimal format must contain a decimal point or an exponent. Examples are 1&-10 and 1.o.

You can use floating-point constants only in data generation directives such as .f1cat
and .double, oOr in floating-point instructions. You cannot such constants in expressions.

2.4.3 Character Constants

Enclose a character constant in single quotes. However, if the character constant includes
a single quote, use double quotes to enclose the character constant.

NOTE
A character constant cannot include both single and double
quotes.

The maximum width of a character constant is 4 characters, depending on the context.
Examples are 'a', 'asc', and rtext:.

A character constant can contain any of the escape sequences that the following table
lists.

Table 2-4. Character Constant Escape Sequences

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

18 Freescale Semiconductor, Inc.

g |

Chapter 2 Assembly Language Syntax
Table 2-4. Character Constant Escape Sequences (continued)

Sequence Description
\r Return (ASCII character 13)
\t Tab
\' Single quote
\" Double quote
\ Backslash
\xnn Hexadecimal value of nn
\nnn Octal value of nn

During computation, the assembler zero-extends a character constant to 32 bits. You can
use a character constant anywhere you can use an integer constant.

2.5 Expressions

The assembler uses 32-bit signed arithmetic to evaluates expressions; it does not check
for arithmetic overflow.

As different processors use different operators, the assembler uses an expression syntax
similar to that of the C language. Expressions use C operators and follow C rules for
parentheses and associativity.

NOTE

To refer to the program counter in an expression, use a period
(.), dollar sign ($), or asterisk (*).

The following table lists the expression operators that the assembler supports.

Table 2-5. Expression Operators

Category Operator Description
Binary + add
- subtract
* multiply
/ divide
% modulo
Il logical OR
&& logical AND
| bitwise OR
& bitwise AND

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 19

r
A

4 |
vumments
Table 2-5. Expression Operators (continued)
Category Operator Description
A bitwise XOR
<< shift left
>> shift right (zeros are shifted into high
order bits)
== equal to
I= not equal to
Binary <= less than or equal to
>= greater than or equal to
< less than
> greater than
Unary + unary plus
- unary minus
~ unary bitwise complement
Alternate <> not equal to

Operator precedence is:

()
@

unary + - ~ 1
* / <
binary + -

<< >>

[a—
CPORXIN B L=

11. |
12. ss
13. |

Gnu- or ADS-compatibility modes change some of these operator precedences.

2.6 Comments

There are several ways to specify comments:

» Use either type of C-style comment, which can start in any column:

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

20 Freescale Semiconductor, Inc.

Chapter 2 Assembly Language Syntax
// This is a comment.

/* This is a comment. */

 Start the comment with an asterisk (+) in the first column of the line. Alternate
comment specifiers, for compatibility with other assemblers, are #, .=, and --.

NOTE
The asterisk () must be the first character of the line for it
to specify a comment. The asterisk has other meanings if it
occurs elsewhere in a line.

» Use a processor-specific comment character anywhere on the line (the processor-
specific chapter of this document explains whether such a character exists for your
target processor). A 68K/Coldfire example is:

move.l dO0,dl ;This is a comment
A PowerPC example is;

mr rl,r0 #This is a comment

NOTE
Gnu compatibility mode may involve a different comment
character, and may involve a different meaning for the ;
character.

* Clear the Allow space in operand field checkbox of the Assembler settings panel.
Subsequently, if you type a space in an operand field, all the remaining text of the
line is a comment.

2.7 Data Alighment

The assembler's default alignment is on a natural boundary for the data size and for the
target processor family. To turn off this default alignment, use the a1ignment keyword
argument with to the .option directive.

NOTE
The assembler does not align data automatically in the .debug
section.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 21

PR 4

vawa Alignment

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

22 Freescale Semiconductor, Inc.

Chapter 3
Using Directives

This chapter explains available directives for the preprocessor and the main, or native,
assembler. Remember these key points:

* Some directives may not be available for your target processor.

» The starting character for preprocessor directives is the hash or pound sign (#); the
default starting character for native assembler directives is the period (.).

* Many preprocessor directives have native-assembler counterparts, but the directives
of each set are not the same.

When you submit source files to the assembler, the code goes through the preprocessor.
Then the preprocessor-output code goes through the native assembler. This leads to a
general rule of not mixing preprocessor and native-assembler directives.

For example, consider the simple symbol-definition test of the following listing:
Listing: Mixed-Directive Example

#define ABC MyVal
.ifdef ABC ;Definition test

Before the native assembler sees this code, the C preprocessor converts the line .ifder asc
to .ifdef myval. This means that the native assembler tests for a definition of myva1, not aec.

For a definition test of asc, you should use either the preprocessor directives or the native
assembler syntax as listed in the following listings:

Listing: Preprocessor-Directive Example

#define ABC MyVal
#ifdef ABC ;Definition test

Listing: Native-Assembler-Directive Example

ABC =1
.ifdef ABC ;Definition test

The sections of this chapter are:

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 23

g |

rreprocessor Directives

* Preprocessor Directives
* Native Assembler Directives
* Providing Debugging Information

3.1 Preprocessor Directives

This chapter lists the preprocessor directives.

The following table lists the preprocessor directives. Explanations follow the table.

Table 3-1. Preprocessor Directives

Directive Description
#define Defines a preprocessor macro.
#elif Starts an alternative conditional assembly block, with another
condition.
#else Starts an alternative conditional assembly block.
#endif Ends a conditional assembly block.
#error Prints the specified error message.
#if Starts a conditional-assembly block.
#ifdef Starts a symbol-defined conditional assembly block.
#ifndef Starts a symbol-not-defined conditional assembly block.
#include Takes input from the specified file.
#line Specifies absolute line number.
#pragma Uses setting of specified pragma.
#undefine Removes the definition of a preprocessor macro.

3.1.1 #define

Defines a preprocessor macro.

#define
name

[(
parms
) 1]

assembly statement

Parameters

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

24 Freescale Semiconductor, Inc.

Chapter 3 Using Directives

name
Name of the macro.

parms

List of parameters, separated by commas. Parentheses must enclose the list.
assembly statement

Any valid assembly statement.

Remarks

To extend an assembly_statement, type a backslash (\) and continue the statement on the
next line. In GNU mode, multiple statements can be on one line of code - separate them
with semicolon characters (;).

3.1.2 #elif

Starts an optional, alternative conditional-assembly block, adding another boolean-
expression condition.

#elif bool-expr statement-group

Parameters

bool -expr

Any boolean expression.
statement -group

Any valid assembly statements.
Remarks

This directive must be part of an #if ... #elif ... [#else] ... #enditr conditional structure
(with each of these directives starting a new line). The preprocessor implements the
assembly statements that #e1if introduces only if (1) the bool-expr condition of the #if
directive is false, and (2) the bool-expr condition of the #elif directive is true.

