CodeWarrior Development Studio for
Microcontrollers V10.x Digital Signal

Controller Build Tools Reference
Manual

Document Number: CWMCUDSCCMPREF
Rev 10.6, 02/2014

<&,

Z“ freescale

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

g |

Contents
Section number Title Page
Chapter 1
Introduction
L1 COMPILET ATCRILECTUIR. ...cutieutiiieiieiteeeterit ettt ettt et ettt e b e e bt e bt ea e eaaesb e e bt e bt sabesbee s bt enaeeatesbeenbeenaeeaee 25
1.2 LInKer ArCRITECIUIE.c.oouiiiiiiiiiiiiiiiiiiiici e e s et s s 26
Chapter 2
Using Build Tools with the CodeWarrior IDE
2.1 IDE Options and Pragmas.........ccoueeiueeiieiiiiiie ittt ettt ettt et et e st e e sttesabeesatesabeesbaesabeenbeesabeesbtesabeessbesaseensaesnseenseeas 27
2.2 Build Properties fOr DSC.... ..ottt ettt ettt et e e e s bt et e e st et e e ae e eh e e bt e a e e eae et e ene e be e et eneenaeenes 28
22,1 GlODAL SEINES. ..ottt sttt ettt ettt et sttt bt et e h e bt ettt e bt eat e bt e bt et nbeetesaeen 29
222 DSC LINKET .ottt st st ettt e st 30
2221 DSC LINKET 2 TNPUL. ...ttt ettt sttt ettt eb et eee et e st e sbe e e saeeneesees 30
2222 DSC LINKer > GENETAL.......cciiiiiiiiiiiiiiiiiieiece et 31
2223 DSC LINKET > OULPUL....eeitiiiiiiiieeie ettt ettt ettt sttt et e bt e sttt e sbteeabeesabeesbtessbeesabeesbaeenbeesabeennn 32
2.2.3 DSC COMPILLT ...ttt ettt a ettt b et e bt et e es e e bt en b e es e et e enbeebeenteene e st eneeeseenteeneeneeenes 32
2231 DSC COmPILEr > INPUL......oouiiiiiiiiiiiieiceteet ettt sttt 33
2232 DSC Compiler > ACCeSS PathisS....c..ciiiiiiiiiiieiiiciieeeee ettt et 33
2.2.3.3 DSC COmMPILEr > WAITINES.cccueeiieiietieiieiieetietteteeite st eteesaestee e estesieesbeensesseesseebesseesneeseensesneas 34
2234 DSC Compiler > OPtMIZAtION.ccuteiiriirieriieriienitenieeteete ettt stte sttt et ettt esteesaesaaesbeenaees 35
2.2.3.5 DSC COMPILET > PrOCESSOT...cuuiiiiiieiiiiiiiieiie ettt ettt ettt e st e st esabeebeesbeesabeees 37
223.6 DSC Compiler > LanUAZE.......ccceeeeiririiriniiniieiirienitetesie sttt sttt s s sae e sae e nes 39
224 DSC ASSEIMDIET ...ttt st 40
2241 DSC ASSEMDIET > TNPUL..cutieiiiieiiiieeiieeeieet ettt e st e bt e e sbteeabeesbeesaree e 40
2.2.4.2 DSC ASSEMDICT > GENETAL......ooiuiiiiiiiiiiiie ettt sttt sttt eaeas 41
2.24.3 DSC ASSEMDIET > OULPUL...cuvieitiriiiriieriieitenieete ettt ettt ettt sbe et ettt seaesaaenaees 42
2.2.5 DS C PrOPIOCESSOT ...ttt ettt ettt ettt e b ettt e et e et e s a bt e s ab e e bt e e bt e eabeesabeesabeesabeessbeeabtesabteeabeesabeennneenns 43
2251 DSC PreproCesSOr > SEIMZS. ..ccueiitieieeieeiiertteteeteetee st et ette et e bt esteesee bt ebeesesseesbeeseeneesaeesaeeeeenes 43
22,6 DSC DISASSEIMDIET........eiuiiiiiiiiiiiiiiiicciet et sttt e 44
2.2.6.1 DSC DisassemDbIEr > SEUNZS.cevuvterrieriieiieeiiterieerite ettt ettt et esbeesbeesabeesbeesabeesabeesaneenes 44

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

h o
g |

|
Section number Title Page
Chapter 3
Using Build Tools on the Command Line
3.1 INAMINGZ CONMVEITIONS. ¢eutettetieniteiteette ittt ettt sttt et est e et e e bt eateea e e ebee bt eateeate et s e bt ea bt eebesbeesbee bt eabeebeesbee bt entesbtesbeenbeenaeenee 47
3.2 Configuring Command-Line TOOLS.........cocuiiiiiiiiiriiiiee ettt sttt sit e e sbe e st e s bt e sabeebeesabeebeesnneas 48
3.2.1 CWPFolder Environment VariabIe..........cccoiuieiiiriiiieiietieie sttt ettt sttt see e e 48
3.2.2 Setting the PATH Environment Variable..........cccocuiiiiiiiiiiniiniiiieieeeeteee ettt 48
3.3 Invoking Command-Line TOOIS........coc.itiiiiiiiiiiiieeie ettt ettt et e st e et e s bt e esbeesaeesabeesabesabeesabesnseenes 49
R € (< 111 Tl = (=] o OO 50
341 HEIP GUIACINES. ...ttt ettt ettt ettt ettt e b e e et e b et e bt et sb e et ebe e et saeenaeeaees 50
34.1.1 Parameter FOIMALS.........cccooiiiiiiiiiiiic 50
3.4.1.2 OPtiON FOIMALS.ccuiiitieiietiee ettt ettt et st s bt e bt e et et eseeeaeeebeenteenbeentesseeaneas 50
34.1.3 COMIMON TEIMS. c..cuiuiiiiieiieiieiet ettt st sttt eae s 51
3.5 File Name EXIENSIONS.ccuiiiiiiiiiiiiiiiiiiiii e st 52
3.6 Specifying SoUIce File LOCAIONS.ociiiiiiiiiieitiee ettt ettt ettt et sae e bt et e sseesbeenteeaeesaeeneeeneesseeneeenee 52
3.7 Environmental VAriables............cccieiiiiiiiiiiiiiiiiiiiii ettt 53
3.8 Standard C and C++ Conformance OPLONS.eeruiiriierieeiiieeiteeieesteeeteesiteesiteesiteesatesbtesseesabeesbeesateessseesseeesssesssees 53
3.8.1)1) F OSSPSR 53
382 mSAKCYWOIES. ..ottt ettt et b ettt e b e bt et e bt s bt et e bbbt e bt e et sbe e bt et sb e e nbe et esaeen 54
383 SSHIICT ettt b et 54
3.9 Language Translation and EXtensions OPONS.coeeererierieieieieieieteieeeee sttt sttt sre st st eseent et ese bt ebesaesaenes 55
3.9.1 SCRIAT .o h e ettt e e 55
3902 —defAUIES ..o 56
303 cNCOMINEZ ettt ettt ettt e a e a et be bbbttt besae et b e 56
3014 LG et h bt et h bt e a e e bt b e et sh e bt et sbt e bt et e bt e nbeeaaesaees 57
3.9.5 HfUlILICENSESEAICR.ocuiiiiiiiiiiiic e e 58
3000 mBCCEX ettt ettt ettt ettt et bbbt b h et b e bt et b bt eh b bt eh b a e et h e ea e et b e a e ee b s a et b nae st b e 58
3.9.7 S ZCC_CXERIISIONS ...ttt ettt ettt ettt ettt b et e at e e bt et eh e e bt emt e sheesb e e st e he e bt e st sb e e bt e at e nhe et et nbe e b ebte bt et saeen 58
3.0.8 Vbbbt b ettt 58
IR 14 ;1 (<O OO PRSP 59

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

4 Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
IR L 1o | o Tes F OO OO PP R U UPRRPRR 59
3911 -Vt h b bbb bbbt bbbt b e bt b et b 59
3912 mMVID ettt h et b ettt b et 60
3913 —MIMD ..ottt 60
3914 —MIEILR.. ot h b bbbt a bbbt b et b et 60
3915 -MIMIALE. ..ttt bttt b e 61
3910 —MVIDIILE......oniiciicc ettt 61
3907 -IMIMIDHALR. ...ttt bbb bbbt b ettt b et 61
3018 —IMUIEDYIEAWALE. ...ccuveeutieiieitetteie ettt ettt ettt ettt b bt e bttt s bt s be e bt e st e sat e s bt et e et e ebtesb b e bt et e eabeeaeenbeen 61
IR L 1 101 (0] 1 7o [0) YOO OO OO TS ORI UPRRRPPR 62
3L9.200 SOMCE..eenutteiteett ettt b et h et h e et e eh et et eht e e bt e et e e eh bt et sat e e bt e s bt e eabe e b e e sabe e bt e eates 62
3L 21 sPTAZIMNA. ettt et b et h e sh ettt e b e bttt e h et h e bttt eh b e bt e b e et bt e bt et eabenaeen 62
3.9.22 cT@IAX _POIMEETS. c.uteiutieeiiieeitte ettt ettt ettt et ettt et e bt e ettt e bt e ea bt e st e e eab e e sab e e e ab e e ab e e ht e e bt e e bt e eabaeebeeeabeeenbeeeates 63
3.9.23 -T@QUITEPIOLOS. c.veuvereititertieteete ettt ete ettt ettt ettt e et et ea e eat e st estea s eseeaseat et easemtesteas et et et et et e se e et enteneebenae st ebeae 63
3024 SSCAICH. ...ttt st 63
IR B v 4[4 1] 1 KOO OO OO SO UPRRRPPR 63
3.10 Errors, Warnings, and DiagnostiC OPLIONS.cc.ueruieruieiieiertieteeteeiieetieteeteeste st eeteeteeseesseesaeeseeneesseesseenaeeneesneesseeneeenes 64
3.10.1 =diSASSEIMDIE......iuiiiiiiiii ettt e 64
BL0.2 SRCIP e et 65
T O T 14 T: b (<3 5 () SO USSP 66
3104 SINAXWAITIIZS c.veevtenteeitertieteett et et ett et et e bt eat e et e et e eb e e et e eateebeesteeb e esb e e st e ebee bt eatesbeenbeebee bt embesbeemtesbte bt emtesbeensenaeen 66
BU10L5 cINSZSEYIC ettt et ettt h et e bt e et e s bt e bt e b b e e bt e eat e e a b e ettt s bt e eabeenateebeeeates 67
T O TS 1 1o ;1 1 RSSO SPSRRRRI 67
BUL0.T cPIOZIESS. ettt ettt ettt ettt ettt et b et et e bt ea e bt ea bt e bt et eh e eb e et eh e e bt e a et bt et e h e e bt st e e bt et e bt e bt et nbeenbesaeen 68
B 10,8 Sk h e a e h e e st a et b ettt et ne 68
T O B (' 1<) s SO PRSPPI 68
31010 mVEIDOSE....eeviiiiictiie bbbt et a e e se e e 68
BUL0.IT mVEISION. .t bbbt e 69
31012 AHIMNEZ. vttt ettt ettt ettt b ettt b ettt b e ae et b e bt et bt bt et h e a e et beea e et b e ae et b e sa et besae st b e 69

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 5

h o
g |

|
Section number Title Page
BU10. 13 cWAITIIIIZS. tevveeutteeiteeite ettt ettt et st e st b e e bt e s at e et e e sut e e bt e eabe e b teeabeesae e e st e eabeeabaeeabeebeesabeeesbeeabeeenbeebeesabeennteenbes 69
310,14 =WIAPIINES ...ttt ettt ettt a e et e e e st e bt ea e e et e et e e a e e bt ea et eh e e bt ea e e eheen b e e he e bt enteebeenteeneebeeneas 73
3.11 Preprocessing and PrecOmMpPilation OPHONS.c..ceveitiriiriiniieieeteetteett ettt ettt ettt et ettt sbeesaesiaesbeesae e eaee 73
3111 -allow_MAaCrO_TEAEES.......couiiiiiiiiiiiiiiiiiii e 73
3112 mCONVEILPATNS. ¢ttt ettt b e et e s et e bt s bt e eb e e bt e et esa bt e s bt e e bt e sate e bt e eanee 74
B113 mOWe ittt e h bbbt bbbttt b et be e bt 74
BiL1i4 - e e bbbt 75
T8 B S T 1) 1 LSOO OSSPSR 75
BUL1i0 SE e h bbbt h e bbbt bbbttt b e b et 76
BULLT mEPua ettt 76
TN R T ol 1] 513 1 T L OO P RSP 76
BU11.9 m@CCINCIUACS. ...ttt ettt et s b e b ettt e bt e bt et eab e e bt e sb et e e et naees 77
BULLT0 Lo e h ettt h et 77
20 I 0 I Y G OO OO OO OO OO OO OO OSSOSO 78
B11L12 AINCTUAR. .tttk ettt bbbttt 78
BuLLL13 e bttt h et b et 78
31114 -NOPTECOMPIIE.euiiiiiiitetitere ettt sttt et ettt et a et bt sa e bt sae bt ebe st eas e e e e e senaenneee 79
BUL1.1S5 mNOSYSPALN. ..ttt ettt h bt et h e bbbt b bt e a b bbbt e b et saeen 79
BULL 160 =Pttt ettt 79
TN I A o (<1011 11 OO PUP USSR PRRUPRI 80
BULT1.18 -PIPIOCESS .ttt ettt ettt ettt b ettt s h e bt e e e bt e bt et e h e bt bt e a e eh e bttt e h e bt e bt ea bbb e bt e st eb b e s bt e b eaaesaeen 80
T B L B o) 0T o A OO O OO OO U PP UPRRPPR 80
TN O I o) < i OSSPSR 81
BULL2T =SEAIIC. ettt b et et e h ettt b e st 81
BLL.22 mUH et b et 82
TN B G T 11114) i OO PSPPSR PP 82
3.12 Library and LinKing OPtiONS........cccueetertiiierierieiiteritenie ettt sttt ettt ettt et ea e ebte s bt et eabesbtesbeesbeebeesaesbeesbeeneeeneeeaee 82
T B B (GoTc) 16 o] [Tt O OO U U RO PPRRPPPR 82
TN B v 11] 1 (o) o) SO R SRR 83
CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014
6 Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
3123 SNOHIK. ettt 83
31204 S0 h bbb b bR bbbt h bbbt b et b et b et b et ene 83
3.13 Object Code Organization and Generation OPHOMS.ueeuertieriierieiierie ettt ettt ettt et e bt ebeeebesebesbaesbeesbeeneeeneeeaee 84
3131 CAlIOWRERP ...t 85
TN B 0 T 1410 | AU USRS 85
31303 Gttt h b ekt h et ekttt a ettt b e bbbt b et b e ns 85
31314 -CRKASINL..cuiiii e e e 85
3.13.5 -CRKCSTCPIPEIINE.ottt ettt ettt ettt et e st e bt et e e bt e bt emeeeaeeeb e emteen b e eseenbeenbeeseenneebeensenneas 86
BuI3.0 mCOUCEEM. ...ttt ettt et e h bttt e h bt et h bt at e bt bt eh e bt et ebt e bt et bt nbe et e saeen 86
BU13.7 cCOMSLATTAY ..eeeuteerittetteette ettt et e et et e st e s bt e et e e s bt e e bt e sut e e bt e eabe e bbeeabe e sb e eabeeeabeeabaeeabe e bt e sabeeeseeeabeesnbeeseesabeenstesnbes 86
B13.8 w0ttt bbb bbb bbb s bt h bt h bt b bbbt b et b et ene 87
3130 CBIUIML ittt e et s h e b e sh et et et 87
BULB.T00 “XEutuiiiietitciietee et e h e h e bttt h ettt 88
TN B 0 I B (o) Yoo 0711 U OO OSSPSR 88
3.13.12 -globDalSINLOWEIMEINIOLY ...c..eiitiiiieiiieitiett ettt ettt ettt et sttt et e bt e sb et eat e eb e e bt et ebbesb s e bt ebeeanesaees 88
31313 -hPTOZ | -NUZEPTOZ. ..ottt ettt st e b e et esht e e bt e sab e e sab e e bt e sab e e btesabeesabeenbeesabeeseesates 89
3.13.14 -INItIAlIZEAZEIOAALA.etieiieeieieeeet ettt ettt ettt e a bt e a e e a e et e a e e bt et e e he e bt e nte bt enteeneeneeneas 89
313,15 -1data | larZeAAta...c..eeuveeiiiieeiieieet ettt et a ettt et h et s ht e bt et sbe b saeen 89
313,16 -1areAAAIINSAML c...eiiiiieiie ettt et et e st e ettt e bt e a et e b e e et e e bt e et e sabeeeabeeeates 89
I B T A 1 V1 (=1 100 00 TS = TR 90
BUI3.18 mPAAPIPL. ..ttt b et h et h et ea bt e et e h et e he e bt e bt e bt et sbeebesaeen 90
T BTN L o) (o) i (O OO OO SO U SOUUR U RPPRRPRP 90
313200 -SCREAUIINE.eoviiiitietieieeiee ettt ettt et ettt ettt et et a et aesa b nae e b e 91
BUI3.21 =SEECRATAALA. ...ttt et bttt e a e bbbt a bbbt ettt naees 91
3.13.22 -SPTOZ | -SIMALIPTOEZ. ¢ ..eeeiiie ittt ettt et e a et e s bt e bt e bt e e bt e s bt e eab e e sab e e st e e bt e e st e eabaeenbeeeates 91
313023 mSLACKSE ettt ettt ettt ettt ettt ettt b e h et eh e bt h e bbbt e h e e bt bt e a e e bt b sa et be e et be e 91
BiI3.24 mSEIINES. .ttt ettt ettt ettt et b et h et h e bbbt a bt a e bt et h bt eh et b e e a e e he et e bt e bt e bt e she et nhe e beeaeen 92
T G TN T o SO OO OO OO PO PRSUPSPPR 92
B13.20 -V 3 bbb bbb b s bbbt h b n e bttt b et b et b et ne 93

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

h o
g |

|
Section number Title Page
3,14 OptimMIZatiON OPUOMNS.eiutiiiitietieiteeiteetee st et ee st e esttesateesuteebeesateasbtesateessteeaseesseeeabeessseestesabeesbeeenbeessseestesaseensaesnseensnean 93
TN N B ¢ Tet o) o OSSR RS PSRRRRP 93
BULA.2 AFACIOIZ it sttt s a e e 93
BUL43 -FACIOI3. .ot 94
TN R 11 111 1< OSSOSO UT SRS 94
BLALS cIPAuiiiei bbbt bbb bbbt h bttt b et b et 95
14,6 -NOTACTOTL ... 96
TN A 1 1o ot o) OO P S USRRI 96
3148 -NOTACTOIB ...ttt s 96
BUL49 20 ettt 96
BTAT0 =Ort ittt bbb bbb b s b bbbt h bt b et b bt b et b et ene 97
BT LT 20D ettt bbbkt h bbb bbbt b et h e bt bbbt b et 98
3.15 Debugging CONLIOl OPLIONS.eeuititierieeeitieetterite et ete ettt et e sttt e sttesabeesute e stesateesabesabeesabeasstesabeesabeebeesabeesaseebeesaseenseean 100
20 B B SO OO OO OO OO SO S OO SOUTSEUOUSSOT OISR 100
3152 S MMttt h ekt h ek h e h e bt h bbbt b bttt b et b e bt 100
3.16 ASSEMDIET CONIIOL OPLIONS. ..ceutiiitiiiieriteeiteritt ettt et et et e st e e bt e sttt e bt e sute e beesabeenbeesateenseesateebtesabeeabeesabeenseesaseenseenanean 101
TN T B Ty A 110 o OO OO SO P TSR PRRPI 101
3102 SCASC..iuiiiii ettt b e bt s a e b e bt ettt ettt e 101
B16.3 mALA ettt 102
TN T 1<) 1 XSOOSO PSR TRUSRR 102
3.16.5 -debug_ WOrKaroUNd........coeooiiiiiiiiiieiie ettt ettt ettt ettt b ettt sb bbbt saees 102
T L I (5 1o OO OO PO ST PR S UPRRPPRR 102
B10. T SliShuttinietit ettt bbbt h b bbbt h b bbbt b et b et b et b et bt ene 103
3.160.8 “IMACTO_CXPANG..c..titiiiiiiiitieitett ettt ettt ettt ettt ee et e e eb e et eb et e et eb e et e e bt e sb e et eb e et ea b e sb e e e e bt e bt et sbeeaeeaeen 103
T (O TR o) (oY SO OO O OO PRU S UPPRPPR 103
T T O o T 1103 o OSSPSR P USRI 104
RO L0 B Y W] 721 | OO TR 104
I LT B Ty o B 0 L) OO OO O OO UURPRUTSPPR 104
B160.13 -V 3 bbbt h b bbb bt h bbbt h bbbt b et b et bt ene 104
CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014
8 Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
3.17 Command Line TOOIS........ccoiiiiiiiiiiiiiiiiii e 104

T8 B B U7 (OO U TOUP RSP 105
307.2 RESPONSE FHIC....couiiiiiiiiiiiiie ettt ettt et sb et b e sbe et et sb e nbe et saees 106
3.17.3 SamMPIe BUILA SCIIPL....ciiiiiiiieiiieeteet ettt ettt e st e st e bt e sbb e e bt e sabeesabeesabeensteebaeenbeesates 106
T N ¥ 41111 1S 11RO OO O PO PP TSSO POR PSR PRRRPPPRN 107
Chapter 4
C for DSP56800E
L B D T 1 I 1T T OO O SO P S TP PPTOPRORUPRRRPPINt 137
4.1.1 OFAINAL DA TYPES....uteteiiieitietteie ettt ettt ettt ettt bt e bttt e et e bt bt e st eb b e sbt et e eabesbse b e eabesbtesbeenbesasenaeen 137
4.1.2 FlOoAtNG POINE TYPES...ceiuttiiiiiiiieiiie ittt ettt ettt ettt ettt et e st e et esab e e ateeabe e e bt e eabeesabeebtesabbeebeesabeesaseanseean 138
413 O4-Bit DAt Ty PeS..eeueeitieiieie ettt ettt ettt et ettt ettt et e bt e a e e h e bt e n b e e h e e bt et ea e et e et e et e ehe e beenbeententean 138
4.2 Calling Conventions and Stack Frames...........ccceriiiiiiiiiiiriiie ittt ettt ettt ettt et nbe e 139
4.2.1 Passing Values t0 FUNCHOMNS.uiiiiiiiiiiiieeit ettt ettt et ettt esateesateesabeesaseesaneenes 139
4.2.2 Returning Values From FUNCHONS.ooiuiiiiiiiiieiecei ettt sttt aeenaeens 140
4.2.3 Volatile and Non-Volatile REZISTETS.c..cccuirtiriiriiiiiniieieiie ettt ettt ettt ettt ettt eabesbeenbeens 140
424 Stack Frame and ALIZNMENT.......cccuiiiiiiiieiiieiieeiteeie ettt ettt et e et e sttt e bt e sab e e baeeabeesaeeebtesabeesbaesseenaneen 142
4.3 USET StACK ALLOCATION. ¢...ettetieiieiiie ittt ettt ettt ettt e e at et e e aeees e e bt ea et es e e st emteeaeeesee st eneeeseenteenseeneebeenseeneanseans 143
4.4 Data AlIgnment REQUITEIIENTS.coueiiiriiiiriiiieiietert ettt ettt eb ettt se et e bt et s bt et e s bt esbesbees b e ebe et e ebeenseebeeneeeaee 149
441 WOrd and Byte POTNLETS.coiuiiiiiiiiieiieeiie ettt et ettt ettt et e st e st e s abeesbteesabeebeesabeesanee e 149
4.42 Reordering Data for Optimal USAZE.........cceeruieiuieiiiieiieiieite ettt ettt ettt te et ee st e bt e teeeesseesaeesseeaeans 150
4.5 Variables in Program MEMOTYco.eeieriiiirtiiieieeie oottt ettt ettt b et ettt e sbt et ebe e et sbeesaeestesbeestesbeesaesbeennenbeens 150
4.5.1 Declaring Program Memory VariabIes.........c.ueiuiiiiiiiiiiiiieieeiie ettt sttt ettt et 151
4.5.2 Using Variables in Program MEMOTY.........cc.oeiuieiieiirieniieieeie sttt ettt site sttt et ieesteeeeeeeeeseesteenteeneesseenaeans 152
453 Linking with Variables in Program MeMOTY..........cccceeviiriiriiriiniiniieieeiteeieeteeiteste ettt ettt nieens 153
4.6 COde aANd DAt STOTAZE....cuveetieeiiietie ettt ettt ettt et e st esttesat e e bteeab e e beeeabeestesa bt e sabesabeesbbeeabeeseeeabeesatesabeesabesnseenns 155
4.7 Large Data MOAEL SUPPOIT........ciuiiiiitieieitieieet ettt te st e e st et e s bt et e e bt eate e bt enteeaeanbeesee bt eseenaeemeesseensesneennesbeennenseans 156
47.1 Extended Data Addressing EXAmPIe........cccccoiiriiiiiiiiiiiiiieieeect ettt 158
4.7.2 Accessing Data ObJects EXAMPLES......cccueeriiiiiiiiiiiie ittt ettt ettt e st e e sbaesbeesaee s 158
4.7.3 External Library CompatiDIlity.........cccoeviririririiiiiiieieieteet ettt ettt b e s 159