For a logical structure of multiple levels, you can use the #e1if directive several times, as
in this pattern:

#if bool-expr-1
statement-group-1

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 25

rreprocessor Directives

#elif bool-expr-2

statement-group-2
#elif bool-expr-3

statement-group-3
#elif bool-expr-4

statement-group-4
ftelse

statement-group-5
#endif
e If this structure's voo1-expr-1 1S true, the preprocessor executes the statement-group-1
statements, then goes to the #endif directive.
If boo1-expr-1 1s false, the preprocessor skips statement-group-1, €xecuting the first
ge1if directive. If vool-expr-2 1S true, the preprocessor executes statement-group-2, then
goes to the #endit directive.
If boo1-expr-2 also 1s false, the preprocessor skips statement-group-2, €xecuting the
second #e1it directive.
The preprocessor continues evaluating the boolean expressions of succeeding #e1it
directives until it comes to a boolean expression that is true.
If none of the boolean expressions are true, the preprocessor processes statement-
group-5, because this structure includes an #e1se directive.
If none of the boolean values were true and there were no #e1se directive, the

preprocessor would not process any of the statement groups.)

3.1.3 #else

Starts an optional, alternative conditional assembly block.

#else statement-group

Parameter

statement -group

Any valid assembly statements.
Remarks

This directive must be part of an #it ... [#elif] ... #else ... #endif conditional structure
(with each of these directives starting a new line). The preprocessor implements the
assembly statements that #e1se introduces only if the bool-expr condition of the #it
directive is false.

If this directive is part of a conditional structure that includes several #e1it directives, the
preprocessor implements the assembly statements that #e1se introduces only if all the
bool-expr conditions are false.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

26 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Directives

3.1.4 #endif

Ends a conditional assembly block; mandatory for each #if, #ifdef, and #ifnder directive.

.endif

3.1.5 #error

Prints the specified error message to the IDE Errors and Warnings window.

#error "message"

Parameter
message

Error message, in double quotes.

3.1.6 #if

Starts a conditional assembly block, making assembly conditional on the truth of a
boolean expression.

#if bool-expr statement-group

Parameters

bool -expr

Any boolean expression.
statement -group

Any valid assembly statements.

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 27

rreprocessor Directives

This directive starts an #if ... [#elif] ... [#else]l ... #endif conditional structure (with
each of these directives starting a new line). There must be a corresponding #endit
directive for each #it directive. An #e1se directive is optional; one or more #e1it directives
are optional.

The simplest such conditional structure follows the pattern #if ... assembly statements ...
#endif. The preprocessor implements the assembly statements only if the #ir directive's
bool-expr condition is true.

The next simplest conditional structure follows the pattern #ir ... assembly statements

1 ... #else ... assembly statements 2 ... #endif. 1he preprocessor implements the
assembly statements 1 if the #i¢ directive's bool-expr condition is true; the preprocessor
implements assembly statements 2 if the condition is false.

You can use #e1it directives to create increasingly complex conditional structures.

3.1.7 #ifdef

Starts a conditional assembly block, making assembly conditional on the definition of a
symbol.

#ifdef symbol statement-group

Parameters

symbol

Any valid symbol.

statement -group

Any valid assembly statements.
Remarks

If previous code includes a definition for symoo1, the preprocessor implements the
statements of the block. If symbo1 1s not defined, the preprocessor skips the statements of

the block.

Each #ifaer directive must have a matching #enais directive.

3.1.8 #ifndef

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

28 Freescale Semiconductor, Inc.

Chapter 3 Using Directives

Starts a conditional assembly block, making assembly conditional on a symbol not being
defined.

#ifndef symbol statement-group

Parameter

symbol

Any valid symbol.

statement -group

Any valid assembly statements.
Remarks

If previous code does not include a definition for symbo1, the preprocessor implements the
statements of the block. If there is a definition for symvo1, the preprocessor skips the
statements of the block.

Each #ifnger directive must have a matching #enait directive.

3.1.9 #include

Tells the preprocessor to take input from the specified file.

#include filename

Parameter

filename

Name of an input file.
Remarks

When the preprocessor reaches the end of the specified file, it takes input from the
assembly statement line that follows the #inc1ude directive. The specified file itself can
contain an #include directive that specifies yet another input file.

3.1.10 #line

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 29

A\ 4
N
rreprocessor Directives

Specifies the absolute line number (of the current source file) for which the preprocessor
generates subsequent code or data.

#line number

Parameter
number

Line number of the file; the file's first line 1s number 1.

3.1.11 #pragma

Tells the assembler to use a particular pragma setting as it assembles code.
#fpragma pragma-type setting

Parameters
pragma-type
Type of pragma.
setting

Setting value.
NOTE

This pragma is not supported for ColdFire processor.

3.1.12 #undefine

Removes the definition of a preprocessor macro.

#undefine
name

Parameters
name

Name of the macro.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

30 Freescale Semiconductor, Inc.

g |

3.2 Native Assembler Directives

Chapter 3 Using Directives

The default starting character for native assembler directives is the period (.). But you can
omit this starting period if you clear the Directives begin with '.' checkbox of the

Assembler settings panel.

The following listed are these directives by type:

Table 3-2. Assembler Directives

Type Directive Description
Macro .endm Ends a macro definition.
.macro Starts a macro definition.
.mexit Ends macro execution early.
Conditional .else Starts an alternative conditional
assembly block.

.elseif Starts an alternative conditional
assembly block, adding another
condition.

.endif Ends a conditional assembly block.

if Starts a conditional assembly block.

.ifc Starts a 2-strings-equal conditional
assembly block.

.ifdef Starts a symbol-defined conditional
assembly block

.ifnc Starts a 2-strings-not-equal conditional
assembly block.

.ifndef Starts a symbol-not-defined conditional
assembly block.

Compatibility Conditional .ifeq Starts a string-equals-0 conditional
assembly block.

.ifge Starts a string->=-0 conditional assembly
block.

ifgt Starts a string->-0 conditional assembly
block.

.ifle Starts a string-<=-0 conditional assembly
block.

iflt Starts a string-<-0 conditional assembly
block.

.ifne Starts a string-not-equals-0 conditional
assembly block.

Section Control .bss Specifies an unititialized, read-only data
section.

.data Specifies an initialized, read-write data

section.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.

10.6, 02/2014

Freescale Semiconductor, Inc.

31

r
4\ |

nauve Assembler Directives

Table 3-2. Assembler Directives (continued)

Type Directive Description
.debug Specifies a debug section.
.offset Starts a record definition.
.previous Reverts to the previous section.
.rodata Specifies an initialized, read-only data
section.
.sbss Specifies an uninitialized, read-write
small data section.
.Sbss2 Specifies an uninitialized, read-write
small data section.
.sdata Specifies an initialized, read-write small
data section.
.sdata0 Specifies an initialized, read-write small
data section.
.sdata2 Specifies an initialized, read-only small
data section.
.section Defines an ELF object-file section.
text Specifies an executable code section.
Scope Control .extern Imports specified labels.
.global Exports specified labels.
.public Declares specified labels public.
Symbol Definition .equ Defines an equate; assigns a permanent
value.
equal sign (=) Defines an equate; assigns an initial
value.
.set Defines an equate.
textequ Defines an equate; assigns a string
value.
Data Declaration .ascii Declares a storage block for a string.
.asciz Declares a O-terminated storage block
for a string.
.byte Declares an initialized block of bytes.
.double Declares an initialized block of 64-bit,
floating-point numbers.
float Declares an initialized block of 32-bit,
floating-point numbers.
Jong Declares an initialized block of 32-bit
short integers.
.short Declares an initialized block of 16-bit
short integers.
.space Declares a O-initialized block of bytes.
Assembler Control .align Aligns location counter to specified
power of 2.
.endian Specifies target-processor byte ordering.
.error Prints specified error message.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

32 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Directives

Table 3-2. Assembler Directives (continued)

Type Directive Description
.include Takes input from specified file.
.option Sets an option.
.org Changes location-counter value.
.pragma Uses setting of specified pragma.

Debugging file Specifies source-code file.

.function Generates debugging data.
dine Specifies absolute line number.
.Size Specifies symbol length.
type Specifies symbol type.

3.2.1 .align

Aligns the location counter on the specified value.
.align expression

Parameter
expression
Alignment value.
Remarks

The expression value is the actual alignment value, so .a1ign 2 specifies 2-byte alignment.
(For certain other assemblers, expression is an exponent for 2, so .a1ign 2 would specify 4-
byte alignment.)

3.2.2 .ascii

Declares a block of storage for a string; the assembler allocates a byte for each character.

[label] .ascii "string"
Parameters
label

Name of the storage block.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 33

\
Y

4
A

nauve Assembler Directives
string

String value to be stored, in double quotes. This string can contain any of the escape
sequences that the following table lists.

Table 3-3. Escape Sequences

Sequence Description
\b Backspace
\n Line feed (ASCII character 10)
\r Return (ASCII character 13)
\t Tab
\' Single quote
\" Double quote
\ Backslash
\nnn Octal value of \nnn
\xnn Hexadecimal value of nn

3.2.3 .asciz

Declares a zero-terminated block of storage for a string.

[label] .asciz "string"
Parameters
label

Name of the storage block.
string

String value to be stored, in double quotes. This string can contain any of the escape
sequences that the following table lists.

Table 3-4. Escape Sequences

Sequence Description
\b Backspace
\n Line feed (ASCII character 10)
\r Return (ASCII character 13)
\t Tab
\' Single quote

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

34 Freescale Semiconductor, Inc.

g |

Chapter 3 Using Directives

Table 3-4. Escape Sequences (continued)

Sequence Description
\" Double quote
\ Backslash
\nnn Octal value of \nnn
\xnn Hexadecimal value of nn

Remarks

The assembler allocates a byte for each string character. The assembler then allocates an
extra byte at the end, initializing this extra byte to zero.

3.2.4 .bss

Specifies an uninitialized read-write data section.

.bss

3.2.5 .byte

Declares an initialized block of bytes.

[label] .byte expression [, expression]
Parameters
label

Name of the block of bytes.
expression

Value for one byte of the block; must fit into one byte.

3.2.6 .data

Specifies an initialized read-write data section.

.data

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 35

nauve Assembler Directives

3.2.7 .debug

Specifies a debug section.
.debug

Remarks

This directive is appropriate if you must provide certain debugging information
explicitly, in a debug section. But this directive turns off automatic generation of
debugging information (which the assembler does if you enable the debugger).
Furthermore, this directive tells the assembler to ignore the debugging

directives .file,.function,.line,.size,Zﬂ]d..type.

As Providing Debugging Information explains, using the .debug directive may be the
least common method of providing debugging information to the assembler.

3.2.8 .double

Declares an initialized block of 64-bit, floating-point numbers; the assembler allocates 64
bits for each value.

[label] .double value [, valuel]
Parameters
label

Name of the storage block.
value

Floating-point value; must fit into 64 bits.

3.2.9 .else

Starts an optional, alternative conditional assembly block.
.else statement-group

Parameter

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

36 Freescale Semiconductor, Inc.

Chapter 3 Using Directives

statement-group
Any valid assembly statements.
Remarks

This directive must be part of an .if ... [.elseif]elseendif conditional
structure (with each of these directives starting a new line). The assembler processes the
assembly statements that .e1se introduces only if the bool-expr condition of the .it
directive is false.

If this directive is part of a conditional structure that includes several .e1seit directives,
the assembler processes the assembly statements that .e1se introduces only if all the bool-
expr conditions are false.

3.2.10 .elseif

Starts an optional, alternative conditional assembly block, adding another boolean-
expression condition.

.elseif bool-expr statement-group

Parameters

bool -expr

Any boolean expression.
statement -group

Any valid assembly statements.
Remarks

This directive must be part of an .ifelseif ... [.else]lendif conditional
structure (with each of these directives starting a new line). The assembler processes the
assembly statements that .e1seif introduces only if (1) the bool-expr condition of the .it
directive is false, and (2) the bool-expr condition of the .e1seit directive is true.

For a logical structure of multiple levels, you can use the .e1seit directive several times,
as in this pattern:

.1f bool-expr-1
statement-group-1
.elseif bool-expr-2
statement-group-2
.elseif bool-expr-3
statement-group-3
.elseif bool-expr-4

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 37

nauve Assembler Directives

statement-group-4
.else

statement-group-5
.endif
 If this structure's bool-expr-1 18 true, the assembler executes the statement-group-1
statements, then goes to the .enair directive.
If boo1-expr-1 1s false, the assembler skips statement-group-1, €xecuting the first .eiseit
directive. If voo1-expr-2 is true, the assembler executes statement-group-2, then goes to
the .enair directive.
If boo1-expr-2 also is false, the assembler skips statement-group-2, €Xxecuting the
second .e1seif directive.
The assembler continues evaluating the boolean expressions of succeeding .eiseif
directives until it comes to a boolean expression that is true.
If none of the boolean expressions are true, the assembler processes statement-group-5,
because this structure includes an .eise directive.
If none of the boolean values were true and there were no .e1se directive, the
assembler would not process any of the statement groups.)

3.2.11 .endian

Specifies byte ordering for the target processor; valid only for processors that permit
change of endianness.

.endian big | little
Parameters
big
Big-endian specifier.
little

Little-endian specifier.

3.2.12 .endif

Ends a conditional assembly block. A matching .enait directive is mandatory for each
type of .ir directive.

.endif

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

38 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Directives

3.2.13 .endm

Ends the definition of a macro.

.endm

3.2.14 .equ

Defines an equate, assigning a permanent value. You cannot change this value at a later
time.

equate .equ expression

Parameters
equate
Name of the equate.

expression

Permanent value for the equate.

3.2.15 equal sign (=)

Defines an equate, assigning an initial value. You can change this value at a later time.

equate = expression
Parameters
equate

Name of the equate.
expression
Temporary initial value for the equate.

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 39

3
4

4
A

nauve Assembler Directives

This directive is equivalent to .set. It is available only for compatibility with assemblers
provided by other companies.

3.2.16 .error

Prints the specified error message to the IDE Errors and Warnings window.
.error "error"

Parameter
error

Error message, in double quotes.

3.2.17 .extern

Tells the assembler to import the specified labels, that is, find the definitions in another
file.

.extern label [, label]
Parameter
label
Any valid label.
Remarks
You cannot import equates or local labels.

An alternative syntax for this directive iS .extern section:label, as
1N .extern .sdata:current_line. SOME processor architectures require this alternative syntax
to distinguish text from data.