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 9

h o
g |

|
Section number Title Page
4.8 OPUMIZING COUC.....coueieiitieiiiiiieet ettt ettt ettt et e et e s et e bt e s bt ettt e bt e e st e e bt e eabeesabeeabbeesbeesbbeenstessbeenbbeenbeesabeenabesnseenen 160
4.9 Deadstripping and LiNK OTAeT........c.coiriiiiiiiiirieiieteet ettt sttt sttt ettt sttt ettt sa e saenne e 161
4.10 Working with Peripheral Module REZISTETS.cccuiiiiriiriiiiiiieiieiiesitestc ettt sttt e st esbe e eas 161
4.10.1 Compiler Generates Bit INSIUCTIONS.coiuteiiiiiiieiieiiierieee ettt ettt e site st e st e e st e sbeesseenaee s 162
4.10.2 Explanation of Undesired BERaviOrs.coouieiieiiiiiiieiieieeit ettt sttt et saee e ens 164
4.10.3 Recommended Programming StYIE.........cocueiiiiiiiiiiiiiiiiierietereee ettt 165

4.11 Generating MAC INSTIUCHION SEL......eiiutiiiiiiiiiiiieeite ettt sttt ettt et e ebee st ee sttt e sabeetteeabbeeabeesabeesabeebeeesbbesnbeesnbeesnseenes 167

Chapter 5
C Compiler

5.1 Extensions to Standard C...........cccciiiiiiiiiiiiiiiiici e 169
5.1.1 Unnamed Arguments in FUnction Definitions..........cccueruieiieiiiiieiieieeieeiiesi et s 170

S.12 G COMIMENLS. c..utiiiiiiietete ettt ettt ettt be s b st b e s a e bt e bt e bt e bt e bt st et et et e s ea et esaesaeaesueas 170

5.1.3 A # Not Followed by @ Macro ATZUMENL.eeiiuiiiiieiiieiiieeieeeite st siee st e st e sbeesateesbeesibeesabeesateesaseesaneenns 170

5.1.4 Using an Identifier After H#ENdif.........ccooiiiiiiieee ettt e 171

5.1.5 Using Typecasted POINters as IVAIUES........cocoriiiiiiiniiniiiiiietee ettt s 172

5.6 INlNE FUNCHOMNS.ccuiiiiiiiiiiiiiiic et 172

5.1.7 Pascal Calling CONVENTIONS.cuteueeteitieitierttete et etteeteesteeteeateestesseessee st e bt eneeemeeeseenseenseanseensesseesseenseenseenseenes 172

5.1.8 Character Constants as INtEZEr VAlUES........coeeviiriiiiiiriiiiiieeiteeet ettt st s 172

5.1.9 Converting Pointers to Types of the SAmMe SiZe.........ccoooviiiiiiiiiiiiiiiiii et 173
5.1.10 Getting Alignment and Type Information at Compile Time..........cccceerirriiiiiiieiiiieee e 173
5.1.11 Arrays of Zero Length i STIUCTUIES.cc.eeoutiiiiiirieiieit ettt ettt e et 173
5.1.12 The "D" Constant SUFEIX........cccooiiiiiiiiiiiiiiii e 174
5.1.13 The __typeof__ () and typeof() OPEIators.ccueruieruerierieriieteeieeetteette et eeteette st e b eeteeseesbeebeeaesneesseesaeeeeenes 174
5.1.14 Specifying Variable Addresses i C........ooiiriiriiiiiiiiiiiieieeeee ettt st 175

5.2 Implementation-Defined BERAVIOT.........c.coiuiiiiiiiiiiii ettt sttt st et ettt e s ba e e beesans 175
5.2.1 DiIagNOSHC IMESSAZES. .. ecuveeueeiuieteeuieitteteeitesteetestee bt eseeabeesteeste bt este bt anteeseebeemteeseenteenee bt enteene e bt enee st enteeneenneenes 175

522 TAENHFIETS. ..ttt bbbttt 175

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014
10 Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
Chapter 6
C++ Compiler
6.1 Features and LIMItAtIONS.cc.oouiiiiiiiiiiiiiitiete ettt ettt ettt 177
6.2 Implementation-Defined BERAVIOT..........cooouiiiiiiiiiiii et sttt ettt ettt e e ba e e beesans 177
6.3 GCC EXIENSIONS.eetiiiitietinteitieteete sttt sttt sttt ettt e e et et et e st eateste st eatemtesteuteaeeateueeaeebeebeebeebesbeebeebesaeebeebesaeetennenee 179
Chapter 7
ELF Linker
7.1 Structure of Linker Command FIles...........coiiiiiiiiiiiiiiiene ettt sttt 181
To1l MEMOTY SEZIMEIL.....eetiiiiiiieititteieett ettt ettt ettt ettt et et e bt eb e e bt eat e e bt et e ea b e eb e enbeeat e e bt esteebeenbeeaaesbee bt enteebeenbeenes 182
T.12 ClOSUIE BIOCKS.....cuiiiiiiiiiiiiiiiiiic e 183
713 SECHIONS SEEIMENL.etiiutieitietiett ettt et et e st e bt eate et ee bt esteeb e e bt eabeeaeesbeeabeemeesaeanbeemeeseeesseensesaeesaeenseeneesneenseenes 184

7.2 Linker Command FIle SYNTAX......cceirueiiiriiiiiiieieeitei ettt ettt ettt et eat e bt et eb e e bt eatesb e e bt eatesbeenaesbeenaeenee 184
7.2.1 ATLZIINCNL. ...ttt ettt et st et e sat e e bt e s ab e e bt e e abe e beesabeenbeesab e e bt e eab e e b b e eab e e bt e sab e e bt e ea bt ebeeeaneenbes 184
7.2.2 ACITRMEUC OPETALIONS.eeuteitieteeiieeteete ettt et e ete et e et e st e et e et e e bt este bt enteesee st esteebeenteeseenbeenteeseanseeneesseenseeneenseenes 185
T.2.3 COMUMEIES. c..uiiiteteie ettt et a e e bbb bbb et et e st et s b e et e b e sb e ebeeat e st ess et e s e s esaeaesaens 185
T.2.4 DeadStriP Pr@VEIMTION. ... eeitiietieiiiteite ettt ettt ettt ettt et e st e bt e et e e sate e bt e eabeesbbeebeesabeenbbesnbeesnseenssesaseenns 186
7.2.5 Variables, Expressions, and INteZral TYPES.......cceeruieiiriieriieiieiesiieie ettt ettt ee e 186
7.2.5.1 Variables and SYMDOLS.......cocuiiiiiiiiiriiiiie ettt 186

7.25.1.1 GLObal Variables..........ccciriiieiiriiieiiriciercee et 186

7.2.5.2 Expressions and ASSIZNIMENLS.ceiuiiriiiierieiteieeteesttetesteesteeeeseeesteetesstesseeseeaeesseenseeneeseeenseenes 187

7.2.5.3 INEEETAL TYPES..eetiiieeiieieee ettt et et be e b ettt et et sbee b et e e e 187

T.2.6 FIE SEIECTIOM.ocuiiiiiiiiiiictcc ettt e 188
727 FUNCHON SEIECHION. c..c.uitititititeteteeete ettt sttt ettt ettt ettt ettt sttt ettt ettt eaeeneeaeebe b e 188
7.2.8 ROM t0 RAM COPYINZ...cvtiutiriiiiiniieteniieieeit ettt ettt ettt et etesb e etesbe e besbeesbesbtesbeebtenteebee bt eseenbeeueenbeenees 189
7.2.9 Utilizing Program Flash and Data RAM for Constant Data in Cc.ccceeviiiiiiiiiiiiiiieiieeeee e 190
7.2.10 Utilizing Program Flash for User-Defined Constant Section in Assembler..........c..ccccoceeviininiiniiincninieniennens 191
7.2.10.1 Putting Data in pPROM Flash at Build-time..........c.ccocueriiriiiniiniiniinieniciiccccese e 192

T2 11 StACK @NA HEAP....ceueeeiiiieiieie et ettt et st e b e s at e et eeat e e bt e st et eshb e e bt e et e beeeateeabes 193
7.2.12 Writing Data DIirectly t0 MEIMOTY......cc.ccuioiiriiiiiiieietiieietetetetete ettt ettt ettt sae b s see b sae e 193

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 11

h o
g |

|
Section number Title Page
7.3 Linker Command File KeyWoOrd LISTINE.cecutiriiiiiiiiienieeiie sttt st sttt sttt ettt et st e st et e sbeesaeeeabs 193
7.3.1 + (1OCATIOMN COUNERT)....uvtiiutieeiteeeiteeetieesteeeteeseteessteeseeeseeasseesssaessseesssaassaessseessseensssenssaasseesnsaensseensseenseesssaessseenseenn 194

T332 ADDR ottt bbbt sttt b e 194

733 ALIGN .ttt et ettt 195

T34 ALIGNALL. ..ottt ettt b et b et b et e b et bbbttt b et b et b et 196

7.3.5 FORCE_ACTIVE. ..ottt ettt bt sttt sttt b e 196

T.3.6 INCLUDE......c.iiiiiiiiee ettt ettt sttt st b ettt be e 197

737 KEEP_SECTION. ...ttt sttt sttt b e sttt b et b et b et b et b et b e bt b et b e ne 197

T.3.8 MEMORY ..ottt ettt ettt ettt b e 197

7319 OBIECT ...ttt ettt ettt 199
7.3.10 REF _INCLUDE......ccuiiittitiiitititetee ettt ettt b et b bt b et b et b e e be st et b et b e 200

T 311 SECTIONS ..ottt ettt b ettt b et b et b et b et be e be e nnene 200
7312 SIZEOF ...t ettt sttt et ettt 201
7313 SIZEOFW ..ottt h st b et h et b e et b et bttt b et et e b et bttt b e et b e ene 202
T304 WRITEB....cciiiiiie ettt ettt sttt ettt st e b ettt be e b 202
7315 WRITEH. ..ottt ettt ettt 202
7316 WRITEW ..ottt h et b et e b ettt b et b e bt e bt st e bt e bt b et be e 203

7.4 Command-Line LANKer OPTIONS.ccoueriiiiiiiiriieieriteie ettt ettt ettt ettt et et be et ebte bt ea b e sbee bt eatesbeestesbeenaeenee 203
7.4.1 SIS ASSEIMDIEuiiieeieeieteeeee e e e e e e e e e e e e e e e et ——— e e e e e eea——aaaeeeeeaaraaeeeeeeaarrraaeas 203

TA2 —dEFAULES. ...ttt et h bt h e bt e e bt et e bt et e eh e et e en e e bt et e en e et e eneeeaeenes 204

TA3 bt h et b et b ettt h et 204

TAA Il e e ettt 204

TAS Al h et bbbt h et b e bbbt b bbbt sttt b et 205

TAD NOTAIL .ottt et b ettt 205

7.4.7 STEVETSEIIDSEATCHPALN. ...coiiiiiiiiiie ettt et s et 206

T4 mSEALID oottt bbb b et b et b bbbt b e st be et b e e 206

T oSttt h e h et h et bbbttt ettt b e 206

7.5 ELF LINKET OPHOMNS. ...eitttiiieitieeiteiite ettt ettt et e st e sttt ettt ebeesateesuteebeesabeesabeeabeeeabeeeaseesateenseesabeesabeebteebaesaseesabeanseenases 207
75.1 L (ST | 0] o) OSSOSO UUUSURRRRO 207

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014
12 Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
752 AOTCR_ACTIVE. ...ttt 207

753 S G1S] o] [(077 1 I SO USROS 207

754 101 111 P USSP RRRRRRRP 208

7.5.5 S V0.1 o T OO OO OO PSR ROTOP RO PP 208

7 o) 1) 2 T (6 OSSPSR 208

T.5T mSTECu ittt bbb h bbb bbb s a e h b sa e b b sa et be et be st sae e 209

T.5.8 mSIECROL ..ttt s a e st 209

7519 mSTECIEIMEIN. ..ttt ettt ettt sa et b sa et b et et be et ae e 210
T.5.10 —USEDYLRAAAL. ...ttt ettt ettt et et e a et h et et she bt eae e st aeene 210

TS 11 SV e e ettt ettt 210

I (o) (=Tt A @ o 15 o) 1O OSSO 210
7.6.1 SAPPIICALION. ... ettt ettt et b et b et s h et b et h et h et e h bt e h e bt et bt et bt et sbeebesbeen 211

T 1o v o OO OO OO OO PP PRTRPRRPPN 211

7.7 Linker C/CH+ SUPPOTT OPLIONS.eetiiuieiiiiieteeiieiteetteste et et eeteeteesteeteestesseetesseeeesseeseeseenseeseeseessenbeensenseensesseensesseeneesnes 211
7.7.1 S PP _CXCRPIIONS. ¢ttt ettt ettt ettt ettt ettt e bt e beebt e s bt e st s bt e st b e et h et h et e h e bt bt e bt e st e e bt et bt e b sbeebenbeen 211

T2 —HAIECT | LANG . ..eeiniieiieeeee ettt ettt ettt et bt eeat e e bt e eab e e bt e sab e e bt e eabeesateebee e 212

7.8 Errors and Warnings OPLIOMS.ccueeuieuirieieitieteetieteettete et teteeste bt esee st eseesseeneeeueentesaeentesseenseeseenseeseenseeneenseeseeseeneeneeanes 212
7.8.1 FWATTIIINZS] ettt et b et a et h et h et e h e bttt b e et ebe e bt et saeeaeeaeen 212

7.9 ELF DiSaSSEMDIET OPIIOMS. . ..eeiuttiriiiiiieiiieettesiteesite ettt eteesiteesateebeeestesateesabeesaeeebtesastesabeesaseaasseenssesabeesabeesnseensaeenseenases 213
7.9.1] 1103 2SSOSR 213

T2 —dISPANS .ottt ettt ettt s 215

Chapter 8
Inline Assembly Language and Intrinsics

8.1 Inline ASSEMDLY LANGUAZE.ccutitiiiiiiiiiiieteieet ettt ettt ettt et e bbbttt e bt e sbe e s bt e bt emae s bt e nbeenbeeneeeaee 217
8.1.1 INIINE ASSEMDLY OVEIVIEW.....ccueiiiiiiiiiiiieiiteiite ettt ettt ettt et e st e bt e sbt e s bt e s abesabeesabesabeesabeenbeesateenbeesaseenses 217

8.1.2 Assembly Language QUICK GUIAE.ccceruiruirieiiiiiiienienee ettt sttt 219

8.1.3 Calling Assembly Language Functions from C Code...........coccervuiriiriiniiniiiiieiieeieeteseesee et 219
8.1.3.1 Calling Inline Assembly Language FUNCHONS.........ccciiiiiiiiiiiiiiiiiecieeeeee e 220

8.1.3.2 Calling Pure Assembly Language FUNCHONS...........cceiiiiiiiiiiiieiieie e 220

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 13

h o
g |

|
Section number Title Page
8.1.4 Calling Functions from Assembly LangUage...........ccocueerieriiiiniiiniiiiniieiieeite sttt ettt st 221
8.2 INLIINSIC FUNCHIONS. ..c.tiiutiiiie ittt ettt ettt ettt e ket e e e st et e en b e e st e e bt en b e emteemeeeb e e bt embeemeeeseeabeenaeeneesneeneeenneenee 222
8.2.1 IMPIEMENEAION. ..c..eiiiiiiiiiiiiiiitete ettt ettt st b et eat e s bt bt et e bt sb e e bt et eb b sb s e bt e b et esaees 222
8.2.2 Fractional ArithmetiC.......c.cccoiiiiiiiiiiiiiiiiiiiicc e 223
8.2.3 Intrinsic Functions for Math SUPPOTTcoiuiiiiiiiiiee ettt ettt ettt 224
8.2.3.1 ADSOIULE/INGZALL. ...ttt ettt et ettt eb e bttt b e sbe ettt e bt et e sbeenaeenee 226

8.2.3.1.1 ADS S e 226

8.2.3.1.2 DIEEALC. ...ttt ettt ettt e e e ettt et e bt e ettt e s bt e bt bt e e a bt e e bt e e bt e e bt et e e eat e e nabeeebe e ebeeeateenas 227

8.2.3.1.3 L 8BSttt ettt ettt nae e 227

8.2.3.14 L NBEALE. .ottt et bt e 228

B.2.3.1.5 LLL_ABS ettt sttt 229

8.2.3.1.6 LL_NEGATE......ioi ittt 229

8.2.3.2 Addition/SubLrACION.couiiiiiiiiiiiiiiiiii e s 229

8.2.3.2.1 QG ettt b et sttt 230

8.2.3.2.2 SUD Lttt ettt ettt naeae e 230

8.2.3.2.3 L_add.e i 231

B.2.3.2:4 L SUD ittt sttt ettt 231

8.2.3.2.5 LL_ADD ..ottt ettt 232

8.2.3.2.0 LL_SUB. ..ottt 232

8.2.3.3 (0707113 (o) ORI 233

8.2.3.3.1 SEOP ettt ettt ettt ettt et h et st h et bttt b e 233

8.2.3.3.2 Walleeiiiiiiicieeceee et 234

82333 tUIN_Off_CONV_INIAZ...oneiiiieiieiieee e e 234

82334 L1005 o) & AT L SO TR OOPRPOPRPRPPPPPPRIRY 234

8.2.3.3.5 TUIN_ON_CONV_TIAZ ..t eutteiitieeiiieittesiteeiee st ettt e et e st esabeebeesbeesateesabeenbeeebaesaneenas 235

8.2.3.3.6 DUTTL OTL SALu ettt eeeeeeeeeeeeeeeeesesesaaaaseseenneasasaneneeeee 235

8.2.3.4 DEPOSI/EXIIAC. ..cuvetieiiiiietiettett ettt ettt ettt sttt ettt et bt ettt ettt esbe et e s bt et bt esbesbeeaesaeens 236

8.2.3.4.1 EXITACT Nl 236

82342 EXITACE L.ttt e e e e e e e e e e e e e e eea e e e e e e e e aaannaee 237

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014
14 Freescale Semiconductor, Inc.

h o
g |

Section number Title Page
8.2.3.43 L_deposit_N.....ccooiiiiiiiie e 237

82344 L dEPOSIE_ L.ttt ettt e aeens 237

8.2.3.4.5 LL_DEPOSIT H....ociriiiiiiiiiinieieinieteieseteesee ettt st 238

8.2.3.4.6 LL_DEPOSIT L....cociiiiiiiiiieiciniiectreeictee ettt ettt 238

8.2.34.7 LL_EXTRACT H..oioiioiiiiiiiiiieieteetetse ettt ettt 239

8.2.34.8 LL_EXTRACT Lu.ooiriiiriiiriiieienieenicinieteteteereee ettt sttt 239

8.2.3.5 DIVISION....cuiiiiiiiiiiiiiteiete ettt ettt ettt ettt sttt 240
B.2.3.5.1 IV Sttt bbbttt b ettt b ettt 240

8.2.3.5.2 DIV_S_ INT ..ottt ettt ettt sttt sttt 241

8.2.35.3 IV S ettt et ettt et sttt e sb et eares 241

8.2.3.54 DIV_SAQ INT ..ottt sttt 242

8.2.3.5.5 IV _IS ittt 242

8.2.3.5.6 DIV_LS INT ..ottt s 243

B.2.3.5.7 IV _ISAQ ettt ettt 243

8.2.3.5.8 DIV_LSAQ INT...ciiiiiiiriieiireietenet ettt sttt sttt sttt 244

8.2.3.5.9 LL DIV ittt 244

8.2.3.5.10 LL_DIV_INT ..ottt sttt sttt sttt ettt sttt 245

8.2.3.5.11 LL_DIV_S4Q _INT..c.ioiiirtiirtiirinieenetntcteteeeteneee ettt sttt 245

8.2.3.6 Multiplication/IMACc.ocuiiiiiieiiceeee ettt 246
8.2.3.6.1 TIMAC_Tuvuvtentetetententet et eat et e st et eaeeat e bt e bt e bt s bt et be s ae st e ot et e s et et et eneeaeeateneebeebe e bt saeen e b e 247

8.2.3.6.2 MAC_R INT ..ottt sttt sttt 247

8.2.3.6.3 IMISUL Tttt sttt s s b b e e 248

8.2.3.6.4 MSU_R INT ..ottt ettt st sttt st 249

8.2.3.6.5 MUILe.ciiiiiiiiiiciic ettt 249

8.2.3.6.6 MULT _INTcciiiiiiiiiieieeeeeree ettt 250

8.2.3.6.7 INIULE Lottt ettt e nannnaaee 250

8.2.3.6.8 MULT_R_INT ...coitiiiiiiiiiiireteenctntcet ettt ettt 251

8.2.3.0.9 L_INAC.. ittt sttt 251

8.2.3.6.10 L_MAC _INT ..ottt sttt b st b e st 252

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

15

h o
g |

Section number

8.2.3.7

8.2.3.8

Title Page
8.2.3.0.11 L_IMISU.iiiiiiiiiieiccie ettt ettt sttt 252
8.2.3.6.12 L_MSU_INT ..ottt ettt ettt b ettt 253
8.2.3.6.13 L_MUI.uiiiiiiiiiicitciecet ettt 254
8.2.3.6.14 L_MULT _INT ..ottt 254
8.2.3.6.15 L_MUIE_ISueuiiiiiiiiiiiiteiceteet ettt 255
8.2.3.6.16 L_MULT _LS_INT.....coiiiiiriiiiirieieintceetseee ettt ettt 255
8.2.3.6.17 LL_LL_MULT _INT.....ccooiiiiiiiiieineireeeeeeteseee ettt 256
8.2.3.6.18 LL_MULT _INT....ociiiiriiirieinietstetste ettt sttt 256
8.2.3.6.19 LL_LL_MAC_INT...cciotiiiitiiniieeneirtetetese ettt sttt sttt 257
8.2.3.6.20 LL_MAC_INT...cooiiiiiiieieieenee ettt s 257
8.2.3.6.21 LL_MSU _INT ..ottt sttt sttt sttt 258
8.2.3.6.22 LL_LL_MSU_INT.....ioiiiiirtiiiiriieinctetnte ettt sttt ettt 258
8.2.3.6.23 LL_MULT_LS_INT....cccoiiiiiiiiiiieinceeret sttt 259
8.2.3.6.24 LL_LL_MULT ...ioiiiiiiiiiiiitieietese ettt sttt sttt 259
8.2.3.6.25 LL_MULT ..ottt sttt 260
8.2.3.6.260 LL_LL_MAC ...ttt 260
8.2.3.6.27 LL_IMAC ...ttt ettt sttt 260
8.2.3.6.28 LL_MSU...ociiiiiiiiiiincintetete ettt ettt 261
8.2.3.6.29 LL_LL_MSU. ..ottt sttt 261
8.2.3.6.30 LL_MULT LS.ttt sttt 262
Multiplication/MAC (56800EX)......c.coucoiriiriiiriiieiiietinteieneetsetsteetriet ettt snens 262
8.2.3.7.1 V3L MUt Nt 263
82372 VB L IMIAC ANttt e e e e e e eeeeeeeeeeeeee 263
8.2.3.7.3 V3 L MUttt ettt 263
8.2.3.7:4 V3_L_IMAC. . ittt 263
8.2.3.7.5 V3_LL_MUIL INtititiitiriiiiitiiiinteietes ettt ettt st 263
8.2.3.7.6 V3 _LL_MUIti.triiiiiiiiiiiiiciciriceer ettt ettt 264
INOIMALZATION. ...t 264
8.2.3.8.1 BB Sttt ettt 264

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

16

Freescale Semiconductor, Inc.

h o
g |

Section number Title Page
8.2.3.8.2 1110) 04 OO OO PP PP 265

B.2.3.8.3 LS Lttt b et 266

8.2.3.84 J010) 5 1o 1 FUU TR URPOPRPRPPPPPRRIRY 266

8.2.3.9 ROUNAING. ...ttt ettt ettt et s et e s bt e et e s bt e s ate e b e e sabeesaeeenbeesasee e 267
8.2.3.9.1 ROUND _INT ..ottt sttt et ettt st 267

8.2.39.2 TOUNA_ VAL ..ttt e s s s e s s aaaaaasasssasaaaesanssenens 267

8.2.3.9.3 LL_ROUND.....ccoiiiiiiiieieee sttt 268

8.2.3.10 SHITLIZ. c.eneetiteiieteet ettt bbbttt bbbt b ettt 268
8.2.3.10.1 SHLiuiiiciiicee ettt ettt 269

8.2.3.10.2 SHIFENS...eiiciieciee ettt ettt 270

B.2.3.10.3 SHIEES .ttt ettt ettt 270

B.2.3.10:4 SHTuiiiiciieee ettt 271

8.2.3.10.5 SHI Teiiiiiice et 272

B.2.3.10.6 SHIENS...eiitiietirtete ettt ettt ettt sttt 272

8.2.3.10.7 L_ShLiiiiiiciiicie ettt 273

8.2.3.10.8 L_ShIFEINS....cuiiiiiiiieteecee ettt 274

8.2.3.10.9 L ShIFES ettt ettt 274
8.2.3.10.10 LL_SRT tiieiiiiieiitcietetc ettt ettt 275
8.2.3.10.11 L SRT_Tuuiiiiiiiieiecece e 276
8.2.3.10.12 L_SHITINS ..ottt sttt sttt 276