3.2.18 .file

Specifies the source-code file; enables correlation of generated assembly code and source
code.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

40 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Directives

.file "filename"

Parameter

filename

Name of source-code file, in double quotes.
Remarks

This directive is appropriate if you must explicitly provide a filename to the assembler as
debugging information. Providing Debugging Information explains additional
information about debugging.

Example
The following listing shows how to use the .ti1e directive for your own DWARF code.

Listing: DWARF Code Example

.file "MyFile.c"

.text

.function "MyFunction",start,end-start
start:

.line 1

lwz r3, 0(r3)

.line 2

blr

end:

3.2.19 .float

Declares an initialized block of 32-bit, floating-point numbers; the assembler allocates 32
bits for each value.

[label] .float wvalue [, value]
Parameters
label

Name of the storage block.
value

Floating-point value; must fit into 32 bits.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 41

A
4

4
A

nauve Assembler Directives

3.2.20 .function

Tells the assembler to generate debugging data for the specified subroutine.
.function "func", label, length

Parameters

func

Subroutine name, in double quotes.

label

Starting label of the subroutine.

length

Number of bytes in the subroutine.

Remarks

This directive is appropriate if you must explicitly provide debugging information to the
assembler. Providing Debugging Information explains additional information about
debugging.

3.2.21 .global

Tells the assembler to export the specified labels, that is, make them available to other
files.

.global label [, label]

Parameter
label

Any valid label.
Remarks

You cannot export equates or local labels.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

42 Freescale Semiconductor, Inc.

Chapter 3 Using Directives

3.2.22 .if

Starts a conditional assembly block, making assembly conditional on the truth of a
boolean expression.

.1f bool-expr statement-group

Parameters

bool-expr

Any boolean expression.
statement -group

Any valid assembly statements.
Remarks

This directive starts an .if ... [.elseif] ... [.else]endif conditional structure (with
each of these directives starting a new line). There must be a corresponding .endit
directive for each .ir directive. An .e1se directive is optional; one or more .elseit
directives are optional.

The simplest such conditional structure follows the pattern .if ... assembly
statementsendif. T'he preprocessor implements the assembly statements only if
the .ir directive's bool-expr condition is frue.

The next simplest conditional structure follows the pattern .if ... assembly statements

1else ... assembly statements 2endif. lhe preprocessor implements the
assembly statements 1 if the .1t directive's bool-expr condition is true; the preprocessor
implements assembly statements 2 if the condition is false.

You can use .e1seit directives to create increasingly complex conditional structures.

3.2.23 .ifc

Starts a conditional assembly block, making assembly conditional on the equality of two
strings.

.1fc stringl, string2 statement-group

Parameters

stringl

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 43

3
4

4
A

nauve Assembler Directives

Any valid string.

string2

Any valid string.

statement -group

Any valid assembly statements.
Remarks

If string1 and string2 are equal, the assembler processes the statements of the block. (The
equality comparison is case-sensitive.) If the strings are not equal, the assembler skips the
statements of the block.

Each .itc directive must have a matching .endif directive.

3.2.24 .ifdef

Starts a conditional assembly block, making assembly conditional on the definition of a
symbol.

.ifdef symbol statement-group
Parameters
symbol
Any valid symbol.
statement -group
Any valid assembly statements.
Remarks

If previous code includes a definition for symbo1, the assembler processes the statements of
the block. If symoo1 is not defined, the assembler skips the statements of the block.

Each .iraer directive must have a matching .enair directive.

3.2.25 .ifeq

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

44 Freescale Semiconductor, Inc.

Chapter 3 Using Directives

Starts a conditional assembly block, making assembly conditional on an expression value
being equal to zero.

.1feq expression statement-group

Parameters

expression

Any valid expression.

statement -group

Any valid assembly statements
Remarks

If the expression value equals 0, the assembler processes the statements of the block. If the
expression Value does not equal 0, the assembler skips the statements of the block.

3.2.26 .ifge

Starts a conditional assembly block, making assembly conditional on an expression value
being greater than or equal to zero.

.1fge expression statement-group

Parameters

expression

Any valid expression.

statement -group

Any valid assembly statements.
Remarks

If the expression value is greater than or equal to 0, the assembler processes the statements
of the block. If the expression value is less than 0, the assembler skips the statements of
the block.

3.2.27 .ifgt

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 45

nauve Assembler Directives

Starts a conditional assembly block, making assembly conditional on an expression value
being greater than zero.

.1fgt expression statement-group

Parameters

expression

Any valid expression.

statement -group

Any valid assembly statements.
Remarks

If the expression value is greater than 0, the assembler processes the statements of the

block. If the expression value is less than or equal to 0, the assembler skips the statements
of the block.

3.2.28 .ifle

Starts a conditional assembly block, making assembly conditional on an expression value
being less than or equal to zero.

.1fle expression statement-group

Parameters

expression

Any valid expression.

statement -group

Any valid assembly statements.
Remarks

If the expression Value is less than or equal to 0, the assembler processes the statements of
the block. If the expression value is greater than 0, the assembler skips the statements of
the block.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

46 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Directives

3.2.29 .iflt

Starts a conditional assembly block, making assembly conditional on an expression value
being less than zero.

.1flt expression statement-group

Parameters

expression

Any valid expression.

statement -group

Any valid assembly statements.
Remarks

If the expression value is less than 0, the assembler processes the statements of the block.
If the expression value equals or exceeds 0, the assembler skips the statements of the
block.

3.2.30 .ifnc

Starts a conditional assembly block, making assembly conditional on the inequality of
two strings.

.1fnc stringl, string2 statement-group

Parameters

stringl

Any valid string.

string2

Any valid string.

statement -group

Any valid assembly statements.

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 47

nauve Assembler Directives

If string1 and string2 are not equal, the assembler processes the statements of the block.
(The inequality comparison is case-sensitive.) If the strings are equal, the assembler skips
the statements of the block.

Each .ifnc directive must have a matching .enait directive.

3.2.31 .ifndef

Starts a conditional assembly block, making assembly conditional on a symbol not being
defined.

.1fndef symbol statement-group

Parameters

symbol

Any valid symbol.

statement -group

Any valid assembly statements.
Remarks

If previous code does not include a definition for symbo1, the assembler processes the
statements of the block. If there is a definition for symoo1, the assembler skips the
statements of the block.

Each .ifnger directive must have a matching .enait directive.

3.2.32 .ifne

Starts a conditional assembly block, making assembly conditional on an expression value
not being equal to zero.

.1fne expression statement-group

Parameters
expression

Any valid expression.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

48 Freescale Semiconductor, Inc.

Chapter 3 Using Directives

Statement-group
Any valid assembly statements.
Remarks

If the expression Value is not equal to 0, the assembler processes the statements of the
block. If the expression value does equal 0, the assembler skips the statements of the
block.

3.2.33 .include

Tells the assembler to take input from the specified file.

.include filename

Parameter

filename

Name of an input file.
Remarks

When the assembler reaches the end of the specified file, it takes input from the assembly
statement line that follows the .inc1uge directive. The specified file can itself contain
an .include directive that specifies yet another input file.

3.2.34 .line

Specifies the absolute line number (of the current source file) for which the assembler
generates subsequent code or data.