8.24 Modulo Addressing INtrinsic FUNCHIONScc.eiviiriiiiiiiiiieiiieteeiee ettt st 277
8.2.4.1 Modulo Addressing Intrinsic FUNCHONS.coviiiiiiiiiiiiiiiiiecccee e 278
824 1.1 MOA_IMEeeitiiitiieiiiteietirct ettt sttt 278

82.4.1.2 __ mOd_INItINELIO.c.cc.iieiiiiiiiiiiitiieencert ettt e 279

8.2.4.1.3 MO STATT. . 280

824.14 L UIMNOA ACCESS e 280

8.2.4.1.5 _ MOA_UPAAL....cniiiiieiieeiteteete ettt sttt 280

8.2.4.1.6 B 10 10T B 107 3 OO USRS PP UURRRTROT 281

8.2.4.1.7 B 10 Lo Ta (<1 1 11 OSSPSR 281

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

17

h o
g |

Section number Title Page
8.2.4.1.8 _ mMOd_SEtINEIO. ..o 282

8.2.4.1.9 B 1310 T6 B =3 (o) GRS RROPRRRRRRR 282

8.2.4.2 Modulo BUffer EXamPIEs.......ccccoouiriiriiiiiiiiiiiieniceie ettt ettt 283

8.2.4.3 Points to0 REMEMDET........cc.cciiiiiiiiiiiiiiii s 285

8.2.4.4 Modulo Addressing Error COES.ccuueuiiriiiriiiie ittt sttt ettt 286

Chapter 9
Pragmas

0.1 USING PIAIM@S....cueitiiiiiiiieitieieeie ettt ettt st sa e bbbt bt bbbt et eb e st et ese et et et e s et et e naenaeneee 289
9.1.1 Checking Pragma SETNES.c.ueouteriiiiiiieniiee ettt ettt ettt ettt et b e bt et et s bt e nbe e et satesbeesaeeneeene 289

9.1.2 Saving and Restoring Pragma SETNES.c.c.utiruiiiiiiiiiiiieiteee ettt ettt ettt e st esbeesanee e 292

9.1.3 Determining which Settings are Saved and ReStOred...........cccovieiiieiiiiiininiiniiieiccceneeeee e 294

0.1.4 THE@AL Pragmas....cc.eooueeiiriieiieiietteiteett ettt ettt ettt sttt sttt b bbbt e st s bt et ebt et ea b e bt et bttt ebe e e enee 295

0.2 Pra@IMNaA SCOPE...cueiiiieitieite ettt ettt ettt et et e et esate e bt e sht e e bt e eate e e bt e sabeea bt e shbeeabeeshb e e abeeehbeea b e e sab e et e e sht e e bt e enteebeeeaneeabes 295
9.3 Standard C and C++ Conformance Pragmas............ccccoueiiririninininieieieeee ettt sttt et 295
0.3.1 ANSILSIICE ettt ettt ettt h et ettt b e 296

0.3.2 ONLY_StA_KEYWOTAS. c..teeitieiiieeite ettt ettt ettt e st e et e s et esab e e bt e e sbbe e bt e e abbeeabeesabeesateesabeenaneenns 297

9.4 Language Translation and EXtensions Pragmas...........ccccccoiririiiiieieiinieniine sttt ettt sttt 297
9.4.1 BOC_CXEEIISIONS. ¢ eeuteuteeuteettente ettt ettt et eat et e bt eab e et e eb e e bt e st ebbesbe e bt ea bt sbteeb e e bt eabeebtesbe et e eatesbtesbe et e eatesae e bt et eaee 298

0,42 MPWC_NEWIINE.....eiiiiiiiiiiieetee ettt ettt ettt e bt e st e s bt e sab e e s bt e e bt e e bt e en bt e sabeesabe e bt e enbbesabeesabeesabeee 299

943 F00Y ok o (< 2 GO 299

9.5 Errors, Warnings, and Diagnostic Control Pragmas...........c.cceoeriiriiiiiiiniiiiinieiceieeiceie sttt 300
9.5.1 ChECK _C_STC_ PIPEIINE. ...eieiiieiteeite ettt ettt e bt e bt e et e st e e s bt e e bt e e bt e sabeesabeebeesnbaesaneees 301

952 check_inline_aSm_PIPEIIME.......eeiuieiiieietieieetiett et ettt ettt ettt et e et e et et e st e ese et e eneeeaeente et e eseeneenes 302

9.5.3 CheCK _INIINE_SP_CETECES. ...couiiiiiiiiiie ettt ettt ettt ettt 302

9.5.4 extended_errorCheck..... ..o 303

0.5.5 TCQUITE_PIOLOLYPES . .cveutueiurententertententeettett et estentententesaeebesueeue e st esseatens e tesae st e ebeeaeestentessense st e besaeebeeueeneennensennensens 303

9.5.6 SUPPIESS_INIE_COUE. ..ttt ettt sttt b et e bt s bt e bt et s bt e bt e st e s bt e beesaesbeenbeennenaeen 304

9.5.7 SUPPTESS_WATTHIIZS. ¢t euvteeuteeruteenuteenteeentteesteesaseesuseesaseassseeasaeasseesaseesaseessseesaseensaeasteenseesabeessseessseenaseebaeenseesases 304

9.5.8 UNSTZNEA_CRAT. ...ttt et ettt b et e e e et e e b e e bt et e s et e saee bt e et emeesaeeneeeneeenes 305

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

18

Freescale Semiconductor, Inc.

h o
g |

Section number Title Page
0.5 UIMUSEA....iiiiiiiii e et 305
9.5.10 WaIN_QNY_ P INE_COMV...tiiiiiitiiitieitiett et etteetee et e bt eateesteeseesbeebeenaeeaeeeaeessee st aneeenseesseeseenbeanseenseesaesneenseeseenseenes 306
O.5. 11 WaIN_EMIPLYACCL..coneiiiiiiiiiieii ettt ettt ettt et s bttt et s b bttt she ettt be b ene 307
9.5.12 WaIN_EXEIACOMIMA.ueuiiiiiiiieiiiiieiie ettt ettt a b a et e sa e s et e b sa et e b sa e st e besae b e besaesaesaesna 308
9.5.13 WaIN_fIlBNAMECAPS.t ueetieiieitteiieet ettt ettt ettt ettt ettt esae e st e s bt emee s bt emee bt enteebeemteeseenteeseenteeseenseeneenseenean 308
9.5.14 Warn_filenameCaps_SYSIBIML.....ccueruirtirtieriteieett ettt ettt ettt et eta e sbeesb et e e et e ebe e bt et et e bt eat e s bt bt nbe et eneeeaee 309
O0.5.15 WAN_IIPTAZIMNA.tiiiiiieiiiieie ettt ettt et e sb e bt e bt e et e s et e e st e e s st e e sabeebteesbbeeabeesabaesaneesabeenaneenns 309
LT T 7 v B U101 0) B 022 E o) 1 A 2SRRI 310
9.5.17 Warn_IMPl_i2f COMV..c..iiiiiiiiiiiiiiie ettt et ettt ettt et sttt st e e e aeene 311
0.5.18 WaIN_IMPL_S2U_COMV..eeuiiiiiiiiiiiiiieeiite ettt ettt ettt et e st ettt e bt e e bt e sab e e sateeabeesabee e st e esbbeeabeesabeesabeabeesbaesaseens 312
9.5.19 WaIN_IMPIICIECONV. ...ttt ettt ettt et ettt e s aee s et e bt et e e st e et e et e embeembeesseese e beenbeenaesseesneeseenneenes 313
0.5.20 WAINL_JAT@EAIZS. c..eeveiuiiitiieeiie ettt ettt et sttt et s b e bt eat e s bt et eat e s bt ettt sh e et eat e sae bt e bt e e ene 314
0.5.21 WaIN_IMISSIN@IEIUITL c..ceeutieiteetieeiteette et et et e st estteeabeeesteeabeesabeebtesabeessbeenbeesabeeatesabeesabeenbeesabeenstesabeennseeaseenns 315
IR 72V v I 1 L T (6 SRS § = o SOOI 315
0.5.23 WM NOUINIINE. . ..eiiiiiiiiieiiiiieieie ettt ettt et et e e et et eeee et et et eeeeeaeeeeeeeaeaeaeeeae e e e e e e e e et e e e e e e e e e e e e e e 316
0.5.24 WATN_PAAAING...cctttiiiieiiieite ettt ettt ettt e bt st e e s at e e bt e e ab e e bt e e bt e e ab e e bt e eabeeshb e e bt e eabeesbbeebeeenbeenhteeabee e 316
9.5.25 warn_possiblyUninitialiZEAVAT.......c..coueiuiriririiieeeeee ettt ettt et st r ettt nae 317
0.5.26 WAIT_POSSUNWANL......ceutiriienieitteteetesttenteeite bt et e stt e bt ebtesbe et e sbt e beea b e bt eat e et b e bt esbesbeenbeebtenbeeateebeemteebeenbeenteebeenaeenee 317
0.5.27 WATTNL_PU_INE_COMV..tiutieiitieiiteeniteetteetteeiteesiteesate ettt esbtesateesabeesaseesabeesate e baeeaseesabeesabeesateesabeebeeensaesaneesabeenaseenn 318
0.5.28 WAIN_TESUITNOTUSEd.coiiuieiiiiiiiieieie ettt e ettt e e e e ettt et e e e e e e te et eeeseesanssaeeeesseanssaseeeeseennnsesseesseannnnes 318
0.5.29 WAIN_UNAETIMIACTO. ...ttt ettt et et et e eeeeeeeeeeeeesesesa s s aaaaaaasaeateeeeaeeeesesesessesssnsaans 319
9.5.30 warn_uninitialiZEAVAT...........ccociiiiiiiiiiiii e 320
0.5.31 WAIN_UNUSEAATEZ. ...ceeetietteiie ettt ettt ettt et e bt e st e et e et e enteeseeeb e et e eatees e e b e ambeemseeseeabeenaesmeesaeebeeneesneenaeenseenes 320
0.5.32 WAL _UNUSEAVATL.......oiiiiiiiiiiiiee ittt e e e et et e eaas s s es e s esaaeasa e s eaeaea s e ee e e e eeeeeeeesenaasesasaseeesaeeeeeeeees 321
0.5.33 WATTIZ_EITOTS c..teeuteeutteetteeteesteesiteestteeattesabeeeaseesateesabeebteaasteeabeesabeesabee st eenseeeabeeaabeesateesabeeseeesbesaneesabeenaseenns 321

9.6 Preprocessing and Precompilation Pragmas..........coccoeeiiiriiiiiiiiiiieiccctesestee sttt e 322
9.6.1 AOILAT TAEIETIETS ..ottt ettt a st et st s ea e et aeeeeeeeeeaeaeaseeaeeeeeeaeeas 322
0.6.2 fUIIPAtN_PIEPAUIMIP. .. .viiiiiiiiieiie ettt ettt e b e et esat e e s at e e bt e s beeeabeesbbeeabeesabeesabeentesbeesaseees 322
LS B T 4 OSSPSR 323

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 19

h o
g |

|
Section number Title Page
0.6.4 NMOTOMCE. ...ttt e e e e s a e st s 323

L T T o Lol 324

0.0.0 POP, PUSK 1ttt ettt b e bt bt e a e bt bt et bt h et ehe e nae e et eae e b e b enee 324

9.6.7 SYSPALN_OMICE. ..cnetieniit ettt ettt ettt s et e a e et s bt e e a bt e h bt e bt e e bt e e bt e ea bt e bt e e bt e s bt e e ab e e bt e ebeesates 325

9.7 Library and Linking COontrol Pragmas.cccceieiriririeieiiieietcictctestesteste sttt sttt ettt ettt aea e saesne e 326
9.7.1 (41§D TSI o1 (o) 1 VOO TSR URRRRTT 326

0.7.2 XPIICIE_ZETO_AALA.cc..ttiiieiiiieetteete ettt ettt ettt e et esat e bee et e st e e e ab e e sb b e e bt e e bt e e bt e sabeenabe e bt esbeeeabee e 327

9.7.3 INIHANZEAZETOMALA.eteeiiieiiieiet ettt b bttt a e s bt et e s e s bt e bt e see s et e bt eneesaeenaeenbeeneeeaeeeeenes 327

074 SECLIOM. ...ttt st h e et a et b e s h e h bt eh e bttt ettt s et e 328

075 USE_TOAALA. ...ttt h e s 330

9.8 Object Code Organization and Generation Pragmas...........c.ccoiviririiieieienenineneeeee ettt sttt 332
9.8.1 AIWAYS_INIIIIC. ¢ttt ettt ettt st s h e b et e bt e bt e eb e bt e a e et bt b e e et satenaeen 333

9.8.2 U0 _INIINE. ..ottt 333

9.8.3 COMSE_STIIIES. 1. euteutteutetteete et ettt e et e bt et e e bt es e bt este bt em e e bt emteeh e e aeea e e bt e et e st em e e bt embe bt emteeseenbeeseeneeeseeaeeneenseeneas 334

9.8.4 AETET_COUBZEM. ..ttt ettt ettt ettt a et e bt e sb e et eat e sbtenbe et e saeenbeenaeeaee 334

9.8.5 dONE_ININC. ...ttt 335

9.8.6 QOME_TEUSE_SIIINZS. ¢ eeuteentteuteeuteetiesttete et eute et te st ee bt easeeateeseeeueesseenseeateeaeeeaee st enteenbeenseeseenseenbeembesmeesneenneenseenseenes 336

0.8.7 CNUMSAIWAYSINL. ettt ettt et b et b e bt e st e b et e st e bt et e e st e e bt et eb e e sbe et ebe e bt eneeebeebeenee 336

0.8.8 INIINE_DOIIOIMN_UD. e uttiiutiiiiieiiieiteeite ettt et et e sttt e st e e bt et e e sabeesabeesat e e bt e eabtesabeeeabeesabeesabeesteebeeenseesabeenaneenns 338

9.8.9 interrupt (for the DSPSO800).......coiuieiieieeieeieet ettt ettt e bt e bt e te st e s e et e nbe e e enee 338
9.8.10 interrupt (for the DSPSO800E).......cc.cocttitiiiiiiiit ittt ettt sttt sttt e e e 341
9.8.10.1 Avoiding Possible Hitches with Enabled Pragma Interrupt..........ccceecveeviieniinnieniennieniceiieeeeee 345

O.8.11 PACKSIITCK. ...ttt sttt ettt ettt a e e b e sa et be b e bt e bt eb e ettt n et et e s e e nenaen 346
0.8.12 POOL_SIIIINZS ettt ettt ettt ettt bttt a e bttt e h bt ea e bt e bt et bbbt eh et e be e bttt ebe e b enee 346
0.8.13 TRAAONLY _SEIIIIZS. ceuvttiutieeitieiitteite ettt ettt ettt st ettt et e st e e sttt e bt e e bt e sabeesabeeabeesabaeeabeesbbeenbeesabeesabeebeeebeesabee e 347

LRI A (e oI o) 15 (=) (6 RO PRRRRRRRRON 347
0.8.15 SUPPIESS_INIE_COUEC. ..ottt ettt ettt ettt et b ettt sb et ea e bt et et e sb e et e st e saee bt eaeesbeeaeenee 348
O.8.10 SYSPALN_ONCE....eeeueieiiiieeiiteiie ettt sttt ettt et et e st eeat e e b e e et e s it e e h bt e bt e e bt e e ab e e sa bt e hb e e baeeabeesabeeshbeebeesbeenabee e 348

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014
20 Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
0.9 OpUMIZAION PIAGIMAS.eiiuiiiiiiiiieiiieiiteete ettt et sb bttt e bt e s bt e satesa bt e s abeeabeesbeeeabe e bt e sabeenbtesabeessbesabeenssesnseenseeas 349

9.9.1 div_nonstd32by 16_CanOVEIrTlOW.cc.eeiuiiiiiiieiieiiet ettt ettt ettt et a et et e e naeenee 349
9.9.2 FACTOT L.iiiii e e ettt 350
0.9.3 FACTOIZ....iiiiiiii e bbbt 350
LR 161 () 4G J OSSPSR 351
9.9.5 MOTACHOT L.t s b e sttt 351
9.9.6 NOTACTOIZ......oiiiiiiiiiiii e s 352
LR I (T 161 10 4G TSSO USRS 352
9.9.8 OPE_COMUITION_SUDS..c..cettiuiieiiiiiteettet ettt ettt et ettt et et e b e e s bt e bt e st es b e et b e sb b e bt et e esbesatesbeenbeebeenteeaee 352
0.9.9 OPL_dEAd_ASSIZNIMEIILS. ...ceiutieiieitieeite ettt ette et te et e ettt e bt e ebeesbeeeateesabeeeabeesabeesabeesabeesabeesabeessseessbeesaseesnseennseenns 353
9.9.10 OPE_AEAA_COR..... ettt ettt s a e et e e st e ae e eb e et e et e en e e bt e b e e bt e aaeeneesne e bt eneeenes 353
0.0, 11T OPE_IIT@UIMIES. ..ottt ettt et b et s b et s b et e s bt e st e e bt et bt et e bt et e bt et eaeenaeeanes 354
0.9.12 OPL_LOOP_IMVATIANES.....eoutieeireetieiieesiteeteeeiteette et esite st eesteeabeesabeebtesabeessbeeabeesabeenstesabeesabeeaseesabeenseesaseesaseeaseenns 354
9.9.13 OPL_PIOPAZALION.eeieiiiutintetete sttt ettt ettt ettt st ebe bt eas et et et e st e besaeebeebteseeat e e este b e st e besaeebeeaeeseenneneennennens 354
9.9.14 OPt_StreN@th_TEAUCTION. ...c..eiuiiiiiiiitietete ettt ettt ettt b et et et b et sb et ebt et saeenbeeaees 355
9.9.15 Opt_SreNgth_T@AUCTION_SIIIC. ...ceeuetitiieieetiesiteeite sttt ettt et e st et e sat e e bt e eabeebeessbeenbeesabeebeesateebeesnseenses 355
9.9.16 OPE_UNTOIL_LOOPS. ...ttt ettt ettt ettt ettt e ea et e st es e e bt et e emt e es s e eb e e bt embeemeeeaeenbeenaeeneesaeenbeenneenes 356
9.9.17 OPHMIZATION_LEVEL...c..eiiiiiiiiiiiiiiiieeee ettt ettt et sttt et b et sb et ebe e b ene 356
0.9.18 OPUIMIZE_fOT_SIZ..cueeeiieiiiieeiieeiteeeit ettt ettt ettt ettt et e e s ab e e bt e s bt esate e bt e eabeesabeebtesabeesbbesnbeesabeenssesaseens 357
9.9.19 PEEPROIC.....ceeiiii ettt e b e e b bbbttt ettt et aenae 357
9.10 Profiler PraAgIMas.c...coueeiiiiiiiiieieeteete ettt ettt et b et h et s be et s bt e bt s bt e bt e bt e bt eb b bt eh e bt e bt e e enee 358
L L B 1 (o) i 1 (< OO OO OO UUUPROPRRTOPRRPPN 358
Chapter 10
Predefined Symbols
10.1 Using Predefined SYMDBOLS.ooiiiiiiiiie ettt sttt et b b e e bt e bt e st e e satesabeesbbeeabeesbbeenbeenaeenn 359
10.2° VErSiOn SYMDOL.....oouiiuiiiiiiiiiiiietecter ettt ettt et ae ettt b s et e bt sb e bt eaeeae et eseennene e ene e 359
T0.2.1 _ MWERKS ettt ettt ettt ettt b e 359
10.3 Date and Time SYMDOL......cc..ooiiiiiiiiiie ittt ettt ettt et e e bt e e bt e sa bt e sab e e bt e e sbeeenbee s bt eesbeesabeensteenbaesnseesases 360
TO3.T L DATE ettt bbb bbb bt h et b et b ettt b e 360

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

21

h o
g |

|
Section number Title Page
1032 _TIME_ ottt ettt 360
10.4 INAME SYIMIDOLS. ...ttt ettt ettt et et et e e b et et e e bt em e e e st em bt eae e e st emteeae e bt entees e et e emeeebeenteeneenseenseeneeeeenes 360
TOA. T FILE ottt sttt sttt sttt ettt b e 361
L0422 _LINE_ ettt 361
10.5 Object Code Organization and Generation SYMDOL........cc.coiiiiiiiiiiiiieee ettt ene 361
1051 MSOB00E ...ttt ettt ettt ettt et b e 361
TO.5.2 PTOFILE ettt et ettt et ettt a bt bt e bt e e et e e s bt e e bt e s bt e eab e e bt e e baeeabeeas 361
LT T o] o 11 1<) <) b SRS 362
JO.6 € SYIMDOIS ...ttt ettt sttt ettt ettt h et be e sttt b et b e bt et b st h et bt b e et n et r et 363
LO.6.1 _ STDIC .ottt ettt st sttt sttt 363
Chapter 11
Optimization
11,1 OptimiZation CONSIABTAIONS. ...ceuttitiertieitieeteeiteeetee st e sttt ettt estteebeeesbtesabeesabeesabeesabeessbeesabeessteensbeaseeeabaeeseesabeesnseesases 365
L1220 TIIEIIIIZ. ¢ttt ettt et a et e a et e e e bt e a e e e h e e bt ea e e bt em e e eh e em b e es e et e em s e eb e en bt es s et e en b e bt enteen e e bt enteene et e eneeneenes 366
L1.3 PLOFIIIIIE .ottt et et b bttt e b e b et s bt bt e bt e a e sb e e bt e st sb e e bt e et e bt e nbe et et e b e e eaee 366
T1.4 SHNE LILETALS. ..eueeitieiiiieite ettt st e sh e et e bt et e e bt e s a bt e sabeea bt e s st e eabee bt eeabeessteeabeeeabesabeesabeenbeenaseenseesnneeases 366
L1.4. T POOING STIMES. ..eeitiiiiiitieteeiteet ettt ettt ettt e et e bt ea e et e et e eat e bt eatees e e st emtees e e st emeeeseenteeneeeseenseeneesseeneeeneeeeenes 366
11,42 REUSINEZ STANES. cuveiuiirtieiiiteeiteeieete ettt ettt ettt et ettt e b et e bt e s bt e bt eabesbtesbe e bt e st e s bt enbeembesstesbee bt estesaeenaeeneeeaee 367
L1.5 OPUIMIZALIONS. ..eeutteeuteeiteette ettt ettt et e sttt ebt e et eshteebtesabeesateeabtesab e e bteeabeesateesteeabeessbeeaseesabeessbesabeesabeenstesabeesnbeenbeesabeannnenases 367
11.5.1 Dead Code EIMINAtION.cc.iiitiiiitietietiettete ettt ettt ettt ettt et e bt ese e et e e bt eaeeseeenteeseesaeeneeeneenseeneesneeneeenes 368
11.5.2 EXpression STMPITICATION.ccutitirtiiiiiieriete ittt ettt sttt sttt st e bt et st e saeeneeeae 368
11.5.3 Common SubeXpression EIMINAtION.ccc.eiiiiiiiiiiiiiieiieeieeeiee ettt ettt ettt e st e sbaesaeeeee 369
11.5:4 COPY PrOPaation.....c.cceiuiiuiiiiiiniiitintiitietenie sttt ettt ettt et et ettt ettt et ebe bbbt be s b saeebesaenaen 369
11.5.5 Dead Store EIMINAtION.ccuiiiiiiiiiiiiiieieieee ettt st st st st sae 370
11.5.6 Live RANZE SPIITENZ....coutiiiiiiiiieiieeiiit ettt ettt ettt ettt e st e sa e s st e e sbb e e s ate e bteesbbeeabeesabeesabeesabeesabeesabeennseenns 370
11.5.7 Loop-Invariant Code MOTIOM.eeuueiuietieie ettt ettt et ettt et e st e bt eseeeseesbe e beensesseesseeaseenbesneesaeenaeeneeenes 371
11.5.8 Srength REAUCTION. ... couviitiiiiiiiiieiiete ettt ettt ettt b bbbt eab e sbe et ebe e e eaee 372
11.5.9 LOOP UNTOINE. ...ueiiiiiiiieiiteite ettt ettt ettt et e s bt et et esabe st e esabeeastesabeessbeeabeesabeenstesabeesabesnseees 372
CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014
22 Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
11.5.10 MS6800E Specific OPtmiZatiONS.cceuvteruierteeriierieetieeteesiteesiteeteesteessteebeessbeesabeessseestesabeessseenssesnseesseenns 373
11.5.10.1 Overview of the S6800E ATCRILECTUIR........ccvuieitietieieeieeie ettt b e e 373