.line number

Parameter
number
Line number of the file; the file's first line 1s number 1.

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 49

3
4

4
A

nauve Assembler Directives

This directive is appropriate if you must explicitly provide a line number to the assembler
as debugging information. But this directive turns off automatic generation of debugging
information (which the assembler does if you enable the debugger). Providing Debugging
Information explains additional information about debugging.

3.2.35 .long

Declares an initialized block of 32-bit short integers.

[label] .long expression [, expression]
Parameters
label

Name of the block of integers.

expression

Value for 32 bits of the block; must fit into 32 bits.

3.2.36 .macro

Starts the definition of a macro.

label
.macro [parameter] [,parameter] ...
Parameters
label

Name you give the macro.
parameter

Optional parameter for the macro.

3.2.37 .mexit

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

50 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Directives

Stops macro execution before it reaches the .enam directive. Program execution continues
with the statement that follows the macro call.

.mexit

3.2.38 .offset

Starts a record definition, which extends to the start of the next section.
.offset [expression]

Parameter

expression

Optional initial location-counter value.
Remarks

The following table lists the only directives you can use inside a record.

Table 3-5. Directives Allowed in a Record

.align .double .org .textequ
.ascii .equ .set

.asciz float .short

.byte long .space

Data declaration directives such as .byte and .snhort update the location counter, but do not
allocate any storage.

Example
The following listing shows a sample record definition.

Listing: Record Definition with Offset Directive

.offset
top: .short 0
left: .short 0
bottom: .short 0
right: .short 0
rectSize .equ *

3.2.39 .option

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 51

3
4

4
A

nauve Assembler Directives
Sets an assembler control option as the following table describes.

.option keyword setting

Parameters
keyword
Control option.
setting

Setting value appropriate for the option: OFF, ON, RESET, or a particular number value.
RESET returns the option to its previous setting.

Table 3-6. Option Keywords

Keyword Description

alignment off | on | reset Controls data alignment on a natural boundary. Does not
correspond to any option of the Assembler settings panel.

branch_size word | long | reset Specifies the size of forward branch displacement. Applies
only to ColdFire assemblers. Does not correspond to any
option of the Assembler settings panel.

case off | on | reset Specifies case sensitivity for identifiers. Corresponds to the
Case-sensitive identifiers checkbox of the Assembler
settings panel.

colon off | on | reset Specifies whether labels must end with a colon (:). The OFF
setting means that you can omit the ending colon from label
names that start in the first column. Corresponds to the
Labels must end with ':' checkbox of the Assembler settings
panel.

no_at_macros off | on Controls $AT use in macros. The OFF setting means that the
assembler issues a warning if a macro uses $AT. Applies only
to the MIPS Assembler.

no_section_resume on | off | reset Specifies whether section directives such as . text resume
the last such section or creates a new section.

period off | on | reset Controls period usage for directives. The ON setting means
that each directive must start with a period. Corresponds to
the Directives begin with '.' checkbox of the Assembler
settings panel.

processor procname | reset Specifies the target processors for the assembly code; tells
the assembler to confirm that all instructions are valid for
those processors. Separate names of multiple processors
with vertical bars (1).

reorder off | on | reset Controls NOP instructions after jumps and branches. The ON
setting means that the assembler inserts a NOP instruction,
possibly preventing pipeline problems. The OFF setting
means that the assembler does not insert a NOP instruction,
so that you can specify a different instruction after jumps and
branches. Applies only to the MIPS Assembler.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

52 Freescale Semiconductor, Inc.

Chapter 3 Using Directives

Table 3-6. Option Keywords (continued)

Keyword Description

space off | on | reset Controls spaces in operand fields. The OFF setting means
that a space in an operand field starts a comment.
Corresponds to the Allow space in operand field checkbox
of the Assembler settings panel.

3.2.40 .org

Changes the location-counter value, relative to the base of the current section.

.org expression

Parameter
expression

New value for the location counter; must be greater than the current location-counter
value.

Remarks

Addresses of subsequent assembly statements begin at the new expression value for the
location counter, but this value is relative to the base of the current section.

Example

In the following listing, the label a1pna reflects the value of .text + oxio00. If the linker
places the .text section at ox10000000, the runtime aipha value 1S oxio001000.

Listing: Address-Change Example

.text
.org 0x1000

Alpha:

blr

NOTE
You must use the CodeWarrior IDE and linker to place code at
an absolute address.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 53

A 4
4\ |

nauve Assembler Directives

3.2.41 .pragma

Tells the assembler to use a particular pragma setting as it assembles code.

.pragma pragma-type setting

Parameters
pragma-type
Type of pragma.
setting

Setting value.

3.2.42 .previous

Reverts to the previous section; toggles between the current section and the previous
section.

.previous

3.2.43 .public

Declares specified labels to be public.

.public label [, labell]

Parameter
label
Any valid label.

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

54 Freescale Semiconductor, Inc.

Chapter 3 Using Directives

If the labels already are defined in the same file, the assembler exports them (makes them
available to other files). If the labels are not already defined, the assembler imports them
(finds their definitions in another file).

3.2.44 .rodata

Specifies an initialized read-only data section.

.rodata

3.2.45 .sbss

Specifies a small data section as uninitialized and read-write. (Some architectures do not
support this directive.)

.sbss

3.2.46 .sbss2

Specifies a small data section as uninitialized and read-write. (Some architectures do not
support this directive.)

.sbss2

3.2.47 .sdata

Specifies a small data section as initialized and read-write. (Some architectures do not
support this directive.)

.sdata

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 55

A
4

4
A

nauve Assembler Directives

3.2.48 .sdata0

Specifies a small data section as read/write. (Some architectures do not support this
directive.)

.sdata2

3.2.49 .sdata2

Specifies a small data section as initialized and read-only. (Some architectures do not
support this directive.)

.sdata2

3.2.50 .section

Defines a section of an object file.

.section name [,alignment] [,type] [,flags]

Parameters

name

Name of the section.
alignment

Alignment boundary.
type

Numeric value for the ELF section type, per the following table. The default type value is
1: (SHT_PROGBITS).

Table 3-7. ELF Section Header Types (SHT)

Type Name Meaning
0 NULL Section header is inactive.
PROGBITS Section contains information that the
program defines.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

56 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Directives

Table 3-7. ELF Section Header Types (SHT) (continued)

Type Name Meaning
SYMTAB Section contains a symbol table.
STRTAB Section contains a string table.
RELA Section contains relocation entries with
explicit addends.
HASH Section contains a symbol hash table.
DYNAMIC Section contains information used for

dynamic linking.

7 NOTE Section contains information that marks
the file, often for compatibility purposes
between programs.

8 NOBITS Section occupies no space in the object
file.
9 REL Section contains relocation entries

without explicit addends.

10 SHLIB Section has unspecified semantics, so
does not conform to the Application
Binary Interface (ABI) standard.

11 DYNSYM Section contains a minimal set of
symbols for dynamic linking.

flags

Numeric value for the ELF section flags, per the the following table. The default f1ags
value 1S 0x00000002, oxooooooo1: (SHF_ALLOC+SHF_WRITE).