11.5.10.2 Working with the 56800E Memory MOdEIS..........ccocueriiiriiiriirieiieiieiieniteeeeieee e 374

11.5.10.3 Targeting Post-Update Addressing Modes in LOOPS......ccccueeriiiriieiiieiiieeieerieeeereeesee e 376

11.5.10.3.1 The Effects of Casting on Code QUAlity..........ccceevuerieriieniiriienieneeeeie e 380

11.5.10.3.2 Miscellaneous TeChNIQUES........cceevuiriiriiniieiiniieieieet ettt 382

11.5.10.4 SOftware PIPEINING.coiiiiiiiiiiiiiieeiie ettt ettt sttt e st e st et e sbeesaeeeanes 384

11.5.10.5 Stack Sequence OPtMIZATION.cc.eeuieiirieetieitieteete ettt eeeseee st e it e bt esbeeseeestesseesbeesbeeseeeeeneeenes 385

11.5.10.6 Constant to Array RealloCation..........cc.coiiriiriiiriiiiiiinicieeceteeetett et 386

11.5.10.7 Interprocedural ANalysiS SUPPOTL......cccuetiriierriiieriieeiieeite ettt ettt ettt sbe e s e e sbee s e sbeeeaees 388

Chapter 12
Tool Performance
12.1 Precompiled HEader FALES.......c..oiiuiiiiiiiiiiieetee ettt ettt st et s b e st esbb e e bt e sabeesabeenaeeeabes 391
12.1.1 When to Use PrecoOmpiled FIlEs........cccoviririririniiiriienesesesesteste sttt st st s 391
12.1.2 What Can be PreCOmMPIled.........coouiiiiiiiiiiiiiieiiieeetee ettt ettt sttt sttt e eaees 392
12.1.3 Precompiling CH+ SOUICE COUE....c..uiiriiiiiiiiiiieiiieiit ettt ettt ettt e st e st e e sabeesabeesibeesateesaseennseenns 392
12.1.4 Using a Precompiled Header File..........cccoiiiiiiiiiiiiiiicccccstese ettt 393
12.1.5 Preprocessing and PreCOMPILING.......cccvevueriiriiniiiiiiieititertesie ettt sttt ettt st e e 394
12.1.6 Pragma Scope in PrecompPiled FAIES........cocuiiiiiiiiiiiiiieieieec ettt sttt e 394
12.1.7 Precompiling a File in the CodeWarrior IDE..........c..cccoiiiiiiiiiiiiiniiiiiececese ettt 395
12.1.8 Updating a Precompiled File AUtomatically.........c.cceveriiriiriiniiiiiiiiieeiesieeesiteieeese et 396
Chapter 13
Libraries and Runtime Code

13.1 MSL 01 DSPSO80O0E........cc.ccttiiiiirieiirteintetet ettt ettt ettt ettt sttt b et bttt b et b et be et a et b e b e 397
13.1.1 Using MSL for DSPS6800E.........c.cccooiiiiiiiiieeeeree ettt st st 398
13.1.1.1 Console and File T/O ..ottt ettt 398

13.1.1.1.1 Library Configurations...........cccceceereriererienenieneeienieetenitete st sieentesiee e sseenaesnees 398

13.1.1.1.2 Host File LOCAtON.........cciiiiiiiiiiiiiiiiicicci e 399

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 23

b -

Section number Title Page
13.1.2 Allocating Stacks and Heaps for DSPSO800E.........c..c.cooiiiiiiiiiiiieieeiie ettt 400

LG 20 00 R B < ¥ 1 (o) 1 SRS 400

I3.1. 2101 SEACK ettt ettt ettt ettt ettt 401

I3.1.2.1.2 0 HEAP ettt 401

1301213 B St 401

13.2 Runtime INTtaliZation.cc.coiiiiiiiiiiiiiiiicicecee et s et et 401

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

24

Chapter 1
Introduction

This reference manual describes how to use the CodeWarrior compiler and linker tools to
build software.

CodeWarrior build tools are programs that translate source code into object code then
organize that object code to create a program that is ready to execute.

CodeWarrior build tools often run on a different platform than the programs they
generate. The host platform is the machine on which CodeWarrior build tools run. The
target platform is the machine on which the software generated by the build tools runs.

This section introduces how CodeWarrior build tools are organized:

* Compiler Architecture
e Linker Architecture

1.1 Compiler Architecture

From your perspective, a CodeWarrior compiler is a single program. Internally, however,
a CodeWarrior compiler has two parts:

* The front-end, shared by all CodeWarrior compilers, translates human-readable
source code into a platform-independent intermediate representation of the program
being compiled

» The back-end, customized to generate software for a target platform, converts the
intermediate representation into object code containing data and native instructions
for the target processor

A CodeWarrior compiler coordinates its front-end and back-end to translate source code
into object code in several steps:

» Configure settings requested from the compiler to the CodeWarrior IDE or passed to
the linker from the command-line
* Translate human-readable source code into an intermediate representation

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 25

cimmker Architecture

* Optionally output symbolic debugging information

* Optimize the intermediate representation

* Convert the intermediate representation to native object code
* Optimize the native object code

* QOutput the native, optimized object code

1.2 Linker Architecture

A linker combines and arranges the object code in libraries and object code generated by
compilers and assemblers into a single file or image, ready to execute on the target
platform. The CodeWarrior linker builds an executable image in several steps:

» Configure settings requested from the linker to the CodeWarrior IDE or passed to the
linker from the command-line

» Read settings from a linker control file

* Read object code

 Search for and ignore unused objects ("deadstripping")

* Build and output the executable file

* Optionally output a map file

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

26 Freescale Semiconductor, Inc.

Chapter 2
Using Build Tools with the CodeWarrior IDE

The CodeWarrior Integrated Development Environment (IDE) uses settings in a project
properties: C/C++ Build >> Settings >> Tools Settings. Each individual tool has its own

settings group as such: DSC Linker, DSC Compiler, DSC Assembler, DSC preprocessor,

DSC disassembler.

This chapter describes how to use CodeWarrior compilers and linkers with the
CodeWarrior IDE:

* IDE Options and Pragmas
 Build Properties for DSC

2.1 IDE Options and Pragmas
The build tools determine their settings by IDE settings and directives in source code.

The CodeWarrior compiler follows these steps to determine the settings to apply to each
file that the compiler translates under the IDE:

* before translating the source code file, the compiler gets option settings from the
IDE's settings panels in the current build target

* the compiler updates the settings for pragmas that correspond to panel settings

* the compiler translates the source code in the Prefix Text field of the build target's
C/C++ Preprocessor panel

The compiler applies pragma directives and updates their settings as pragmas
directives are encountered in this source code.

* the compiler translates the source code in the Prefix Text field of the build target's
DSC Compiler >> Input panel

The compiler applies pragma directives and updates their settings as pragmas are
encountered.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

27

h -

y
A |

ound Properties for DSC

2.2 Build Properties for DSC

The following image shows the Properties for <project> dialog box displaying the
corresponding build properties for DSC CPU project.

&

.= Properties for Project_01 |Z|®
v

|| Settings
Resource 2
Builders
= C/C+++ Build Build configuration: |I'~'1C56F82—15_Internal_PFIash [Active]
Build Variables
Discovery Options
Environment TEDN ¢ e
Logaing i) Toal Settings |‘ﬂ‘ Build Steps Build Artifact Binary Parsers | @ Error Parsers || Build Tool Versions
Settings
Tool Chain Editor i
C/C++ General =8 DSC Linker Message Style |parseable
P;o'ect References @ Input
! ¥ general Maximum Mumber of Errors |
Run/Debug Settings t\%
[Output Maximum Mumber of Warnings |
=-E83 DSC Compiler
@ Input
k]
222 Access Paths
@ Warnings
2% Optimization
@ Processor
L]
22 Language
=B DSC Assembler
@ Input
@ General
output
=% DSC Preprocessor
@ Settings
=B84 DSC Disassembler
@ Settings

B | [Managn i

@ Global Settings Generate Debug Information

| £

< | »
@j Ok

] [Cancel

Figure 2-1. Build Properties - DSC

The following table lists the build properties specific to developing software for DSC.

The properties that you specify in the Tool Settings panels apply to the selected build
tool on the Tool Settings page of the Properties for <project> window.

Table 2-1. Build Properties for DSC

Build Tool Build Properties Panels
Global Settings Global Settings
DSC Compiler DSC Compiler > Input

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

28 Freescale Semiconductor, Inc.

g |

4
Chapter 2 Using Build Tools with the CodeWarrior IDE

Table 2-1. Build Properties for DSC (continued)

Build Tool Build Properties Panels

DSC Compiler > Access Paths

DSC Compiler > Warnings

DSC Compiler > Optimization

DSC Compiler > Processor

DSC Compiler > Language

DSC Assembler DSC Assembler > Input
DSC Assembler > General
DSC Assembler > Output
DSC Linker DSC Linker > Input

DSC Linker > General
DSC Linker > Output
DSC Preprocessor DSC Preprocessor > Settings

DSC Disassembler DSC Disassembler > Settings

2.2.1 Global Settings

Use this panel to specify the global settings the DSC architecture uses. The build tools
(compiler, linker, and assembler) then use the properties set in this panel to generate
CPU-specific code.

The following table lists and describes the global settings options for DSC.
Table 2-2. Tool Settings - Global Settings

Option Description
Generate Debug Information Check to generate symbolic information for debugging the
build target.
Message Style List options to select message style.

¢ GCC(default) - Uses the message style of the Gnu
Compiler Collection tools

* MPW - Uses the Macintosh Programmer's Workshop
(MPW®) message style

» Standard - Uses the standard message style

* IDE - Uses context-free machine parseable message
style

¢ Enterprise-IDE - Uses CodeWarrior's Integrated
Development Environment (IDE) message style.

* Parseable - Uses parseable message style.

Maximum Number of Errors Specify the number of errors allowed until the application
stops processing.

Maximum Number of Warnings Specify the maximum number of warnings.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 29

ound Properties for DSC

2.2.2 DSC Linker

Use this panel to specify the DSC linker behavior. You can specify the command,
options, and expert settings for the build tool linker. Additionally, the Linker tree control
includes the input, general, and output settings.

The following table lists and describes the linker options for DSC.
Table 2-3. Tools Settings > DSC Linker Options

Option Description

Command Shows the location of the linker executable file. You can
specify additional command line options for the linker; type in
custom flags that are not otherwise available in the Ul.

All options Shows the actual command line the linker will be called with.

Expert settings Shows the expert settings command line parameters; default
is ${COMMAND} ${FLAGS} ${OUTPUT FLAG} $
{OoUTPUT PREFIX}${OUTPUT} ${INPUTS}.

Command line pattern

2.2.2.1 DSC Linker > Input

Use this panel to specify files the DSC linker should use. You can specify multiple
additional libraries and library search paths. Also, you can change the order in which the
IDE uses or searches the libraries.

The following table lists and describes the linker input options for DSC.
Table 2-4. Tools Settings > DSC Linker > Input

Option Description
No Standard Library Check if you do not want to include the standard library.
Linker Command File Consists of three kinds of segments, which must be in this
order:
* A memory segment, which begins with the MEMORY({}
directive.

¢ Optional closure segments, which begin with the
FORCE_ACTIVE({}, KEEP_SECTION(}, or
REF_INCLUDE(} directives.

* A sections segment, which begins with the
SECTIONS({} directive.

Entry Point Specifies the program starting point: the first function the
debugger uses upon program start; default: __start. This
default function is in file
Finit_MC56F824x_5x_ISR_HW_RESET. It sets up the DSC
environment before code execution. Its final task is calling
main().

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

30 Freescale Semiconductor, Inc.

Chapter 2 Using Build Tools with the CodeWarrior IDE

Table 2-4. Tools Settings > DSC Linker > Input (continued)

Option Description

Library Search Paths (-L) Lets you add/update the search pathname of libraries or other
resources related to the project. Click the Add button and
type the pathname into the Directory text box. Alternatively,
click Workspace or File system , then use the subsequent
dialog box to browse to the correct location.

Library Recursive Search Paths (-Ir) Lets you add/update the recursive search pathname of
libraries or other resources related to the project. Click the
Add button and type the pathname into the Directory text
box. Alternatively, click Workspace or File system , then use
the subsequent dialog box to browse to the correct location.

Additional Libraries Specify multiple additional libraries and library search paths.
Also, you can change the order in which the IDE uses or
searches the libraries.

Force Active Symbols Directs the linker to include symbols in the link, even if those
symbols are not referenced. Makes symbols immune to
deadstripping. Separates multiple symbols with single spaces.

2.2.2.2 DSC Linker > General

Use this panel to specify the general linker behavior.

The following table lists and describes the linker options for DSC.
Table 2-5. Tools Settings > DSC Linker > General

Option Description
Dead-Strip Unused Code Determines whether to pool constants from all functions in a
file.
Suppress Link Warnings Prevents the IDE from displaying linker warning messages.
Large Data Memory Model Check to extend the DSP56800E addressing range by

providing 24-bit address capability to instructions. Clear if you
do not want to extend the address range.

Generates elf file for 56800EX core Check to generate elf file for 56800EXcore that makes a
program file out of the object files of your project. The linker
also allows you to manipulate code in different ways. You can
define variables during linking, control the link order to the
granularity of a single function, change the alignment, and
even compress code and data segments so that they occupy
less space in the output file.

All of these functions are accessed through commands in the
linker command file (LCF). The linker command file has its
own language complete with keywords, directives, and
expressions, that are used to create the specifications for
your output code. The syntax and structure of the linker
command file is similar to that of a programming language.

Other Flags Specify additional command line options for the linker; type in
custom flags that are not otherwise available in the Ul.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 31

g |

ound Properties for DSC

2.2.2.3 DSC Linker > Output
Use this panel to specify the output settings for the DSC linker output.

The following table lists and describes the linker options for DSC.
Table 2-6. Tools Settings > DSC Linker > Output

Option Description
Output Type Select application as Application (default), Library, or Partial
Linking.
Generate Link Map Check to generate link map.
List Unused Symbols in Map Check to list unused symbols; appears grayed out if the

Generate Link Map checkbox is not checked.

Show Transitive Closure in Map Check show transitive closure; appears grayed out if the
Generate Link Map checkbox is not checked.

Annotate Byte Symbols in Map Check if you want the linker to include B annotation for byte
data types (e.g., char) in the Linker Command File.

By default, the Linker does not include the B annotation in the
Linker Command File. Everything without the B annotation is
a word address.

Generate ELF Symbol Table Check to generated the ELF symbol table.

Generate S-Record File Check to generate a S-record file.

Sort by Address Check to sort by address.

Generate Byte Addresses Check to generate byte address.

Max S-Record Length Specify the maximum length for S-record; appears grayed out

if the Generate S-Record File checkbox is not checked. The
default value is 252.

S_Record EOL Character Specify the end-of-line character; appears grayed out if the
Generate S-Record File checkbox is not checked. The default
value is DOS (\\\n).

2.2.3 DSC Compiler

Use this panel to specify the command, options, and expert settings for the build tool
compiler. Additionally, the DSC Compiler tree control includes the general and the file
search path settings.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

32 Freescale Semiconductor, Inc.

Chapter 2 Using Build Tools with the CodeWarrior IDE
The following table lists and describes the linker options for DSC.
Table 2-7. Tools Settings > DSC Compiler

Option Description

Command Shows the location of the compiler executable file. You can
specify additional command line options for the compiler; type
in custom flags that are not otherwise available in the Ul.

All options Shows the actual command line the compiler will be called
with.
Expert settings Shows the expert settings command line parameters; default

is ${COMMAND} -c ${FLAGS} ${OUTPUT FLAG} $

Command line pattern
{OUTPUT PREFIX}${OUTPUT} ${INPUTS}.

2.2.3.1 DSC Compiler > Input

Use this panel to specify additional files the DSC Compiler should use. You can specify
multiple additional libraries and library search paths. Also, you can change the order in
which the IDE uses or searches the libraries.

The following table lists and describes the compiler inputs options for DSC.

Table 2-8. Tools Settings > DSC Compiler > Input

Option Description

Prefix File Specifies a file to be included at the beginning of every
assembly file of the project.

Lets you include common definitions without using an include
directive in every file.

Source File Encoding Allows you to specify the default encoding of source files.
Multibyte and Unicode source text is supported.

Allow Macro Redefinition Enables to redefine the macros with the #define directive
without first undefining them with the #undef directive.

Defined Macros Lists the defined command-line macros.

Undefined Macros Lists the undefined command-line macros.

2.2.3.2 DSC Compiler > Access Paths

Use this panel to specify the access paths. Access paths are directory paths the
CodeWarrior tools use to search for libraries, runtime support files, and other object files.

The following table lists and describes the compiler access paths for DSC.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 33

g |

ound Properties for DSC

Table 2-9. Tools Settings > DSC Compiler > Access Paths

Option

Description

Search User Paths (#include "...")

Lets you add/update the user paths that the CodeWarrior IDE
searches to find files in your project. You can add several
kinds of paths including absolute and project-relative.

Search User Paths Recursively

Lets you add/update the recursive user paths that the
CodeWarrior IDE searches to find files in your project. You
can add several kinds of paths including absolute and project-
relative.

Search System paths (#include <...>)

Lets you add/update the system paths that the CodeWarrior
IDE searches to find files in your project. You can add several
kinds of paths including absolute and project-relative.

Search System Paths Recursively

Lets you add/update the recursive system paths that the
CodeWarrior IDE searches to find files in your project. You
can add several kinds of paths including absolute and project-
relative.

2.2.3.3 DSC Compiler > Warnings

Use this panel to control how the DSC compiler formats the listing file, error and warning

messages.

The following table lists and describes the compiler warnings options for DSC.

Table 2-10. Tool Settings

- DSC Compiler > Warnings

Option

Description

Treat All Warnings As Errors

Check to treat all warnings as errors. The compiler will stop if
it generates a warning message.

Enable Warnings

Select the level of warnings you want reported from the
compiler. Custom lets you to select individual warnings. Other
settings select a pre-defined set of warnings.

lllegal #Pragmas (most)

Check to notify the presence of illegal pragmas.

Possible Unwanted Effects (most)

Check to notify most of the possible errors.

Extended Error Checks (most)

Check if you want to do an extended error checking.

Hidden virtual functions (most)

Check to generate a warning message if you declare a non-
virtual member function that prevents a virtual function, that
was defined in a superclass, from being called and is
equivalent to pragma warn_hidevirtual and the command-
line option -warnings hidevirtual.

Implicit Arithmentic Conversions (all)

Check to warn of implict arithmetic conversions.

Implicit Signed/Unsigned Conversion (all)

Check to enable warning of implict conversions between
signed and unsigned variables.

Implicit Float to Integer Conversions (all)

Check to warn of implict conversions of a floating-point
variable to integer type.

Implicit Integer to Float Conversions (all)

Check to warn of implict conversion of an integer variable to
floating-point type.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

34

Freescale Semiconductor, Inc.

g |

Chapter 2 Using Build Tools with the CodeWarrior IDE

Table 2-10. Tool Settings - DSC Compiler > Warnings (continued)

Option

Description

Pointer/Integer Conversions (most)

Check to enable warnings of conversions between pointer
and integers.

Unused Arguments (most)

Check to warn of unused arguments in a function.

Unused Variables (most)

Check to warn of unused variables in the code.

Unused Result From Non-Void-Returning Function (full)

Check to warn of unused result from non-void-returning
functions.

Missing “return' value in Non-Void-Returning Function (most)

Check to warn of when a function lacks a return statement.

Expression Has No Side Effect (most)

Check to issue a warning message if a source statement
does not change the program's state. This is equivalent to the
pragma warn no_side_ effect, and the command-line
option -warnings unusedexpr.

Extra Commas (most)

Check to issue a warning message if a list in an enumeration
terminates with a comma. The compiler ignores terminating
commas in enumerations when compiling source code that
conforms to the ISO/IEC 9899-1999 ("C99") standard and is
equivalent to pragma warn_extracomma and the command-
line option -warnings extracomma.

Empty Declarations (most)

Check to warn of empty declarations.

Inconsistent “class' / “struct' Usage (most)

Check to warn of inconsistent usage of class or struct.

Incorrect Capitalization in #include "..." (most)

Check to issue a warning message if the name of the file
specified in a #include "file" directive uses different letter case
from a file on disk and is equivalent to pragma
warn_filenamecaps and the command-line option -
warnings filecaps.

Incorrect Capitalization in System #Include <...> (most)

Check to issue a warning message if the name of the file
specified in a #include <file> directive uses different letter
case from a file on disk and is equivalent to pragma
warn_ filenamecaps_ system and the command-line
option -warnings sysfilecaps.

Pad Bytes Added (full)

Check to issue a warning message when the compiler adjusts
the alignment of components in a data structure and is
equivalent to pragma warn_padding and the command-line
option -warnings padding.

Undefined Macro in #if/#elif (full)

Check to issues a warning message if an undefined macro
appears in #if and #elif directives and is equivalent to pragma
warn_undefmacro and the command-line option -
warnings undefmacro.

Non-Inlined Functions (full)

Check to issue a warning message if a call to a function
defined with the inline, __inline__, or __inline keywords could
not be replaced with the function body and is equivalent to
pragma warn_notinlined and the command-line option -
warnings notinlined.

Token not formed by ## Operator (most)

Check to enable warnings for the illegal uses of the
preprocessor's token concatenation operator (##). It is
equivalent to the pragma warn_illtokenpasting on.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

35

ound Properties for DSC

2.2.3.4 DSC Compiler > Optimization

Use this panel to control compiler optimizations. The compiler's optimizer can apply any
of its optimizations in either global or non-global optimization mode. You can apply
global optimization at the end of the development cycle, after compiling and optimizing

all source files individually or in groups.

The following table lists and describes the compiler optimization options for DSC.

Table 2-11. Tool Settings - DSC Compiler > Optimization

Option

Description

Optimization Level

Specify the optimizations that you want the compiler to apply
to the generated object code:

Off (default) - Disable optimizations. This setting is
equivalent to specifying the -opt level=0 command-
line option. The compiler generates unoptimized, linear
assembly-language code.

1 - The compiler performs all target-independent (that
is, non-parallelized) optimizations, such as function
inlining. This setting is equivalent to specifying the -opt
level=1 command-line option. The compiler omits all
target-specific optimizations and generates linear
assembly-language code.

2 - The compiler performs all optimizations (both target-
independent and target-specific). This setting is
equivalent to specifying the -opt level=2 command-
line option. The compiler outputs optimized, non-linear,
parallelized assembly-language code.

3 - The compiler performs all the level 2 optimizations,
then the low-level optimizer performs global-algorithm
register allocation. This setting is equivalent to
specifying the -opt level=3 command-line option. At
this optimization level, the compiler generates code that
is usually faster than the code generated from level 2
optimizations.

4 - The compiler performs all the level 3 optimizations.
This setting is equivalent to specifying the -opt
level=4 command-line option. At this level, the
compiler adds repeated subexpression elimination and
loop-invariant code motion.

Speed vs. Size

Use to specify an Optimization Level greater than 0 .

Speed - The compiler optimizes object code at the
specified Optimization Level such that the resulting
binary file has a faster execution speed, as opposed to
a smaller executable code size. This setting is
equivalent to specifying the -opt speed command-
line option.

Size - The compiler optimizes object code at the
specified Optimization Level such that the resulting
binary file has a smaller executable code size, as
opposed to a faster execution speed. This setting is
equivalent to specifying the -opt space command-
line option.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

36

Freescale Semiconductor, Inc.

Chapter 2 Using Build Tools with the CodeWarrior IDE

Table 2-11. Tool Settings - DSC Compiler > Optimization (continued)

Option Description

Inter-Procedural Analysis Control whether the compiler views single or multiple source
files at compile time.

¢ Off- Compiler compiles one file at a time. The functions
are displayed in order as they appear in the source file.
An object file is created for each source.

* File- The compiler sees all the functions and data in a
translation unit (source file) before code or data is
generated. This allows inlining of functions that may not
have been possible in -ipa off mode.

Inline Level Enables inline expansion. If there is a #pragma INLINE before
a function definition, all calls of this function are replaced by
the code of this function, if possible.

The options available are:

* Off - No functions are inlined.

¢ Smart (default) - Inlines function declared with the
inline qualifier.

* 1 -8 - Inlines functions up to n levels deep. Level 0 is
the same as -inline on. Forn, enter 1 to 8 levels.

Auto Inline Inlines small function even if they are not declared with the
inline qualifier
Bottom-up Inlining Check to control the bottom-up function inlining method.

When active, the compiler inlines function code starting with
the last function in the chain of functions calls, to the first one.

2.2.3.5 DSC Compiler > Processor

Use this panel to specify processor behavior. You can specify the file paths and define
macros.

The following table lists and describes the compiler processor options for DSC.

Table 2-12. Tool Settings - DSC Compiler > Processor Options

Option Description

Hardware DO Loops Specifies the level of hardware DO loops:

* No DO Loops - Compiler does not generate any

* No Nested DO Loops - Compiler generates hardware
DO loops, but does not nest them

* Nested DO Loops - Compiler generates hardware DO
loops, nesting them two deep.