Table 3-8. ELF Section Header Flags (SHF)

Flag Name Meaning

0x00000001 WRITE Section contains data that is writable
during execution.

0x00000002 ALLOC Section occupies memory during
execution.

0x00000004 EXECINSTR Section contains executable machine
instructions.

0xF0000000 MASKPROC Bits this mask specifies are reserved for
processor-specific purposes.

Remarks

You can use this directive to create arbitrary relocatable sections, including sections to be
loaded at an absolute address.

Most assemblers generate ELF (Executable and Linkable Format) object files, but a few
assemblers generate COFF (Common Object File Format) object files.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 57

g |

nauve Assembler Directives
The assembler supports this alternative syntax, which you may find convenient:

.section name, typestring
(The name parameter has the same role as in the full syntax. The typestring value can be
text, data, rodata, bss, sdata, O SO fOfﬂlJ

Normally, repeating a .text directive would resume the previous .text section. But to
have each .ctext directive create a separate section, include in this relocatable section the

statement .option no section resume on.
Example

This example specifies a section named vector, with an alignment of 4 bytes, and default
type and flag values:

.section vector,4

3.2.51 .set

Defines an equate, assigning an initial value. You can change this value at a later time.

equate .set expression

Parameters
equate
Name of the equate.

expression

Temporary initial value for the equate.

3.2.52 .short

Declares an initialized block of 16-bit short integers.

[label] .short expression [, expression]
Parameters
label

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

58 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Directives

Name of the block of integers.

expression

Value for 16 bits of the block; must fit into 16 bits.

3.2.53 .size

Specifies a length for a symbol.

.size symbol, expression

Parameters
symbol

Symbol name.
expression
Number of bytes.
Remarks

This directive is appropriate if you must explicitly provide a symbol size to the assembler
as debugging information. Providing Debugging Information explains additional
information about debugging.

3.2.54 .space

Declares a block of bytes, initializing each byte to zero or to a specified fill value.

[label] .space expression [, fill value]
Parameters
label

Name of the block of bytes.
expression

Number of bytes in the block.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 59

nauve Assembler Directives

fill_value

Initialization value for each bytes in the block; the default value is zero.

3.2.55 .text

Specifies an executable code section; must be in front of the actual code in a file.

.text

Remarks

Normally, repeating a .text directive would resume the previous .text section. But to
have each .text directive create a separate section, include the statement .option
no_section_resume on 1N a relocatable section. (Use the .section directive to create such a
section.)

3.2.56 .textequ

Defines a text equate, assigning a string value.

equate .textequ "string"

Parameters

equate

Name of the equate.

string

String value for the equate, in double quotes.
Remarks

This directive helps port existing code. You can use it to give new names to machine
instructions, directives, and operands.

Upon finding a text equate, the assembler replaces it with the string value before
performing any other processing on that source line.

Examples

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

60 Freescale Semiconductor, Inc.

Chapter 3 Using Directives

dc.b .textequ ".byte"
endc .textequ ".endif"

3.2.57 .type

Specifies the type of a symbol.

.type symbol, efunction | @object

Parameters

symbol

Symbol name.
@function

Function type specifier.
@object

Variable specifier
Remarks

This directive is appropriate if you must explicitly provide a type to the assembler as
debugging information. Providing Debugging Information explains additional
information about debugging.

3.3 Providing Debugging Information

Perhaps the most common way to provide project debugging information to the
assembler is to let the assembler itself automatically generate the information. This level
of debugging information means that the debugger source window can display the
assembly source file. It also means that you can step through the assembly code and set
breakpoints.

For this automatic generation of debugging information, important points are:

* Avoid directives .debug and .1ine; using either directive turns off automatic
generation.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 61

rroviding Debugging Information

* For some implementations, the linker requires instructions to be in the .text section,
in order for automatic generation to happen.

* In automatic-debug mode, the assembler puts everything into a single function (the
assembler does not know how source code may be divided into functions).
Accordingly, you may see names such as ebummyFn1 in the debugger stack window.
But if you wish, you can use the . function directive to divide the code into sections.

* When you debug the assembly-language code, the code may seem spaghetti-like and
it may not create valid call frames on the stack. This is normal for the assembler.
Because of this, however, the debugger cannot provide stack-crawl information.

An alternative method is providing debugging information to the assembler explicitly, via
the debugging directives .file, .function, .line, .size, and .type. This would be
particularly appropriate if you were developing a new compiler that output assembly
source code: these directives would relate the assembler code back to the original source-
code input to the new compiler. But you must avoid the .aebug directive, which tells the
assembler to ignore the debugging directives.

A final method of providing debugging information, rare in normal use, is using
the .aqebug directive to create an explicit debug section. Such a section might begin:

.debug
.long 1
.asciz "MyDebugInfo"

But remember that the .asebug directive deactivates any of the debugging directives.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

62 Freescale Semiconductor, Inc.

Chapter 4
Using Macros

This chapter explains how to define and use macros. You can use the same macro
language regardless of your target processor.

This chapter includes these topics:

* Defining Macros
* Invoking Macros

4.1 Defining Macros

A macro definition is one or more assembly statements that define:

¢ the name of a macro
¢ the format of the macro call
* the assembly statements of the macro

To define a macro, use the .macro directive.

NOTE
If you use a local label in a macro, the scope of the label is
limited to the expansion of the macro. (Local labels begin with
the @ character.)

The .macro directive is part of the first line of a macro definition. Every macro definition
ends with the .enam directive .The following listing and table shows the full syntax, and
explains the syntax elements, respectively.

Listing: Macro Definition Syntax: .macro Directive

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 63

veining Macros

name: .macro [parameter] [,parameter] ... macro body .endm

Table 4-1. Syntax Elements: .macro Directive

Element Description
name Label that invokes the macro.
parameter Operand the assembler passes to the macro for us in the
macro body.
macro_body One or more assembly language statements. Invoking the
macro tell the assembler to substitutes these statements.

The body of a simple macro consists of just one or two statements for the assembler to
execute. Then, in response to the .endan directive, the assembler resumes program
execution at the statement immediately after the macro call.

But not all macros are so simple. For example, a macro can contain a conditional
assembly block, The conditional test could lead to the .mexit directive stopping execution
early, before it reaches the .enam directive.

The following listing is the definition of macro addto, which includes an .wexit directive.

Listing: Conditional Macro Definition

//define a macro

addto .macro dest,val
if val==

no-op

.mexit // execution goes to the statement
// immediately after the .endm directive
.elseif val==

// use compact instruction

add #1, dest

.mexit // execution goes to the statement
// immediately after the .endm directive
.endif

// 1f val is not equal to either 0 or 1,
// add dest and val

add val, dest

// end macro definition

.endm

The following listing shows the assembly-language code that calls the aaato macro.

Listing: Assembly Code that Calls addto Macro

// specify an executable code section
.text

xor do0,do

// call the addto macro

addto do0,0

addto do,1

addto do, 2

addto do,3

The following listing shows the expanded aaato macro calls.
Listing: Expanded addto Macro Calls

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

64 Freescale Semiconductor, Inc.

Chapter 4 Using Macros

xor do0,do
nop

add do
add do,2
add do,3

4.1.1 Using Macro Arguments

You can refer to the parameters directly by name. The following listing shows the setup
macro, which moves an integer into a register and branches to the label _fina1_setup.