If hardware DO loops are enabled, debugging will be
inconsistent about stepping into loops.

Test immediately after this table contains additional Do-loop
information.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 37

A\ 4
N
ound Properties for DSC

Table 2-12. Tool Settings - DSC Compiler > Processor Options (continued)

Option Description

Small Program Model Checked - Compiler generates a more efficient switch table,
provided that code fits into the range 0x0-OxFFFF.

Clear - Compiler generates an ordinary switch table.

Do not check this checkbox unless the entire program code
fits into the Ox0-OxFFFF memory range.

Large Data Memory Model Checked - Extends DSP56800E addressing range by
providing 24-bit address capability to instructions.

Clear - Does not extend address range.

24-bit address modes allow access beyond the 64K-byte
boundary of 16-bit addressing.

Globals Live in Lower Memory Checked - Compiler uses 24-bit addressing for pointer and
stack operations, 16-bit addressing for access to global and
static data.

Clear - Compiler uses 24-bit addressing for all data access.

This checkbox is available only if the Large Data Model
checkbox is checked.

Zero-Initialized Globals Llve in Data Instead of BSS Checked - Globals initialized to zero reside in the .data
section.

Clear - Globals initialized to zero reside in the .bss section.

Segregate Data Section Check to segregate data section.

Pad Pipeline for Debugger Checked - Mandatory for using the debugger. Inserts NOPs
after certain branch instructions to make breakpoints work
reliably.

Clear - Does not insert such NOPs.

If you select this option, you should select the same option in
the assembler panel. Selecting this option increases code
size by 5 percent. But not selecting this option risks
nonrecovery after the debugger comes to breakpoint branch
instructions.

Create Assembly Output Checked - Assembler generates assembly code for each C
file.

Clear - Assembler does not generate assembly code for each
C file.

The pragma #asmoutput overrides this option for individual
files.

Generate Code for Profiling Checked - Compiler generates code for profiling.

Clear - Compiler does not generate code for profiling.

Generates elf file for 56800EX core Checked - Compiler generates elf file for 56800EX core.

Clear - Compiler does not generate elf file for 56800EX core.

Check Inline Assembly for Pipeline Specifies pipeline conflict detection during compiling of inline
assembly source code:
¢ Not Detected - compiler does not check for conflicts

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

38 Freescale Semiconductor, Inc.

Chapter 2 Using Build Tools with the CodeWarrior IDE

Table 2-12. Tool Settings - DSC Compiler > Processor Options (continued)

Option Description

¢ Conflict Error - compiler issues error messages if it
detects conflicts

* Conflict Error/Hardware Stall Warning - compiler
issues error messages if it detects conflicts, warnings if
it detects hardware stalls

Check C Source for Pipeline Specifies pipeline conflict detection during compiling of C
source code:
* Not Detected - compiler does not check for conflicts
» Conflict error - compiler issues error messages if it
detects conflicts

2.2.3.6 DSC Compiler > Language

Use this panel direct the DSC compiler to apply specific processing modes to the
language source code. You can compile source files with just one collection at a time. To
compile source files with multiple collections, you must compile the source code
sequentially. After each compile iteration change the collection of settings that the DSC
compiler uses.

The following table lists and describes the compiler optimization options for DSC.

Table 2-13. Tool Settings - DSC Compiler > Language Settings

Option Description

ANSI Strict Check to enable C compiler operate in strict ANSI mode. In
this mode, the compiler strictly applies the rules of the ANSI/
ISO specification to all input files. This setting is equivalent to
specifying the - ansi command-line option. The compiler
issues a warning for each ANSI/ISO extension it finds.

ANSI Keywords Only Check to generate an error message for all non-standard
keywords (ISO/IEC 9899-1990 C, §6.4.1). If you must write
source code that strictly adheres to the ISO standard, enable
this setting; is equivalent to pragma only std keywords
and the command-line option -stdkeywords.

Enums Always Int Check to use signed integers to represent enumerated
constants and is equivalent to pragma enumsalwaysint
and the command-line option -enum.

Use Unsigned Chars Check to treat char declarations as unsigned char
declarations and is equivalent to pragma unsigned char
and the command-line option -char unsigned.

Require Function Prototypes Check to enforce the requirement of function prototypes. The
compiler generates an error message if you define a
previously referenced function that does not have a prototype.
If you define the function before it is referenced but do not
give it a prototype, this setting causes the compiler to issue a
warning message.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 39

ound Properties for DSC

Table 2-13. Tool Settings - DSC Compiler > Language Settings (continued)

Option

Description

Expand Trigraphs

Check to recognize trigraph sequences (ISO/IEC 9899-1990
C, §5.2.1.1); is equivalent to pragma trigraphs and the
command-line option -trigraphs.

Legacy for-scoping

Check to generate an error message when the compiler
encounters a variable scope usage that the ISO/IEC
14882:2003 C++ standard disallows, but is allowed in the C++
language specified in 'The Annotated C++ Reference
Manual'.

Reuse Strings

Check to store only one copy of identical string literals and is
equivalent to opposite of the pragma dont_reuse strings
and the command-line option -string reuse.

Pool Strings Check to collect all string constants into a single data section
in the object code it generates and is equivalent to pragma
pool strings andthe command-line option -strings
pool.

Other Flags Specify additional command line options for the compiler; type

in custom flags that are not otherwise available in the Ul.

NOTE: To enable CodeWarrior MCU V10.x to generate .Ist
file for each source file in DSC you need to specify -S in the
Other Flags option.

2.2.4 DSC Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler. Additionally, the Assembler tree control includes the general and include file

search path settings.

The following table lists and describes the compiler optimization options for DSC.

Table 2-14. Tool Settings - DSC Assembler

Command line pattern

Option Description
Command Shows the location of the assembler executable file. You can
specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the Ul.
All options Shows the actual command line the assembler will be called
with.
Expert Settings Shows the expert settings command line parameters; default

is ${COMMAND} ${FLAGS} ${OUTPUT FLAG} $
{oUTPUT PREFIX}${OUTPUT} ${INPUTS}.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

40

Freescale Semiconductor, Inc.

Chapter 2 Using Build Tools with the CodeWarrior IDE

2.2.4.1 DSC Assembler > Input

Use this panel to specify additional files the DSC Assembler should use. You can
specify multiple additional libraries and library search paths. Also, you can change the
order in which the IDE uses or searches the libraries.

The following table lists and describes the compiler optimization options for DSC.

Table 2-15. Tool Settings - DSC Assembler > Input

Option Description

Prefix File Specify a prefix file that you want the compiler to include at
the top of each file.

Always Search User Paths (-nosyspath) Performs a search of both the user and system paths, treating
#include statements of the form #include <xyz> the same as
the form #include " xyz".

User Path (-i) Lets you add/update the user paths that the CodeWarrior IDE
searches to find files in your project. You can add several
kinds of paths including absolute and project-relative.

User Recursive Path (-ir) Lets you add/update the recursive user paths that the
CodeWarrior IDE searches to find files in your project. You
can add several kinds of paths including absolute and project-
relative.

System Path (-I- -I) Lets you add/update the system paths that the CodeWarrior
IDE searches to find files in your project. You can add several
kinds of paths including absolute and project-relative.

System Recursive Path (-I- -ir) Lets you add/update the recursive system paths that the
CodeWarrior IDE searches to find files in your project. You
can add several kinds of paths including absolute and project-
relative.

2.2.4.2 DSC Assembler > General

Use this panel to specify additional files the DSC Assembler should use. You can
specify multiple additional libraries and library search paths. Also, you can change the
order in which the IDE uses or searches the libraries.

The following table lists and describes the assembler options for DSC.
Table 2-16. Tool Settings - DSC Assembler > General

Option Description

Identifiers are Case Sensitive Clear to instruct the assembler to ignore case in identifiers. By
default, the option is checked.

Assert NOPs on Pipeline Conflicts Checked - Assembler automatically resolves pipeline
conflicts by inserting NOPs.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 41

A\ 4
N
ound Properties for DSC

Table 2-16. Tool Settings - DSC Assembler > General (continued)

Option Description

Clear - Assembler does not insert NOPs; it reports pipeline
conflicts in error messages.

NOP is optional. The core will stall for you (delay the required
time) even if you do not put the NOP.

Emit Warnings for NOP Assertions Checked - Assembler issues a warning any time it inserts a
NOP to prevent a pipeline conflict.

Clear - Assembler does not issue such warnings.

This checkbox is available only if the Assert NOPs on pipeline
conflicts checkbox is checked.

Emit Warnings for Hardware Stalls Checked - Assembler warns when a hardware stall occurs
upon execution.

Clear - Assembler does not issue such warnings.

This option helps optimize the cycle count.

Pad Pipeline for Debugger Checked - Mandatory for using the debugger. Inserts NOPs
after certain branch instructions to make breakpoints work
reliably.

Clear - Does not insert such NOPs.

If you select this option, you should select the same option in
the processor settings panel. Selecting this option increases
code size by 5 percent. But not selecting this option risks
nonrecovery after the debugger comes to breakpoint branch
instructions.

Emit Warnings for Odd SP Increment/Decrement Checked - Enables assembler warnings about instructions
that could misalign the stack frame.

Clear - Does not enable such warnings.

Allow Legacy Instructions (default to 16-bit memory models) |Checked - Assembler permits legacy DSP56800 instruction
syntax.

Clear - Assembler does not permit this legacy syntax.

Selecting this option sets the Default Data Memory Model and
Default Program Memory Model values to 16 bits.

Generates elf file for 56800EX core Check to generate elf file for 56800EX core that makes a
program file out of the object files of your project.

Default Data Memory Model Specifies 16- or 24-bits as the default size.
Factory setting: 16 bits.

Default Program Memory Model Specifies 16-, 19-, or 21-bits as the default size.
Factory setting: 19 bits.

Other Flags Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the Ul.

Note: To enable CodeWarrior MCU V10.x to generate .Ist file
for each source file in DSC, you need to specify -S in the
Other Flags option.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

42 Freescale Semiconductor, Inc.

2.2.4.3 DSC Assembler > Output

Chapter 2 Using Build Tools with the CodeWarrior IDE

Use this panel to control how the assembler generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

The following table lists and describes the assembler output options for DSC.

Table 2-17. Tool Settings - DSC Assembler > Output

Option

Description

Generate Listing File

Instructs the assembler to generate a disassembly output file.
The disassembly output file contains the file source, along
with line numbers, relocation information, and macro
expansion.

Expand Macros in Listing File

¢ Checked - Assembler macros expand in the assembler
listing.

* Clear - Assembler macros do not expand. This
checkbox is available only if the Generate Listing File
checkbox is checked.

2.2.5 DSC Preprocessor

Use this panel to specify the preprocessor settings for DSC.

The following table lists and describes the preprocessor options for DSC.

Table 2-18. Tool Settings - DSC Preprocesor

Option Description

Command Shows the location of the preprocessor executable file. You
can specify additional command line options for the
preprocessor; type in custom flags that are not otherwise
available in the UI.

All options Shows the actual command line the preprocessor will be
called with.

Expert Settings Shows the expert settings command line parameters; default

Command line pattern is ${COMMAND} -E ${FLAGS} ${INPUTS}.

2.2.5.1

DSC Preprocessor > Settings

Use this panel to specify the preprocessor settings of DSC Preprocessor.

The following table lists and describes the preprocessor settings options for DSC.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

43

3
4

4
A

ound Properties for DSC
Table 2-19. Tool Settings - DSC Preprocessor > Settings

Option Description

Emit File/Line Breaks Check to notify file breaks (or #line breaks) appear in the
output.

Emit #pragma directives Check to show pragma directives in the preprocessor output.
Essential for producing reproducible test cases for bug
reports.

Emit #line Directives Check to display file changes in comments (as before) or in
#line directives.

Show Full Path Check to control whether file changes show the full path or
the base filename of the file.

Keep Comments Check to display comments in the preprocessor output.

Keep Whitespace Check to copy whitespaces in preprocessor output. This is

useful for keeping the starting column aligned with the original
source, though the compiler attempts to preserve space
within the line. This does not apply when macros are

expanded.

2.2.6 DSC Disassembler

Use this panel to specify the command, options, and expert settings for DSC
Disassembler.

The following table lists and describes the disassembler options for DSC.
Table 2-20. Tool Settings - DSC Disassembler

Option Description

Command Shows the location of the disassembler executable file.

Default value is ""${DSC_ToolsDir}/mwld56800e". You
can specify additional command line options for the
disassembler; type in custom flags that are not otherwise
available in the UI.

All options Shows the actual command line the disassembler will be
called with.
Expert settings Shows the expert settings command line parameters; default

Command line pattern is ${COMMAND} -dis ${FLAGS} ${INPUTS}

2.2.6.1 DSC Disassembler > Settings

Use this panel to specify disassembler settings.

The following table lists and describes the disassembler settings options for DSC.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

44 Freescale Semiconductor, Inc.

g |

4
Chapter 2 Using Build Tools with the CodeWarrior IDE

Table 2-21. Tool Settings - DSC Disassembler > Settings

Option Description

Show Headers Check to display headers in the listing file; disassembler
writes listing headers, titles, and subtitles to the listing file

Show Symbol and String Tables Check to display symbol and string tables directives to the
listing file

Verbose Information Tells the compiler to provide verbose, cumulative information
in messages.

Show Relocations Check to have the disassembler show information about

relocated symbols. Clear to prevent the disassembler from
showing information about relocated symbols.

Show Code Modules Check to show core modules in the listing file

Show Extended Mnemonics Check to show the extended mnemonics in the listing file

Show Addresses and Opcodes Check to show the addresses and object code in the listing
file

Show Source Code Check to show the source code in the listing file

Show Comments Check to show the comments in the listing file

Show Data Modules Check to show the data modules in the listing file

Show Exception Tables Check to disassemble exception tables in the listing file

Show Debug Information Check to generate symbolic information for debugging the
build target

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 45

R
4 |
ound Properties for DSC

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

46 Freescale Semiconductor, Inc.

Chapter 3
Using Build Tools on the Command Line

The CodeWarrior command line compilers and assemblers translate source code (for
example, C and C++) into object code, storing this object in files. CodeWarrior
command-line linkers then combine one or more of these object code files to produce an
executable image ready to load and execute on the target platform.

Each command-line tool has options that you configure when you invoke the tool.

The CodeWarrior IDE (Integrated Development Environment) uses these same compilers
and linkers, however Freescale provides versions of these tools that you can directly
invoke on the command line.

This chapter contains these topics:

* Naming Conventions

* Configuring Command-Line Tools

* Invoking Command-Line Tools

» Getting Help

* File Name Extensions

» Specifying Source File Locations

* Environmental Variables

e Standard C and C++ Conformance Options

e Language Translation and Extensions Options
 Errors, Warnings, and Diagnostic Options

* Preprocessing and Precompilation Options
 Library and Linking Options

* Object Code Organization and Generation Options
e Optimization Options

e Debugging Control Options

* Assembler Control Options

e Command Line Tools

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 47

vumiguring Command-Line Tools
3.1 Naming Conventions

The names of the CodeWarrior command-line tools follow a convention:
mwtoolplatform

where tool is cc for the C/C++ compiler, 14 for the linker, and asn for the assembler.

platform is usually the target platform that the tool generates software for, except where
there are multiple versions of tools for a target platform.

For example, the command-line compiler, assembler, and linker for the dsp56800 are
named mwecs6800, mwasmsesoo, and mwidsesoo, respectively; and for the dspS6800e are named
mwcc56800e, mwasms6800e, aNd mwidsesooe, respectively.

3.2 Configuring Command-Line Tools

To use the command-line tools, several environment variables must be changed or
defined.

If you are using CodeWarrior command-line tools with Microsoft Windows, environment
variables may be assigned in Environment variables under System Properties of
control panel.

The CodeWarrior command-line tools refer to environment variables for configuration
information:

e CWFolder Environment Variable
 Setting the PATH Environment Variable

3.2.1 CWFolder Environment Variable

In this example, scwro1aders refers to the path where CodeWarrior for 56800 was installed.
Note that it is not necessary to include quote marks when defining environment variables
that include spaces. Windows does not strip out the quotes and this leads to unknown
directory warnings. Use the following syntax if defining variables in batch files or at the
command line.

set CWFolder=C:\Freescale\CW MCU v10.x\MCU

set PATH=%PATHS%; $CWFolder%\DSP56800x EABI Tools\command line tools

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

48 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

3.2.2 Setting the PATH Environment Variable

The patn variable should include the paths for the 56800/E tools as shown in the
following listing.

Listing: Example of PATH Settings

$CWFolder%\MCU\DSP56800x EABI Tools\command line tools

In order for FlexLM to work properly, you can simply copy the following file into the
directory from which you will be using the command line tools:

..\CW MCU v10.x\MCU\license.dat

Alternately, you can define the variable tvm_r1cense_r1iE as:

$CWFolder%\MCU\license.dat

This variable points to license information. It may point to alternate versions of this file,
as needed.

3.3 Invoking Command-Line Tools

To compile, assemble, link, or perform some other programming task with the
CodeWarrior command-line tools, you type a command at a command line's prompt. This
command specifies the tool you want to run, what options to use while the tool runs, and
what files the tool should operate on.

The form of a command to run a command-line tool is
tool options files

where fool is the name of the CodeWarrior command-line tool to invoke, options is a list
of zero or more options that specify to the tool what operation it should perform and how
it should be performed, and tiies is a list of files zero or more files that the tool should
operate on.

Which options and files you should specify depend on what operation you want the tool
to perform.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 49

uewng Help

The tool then performs the operation on the files you specify. If the tool is successful it
simply finishes its operation and a new prompt appears at the command line. If the tool
encounters problems it reports these problems as text messages on the command-line
before a new prompt appears.

Scripts that automate the process to build a piece of software contain commands to
invoke command-line tools. For example, the nake tool, a common software development
tool, uses scripts to manage dependencies among source code files and invoke command-
line compilers, assemblers and linkers as needed, much like the CodeWarrior IDE's
project manager.

3.4 Getting Help

To show short descriptions of a tool's options, type this command at the command line:
tool -help

where tool 1s the name of the CodeWarrior build tool.

To show only a few lines of help information at a time, pipe the tool's output to a pager
program. For example,

tool -help | more

will use the more pager program to display the help information.

3.4.1 Help Guidelines

Enter the following command in a Command Prompt window to see a list of
specifications that describe how options are formatted:

tool -help usage

3.4.1.1 Parameter Formats
Parameters in an option are formatted as follows:

* A parameter included in brackets " (1" is optional.
e Use of the ellipsis " ..." character indicates that the previous type of parameter may
be repeated as a list.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

50 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

3.4.1.2 Option Formats
Options are formatted as follows:

» For most options, the option and the parameters are separated by a space as in " -xxx
param . When the option's name is " -xxx+", however, the parameter must directly
follow the option, without the " +" character (as in " -xxx45") and with no space
separator.

* An option given as " - nolxxx" may be issued as " -xxx" or " -noxxx". The use of " -
noxxx'" reverses the meaning of the option.

* When an option is specified as " -xxx | yylyl | zzz", then either " -xxx", " -yy", " -yyv",
or " -zzz" matches the option.

* The symbols "," and "=" separate options and parameters unconditionally; to include
one of these symbols in a parameter or filename, escape it (e.g., as " \," 1N mwcc file.c

\,v).

3.4.1.3 Common Terms
These common terms appear in many option descriptions:

» A "cased" option is considered case-sensitive. By default, no options are case-
sensitive.

 "compatibility" indicates that the option is borrowed from another vendor's tool and
its behavior may only approximate its counterpart.

» A "global" option has an effect over the entire command line and is parsed before
any other options. When several global options are specified, they are interpreted in
order.

» A "deprecated" option will be eliminated in the future and should no longer be used.
An alternative form is supplied.

* An "ignored" option is accepted by the tool but has no effect.

* A "meaningless" option is accepted by the tool but probably has no meaning for the
target OS.

* An "obsolete" option indicates a deprecated option that is no longer available.

* A "substituted" option has the same effect as another option. This points out a
preferred form and prevents confusion when similar options appear in the help.

» Use of "default" in the help text indicates that the given value or variation of an
option is used unless otherwise overridden.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 51

rue Name Extensions

This tool calls the linker (unless a compiler option such as -c prevents it) and understands
linker options - use ' -help tool-other' to see them. Options marked "passed to linker" are
used by the compiler and the linker; options marked "for linker" are used only by the
linker. When using the compiler and linker separately, you must pass the common
options to both.

3.5 File Name Extensions

Files specified on the command line are identified by contents and file extension, as in
the CodeWarrior IDE.

The command-line version of the CodeWarrior C/C++ compiler accepts non-standard file
extensions as source but also emits a warning. By default, the compiler assumes that a
file with any extensions besides .c, .n, .pch is C++ source. The linker ignores all files that
it can not identify as object code, libraries, or command files.

Linker command files must end in .cna. They may be simply added to the link line, for
example, for 56800:

mwld56800e file.o "MSL C 56800E.lib" "Runtime 56800E.Lib" linker.cmd

For more information on linker command files, refer to the Targeting manual for your
platform.

3.6 Specifying Source File Locations

Several environment variables are used at build time to search for system include paths
and libraries which can shorten command lines for many tasks. All of the variables

mentioned here are lists which are separated by semicolons (";") in Windows and colons
(":") in Solaris.

For example, in 56800, unless -nodetauits 1s passed to on the command line, the compiler
searches for an environment variable called mwcsesoornciudes for the DSP56800 and
micses0oEIncludes for the DSP56800E. This variable contains a list of system access paths
to be searched after the system access paths specified by the user. The assembler also

does this, using the variable mwasmsesoornciudes for the DSP56800 and mwasmsesoorInciudes
for the DSP56800E.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

52 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

Analogously, unless -nodefaults Or -disassemble 18 given, the linker will search the
environment for a list of system access paths and system library files to be added to the
end of the search and link orders. For example, with 56800, the variable mwsesoonibraries
and mwsesoorLibraries contains a list of system library paths to search for files, libraries,
and command files.

Associated with this list is the variable mwsesoonibraryriles and mwsesooELibraryFiles Which
contains a list of libraries (or object files or command files) to add to the end of the link
order. These files may be located in any of the cumulative access paths at runtime.

3.7 Environmental Variables
There are environmental variables for the DSP56800 and DSP56800E.
The environmental variables for the DSP56800 are:

* MW56800Libraries: a semicolon separated list of paths to the libraries

* MW56800LibraryFiles: a semicolon separated list of libraries to be linked against

* MWAsm56800Includes: a semicolon separated list of paths to files needed by the
assembler

* MWC56800Includes: a semicolon separated list of paths to files needed by the
assembler

The environmental variables for the DSP56800E are:

» MWS56800ELibraries: a semicolon separated list of paths to the libraries

» MWS56800ELibraryFiles: a semicolon separated list of libraries to be linked against

* MWAsm56800EIncludes: a semicolon separated list of paths to files needed by the
assembler

» MWC56800EIncludes: a semicolon separated list of paths to files needed by the
assembler

3.8 Standard C and C++ Conformance Options
The Standard C and C++ Conformance options are:

* -ansi
* -stdkeywords
* -strict

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 53

A
4

4
A

swndard C and C++ Conformance Options

3.8.1 -ansi

Controls the ANSI conformance options, overriding the given settings.

Syntax
-ansi keyword

The arguments for keyword are:

Turn ANSI conformance off. Same as -stdxeywordsoff, -enummin, and -strictoff.
on | relaxed

Turn ANSI conformance on in relaxed mode. Same as -stdkeywordson, -enummin, and -

stricton.
strict

Turn ANSI conformance on in strict mode. Same as -stdkeywordson, -enumint, and -

stricton.

3.8.2 -stdkeywords

Controls the requirement for the use of ANSI standard keywords.

Syntax
-stdkeywords on | off

Remarks

Default setting is ofx.

3.8.3 -strict

Controls the use of non-standard ANSI language features.

Syntax

-strict on | off

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Build Tools on the Command Line

Remarks

Default setting is ofx.

3.9 Language Translation and Extensions Options
The Language Translation and Extensions options are:

e —char

e -defaults
 -encoding

» -flag

e -fullLicenseSearch
* -gccext

* -gcc_extensions
e -M

e -make

* -mapcr

s -MM

e -MD

e -MMD

e -Mfile

o -MMfile

e -MDfile

* -MMDfile

e -multibyteaware
* -nolonglong

e -once

* -pragma

* -relax_pointers
* -requireprotos
e -search

e -trigraphs

3.9.1 -char

Controls the default sign of the char data type.
Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 55

ranguage Translation and Extensions Options

-char keyword

The arguments for keywora are:
signed

char data items are signed.
unsigned

char data items are unsigned.
Remarks

The default is signed.

3.9.2 -defaults

Controls whether the compiler uses additional environment variables to provide default
settings.

Syntax

-defaults

- [noldefaults

Remarks

This command is global. To enable the command-line compiler to use the same set of
default settings as the CodeWarrior IDE, use -defauits. For example, in the IDE, all
access paths and libraries are explicit. gefauits is the default setting.

Use -nodefauits to disable the use of additional environment variables.