Listing: Setup Macro Definition

setup: .macro name mov name, d0
jsr _final setup
.endm

The following listing shows a way to invoke the setup macro.
Listing: Calling Setup Macro
#define VECT=0 setup VECT
The following listing shows how the assembler expands the setup macro.
Listing: Expanding Setup Macro
move VECT, d0 jsr _final setup

If you refer to named macro parameters in the macro body, you can precede or follow the
macro parameter with ss. This lets you embed the parameter in a string. For example, The
following listing shows the sma11num macro, which creates a small float by appending the
string -20 to the macro argument.

Listing: Smallnum Macro Definition

smallnum: .macro mantissa .float mantissa&&E-20
.endm

The following listing shows a way to invoke the sma11num macro.

Listing: Invoking Smallnum Macro

smallnum; 10

The following listing shows how the assembler expands the sma11num macro.
Listing: Expanding Smallnum Macro

.float 10E-20

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 65

veining Macros

Macro syntax includes positional parameter references (this feature can provide
compatibility with other assemblers). For example, The following listing shows a macro
with positional references \1 and \2.

Listing: Doit Macro Definition

doit: .macro move \1,do
jsr \2
.endm

The following listing shows an invocation of this macro, with parameter values 10 and

print.

Listing: Invoking Doit Macro

doit 10, print

The following listing shows the macro expansion.
Listing: Expanding Doit Macro

move 10,d0 jsr print

4.1.2 Macro Repeat Directives

The assembler macro language includes the repeat directives .rept, .irp, and .irpc, along
with the .enar directive, which must end any of the other three.

4.1.2.1 .rept

Repeats the statements of the block the specified number of times; the .enar directive
must follow the statements.

.rept expression
statement-group
.endr

Parameters
expression
Any valid expression that evaluates to a positive integer.

statement -group

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

66 Freescale Semiconductor, Inc.

g |

4
Chapter 4 Using Macros

Any statements valid in assembly macros.

41.2.2 .irp

Repeats the statements of the block, each time substituting the next parameter value.
The .enar directive must follow the statements.

.irp name expl[,exp2[,exp3]...]
statement-group
.endr

Parameters

name

Placeholder name for expression parameter values.
expl, exp2, exp3

Expression parameter values; the number of these expressions determines the number of
repetitions of the block statements.

statement-group
Any statements valid in assembly macros.
Example

The following listing specifies three repetitions of .byte, With successive name values 1, 2,
and 3.

Listing: .irp Directive Example

.irp databyte 1,2,3
.byte databyte

.endr

The following listing shows this expansion.

Listing: .irp Example Expansion

.byte 1
.byte 2

.byte 3

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 67

veinning Macros

4.1.2.3 .irpc

Repeats the statements of the block as many times as there are characters in the string
parameter value. For each repetition, the next character of the string replaces the name
parameter.

.irpc name,string
statement-group
.endr

Parameters

name

Placeholder name for string characters.
string

Any valid character string.
statement-group

Any statements valid in assembly macros.

4.1.3 Creating Unique Labels and Equates

Use the backslash and at characters (\@) to have the assembler generate unique labels
and equates within a macro. Each time you invoke the macro, the assembler generates a
unique symbol of the form 22nnnn, such as 220001 Or 220002.

In your code, you refer to such unique labels and equates just as you do for regular labels
and equates. But each time you invoke the macro, the assembler replaces the \@
sequence with a unique numeric string and increments the string value.

The following listing shows a macro that uses unique labels and equates.

Listing: Unique Label Macro Definition

my_macro: .macro
alpha\@ = my count
my_count .set my count + 1

add alpha\e, do

jmp label\e@

add di1,do
label\@:

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

68 Freescale Semiconductor, Inc.

Chapter 4 Using Macros

nop
.endm

The following listing shows two calls to the my_macro macro, with my_count initialized to 0.

Listing: Invoking my_macro Macro

my count .set O
my_ macro
my macro

The following listing shows the expanded my macro code after the two calls.
Listing: Expanding my_macro Calls

alpha??0000 = my count

my count .set my count + 1
add alpha??0000,d0
jmp 1label??0000
add di,do

label??0000
nop

alpha??0001 = my count

my count .set my count + 1
add alpha??0001,do0
jmp label??0001
add di,do

label??0001

nop

4.1.4 Number of Arguments

To refer to the number of non-null arguments passed to a macro, use the special symbol
narg. YOU can use this symbol during macro expansion.

4.2 Invoking Macros

To invoke a macro, use its name in your assembler listing, separating parameters with
commas. To pass a parameter that includes a comma, enclose the parameter in angle
brackets.

For example, The following listing shows macro pattern, Which repeats a pattern of bytes
passed to it the number of times specified in the macro call.

Listing: Pattern Macro Definition

pattern: .macro times,bytes
.rept times
.byte Dbytes

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 69

A\ 4
4\ |
imvoking Macros

.endr
.endm

The following listing shows a statement that calls pattern, passing a parameter that
includes a comma.

Listing: Macro Argument with Commas

.data
halfgrey: pattern 4,<O0xAA,0x55>

The following listing is another example calling statement; the assembler generates the
same code in response to the calling statement of either of the listings.

Listing: Alternate Byte-Pattern Method

halfgrey: .byte 0xAA,0x55,0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

70 Freescale Semiconductor, Inc.

Chapter 5
ColdFire Assembler General Settings

When you create a ColdFire project, the IDE creates a set of ColdFire assembler
properties for the project. This chapter explains the general ColdFire assembler settings.

5.1 Displaying ColdFire Assembler General Settings

To view and modify general settings for the ColdFire assembler:

1. Right-click the ColdFire project, for which you want to modify the properties, in the
CodeWarrior Projects view.

2. Select Properties. The Properties for <project> dialog box appears.

Expand C/C++ Build node and select Settings.

4. Use the Configuration drop-down list to specify the launch configuration for which
you want to modify the build properties.

5. Click the Tool Settings tab.

6. Expand the ColdFire Assembler node and select General. The ColdFire assembler
general properties appear at the right-hand side of the Tool Settings tab.

7. Modify the properties as per your requirements and click Apply to save the changes.

8. Click OK to close the Properties for <project> dialog box closes.

W

The modified properties are now applied to the selected project.

The following table lists and describes the general assembler options for ColdFire.

Table 5-1. Tool settings - ColdFire Assembler > General Options

Option Description

Label Must End With ™' Clear if system does not require labels to end with colons. By
default, the option is checked.

Directives Begin With ™.’ Clear if the system does not require directives to start with
periods. By default, the option is checked.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 71

g |

uispiaying ColdFire Assembler General Settings

Table 5-1. Tool settings - ColdFire Assembler > General Options (continued)

Option

Description

Case Sensitive Identifier

Clear to instruct the assembiler to ignore case in identifiers. By
default, the option is checked.

Allow Space In Operand Field

Clear to restrict the assembler from adding spaces in operand
fields. By default, the option is checked.

Other Flags

Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the Ul.