3.9.3 -encoding

Specify the default source encoding used by the compiler.

Syntax
-enc [oding] keyword

The options for xeywora are:

ascii

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

56 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

American Standard Code for Information Interchange (ASCII) format. This is the default.
autodetect | multibyte | mb

Scan file for multibyte encoding.

system

Use local system format.

UTF[8 | -8]

Unicode Transformation Format (UTF).

SJIS | Shift-JIS | ShiftJIs

Shift Japanese Industrial Standard (Shift-JIS) format.

EUC[JP | -JP]

Japanese Extended UNIX Code (EUCJP) format.

IS0[2022JP | -2022-JP]

International Organization of Standards (ISO) Japanese format.
Remarks

The compiler automatically detects UTF-8 (Unicode Transformation Format) header or
UCS-2/UCS-4 (Uniform Communications Standard) encodings regardless of setting. The
default setting iS ascii.

3.9.4 -flag

Specify compiler #pragma as either on Or off.
Syntax
~fllag] [no-]pragma
Examples
-flag foo
18 equivalent {0 #pragma foo on.
-flag no-foo

1s the same as #pragma foo off.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 57

A 4
4\ |

ranguage Translation and Extensions Options

3.9.5 -fullLicenseSearch

Uses more robust search for valid license files.

Syntax
-fullLicenseSearch

Remarks

This command is global. It might result in somewhat longer builds.

3.9.6 -gccext

Enable GCC (Gnu Compiler Collection) C language extensions.
Syntax

-gcclext] on | off
Remarks

The default setting is of+.

3.9.7 -gcc_extensions

Equivalent to the -gccext option.

Syntax

-gcc[_extensions] on | off

3.9.8 -M

Scan source files for dependencies and emit a Makefile, without generating object code.
Syntax
-M

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

58 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

Remarks

This command is global and case-sensitive.

3.9.9 -make

Scan source files for dependencies and emit a Makefile, without generating object code.

Syntax
-make

Remarks

This command is global.

3.9.10 -mapcr

Swaps the values of the \n and \r escape characters.

Syntax
-mapcr

-nomapcr

Remarks

The -mapcr option tells the compiler to treat the '\n' character as ASCII 13 and the '\r:
character as ASCII 10. The -nomapcr Option tells the compiler to treat these characters as
ASCII 10 and 13, respectively.

3.9.11 -MM

Scan source files for dependencies and emit a Makefile, without generating object code
or listing system #inc1ude files.

Syntax
-MM

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 59

ranguage Translation and Extensions Options

This command is global and case-sensitive.

3.9.12 -MD

Scan source files for dependencies and emit a Makefile, generate object code, and write a
dependency map.

Syntax
-MD

Remarks

This command is global and case-sensitive.

3.9.13 -MMD

Scan source files for dependencies and emit a Makefile, generate object code, write a
dependency map, without listing system #inciuge files.

Syntax
-MMD

Remarks

This command is global and case-sensitive.

3.9.14 -Mfile

Scans source files for dependencies and emit Makefile, does not generate object code,
writes a dependency map to the specified file.

Syntax
-Mfile file

Remarks

This command is global and case-sensitive.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

60 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

3.9.15 -MMfile

Scans source files for dependencies and emit a Makefile, without generating object code
or listing system #inciude files, and writes a dependency map to the specified file.

Syntax
-MMfile file

Remarks

This command is global and case-sensitive.

3.9.16 -MDfile

Scans source files for dependencies and emit a Makefile, generates object code, and
writes a dependency map to the specified file.

Syntax
-MDfile file

Remarks

This command is global and case-sensitive.

3.9.17 -MMDfile

Scans source files for dependencies and emit a Makefile, generates object code, writes a
dependency map to the specified file, without listing system #inciuge files.

Syntax
-MMDfile file

Remarks

This command is global and case-sensitive.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 61

),
|
ranguage Translation and Extensions Options

3.9.18 -multibyteaware

Allows multi-byte characters encodings in source text.

Syntax
-multibyte [aware]

-nomultibyte [aware]

3.9.19 -nolonglong

Disables 1ong 1ong support..

Syntax

-nolonglong

3.9.20 -once

Prevents header files from being processed more than once.

Syntax

Remarks

You can also add #pragma once on in a prefix file.

3.9.21 -pragma

Defines a pragma for the compiler.

Syntax
-pragma 'name ["setting"]'

The arguments are:

name

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

62 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Build Tools on the Command Line

Name of the new pragma enclosed in single-quotes.
setting

Setting for the new pragma. When adding a setting, setting must be enclosed in double-
quotes.

3.9.22 -relax_pointers

Relaxes the pointer type-checking rules in C.

Syntax
-relaxpointers

Remarks

This option is equivalent to

#pragma mpwc_ relax on

3.9.23 -requireprotos

Controls whether or not the compiler should expect function prototypes.

Syntax

-r [equireprotos]

3.9.24 -search

Globally searches across paths for source files, object code, and libraries specified in the
command line.

Syntax

-search

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 63

A\ 4
N
crrors, Warnings, and Diagnostic Options

3.9.25 -trigraphs

Controls the use of ISO trigraph sequences.

Syntax
-trigraphs on | off

Remarks

Default setting is ofx.

3.10 Errors, Warnings, and Diagnostic Options
The Errors, Warnings, and Diagnostic options are:

* -disassemble
* -help

* -MAaxerrors

* -maxwarnings
* -msgstyle

* -nofail

* -progress

e -S

* -stderr

* -verbose

* -version

* -timing

e -warnings

» -wraplines

3.10.1 -disassemble

Tells the command-line tool to disassemble files and send result to stdout.
Syntax

-dis[assemble]
Remarks

This option is global.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

64 Freescale Semiconductor, Inc.

g |

Chapter 3 Using Build Tools on the Command Line

3.10.2 -help

Lists descriptions of the CodeWarrior tool's command-line options.

Syntax
-help [keyword [,...]]

The options for keywora are:
all
Show all standard options

group=keyword

Show help for groups whose names contain 'keyword' (case-sensitive); for 'keyword',
maximum length 63 chars

[no] compatible

Use compatible to show options compatible with this compiler. Use nocompatibie to show
options that do not work with this compiler.

[no] deprecated

Show deprecated options
[no] ignored

Show ignored options
[nolmeaningless

Show options meaningless for this target
[nol normal

Show only standard options
[no] obsolete

Show obsolete options

[nol spaces

Insert blank lines between options in printout.

opt [ion] =name

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 65

crrors, Warnings, and Diagnostic Options

Show help for a given option; for 'name', maximum length 63 chars
search=keyword

Show help for an option whose name or help contains 'keyword' (case-sensitive); for
'keyword', maximum length 63 chars

tool=keyword[all | this | other|skipped | both]
Categorize groups of options by tool; default.

* a11-show all options available in this tool

* this-show options executed by this tool; default
* other|skipped-Show options passed to another tool
* poth-show options used in all tools

usage

Displays usage information.

3.10.3 -maxerrors

Specify the maximum number of errors to show.

Syntax
-maxerrors max

max
Use max to specify the number of errors. Common values are:

* o (zero) - disable maximum count, show all errors.
* 100 - Default setting.

3.10.4 -maxwarnings

Specify the maximum number of warnings to show.

Syntax
-maxwarni ngs max
max

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

66 Freescale Semiconductor, Inc.

3
4

4
A

Chapter 3 Using Build Tools on the Command Line

Use max to specify the number of warnings. Common values are:

* o (zero) - Disable maximum count (default).
* n - Maximum number of warnings to show.

3.10.5 -msgstyle

Controls the style used to show error and warning messages.

Syntax
-msgstyle keyword

The options for xeywora are:

EnterpriseIDE

Uses Enterprise IDE message style.

gee

Uses gcc message style.

ide

Uses CodeWarrior's Integrated Development Environment (IDE) message style.
mpw

Uses Macintosh Programmer's Workshop (MPW®) message style.
parseable

Uses context-free machine parseable message style.

std

Uses standard message style. This is the default.

3.10.6 -nofail

Continue processing after getting errors in earlier files.
Syntax

-nofail

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

67

crrors, Warnings, and Diagnostic Options

3.10.7 -progress

Show progress and version information.

Syntax

-progress

3.10.8 -S

Disassemble all files and send output to a file. This command is global and case-
sensitive.

Syntax

-S

3.10.9 -stderr

Use the standard error stream to report error and warning messages.

Syntax

-stderr

-nostderr
Remarks

The -stderr option specifies to the compiler, and other tools that it invokes, that error and
warning messages should be sent to the standard error stream.

The -nostaerr Option specifies that error and warning messages should be sent to the
standard output stream.

3.10.10 -verbose

Tells the compiler to provide verbose, cumulative information in messages.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

68 Freescale Semiconductor, Inc.

3
4

4
A

4
Chapter 3 Using Build Tools on the Command Line
Syntax
-v [erbose]
Remarks

Use of this argument implies the use of the The -progress argument.

3.10.11 -version

Displays version, configuration, and build data.

Syntax

-v[ersion]

3.10.12 -timing

Shows the amount of time that the tool used to perform an action.

Syntax

-timing

3.10.13 -warnings

Specify which warnings the command-line tool issues. This command is global.
Syntax
-wlarning] keyword [,...]
The options for xeywora are:
off
Turn off all warnings. Passed to all tools. Prefix file setting: #pragma warning off.
on
Turn on most warnings. Passed to all tools. Prefix file setting: #pragma warning on.

[no] ecmdline

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 69

crrors, Warnings, and Diagnostic Options

Issue command-line driver/parser warnings

[nolerr[or] | [noliserr[or]

Treat warnings as errors. Passed to all tools. Prefix file setting: #pragma warning errors.
most

Turn on most warnings.

all

Turn on all warnings and require prototypes.

full

Turn on all warnings including spurious warnings and require prototypes.
[nolpragmas | [nolillpragmas

Issue warnings on illegal #pragmas. Prefix file setting: #pragma warn_illpragma.
[no] empty [decl]

Issue warnings on empty declarations. Prefix file setting: #pragma warn_emptydelc.
[no]lpossible | [no]lunwanted

Issue warnings on possible unwanted effects. Prefix file setting: #pragma warn_possunwanted.
[no] unusedarg

Issue warnings on unused arguments. Prefix file setting: #pragma warn_unusedarg.
[no]unusedvar

Issue warnings on unused variables. Prefix file setting: #pragma warn_unusedvar.
[no]unused

Sarne dS -w [nolunusedarg, [no]unusedvar.

[no] extracomma | [no]comma

Issue warnings on extra commas in enumerations. Prefix file setting: #pragma

warn_extracomma.

[nolpedantic | [nolextended
pedantic error checking
[nolhidevirtual | [nolhidden[virtuall

Issue warnings on hidden virtual functions. Prefix file setting: #pragma warn_hidevirtual.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

70 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

[no]limplicit [conv]

Issue warnings on implicit arithmetic conversions. Implies -warn

impl float2int,impl signedunsigned.
[no]impl int2float

Issue warnings on implicit integral to floating conversions. Prefix file setting: #pragma

warn_impl i2f conv.
[no]impl float2int

Issue warnings on implicit floating to integral conversions. Prefix file setting: #pragma

warn_impl f2i conv.

[nol impl_signedunsigned

Issue warnings on implicit signed/unsigned conversions.
[nolnotinlined

Issue warning when in1ine functions are not inlined. Prefix file setting: #pragma

warn_notinlined.
[no] largeargs

Issue warning when passing large arguments to unprototyped functions. Prefix file
Sﬁttil’lgl #pragma warn_ largeargs.

[no] structclass

Issue warning on inconsistent use of ciass and struct. Prefix file setting: #pragma

warn_structclass.
[no]l padding

Issue warning when padding is added between struct members. Prefix file setting: #pragma

warn_padding.
[no]lnotused

Issue warning when the result of non-void-returning functions are not used. Prefix file
Sﬁﬂjngl#pragma warn_ resultnotused.

[nolmissingreturn

Issue warning when a return without a value in non-void-returning function occurs.
Prefix file setting: #pragma warn missingreturn.

[no] unusedexpr

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 71

crrors, Warnings, and Diagnostic Options

Issue warning when encountering the use of expressions as statements without side
effects. Prefix file setting: #pragma warn no side effect.

[no]l ptrintconv
Issue warning when loss conversions occur from pointers to integers.
[no] anyptrintconv

Issue warning on any conversion of pointers to integers. Prefix file setting: #pragma

warn_ptr_int_conv.
[no]undef [macro]

Issue warning on the use of undefined macros in #it/#e1if conditionals. Prefix file setting:

#pragma warn_ undefmacro.
[no] filecaps

Issue warning when #inciude ... statements use incorrect capitalization. Prefix file
setting: #pragma warn_filenamecaps.

[no]l sysfilecaps

Issue warning when #inciuge <...> statements use incorrect capitalization. Prefix file
setting: #pragma warn_filenamecaps_system.

[no] tokenpasting

Issue warning when token is not formed by ## operator. Prefix file setting: #pragma

warn_illtokenpasting.
[nolrelax i2i conv

Issue relax warnings for implicit integer to integer arithmetic conversions (off for full, on
otherwise).

[nolalias_ptr_conv
Generate warnings for potentially dangerous pointer casts (full).
display | dump

Display list of active warnings.

Description

Choose Edit > targetname Settings from the CodeWarrior IDE's menu bar, then select
the C/C++ Warnings settings panel. Enable or disable specific warnings by clicking the
appropriate checkboxes.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

72 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Build Tools on the Command Line

3.10.14

-wraplines

Controls the word wrapping of messages.

Syntax

-wraplines

-nowraplines

3.11 Preprocessing and Precompilation Options

The Preprocessing and Precompilation options are:

e _allow_macro_redefs
* -convertpaths

e -cwd

* -D+

e -define
e -E
 -EP

» -gccdepends
 -gccincludes

o _|-
o I+

e -include

¢ -1r

* -noprecompile
* -nosyspath

. P

* -precompile
* -preprocess

* -ppopt
* -prefix
e -stdinc
e -U+

e -undefine

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

73

rreprocessing and Precompilation Options

3.11.1 -allow_macro redefs

Allows macro redefinitions without errors or warnings.

Syntax

-allow_macro_redefs

3.11.2 -convertpaths

Instructs the compiler to interpret #inciuge file paths specified for a foreign operating
system. This command is global.

Syntax
- [no] convertpaths

Remarks

The CodeWarrior compiler can interpret file paths from several different operating
systems. Each operating system uses unique characters as path separators. These
separators include:

* Mac OS® - colon " ." (:sys:stat.h)
e UNIX - forward slash " /" (sys/stat.n)
* Windows® - backward slash " \" (sys\stat.n)

When convertpaths 1S enabled, the compiler can correctly interpret and use paths like <sys/
stat.h> OF <:sys:stat.h>. HOwever, when enabled, (/) and (:) separate directories and
cannot be used in filenames.

NOTE
This is not a problem on Windows since these characters are
already disallowed in file names. It is safe to leave this option
on.

When noconvertpaths is enabled, the compiler can only interpret paths that use the
Windows form, like <\sys\stat.h>.

3.11.3 -cwd

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

74 Freescale Semiconductor, Inc.

g |

Chapter 3 Using Build Tools on the Command Line

Controls where a search begins for #inc1uge files. The path represented by keyword is
searched before searching access paths defined for the build target.

Syntax
-cwd keyword

The options for keywora are:

explicit

No implicit directory. Search -1 or -ir paths.
include

Begin search in directory of referencing file.

proj

Begin search in current working directory (default).
source

Begin search in directory that contains the source file.

3.11.4 -D+

Same as the -gerine Option.
Syntax
-D+name
The parameters are:
name

The symbol name to define. Symbol is set to 1.

3.11.5 -define

Defines a preprocessor symbol.

Syntax

-d[efine] name [=value]

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 75

rreprocessing and Precompilation Options

The parameters are:
name
The symbol name to define.

value

The value to assign to symbol name. If no value is specified, set symbol value equal to 1.

3.11.6 -E

Tells the command-line tool to preprocess source files. This command is global and case-
sensitive.

Syntax

-E

3.11.7 -EP

Tells the command-line tool to preprocess source files that are stripped of #1ine
directives. This command is global and case-sensitive.

Syntax
-EP
Remarks

Output is generated using the #pragma simple predump on setting and sent to a new unsaved
editor window.

3.11.8 -gccdepends

Writes dependency file (-MD, -MMD) with name and location based on output file,
which is compatible with gce 3.x, else writes to the current directory with filename based
on the source file.

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

76 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

- [no]l gccdep [ends]

Remarks

This command is global.

3.11.9 -gccincludes

Controls the compilers use of GCC #inciude Semantics.

Syntax
-gccinc [ludes]

Remarks

Use -gecinciude to control the CodeWarrior compiler understanding of GCC semantics.
When enabled, the semantics include:

* Adds -1- paths to the systems list if -1- is not already specified

 Search referencing file's directory first for #inciuge files (same as -cwd inciuge) The
compiler and IDE only search access paths, and do not take the currently #inciude file
into account.

This command is global.

3.11.10 -I-

Changes the build target's search order of access paths to start with the system paths list.
This command is global.

Syntax
- I -
Remarks

The compiler can search #inc1ude files in several different ways. Use -1- to set the search
order as follows:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 77

3
4

4
A

rreprocessing and Precompilation Options

 For include statements of the form #inciude"xyz", the compiler first searches user
paths, then the system paths

* For include statements of the form #inciude<xyz>, the compiler searches only system
paths

3.11.11 -+

Appends a non-recursive access path to the current #inciude list. This command is global
and case-sensitive.

Syntax

-I+path

-1 path
The parameters are:
path

The non-recursive access path to append.

3.11.12 -include

Defines the name of the text file or precompiled header file to add to every source file
processed.

Syntax
-include file
file
Name of text file or precompiled header file to prefix to all source files.
Remarks

With the command line tool, you can add multiple prefix files all of which are included in
a meta-prefix file.

3.11.13 -ir

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

78 Freescale Semiconductor, Inc.

g |

Chapter 3 Using Build Tools on the Command Line

Appends a recursive access path to the current #inciuge list. This command is global.
Syntax
-ir path
The parameters are:
path

The recursive access path to append.

3.11.14 -noprecompile

Do not precompile any source files based upon the filename extension.

Syntax

-noprecompile

3.11.15 -nosyspath

Perform searches of both the user and system paths, treating #inciude statements of the
form #inciude<xyz> the same as the form #inciudgerxyz".

Syntax
-nosyspath
Remarks

This command is global.

3.11.16 -P

Preprocess the source files without generating object code, and send output to file. This
command is global and case-sensitive.

Syntax

-P

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 79

rreprocessing and Precompilation Options

3.11.17 -precompile

Precompile a header file from selected source files.
Syntax
-precompile file | dir | "
The parameters are:
file
If specified, the precompiled header name.
dir
If specified, the directory to store the header file.

nn

If "" is specified, write header file to location specified in source code. If neither
argument is specified, the header file name is derived from the source file name.

Remarks

The driver determines whether to precompile a file based on its extension. The statement

-precompile filesource is equivalent to -c -o filesource.

3.11.18 -preprocess

Preprocess the source files. This command is global.

Syntax

-preprocess

3.11.19 -ppopt

Specify options affecting the preprocessed output. The default settings is break.
Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

80 Freescale Semiconductor, Inc.

g |

Chapter 3 Using Build Tools on the Command Line

-ppopt keyword [,...]

The arguments for keywora are:

[nol break

Emit file and line breaks. This is the default.

[no] line

Controls whether #line directives are emitted or just comments. The default is 1ine.
[no] full [path]

Controls whether full paths are emitted or just the base filename. The default is fuil1path.
[nol pragma

Controls whether #pragma directives are kept or stripped. The default is pragma.

[no] comment

Controls whether comments are kept or stripped.

[no] space

Controls whether whitespace is kept or stripped. The default is space.

3.11.20 -prefix

Add contents a text file or precompiled header as a prefix to all source files.

Syntax

-prefix file

3.11.21 -stdinc

Use standard system include paths as specified by the environment variable smwcinciudess.

Syntax

-stdinc

-nostdinc

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 81

A\ 4
N
Liorary and Linking Options

Add this option after all system -1 paths.

3.11.22 -U+

Same as the -undefine Option.

Syntax

-U+name

3.11.23 -undefine

Undefine the specified symbol name. This command is case-sensitive.

Syntax

-u[ndefine] name

-U+name

The parameters are:
name

The symbol name to undefine.

3.12 Library and Linking Options
The Library and Linking options are:

* -keepobjects

* -map showbyte
* -nolink

* -0

3.12.1 -keepobjects

Retains or deletes object files after invoking the linker.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

82 Freescale Semiconductor, Inc.

g |

Chapter 3 Using Build Tools on the Command Line
Syntax

-keepobj [ects]

-nokeepobj [ects]

Remarks

Use -keepobjects to retain object files after invoking the linker. Use - nokeepobjects to
delete object files after linking. This command is global.

NOTE
Object files are always kept when compiling.

3.12.2 -map showbyte

This option activates the Annotate Byte Symbols IDE feature.

3.12.3 -nolink

Compile the source files, without linking.

Syntax
-nolink

Remarks

This command is global.

3.124 -o

Specify the output filename or directory for storing object files or text output during
compilation, or the output file if calling the linker.

Syntax
-o file | dir
The parameters are:

file

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 83

3
4

4
A

vuject Code Organization and Generation Options

The output file name.

dir

The directory to store object files or text output.
Remarks

Choose Edit > targetname Settings from the CodeWarrior IDE's menu bar, then select
the Access Paths settings panel. Enable the Always Search User Paths option.

3.13 Object Code Organization and Generation Options
The Object Code Organization and Generation options are:

-allowREP

e -asmout

* —C

e -chkasm
 -chkcsrcpipeline

e -codegen

* -constarray

* -Do

e -enum

* —ext
 -for_scoping

* -globalsInLowerMemory
* -hprog | -hugeprog
* -initializedzerodata
* -ldata | -largedata
e -largeAddrInSdm
* -min_enum_size

* -padpipe

* -profile

* -scheduling

» -segchardata

* -sprog | -smallprog
* -stackseq

* -strings

* -SWp

e -V3

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

84 Freescale Semiconductor, Inc.

g |

3.13.1 -allowREP

Generates REP instructions.

Syntax

-allowREP

-noallowREP

3.13.2 -asmout

Produces assembly file output.

Syntax

-asmout

-noasmout

3.13.3 -c

Chapter 3 Using Build Tools on the Command Line

Instructs the compiler to compile but not link the object code.

Syntax
Remarks

This option is global.

3.13.4 -chkasm

Check for pipeline in inline assembly sources.

Syntax

-chkasm keyword

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

85

g |

vuject Code Organization and Generation Options

The arguments of xeywora are:

off

No check for pipeline in inline assembly sources. This is the default.
conflict

To display error on pipeline conflict.

conflict and stall

To display error on pipeline conflict and warning on hardware stalls.

3.13.5 -chkcsrcpipeline

Checks for pipeline in C sources.

Syntax
-chkcsrpipeline keyword

The arguments of keywora are:
off
No check for pipeline in C sources. This is the default.

conflict

To display error on pipeline conflict.

3.13.6 -codegen
Controls the generation of object code.

Syntax

-codegen
-nocodegen

Remarks

This option is global.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

86 Freescale Semiconductor, Inc.

g |

Chapter 3 Using Build Tools on the Command Line

3.13.7 -constarray

Applies constant to array optimization.

Syntax

-constarray

-noconstarray

3.13.8 -Do

Specifies hardware DO loops.
Syntax
-Do keyword
The arguments of keyword are:
off
Does not specify hardware DO loops. This is the default.
nonested
Specifies hardware DO loops but not the nested ones.
nested

Specifies nested hardware DO loops.

3.13.9 -enum

Specify the default size for enumeration types. Default setting 1S min.
Syntax
-enum keyword
The arguments for keyword are:
int
Use int size for enumerated types.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 87

vuject Code Organization and Generation Options
min

Use minimum size for enumerated types. This is the default.

3.13.10 -ext

Tells the command-line tool the extension to apply to object files.
Syntax
-ext extension
The value of extension 1S:
extension
The extension to apply to object files. Use these rules to specify the extension:

* Limited to a maximum length of 14-characters

» Extensions specified without a leading period (extension) replace the source file's
extension. For example, 1f extension == o, then source.cpp becomes source.o.

» Extensions specified with a leading period (.extension) are appended to the object
files name. For example, if extension -- .0, then source.cpp becomes source.cpp.o.

Remarks

This command is global. The default setting is no extension.

3.13.11 -for_scoping

Controls legacy (non-standard) for-scoping behavior.

Syntax
-for_ scoping on|off
Remarks

If enabled, variables declared in for loops are visible to the enclosing scope. If disabled,
such variables are scoped to the loop only. The default value is ofx.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

88 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

3.13.12 -globalsinLowerMemory

Specifies that globals are stored in lower memory. The command implies large data
model.

Syntax

-globalsInLowerMemory

-noglobalsInLowerMemory

3.13.13 -hprog | -hugeprog

Program memory compatibility is 21 bit.

Syntax

- [nolhprog | - [nolhugeprog

3.13.14 -initializedzerodata

Initializes zero globals in data instead of BSS.

Syntax

-initializedzerodata

-noinitializedzerodata

3.13.15 -ldata | -largedata

Specifies data space not limited to 64K.
Syntax

- [nolldata | [no]largedata

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 89

A\ 4
N
vuject Code Organization and Generation Options

3.13.16 -largeAddrInSdm

Generates index by 24-Bit Displacement (instead of 16-Bit) address register-indirect
addressing mode, even in small data model.

This is required for accessing data memory above 0x007FFF with small data model.

Syntax

- [no] largeAddrInSdm

3.13.17 -min_enum_size

Specifies the minimum size for enumeration types.
Syntax
-min enum size keyword
The arguments of keywora are:
1
Minimum size is 1.
2
Minimum size is 2.
4

Minimum size is 4.

3.13.18 -padpipe

Controls pad pipeline for debugger.
Syntax

-padpipe

-nopadpipe

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

90 Freescale Semiconductor, Inc.

g |

3.13.19 -profile

Generates code for profiling.

Syntax

-profile

-noprofile

3.13.20 -scheduling

Applies instruction scheduling.

Syntax

-scheduling

-noscheduling

3.13.21 -segchardata

Segregates character data.

Syntax

-segchardata

-nosegchardata

3.13.22 -sprog | -smallprog

Specifies program space limited to 64K.

Syntax

- [no] sprog | - [no]l smallprog

Chapter 3 Using Build Tools on the Command Line

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

91

3
4

4
A

vuject Code Organization and Generation Options

3.13.23 -stackseq

Applies stack sequence optimization.

Syntax

-stackseq

-nostackseq

3.13.24 -strings

Controls how string literals are stored and used.
Remarks
-str[ings] keyword[, ...]
The keyword arguments are:
[no] pool

All string constants are stored as a single data object so your program needs one data
section for all of them.

[no] reuse

All equivalent string constants are stored as a single data object so your program can
reuse them. This is the default.

[no]l readonly

Make all string constants read-only. This is the default.

3.13.25 -swp

Applies software pipelining.
Syntax

-sSwp

-noswp

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Build Tools on the Command Line

3.13.26

-V3

Generates object file for S6800EX digital signal controller.

Syntax

-V3

-nov3

3.14 Optimization Options

The Optimization options are:

e -factorl
e -factor2
e -factor3
e -inline

* -ipa

e —nofactorl
e _nofactor?2
e _nofactor3

¢ -0
e -O+
e -opt

3.14.1

Turns on factorization step 1.

Syntax
-factorl

Remarks

-factor1

To turn off factorization step 1, see -nofactorl.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

93

A
4

4
A

upumization Options

3.14.2 -factor2

Turns on factorization step 2.

Syntax
-factor2

Remarks

To turn off factorization step 2, see -nofactor?2.

3.14.3 -factor3

Turns on factorization step 3.

Syntax
-factors

Remarks

To turn off factorization step 3, see -nofactor3.

3.14.4 -inline

Specify inline options. Default settings are smart, noauto.

Syntax
-inline keyword

The options for keywora are:

none | off

Turn off inlining.

on | smart

Turn on inlining for in1ine functions. This is the default.

auto

If in1ine not explicitly specified, auto-inline small functions.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

noauto
Do not auto-inline. This is the default auto-inline setting.
deferred

Defer inlining until end of compilation unit. This allows inlining of functions in both
directions.

level=n

Inline functions up to n levels deep. Level 0 is the same as -inline on. For n, enter 1 to 8
levels. This argument is case-sensitive.

all
Turn on aggressive inlining. This option is the same as -inline on, -inline auto.
[no] bottomup

Inline bottom-up starting from nodes of the call graph rather than the top-level function.
This is the default.

3.14.5 -ipa

Specify Interprocedural Analysis Support (IPA) options.
Syntax
-ipa keywordl, ...l
Select the interprocedural analysis level.
The keywora arguments are:
function | off
traditional mode (per function optimization)
file
per file optimization (same as -deferred codegen)
program

per program optimization. Use normally if compiling; pass all files or *.irobjs on the
command line if linking.

program-final |program2

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 95

A\ 4
N
upumization Options

per program optimization. If not linking; pass all files or *.irobjs on the command line.

3.14.6 -nofactori

Turns off factorization step 1.

Syntax
-nofactorl

Remarks

To turn on factorization step 1, see -factorl.

3.14.7 -nofactor2

Turns off factorization step 2.

Syntax
-nofactor2

Remarks

To turn on factorization step 2, see -factor2.

3.14.8 -nofactor3

Turns off factorization step 3.

Syntax
-nofactor3

Remarks

To turn on factorization step 3, see -factor3.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

96 Freescale Semiconductor, Inc.

g |

3.149 -O

Sets optimization settings to -opt level-2.

Syntax
-0

Remarks

Provided for backwards compatibility.

3.14.10 -O+

Controls optimization settings.

Syntax

-O+keyword [,...]

The keywora arguments are:

0
Equivalent to -opt
1
Equivalent to -opt
2
Equivalent to -opt
3
Equivalent to -opt
4
Equivalent to -opt
P
Equivalent to -opt
s

Equivalent to -opt

off.

level=1.

level=2.

level=3.

level=4, intrinsics.

speed.

space.

Chapter 3 Using Build Tools on the Command Line

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

97

upumization Options

Remarks

Options can be combined into a single command. Command is case-sensitive.

3.14.11 -opt

Specify code optimization options to apply to object code.

Remarks
-opt keyword [,...]

The keywora arguments are:
off | none

Suppress all optimizations. This is the default.
on
Same as -opt level-2
all | full
Same dS -opt speed, level=4, intrinsics, noframe
1[evel] =num
Set a specific optimization level. The options for num are:

* o - Global register allocation only for temporary values. Prefix file equivalent: #pragma
optimization_level O.

* 1 - Adds dead code elimination, branch and arithmetic optimizations, expression
simplification, and peephole optimization. Prefix file equivalent: #pragma
optimization_level 1.

* 2 - Adds common subexpression elimination, copy and expression propagation, stack
frame compression, stack alignment, and fast floating-point to integer conversions.
Prefix file equivalent: #pragma optimization level 2.

* 3 - Adds dead store elimination, live range splitting, loop-invariant code motion,
strength reduction, loop transformations, loop unrolling (with -opt speed only), loop
vectorization, lifetime-based register allocation, and instruction scheduling. Prefix
file pragma equivalent: optimization_level 3.

* 4 - Like level 3, but with more comprehensive optimizations from levels 1 and 2.
Prefix file equivalent: #pragma optimization level 4.

For num options 0 through 4 inclusive, the default is 0.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

98 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

[no] space

Optimize object code for size. Prefix file equivalent: #pragma optimize for size on.
[no] speed

Optimize object code for speed. Prefix file equivalent: #pragma optimize for size off.
[nolcse | [no] commonsubs

Common subexpression elimination. You can also add #pragma opt_common_subs to a prefix
file.

[no] deadcode

Removal of dead code. Prefix file equivalent: #pragma opt_dead_code.
[no] deadstore

Removes dead assignments. Prefix file equivalent: #pragma opt_dead assignments
[no]lifetimes

Computes variable lifetimes. Prefix file equivalent: #pragma opt_lifetimes
[no] loop [invariants]

Removes loop invariants. Prefix file equivalent: #pragma opt_loop_invariants
[no] prop [agation]

Propagation of constant and copy assignments. Prefix file equivalent: #pragma

opt_propagation.
[no] strength

Strength reduction. Reducing multiplication by an array index variable to addition. Prefix
fﬂe/equivalent:#pragma opt_strength reduction.

[no]l dead

Same as -opt [no]deadcode and [no] deadstore. Prefix file equivalent: #pragma opt dead code
on|off an(l#pragma opt_dead_assignments

[no] peep [hole]

Peephole optimization. Prefix file equivalent: #pragma peephoie.
[no] color [ing]

Register coloring. Prefix file equivalent: #pragma register coloring.
[no]l intrinsics

Inlining of intrinsic functions.

[no] schedule

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 99

A 4
4\ |
vewpugging Control Options
Perform instruction scheduling.
display | dump

Display complete list of active optimizations.

3.15 Debugging Control Options

The debugging control options are:

* -8
* -sym

3.15.1 -g

Generates debugging information.
Syntax

-9
Remarks

This command is global and case-sensitive. Same as -sym fu11. See -sym.

3.15.2 -sym

Specifies debugging options.
Syntax
-sym keywordl, . ..]
The arguments of keywora are:
off
Does not generate debugging information. This is the default.
on

Turns on debugging information.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

100 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Build Tools on the Command Line

full [path]
Stores full paths to source files.
Remarks

This command is global.

3.16 Assembler Control Options
The assembler control options are:

* -assert_nop

e -case

e -data

e -debug

* -debug_workaround
* -legacy

e -list

* -macro_expand
* -prog

* -warn_nop

e _warn_stall

e -warn_odd_sp
e -V3

3.16.1 -assert_nop

Adds NOP to resolve pipeline dependency. This is the default option.
Syntax

- [nolassert nop

3.16.2 -case

Makes identifiers case-sensitive. This is the default option.

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 101

A\ 4
N
nssembler Control Options

-case

-nocase

3.16.3 -data

Provides data memory compatibility.
Syntax

-data keyword
The arguments of xeywora are:
16
Represents 16-bit. This is the default one.
24

Represents 24-bit.

3.16.4 -debug

Generates debug information.

Syntax

-debug

-nodebug

3.16.5 -debug_workaround

Pads NOP workaround debugging issue in an implementation. This is the default option.

Syntax

- [no]l debug_workaround

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

102 Freescale Semiconductor, Inc.

A\ 4
A
Chapter 3 Using Build Tools on the Command Line

3.16.6 -legacy

Allows legacy DSP56800 instructions (data/prog 16).
Syntax

- [no] legacy

3.16.7 -list

Creates a listing file.

Syntax

-list

3.16.8 -macro_expand

Expands macro in listing output.

Syntax

- [nolmacro_ expand

3.16.9 -prog

Provides program memory compatibility.
Syntax

-prog keyword
The arguments of xeywora are:
16
Represents 16-bit. This is the default one.
19

Represents 19-bit.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 103

vy
N
voummand Line Tools

21

Represents 21-bit.

3.16.10 -warn_nop

Emits warning when there is a pipeline dependency.

Syntax

- [no]lwarn_nop

3.16.11 -warn_stall

Emits warning when there is a hardware stall.

Syntax

- [nolwarn_stall

3.16.12 -warn_odd_sp

Issues warn instructions that increments/decrements odd amount to SP.

Syntax

- [nolwarn_odd_sp

3.16.13 -V3

Supports 56800EX instructions.
Syntax

- [no] V3

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

104 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

3.17 Command Line Tools

This chapter includes the following sections:

* Usage

Response File
Sample Build Script
Arguments

3.17.1 Usage

To call the command-line tools, use the following format:

Table 3-1. Format

Tools File Names Format
Compiler mwcc56800e.exe compiler-options [linker-options] file-list
Linker mwld56800e.exe linker-options file-list
Assembler mwasm56800e.exe assembler-options file-list

The compiler automatically calls the linker by default and any options from the linker is
passed on by the compiler to the assembler. However, you may choose to only compile
with the -c flag. In this case, the assembler will only assemble and will not call the linker.

Also, available are environment variables. These are used to provide path information for
includes or libraries, and to specify which libraries are to be included. You can specify
the variables listed in the following table.

Table 3-2. Environment Variables

Tool Library Description

Compiler MWC56800EIncludes Similar to Access Paths panel; separate
paths with ';' and prefix a path with '+' to
specify a recursive path

Linker MW56800ELibraries Similar to MWC56800EIncludes
MW56800EL.ibraryFiles List of library names to link with project;
separate with ';'
Assembler MWAsm56800EIncludes Similar to MWC56800EIncludes

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 105

voummand Line Tools

These are the target-specific variables, and will only work with the DSP56800E tools.
The generic variables MW ClIncludes, MWLibraries, MWLibraryFiles, and

MW AsmlIncludes apply to all target tools on your system (such as Windows). If you
only have the DSP56800E tools installed, then you may use the generic variables if you
prefer.

3.17.2 Response File

In addition to specifying commands in the argument list, you may also specify a
“response file”. A response file’s filename begins with an ‘@’ (for example, @file), and
the contents of the response file are commands to be inserted into the argument list. The
response file supports standard UNIX-style comments. For example, the response file
@file, contains the following:

Listing: Response file

Response file @efile
-o out.elf # change output file name to 'out.elf'

-g # generate debugging symbols

The above response file can used in a command such as:
mwcceS56800e @file main.c
It would be the same as using the following command:

mwccS56800e -o out.elf -g main.c

3.17.3 Sample Build Script

The following is a sample of a DOS batch (BAT) file. The sample demonstrates:
* Setting of the environmental variables.
 Using the compiler to compile and link a set of files.

Listing: Sample DOS batch file

REM *** get CodeWarrior path ***

set CWFolder=C:\Freescale\CW MCU v10.x

REM *** set includes path ***

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

106 Freescale Semiconductor, Inc.

g |

Chapter 3 Using Build Tools on the Command Line

set MWCIncludes=%CWFolder%\MCU\M56800E Support
set MWLibraries=%CWFolder%\MCU\M56800E Support

set MWLibraryFiles="$MWLibraries%\runtime 56800E\lib\Runtime 56800E.Lib" "$MWLibraries$%
\ms1l\MSL C\DSP_56800E\1ib\MSL C 56800E.lib"

REM *** add CLT directory to PATH ***

set PATH=%PATHS%; $CWFolder%\MCU\DSP56800x EABI_ Tools\Command Line Tools\

REM *** compile options and files ***

set COPTIONS=-c -I- -ir "$MWCIncludes%"

set CFILELIST=filel.c file2.c

set AOPTIONS=-c

set AFILELIST=file3.asm file4.asm

set LOPTIONS=-g -o output.elf

set LFILELIST=filel.o file2.o0 file3.o file4.o

set LCF=linker.cmd

REM *** compile, assemble and link ***
mwcc56800e $COPTIONS% %CFILELISTS
mwasm56800e %AOPTIONS% %AFILELISTS%

mwld56800e $LOPTIONS% S$LFILELIST$ $LCF% $MWLibraryFiles$%

3.17.4 Arguments
Listing: General command-Line options

General Command-Line Options

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 107

g |

voummand Line Tools

All the options are passed to the linker unless otherwise noted.

Please see '-help usage' for details about the meaning of this help.

-help [keywordl[,...]] # global; for this tool;

display help

usage # show usage information
[no] spaces # insert blank lines between options in
printout
all # show all standard options
[nolnormal # show only standard options
[no] obsolete # show obsolete options
[no] ignored # show ignored options
[no]l deprecated # show deprecated options
[no]lmeaningless # show options meaningless for this target
[no] compatible # show compatibility options
opt [ion] =name # show help for a given option; for 'name',
maximum length 63 chars
search=keyword # show help for an option whose name or help
contains 'keyword' (case-sensitive); for
'keyword', maximum length 63 chars
group=keyword # show help for groups whose names contain
'keyword' (case-sensitive); for 'keyword'
maximum length 63 chars
tool=keyword[, ...] # categorize groups of options by tool;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

108 Freescale Semiconductor, Inc.

g |

all

this

other | skipped

both

-version

-timing

-progress

-v [erbose]

-search

- [no]wraplines

-MaXerrors max

-maxwarnings max

Chapter 3 Using Build Tools on the Command Line

default

show all options available in this tool

show options executed by this tool

default

show options passed to another tool

show options used in all tools

global; for this tool;

show version, configuration, and build date

global; collect timing statistics

global; show progress and version

global; verbose information; cumulative;

implies -progress

global; search access paths for source files

specified on the command line; may specify

object code and libraries as well; this

option provides the IDE's 'access paths'

functionality

global; word wrap messages; default

specify maximum number of errors to print, zero

means no maximum; default is 0

specify maximum number of warnings to print,

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

109

\
Y

y
A

voummand Line Tools

zero means no maximum; default is 0
-msgstyle keyword # global; set error/warning message style
mpw # use MPW message style
std # use standard message style; default
gcc # use GCC-like message style
IDE # use CW IDE-like message style
parseable # use context-free machine-parseable message
style
#
- [no] stderr # global; use separate stderr and stdout streams; if using -

nostderr, stderr goes to stdout

-fullLicenseSearch # global; use more robust search for valid license files, will
result in somewhat longer build times

Listing: Compiler Options

Preprocessing, Precompiling, and Input File Control Options

-c # global; compile only, do not link
- [no] codegen # global; generate object code
- [no] convertpaths # global; interpret #include filepaths specified

for a foreign operating system; i.e.,
<sys/stat.h> or <:sys:stat.h>; when enabled,

'/' and ':' will separate directories and

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

110 Freescale Semiconductor, Inc.

g |

-cwd keyword

proj

source

explicit

include

-D+ | -dlefine

name [=value]

- [no]ldefaults

-dis[assemble]

-EP

-enc [oding] keyword

#

Chapter 3 Using Build Tools on the Command Line

cannot be used in filenames (note:this is not a problem

on Win32, since these characters are already disallowed

in filenames; it is safe to leave the option 'on'); default

specify #include searching semantics: before

searching any access paths, the path

specified by this option will be searched

begin search in current working directory;

default

begin search in directory of source file

no implicit directory; only search '-I' or

'-ir' paths

begin search in directory of referencing

file

cased; define symbol 'name' to 'value' if

specified, else '1'

global; passed to linker;

same as '-[nolstdinc'; default

global; passed to all tools;

disassemble files to stdout

global; cased; preprocess source files

global; cased; preprocess and strip out #line/#pragma directives

specify default source encoding; compiler automatically

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

111

\
Y

y
A

voummand Line Tools

detects UTF-8 header or UCS-2/UCS-4 encodings regardless of setting

ascii # ASCII; default
autodetect |multibyte|mb # scan file for multibyte encoding (slower)
#
system # use system locale
UTF [8]-8] # UTF-8
SJIS|Shift-JIS|ShiftJIS # Shift-JIS
EUC [JP|-JP] # EUC-JP
ISO[2022JP|—2022—JP] # IS0-2022-JP
-ext extension # global; specify extension for generated object files; with
a leading period ('.'), appends extension; without, replaces source file's extension; for

'extension', maximum length 14 chars; default is none

-gccinc [ludes] # global; adopt GCC #include semantics: add '-I' paths to
system list if '-I-' is not specified, and search directory of referencing file first for
#includes (same as -cwd include)

- [no]l gccdep [ends] # global; if set, write dependency file (-MD, -MMD) with name
and location based on output file (compatible with gcc 3.x); else base filename on the
source file and write to the current directory (legacy MW behavior)

-i- | -I- # global; change target for '-I' access paths to the system
list; implies '-cwd explicit'; while compiling, user paths then system paths are searched
when using '#include "..."; only system paths are searched with '#include <...>!'

-I+ | -i path # global; cased; append access path to current #include list

(see '-gccincludes' and '-I-')

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

112 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Build Tools on the Command Line

-include file # prefix text file or precompiled header onto all source files

-ir path # global; append a recursive access path to current #include
list

- [no] keepobj [ects] # global; keep object files generated after invoking linker;

if disabled, intermediate object files are temporary and deleted after link stage; objects
are always kept when compiling

-M # global; cased; scan source files for

dependencies and emit Makefile, do not

generate object code

-MM # global; cased; like -M, but do not list system

include files

-MD # global; cased; like -M, but write dependency

map to a file (see ~gccdep) and generate object code

-MMD # global; cased; like -MD, but do not list system

include files

-Mfile file # global; cased; like -M, but write dependency map to the specified
file
-MMfile file # global; cased; like -MM, but write dependency

map to the specified file
-MDfile file # global; cased; like -MD, but write dependency

map to the specified file

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 113

g |

voummand Line Tools

-MMDfile file # global; cased; like -MMD, but write dependency

map to the specified file

-make # global; scan source files for dependencies
and # emit Makefile, do not generate object code
nofail # continue working after errors in earlier files
-nolink # global; compile only, do not link
-noprecompile # do not precompile any files based on the

filename extension

-nosyspath # global; treat #include <...> like #include
"..."; always search both user and system
path lists

-o filel|dir # specify output filename or directory for object
file(s) or text output, or output filename
for linker if called

-P # global; cased; preprocess and send output to
file; do not generate code

-precompile file|dir# generate precompiled header from source; write

header to 'file' if specified, or put header
in 'dir'; if argument is "", write header to
source-specified location; if neither is
defined, header filename is derived from
source filename; note: the driver can tell
whether to precompile a file based on its

extension; '-precompile file source' then is

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

114 Freescale Semiconductor, Inc.

g |

-preprocess

-ppopt keywordl[, ..

[no]lbreak

[no] 1ine

[no] full [path]

[no] pragma

[no] comment

[no] space

-prefix file

- [no] stdinc

Chapter 3 Using Build Tools on the Command Line

the same as '-c¢ -o file source'

global; preprocess source files

.1# specify options affecting the preprocessed output

emit file/line breaks; default

emit #line directives, else comments; default

emit full path of file, else base filename; default

keep #pragma directives, else strip them; default

keep comments, else strip them

keep whitespace, else strip it; default

prefix text file or precompiled header onto all

source files

global; cased; passed to all tools;

disassemble and send output to file

global; use standard system include paths

(specified by the environment variable

$MWCIncludes%); added after all system '-TI'

paths; default

-U+ | -ulndefine] name # cased; undefine symbol 'name'

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 115

h o
g |

voummand Line Tools

-allow macro_redefs # allow macro redefinitions without an error or warning

-ansi keyword # specify ANSI conformance options, overriding
the given settings
off # same as '-stdkeywords off', '-enum min', and
'-strict off'; default
on|relaxed # same as '-stdkeywords on', '-enum min', and
'-strict on'
strict # same as '-stdkeywords on', '-enum int', and
'-strict on'
#
-nolonglong # disable 'long long' support
-char keyword # set sign of 'char'
signed # chars are signed; default
unsigned # chars are unsigned
-enum keyword # specify default size for enumeration types
min # use the minimal-sized type; default
int # use int-sized enums
#

-min _enum size keyword# specify the minimum size for enumeration types (implies -enum min)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

116 Freescale Semiconductor, Inc.

Chapter 3 Using Build Tools on the Command Line

1 # minimum size is 1

2 # minimum size is 2

4 # minimum size is 4
#

-for scoping on|off # control legacy (non-standard) for-scoping behavior; when enabled,
variables declared in 'for' loops are visible to the enclosing scope; when disabled, such
variables are scoped to the loop only; default is off

-fl[ag] pragma # specify an 'on/off' compiler #pragma; '-flag foo' is the same as
'#pragma foo on', '-flag no-foo' is the same as '#pragma foo off'; use '-pragma' option for
other cases

-inline keyword[,...] # specify inline options
on|smart # turn on inlining for 'inline' functiomns;
default
none |off # turn off inlining
auto # auto-inline small functions (without
'inline' explicitly specified)
noauto # do not auto-inline; default
all # turn on aggressive inlining: same
as # '-inline on, auto'
deferred # defer inlining until end of compilation

unit; this allows inlining of functions
defined before and after the caller;

deprecated option, use '-ipa file'

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 117

g |

voummand Line Tools

level=n # cased; inline functions up to 'n' levels

deep; level 0 is the same as '-inline on';

for 'n', range 0 - 8

[no] bottomup # inline bottom-up, starting from leaves of the call graph rather
than the top-level function; default

-ipa keywordl[, ...] # select interprocedural analysis level
function|off # traditional mode (per-functionoptimization); default;
file # per-file optimization (same as 'deferred codegen')
program # per-program optimization (if compiling, use normally; if linking,

pass all files or *.irobjs on the command line)

program-final |program2 # per-program optimization (without linking; pass all files or
* irobjs on the command line)

- [nolmapcr # reverse mapping of '\n' and '\r' so that

'"\n'==13 and '\r'==10 (for Macintosh MPW

compatability)

-once # prevent header files from being processed more than once

-pragma # specify a #pragma for the compiler such as "#pragma ..."; quote
the parameter if you provide an argument (i.e., '-pragma "myopt reset"')

-r [equireprotos] # require prototypes

-relax pointers # relax pointer type-checking rules in C

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

118 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Build Tools on the Command Line

-stdkeywords on|off # allow only standard keywords; default is off

-str[ings] keyword[,...] # specify string constant options
[no]l reuse # reuse strings; equivalent strings are the same object; default
[no] pool # pool strings into a single data object
[no] readonly # make all string constants read-only
#
-strict on|off # specify ANSI strictness checking; default is off
-trigraphs on|off # enable recognition of trigraphs; default is off

Optimizer Options

Note that all options besides '-opt off|on|all|space|speed|level= ...' are for backwards
compatibility; other optimization options may be superceded by use of '-opt level=xxx'.

-0 # same as '-02'

-O+keyword[, ...] # cased; control optimization; you may combine

options as in '-04,p'

0 # same as '-opt off!