NOTE

For more information about ColdFire assembler options, such
as settings in the ColdFire Assembler panel and ColdFire
Assembler > Input panel, refer to the Microcontrollers V10.x
Targeting Manual. You can access the document from this
location: <CWlnstallDir>\vcu\zelp\pDF

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.

10.6, 02/2014

72

Freescale Semiconductor, Inc.

Chapter 6
ColdFire-Specific Information

Almost all the information of earlier chapters pertains to ColdFire target processors. The
few differences are:

* Comments - Assembly Language Syntax explains these common ways to specify
comments:
* Characters //, starting in any column.
* Characters /= ... +/, starting in any column.
* An asterisk (+), starting in the first column of the line.
» A space in an operand field, provided that you clear the Allow space in operand
field checkbox of the Assembler settings panel.

A ColdFire target processor gives you these additional ways to specify
comments:

* In GNU mode: starting the comment with a vertical stroke (|) character.
* Not in GNU mode: starting the comment with a semicolon (;).

Such comments may begin in any column of a line.

» Hexadecimal Notation - For ColdFire processors, the preferred hexadecimal
notation is s, as in gdeadveet. This contrasts with Chapter 2, which explains that the
preferred notation for most processors is ox.

* Sections - As Using Directives explains, not all target architectures support the
small-data assembler directives .sbss, .sbss2, .sdat, .sdatao, OF .sdata2. For the
ColdFire architecture, the linker can be more restrictive than the assembler. You may
need to experiment to find out which of these directives are supported by both your
assembler and linker.

* As with most assemblers, the ColdFire assembler generates ELF, not COFF, object
files.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.
10.6, 02/2014

Freescale Semiconductor, Inc. 73

g |

* Automatic Debugging - For automatic generation of debugging information, your
linker may require that instructions be in the .ctext section.

» A processor selection option is added to the assembler settings. This selection defines
the processor context, its instruction set, co-processors and system registers available
to 'movec’'.

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual, Rev.

10.6, 02/2014

74

Freescale Semiconductor, Inc.

h o
g |

Index

.align 33
.ascii 33
.asciz 34
.bss 35
Jbyte 35
.data 35
.debug 36
.double 36
.else 36
.elseif 37
.endian 38
.endif 38
.endm 39
.equ 39
.error 40
.extern 40
file 40
float 41
function 42
.global 42
if 43

.ifc 43
.ifdef 44
.ifeq 44
.ifge 45
(ifgt 45
.ifle 46
Aflt 47
ifnc 47
.ifndef 48
.ifne 48
.include 49
.irp 67
.irpec 68
line 49
Jong 50
.macro 50
.mexit 50
.offset 51
.option 5/
.org 53
.pragma 54
.previous 54
.public 54
.rept 66
.rodata 55
.sbss 55
.sbss2 55
.sdata 55
.sdata0 56
.sdata2 56
.section 56
.set 58

.short 58
.size 59
.space 59
.text 60
.textequ 60
.type 61
(=)39
#define 24
telif 25
#else 26
#endif 27
#error 27
#if 27
#ifdef 28
#ifndef 28
#include 29
#line 29
#pragma 30
#undefine 30

A

Alignment 2/

Arguments 65, 69

Assembler 317, 71

Assembly /1

Assembly Language Statements
Assembler directives 1/
Machine instructions 7/
Macro calls 7/

Cc

Case-Sensitive /7
Character /8
ColdFire 71
ColdFire-Specific 73
Comments 20
Constants /7, 18
Creating 68

D

Data 21
Debugging 61
Defining 63

Directives 23, 24, 31, 66
Displaying 71

E

equal 39

Index

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual

Freescale Semiconductor, Inc.

75

\
Y

y
A

muex

CodeWarrior Development Studio for Microcontrollers V10.x ColdFire Assembler Reference Manual

Equates 15, 68

Escape Sequences
Backslash 34
Backspace 34
Double quote 34
Hexadecimal value of nn 34
Line feed 34
Octal value of \nnn 34
Return (ASCII character 13) 34
Single quote 34
Tab 34

Expressions /9

F

Floating-Point /8

G

General 71

Identifiers /7
Integer 17
Invoking 69

L

Labels 13-15, 68
Language 1/
Local 74

Macro 65, 66
Macros 63, 69

N

Native 3/
Non-Local /3
Number 69

P

Preprocessor 24
Providing 61

R

Relocatable 75

Relocatable Label Expressions
label 75
label@got 15

Relocatable Label Expressions (index-continued-string)
label@h 15
label@ha 15
label@1 15
label@sdax 15
Repeat 66

S

Settings 71

sign 39

START_HERE.html 8

Statement /2

Statements //

Symbols /2

Syntax 11, 12

Syntax Elements
assembler_directivesymbol /2
commentsymbol /2
constantsymbol /2
expressionsymbol /2
machine_instructionsymbol /2
macro_callsymbol /2
register_namesymbol /2
symbol /2

U

Unique 68

76

Freescale Semiconductor, Inc.

How to Reach Us: Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.

Web Support: Freescale reserves the right to make changes without further notice to
freescale.com/support any products herein.

Home Page:
freescale.com

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, ColdFire, ColdFire+ are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
All other product or service names are the property of their respective
owners. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2010-2014 Freescale Semiconductor, Inc.

Document Number CWMCUCFASMREF
Revision 10.6, 02/2014

2

Z“ freescale

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Introduction
	Release Notes
	In This Book
	Where to Learn More
	Accompanying Documentation

	Chapter 2: Assembly Language Syntax
	Assembly Language Statements
	Statement Syntax
	Symbols
	Labels
	Non-Local Labels
	Local Labels
	Relocatable Labels

	Equates
	Case-Sensitive Identifiers

	Constants
	Integer Constants
	Floating-Point Constants
	Character Constants

	Expressions
	Comments
	Data Alignment

	Chapter 3: Using Directives
	Preprocessor Directives
	#define
	#elif
	#else
	#endif
	#error
	#if
	#ifdef
	#ifndef
	#include
	#line
	#pragma
	#undefine

	Native Assembler Directives
	.align
	.ascii
	.asciz
	.bss
	.byte
	.data
	.debug
	.double
	.else
	.elseif
	.endian
	.endif
	.endm
	.equ
	equal sign (=)
	.error
	.extern
	.file
	.float
	.function
	.global
	.if
	.ifc
	.ifdef
	.ifeq
	.ifge
	.ifgt
	.ifle
	.iflt
	.ifnc
	.ifndef
	.ifne
	.include
	.line
	.long
	.macro
	.mexit
	.offset
	.option
	.org
	.pragma
	.previous
	.public
	.rodata
	.sbss
	.sbss2
	.sdata
	.sdata0
	.sdata2
	.section
	.set
	.short
	.size
	.space
	.text
	.textequ
	.type

	Providing Debugging Information

	Chapter 4: Using Macros
	Defining Macros
	Using Macro Arguments
	Macro Repeat Directives
	.rept
	.irp
	.irpc

	Creating Unique Labels and Equates
	Number of Arguments

	Invoking Macros

	Chapter 5: ColdFire Assembler General Settings
	Displaying ColdFire Assembler General Settings

	Chapter 6: ColdFire-Specific Information
	Index