1 # same as '-opt level=1l"'
2 # same as '-opt level=2'
3 # same as '-opt level=3'

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 119

r
4\ |

voummand Line Tools

4 # same as '-opt level=4'

P # same as '-opt speed'

s # same as '-opt space'
#

-opt keyword[,...] # specify optimization options

off |none # suppress all optimizations; default

on # same as '-opt level=2'

all|full # same as '-opt speed, level=4'

[no] space # optimize for space

[no] speed # optimize for speed

1[evel] =num # set optimization level:
level 0: no optimizations
#
level 1: global register allocation,
peephole, dead code elimination
#
level 2: adds common subexpression
elimination and copy propagation
#
level 3: adds loop transformations,
strength reduction, loop-invariant code
motion
#

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

120 Freescale Semiconductor, Inc.

g |

[no] cse

[no] commonsubs

[no] deadcode

[no] deadstore

[no]lifetimes

[no] loop [invariants]

[no] prop [agation]

[no] strength

[no]l dead

display|dump

#

Chapter 3 Using Build Tools on the Command Line

level 4: adds repeated common

subexpression elimination and

loop-invariant code motion

; for 'mum', range 0 - 4; default is 0

common subexpression elimination

removal of dead code

removal of dead assignments

computation of variable lifetimes

removal of loop invariants

propagation of constant and copy assignments

strength reduction; reducing multiplication

by an index variable into addition

same as '-opt [noldeadcode' and '-opt

[no] deadstore'

display complete list of active

optimizations

-DO keyword

for this tool;

specify hardware DO loops

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

121

r
4\ |

voummand Line Tools

off # no hardware DO loops; default
nonested # hardware DO loops but no nested ones
nested # nested hardware DO loops
#
- [no] padpipe # for this tool;

pad pipeline for debugger; default

- [no]ldata | -[nollargedata # passed to linker;

data space not limited to 64K

- [no]globalsInLowerMemory # for this tool;

globals live in lower memory; implies

'-large data model'
- [no] largeAddrInSdm # for this tool;
Index by 24-Bit Displacement (Instead of
16-Bit) address Register-Indirect Addressing
mode generated even in small data model.
Required for accessing X data memory above
O0x007FFF with small data model.
- [nol sprog | -[nolsmallprog # for this tool;

program space limited to 64K
- [nolhprog | - [nolhugeprog # for this tool; program memory
compatibility - 21 bit.
- [no] segchardata # for this tool;
segregate character data
- [nolinitializedzerodata # for this tool;
initialized zero globals in data instead of BSS
- [no] asmout # for this tool;

assembly file output

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

122 Freescale Semiconductor, Inc.

h o
g |

-chkasm keyword

off

conflict

conflict_and stall

-chkcsrcpipeline keyword

off

conflict

- [no] factorl

- [no] factor2

- [no] factor3

- [no]lprofile

- [no] scheduling

- [no]allowREP

Chapter 3 Using Build Tools on the Command Line

for this tool;

check for pipeline in inline assembly

sources

no check; default

error on pipeline conflict

error on pipeline conflict, warning on

hardware stalls

for this tool;

check for pipeline in C sources

no check; default

error on pipeline conflict

for this tool;

applies factorization 1

for this tool;

applies factorization 2

for this tool;

applies factorization 3

for this tool;

generate code for profiling

for this tool;

applies instruction scheduling

for this tool;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

123

h o
g |

voummand Line Tools

REP instruction generation when appropriate

- [no] swp # for this tool;

applies software pipelining

- [no] stackseq # for this tool;

applies stack sequence optimization

- [no] constarray # for this tool;

applies constant to array optimization

- [no]v3 # for this tool;

generate object file for 56800EX digital signal controller

-g # global; cased; generate debugging information;
same as '-sym full'
-sym keywordl[, ...] # global; specify debugging options
off # do not generate debugging information;
default
on # turn on debugging information
full [path] # store full paths to source files
#

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

124 Freescale Semiconductor, Inc.

h o
g |

C/C++ Warning Options

Chapter 3 Using Build Tools on the Command Line

-wlarn[ings]]

keyword[, ...]

off

on

[no] cmdline

[nolerr [or] |

[no]iserr[or]

most

all

full

[nolpragmas |

[no]lillpragmas

[no] empty [decl]

[nolpossible |

[no]unwanted

[no]unusedarg

[no]unusedvar

global; for this tool;

warning options

passed to all tools;

turn off all warnings

passed to all tools;

turn on most warnings

passed to all tools;

command-line driver/parser warnings
passed to all tools;

treat warnings as errors

turn on most warnings

turn on almost all warnings, require
prototypes

turn on all warnings (likely to generate
spurious warnings), regquire prototypes
illegal #pragmas (most)

#

empty declarations (most)

possible unwanted effects (most)

#

unused arguments (most)

unused variables (most)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

125

r
4\ |

voummand Line Tools

[no]unused # same as -w [no]unusedarg, [no]unusedvar
(most)
[nol extracomma | # extra commas (most)
[no] comma #
[no]pedantic | # pedantic error checking (most)
[no] extended #
[nolhidevirtual | # hidden virtual functions (most)

[nolhidden [virtuall

[no] largeargs # passing large arguments to unprototyped
functions (most)

[no]unusedexpr # use of expressions as statements without
side effects (most)

[no]l ptrintconv # lossy conversions from pointers to
integers (most)

[no] tokenpasting # token not formed by ## operator (most)

[nolmissingreturn # return without a value in non-void-
returning function (most)

[no]l structclass # inconsistent use of 'class' and 'struct'
(most)

[nol filecaps # incorrect capitalization used in #include
"o.." (most)

[no]l sysfilecaps # incorrect capitalization used in #include
<...> (most)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

126 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Build Tools on the Command Line

[no] implicit [conv] # implicit arithmetic conversions; implies

'-warn impl float2int,impl signedunsigned!'

(all)

[nolimpl int2float # implicit integral to floating conversions

(all)

[no]limpl float2float # implicit float to floating conversions

(all)

[no] impl signedunsigned # implicit signed/unsigned conversions (all)

[nolrelax i2i conv # relax warnings for implicit integer to
integer arithmetic conversions (off for
full, on otherwise)
[no]undef [macro] # use of undefined macros in #if/#elif

conditionals (full)

[no]notinlined # 'inline' functions not inlined (full)
[no]l padding # padding added between struct members (full)
[no]l notused # result of non-void-returning function not

used (full)

[no]l anyptrintconv # any conversions from pointers to integers (full)

[nolalias ptr conv # generates warnings for potentially dangerous pointer casts (full)

display | dump # display list of active warnings

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 127

g |

voummand Line Tools

Listing: Command-line Linker options

-dis[assemble] # global; disassemble object code and do not

link; implies '-nostdlib'

-L+ | -1 path # global; cased; add library search path; default
is to search current working directory and
then system directories (see '-defaults');

search paths have global scope over the

command line and are searched in the order

given

-1r path # global; like '-1', but add recursive library

search path

-1l+file # cased; add a library by searching access paths
for file named lib<file>.<ext> where <ext> is
a typical library extension; if that fails,

try to add <file> directly; library added in

link order before system libraries (see
'-defaults')
- [no]ldefaults # global; same as - [nolstdlib; default
-nofail # continue importing or disassembling after
errors in earlier files

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

128 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Build Tools on the Command Line

- [no] stdlib # global; use system library access paths

(specified by $MWLibraries%) and add system

libraries (specified by %MWLibraryFiles%) at

end of link order; default

-reverselibsearchpath # global; reverse search order of library paths

-S # global; cased; disassemble and send output to

file; do not link; implies '-nostdlib'

- [no]dead[strip] # enable dead-stripping of unused code; default

-force active # specify a list of symbols as undefined; useful
symbol[, ...] # to force linking of static libraries
#

-keep[local] on|off # keep local symbols (such as relocations and
output segment names) generated during link;
default is on

-m[ain] symbol # set main entry point for application or shared
library; use '-main ""' to specify no entry
point; for 'symbol', maximum length 63 chars;

default is 'FSTART '

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 129

h o
g |

voummand Line Tools

-map

closure

unused

showbyte

-sortbyaddr

-srecC

-sreceol keyword

mac

dos

unix

-sreclength length #

-usebyteaddr

-V3

-o file

[keywordl[, ..

1]

#

generate link map file

calculate symbol closures

list unused symbols

show byte relocation used on symbols

'-srec'

sort S-records by address; implies

generate an S-record file; ignored when

generating static libraries

set end-of-line separator for S-record file;

implies '-srec'
Macintosh ('\r')
DOS ('\r\n'); default

Unix ('\n')

(should be a

specify length of S-records

multiple of 4); implies '-srec'; for

'length', range 8 - 252; default is 64

use byte address in S-record file; implies
'-srec'
generate elf file for 56800EX digital signal

controller

specify output filename

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

130

Freescale Semiconductor, Inc.

h o
g |

4
Chapter 3 Using Build Tools on the Command Line

-application # global; generate an application; default

-library # global; generate a static library

- [no] 1data | # data space not limited to 64K

- [no] largedata #

-Cpp_exceptions on|off # enable or disable C++ exceptions; default is on
-dialect | -lang keyword # specify source language
c # treat source as C++ unless its extension is '.c', '.h', or

'.pch'; default

C++ # treat source as C++ always

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 131

h o
g |

voummand Line Tools

-g # global; cased; generate debugging information;

same as '-sym full'

-sym keyword[,...] # global; specify debugging options

off # do not generate debugging information;
default

on # turn on debugging information

full [path] # store full paths to source files
#

-w[arn[ings]] # global; warning options
keywordl[, ...] #
off # turn off all warnings
on # turn on all warnings
[no] cmdline # command-line parser warnings
[nolerr [or] | # treat warnings as errors
[no] iserr [or] #
noSymRedef # suppress Symbol Redefined warnings
display|dump # display list of active warnings
#

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

132 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Using Build Tools on the Command Line

-show keyword[, ...] # specify disassembly options
only|none # as in '-show none' or, e.g.,
'-show only, code,data’
all # show everything; default
[no]code | [no]text # show disassembly of code sections; default
[no] comments # show comment field in code; implies '-show
code'; default
[no] extended # show extended mnemonics; implies '-show
code'; default
[no]ldata # show data; with '-show verbose', show hex
dumps of sections; default
[noldebug | [no]sym # show symbolics information; default
[no] exceptions # show exception tables; implies '-show data';
default
[nolheaders # show ELF headers; default
[no]l hex # show addresses and opcodes in code
disassembly; implies '-show code'; default
[no]lnames # show symbol table; default
[no]lrelocs # show resolved relocations in code and

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 133

g |

voummand Line Tools

relocation tables; default

[no] source # show source in disassembly; implies '-show
code'; with '-show verbose', displays
entire source file in output, else shows
only four lines around each function;
default

[no] xtables # show exception tables; default

[no] verbose # show verbose information, including hex dump
of program segments in applications;
default

-dispaths = # disassembler file paths mapping, useful to map libraries

sources, src=dest

Listing: Assembler Control Options

- [no] case # identifiers are case-sensitive; default
- [no] debug # generate debug information
-list # create a listing file

- [nolmacro_expand # expand macro in listin output
- [no]lassert nop # add nop to resolve pipeline dependency; default
- [no]lwarn_nop # emit warning when there is a pipeline
dependency
- [nolwarn_stall # emit warning when there is a hardware stall
CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

134 Freescale Semiconductor, Inc.

h o
g |

4
Chapter 3 Using Build Tools on the Command Line

- [no] legacy # allow legacy DSP56800 instructions (imply

data/prog 16)

- [no]l debug_workaround # Pad nop workaround debuggin issue in some

implementation; default
-data keyword # data memory compatibility
16 # 16 bit; default
24 # 24 bit
#
-prog keyword # program memory compatibility
16 # 16 bit; default
19 # 19 bit
21 # 21 bit
- [nolwarn odd_sp # Warn instructions that increment/decrement odd
amount to SP
- [no]v3 # Support 56800EX instructions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 135

}{ |

vummand Line Tools

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

136 Freescale Semiconductor, Inc.

g |

Chapter 4
C for DSP56800E

This chapter explains considerations for using C with the DSP56800E processor.
This chapter includes the following sections:

e Data Types

 Calling Conventions and Stack Frames
» User Stack Allocation

e Data Alignment Requirements

* Variables in Program Memory

* Code and Data Storage

» Large Data Model Support

e Optimizing Code

* Deadstripping and Link Order

* Working with Peripheral Module Registers
* Generating MAC Instruction Set

4.1 Data Types

This section explains how the CodeWarrior compiler implements ordinal and floating-
point number types for S6800E processors. For more information, read 1imits.n and
float.h, In the MS6800E Support folder.

* Ordinal Data Types
* Floating Point Types
* 64-Bit Data Types

4.1.1 Ordinal Data Types

The following table shows the sizes and ranges of ordinal data types.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 137

A 4
4\ |

vawa Types
Table 4-1. 56800E Ordinal Types
Type Option Settings Size (bits) Range

char Use Unsigned Chars is 8 -128 to 127

disabled in the C/C++

Language (C Only) settings

panel

Use Unsigned Chars is 8 0 to 255

enabled
signed char n/a 8 -128 to 127
unsigned char n/a 8 0 to 255
short n/a 16 -32,768 to 32,767
unsigned short n/a 16 0 to 65,535
int n/a 16 -32,768 to 32,767
unsigned int n/a 16 0 to 65,535
long n/a 32 -2,147,483,648 to

2,147,483,647

unsigned long n/a 32 0 to 4,294,967,295
pointer small data model (“Large Data |16 0 to 65,535

Model” is disabled in the

M56800E Processor settings

panel)

large data model (“Large Data |24 0 to 16,777,215

Model” is enabled)

4.1.2 Floating Point Types

The following table shows the sizes and ranges of the floating-point types.

Table 4-2. M56800E Floating-Point Types

Type Size (bits) Range
float 32 1.17549e-38 to 3.40282e+38
short double 32 1.17549e-38 to 3.40282e+38
double 32 1.17549e-38 to 3.40282e+38
long double 32 1.17549e-38 to 3.40282e+38

4.1.3 64-Bit Data Types

The compiler supports 64-bit 10ng and double data types, although 32-bit 10ong and dgoubie
data types are the default. To activate and use the 64-bit data types, you must:
1. Use #pragma slld on in a common header file, or in the C/C++ Preprocessor panel.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

138 Freescale Semiconductor, Inc.

Chapter 4 C for DSP56800E

2. Use precompiled Main Standard Library (MSL) and runtime support libraries with
the _SLLD suffix (for example, use MSL C 56800E smm_SLLD.lib instead of MSL
C 56800E smm.lib and runtime 56800E smm_SLLD.lib instead of runtime 56800E
smm.lib).

3. Add * (Il_engine.text) to the code section in the linker command file.

4.2 Calling Conventions and Stack Frames

The DSP56800E compiler stores data and call functions differently than the DSP56800
compiler does. Advantages of the DSP56800E method include: more registers for
parameters and more efficient byte storage.

This topic contains the following sub-topics:

* Passing Values to Functions

e Returning Values From Functions

* Volatile and Non-Volatile Registers
 Stack Frame and Alignment

4.2.1 Passing Values to Functions

The compiler uses registers A,B, R1, R2, R3, R4, Y0, and Y1 to pass parameter values to
functions. Upon a function call, the compiler scans the parameter list from left to right,
using registers for these values:

* The first two 8/16-bit integer values — YO and Y1.

* The first two 32-bit integer or float values — A and B.

* The first four pointer parameter values — R2, R3, R4, and R1 (in that order).

 The third and fourth 8/16-bit integer values — A and B (provided that the compiler
does not use these registers for 32-bit parameter values).

 The third 8/16-bit integer value — B (provided that the compiler does not use this
register for a 32-bit parameter value).

The compiler passes the remaining parameter values on the stack. The system increments
the stack by the total amount of space required for memory parameters. This
incrementing must be an even number of words, as the stack pointer (SP) must be
continuously long-aligned. The system moves parameter values to the stack from left to
right, beginning with the stack location closest to the SP. Because a long parameter must
begin at an even address, the compiler introduces one-word gaps before long parameter
values, as appropriate.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 139

vamng Conventions and Stack Frames

4.2.2 Returning Values From Functions
The compiler returns function results in registers a, ro, r2, and vo:

 8-bit integer values — vo.

* 16-bit integer values — vo.

» 32-bit integer or float values — a.

* All pointer values — ra.

 Structure results — ro contains a pointer to a temporary space allocated by the caller.
(The pointer is a hidden parameter value.)

Additionally, the compiler:

* Reserves RS for the stack frame pointer when a function makes a dynamic allocation.
(This is the original stack pointer before allocations.) Otherwise, the compiler saves
R5 across function calls.

 Saves registers C10 and D10 across function calls.

* Does not save registers C2 and D2 across function calls.

4.2.3 Volatile and Non-Volatile Registers

Values in non-volatile registers can be saved across functions calls. Another term for
such registers is saved over a call registers (SOCs).

Values in volatile registers cannot be saved across functions calls. Another term for such
registers is non-SOC registers.

The following table lists both the volatile and non-volatile registers.

Table 4-3. Volatile and Non-Volatile Registers

Unit Register Size Type Comments
Arithmetic Logic Unit Y1 16 Volatile (non-SOC)
(ALU)

YO0 16 Volatile (non-SOC)

Y 32 Volatile (non-SOC)

X0 16 Volatile (non-SOC)

A2 4 Volatile (non-SOC)

Al 16 Volatile (non-SOC)

A0 16 Volatile (non-SOC)
Arithmetic Logic Unit A10 32 Volatile (non-SOC)
(ALU)

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

140 Freescale Semiconductor, Inc.

h o
g |

Chapter 4 C for DSP56800E

Table 4-3. Volatile and Non-Volatile Registers (continued)

Unit Register Size Type Comments

A 36 Volatile (non-SOC)

B2 4 Volatile (non-SOC)

B1 16 Volatile (non-SOC)

BO 16 Volatile (non-SOC)

B10 32 Volatile (non-SOC)

B 36 Volatile (non-SOC)

c2 4 Volatile (non-SOC)

C1 16 Non-Volatile (SOC)

Co 16 Non-Volatile (SOC)

Cc10 32 Non-Volatile (SOC)

C 36 Volatile (non-SOC) Includes volatile
register C2.

D2 4 Volatile (non-SOC)

D1 16 Non-Volatile (SOC)

DO 16 Non-Volatile (SOC)

D10 32 Non-Volatile (SOC)

D 36 Volatile (non-SOC) Includes volatile
register D2.

Address Generation RO 24 Volatile (non-SOC)
Unit (AGU)

Address Generation R1 24 Volatile (non-SOC)
Unit (AGU) (continued)

R2 24 Volatile (non-SOC)

R3 24 Volatile (non-SOC)

R4 24 Volatile (non-SOC)

R5 24 Non-volatile (SOC) If the compiler uses R5
as a pointer, it becomes
a non-volatile register
— its value can not be
saved over called
functions.

N 24 Volatile (non-SOC)

SP 24 Volatile (non-SOC)

N3 16 Volatile (non-SOC)

MO1 16 Volatile (non-SOC) Certain registers must
keep specific values for
proper C execution —
set this register to
OxFFFF.

Program Controller PC 21 Volatile (non-SOC)

LA 24 Volatile (non-SOC)

LA2 24 Volatile (non-SOC)

HWS 24 Volatile (non-SOC)

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

141

vamng Conventions and Stack Frames

Table 4-3. Volatile and Non-Volatile Registers (continued)

Unit Register Size Type Comments
FIRA 21 Volatile (non-SOC)
FISR 13 Volatile (non-SOC)
Program Controller OMR 16 Volatile (non-SOC) Certain registers must
(continued) keep specific values for

proper C execution —
in this register, set the

CM bit.
SR 16 Volatile (non-SOC)
LC 16 Volatile (non-SOC)
LC2 16 Volatile (non-SOC)

4.2.4 Stack Frame and Alignment

The following figure depicts generation of the stack frame. The stack grows upward, so
pushing data onto the stack increments the stack pointer’s address value.

called function stack space

SP outgoing parameters

user and compiler locals

nonvolatile registers

stats register

retmn address

allee’s SP | incoming parameters

calling function stack space

Figure 4-1. Stack Frame

The stack pointer (SP) is a 24-bit register, always treated as a word pointer. During a
function execution, the stable position for the SP is at the top of the user and compiler
locals. The SP increases during the call if the stack is used for passed parameters.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

142 Freescale Semiconductor, Inc.

Chapter 4 C for DSP56800E

The software stack supports structured programming techniques, such as parameter
passing to subroutines and local variables. These techniques are available for both
assembly-language and high-level-language programming. It is possible to support
passed parameters and local variables for a subroutine at the same time within the stack
frame.

The compiler stores local data by size. It stores smaller data closest to the SP, exploiting
SP addressing modes that have small offsets. This means that the compiler packs all bytes
two per word near the stack pointer. It packs the block of words next, then blocks of
longs. Aggregates (structs and arrays) are farthest from the stack pointer, not sorted by
size.

NOTE
When a function makes a dynamic allocation, the compiler
reserves RS as a stack frame pointer. (This is the stack pointer
before allocations.)

The compiler always must operate with the stack pointer long aligned. This means that:
 The start-up code in the runtime first initializes the stack pointer to an odd value.
» At all times after that, the stack pointer must point to an odd word address.
* The compiler never generates an instruction that adds or subtracts an odd value from
the stack pointer.
e The compiler never generates a MOVE.W or MOVEU.W instruction that uses the X:
(SP)+ or X:(SP)- addressing mode.

4.3 User Stack Allocation

The 56800E compilers build frames for hierarchies of function calls using the stack
pointer register (SP) to locate the next available free X memory location in which to
locate a function call’s frame information. There is usually no explicit frame pointer
register. Normally, the size of a frame is fixed at compile time. The total amount of stack
space required for incoming arguments, local variables, function return information,
register save locations (including those in pragma interrupt functions) is calculated and
the stack frame is allocated at the beginning of a function call.

Sometimes, you may need to modify the SP at runtime to allocate temporary local storage
using inline assembly calls. This invalidates all the stack frame offsets from the SP used
to access local variables, arguments on the stack, etc. With the User Stack Allocation
feature, you can use inline assembly instructions (with some restrictions) to modify the
SP while maintaining accurate local variable, compiler temps, and argument offsets, that
is these variables can still be accessed since the compiler knows you have modified the
stack pointer.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 143

user Stack Allocation

The User Stack Allocation feature is enabled with the #pragma check inline sp effects [on]
off |reset] pragma setting. The pragma may be set on individual functions. By default the
pragma is off at the beginning of compilation of each file in a project.

The User Stack Allocation feature allows you to simply add inline assembly modification
of the SP anywhere in the function. The restrictions are straight-forward:

1. The SP must be modified by the same amount on all paths leading to a control flow

merge point.

2. The SP must be modified by a literal constant amount. That is, address modes such
as “(SP)+N” and direct writes to SP are not handled.
The SP must remain properly aligned.
4. You must not overwrite the compiler’s stack allocation by decreasing the SP into the

compiler allocated stack space.

W

Point 1 above is required when you think about an if-then-else type statement. If one
branch of a decision point modifies the SP one way and the other branch modifies SP
another way, then the value of the SP is run-time dependent, and the compiler is unable to
determine where stack-based variables are located at run-time. To prevent this from
happening, the User Stack Allocation feature traverses the control flow graph, recording
the inline assembly SP modifications through all program paths. It then checks all control
flow merge points to make sure that the SP has been modified consistently in each branch
converging on the merge point. If not, a warning is emitted citing the inconsistency.

Once the compiler determined that inline SP modifications are consistent in the control
flow graph, the SP’s offsets used to reference local variables, function arguments, or
temps are fixed up with knowledge of inline assembly modifications of the SP. You may
freely allocate local stack storage:
1. As long as it is equally modified along all branches leading to a control flow merge
point.
2. The SP is properly aligned. The SP must be modified by an amount the compiler can
determine at compile time.

A single new pragma 1s defined. #pragma check_inline sp effects [on|off|reset] will
generate a warning if the user specifies an inline assembly instruction which modifies the
SP by a run-time dependent amount. If the pragma is not specified, then stack offsets
used to access stack-based variables will be incorrect. It is the user’s responsibility to
enable #pragma check inline sp effects, if they desire to modlfy the SP with inline
assembly and access local stack-based variables. This pragma has no effect in function
level assembly functions or separate assembly only source files (.asm files).

In general, inline assembly may be used to create arbitrary flow graphs and not all can be
detected by the compiler.

For example:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

144 Freescale Semiconductor, Inc.

g |

Chapter 4 C for DSP56800E
REP #3

ADDA #2,SP

This example would modify the SP by three, but the compiler would only see a
modification of one. Other cases such as these might be created by the user using inline
jumps or branches. These are dangerous constructs and are not detected by the compiler.

In cases where the SP is modified by a run-time dependent amount, a warning is issued.

Listing: Example 1 - Legal Modification of SP Using Inline Assembly
#define EnterCritical() { asm(adda #2,SP);\

asm(move.l SR,X:(SP)+); \

asm(bfset #0x0300,SR); \

asm(nop) ; \

asm (nop) ; }

#define ExitCritical () { asm(deca.l SP);\
asm(move.l x: (SP)-,SR); \
asm (nop) ; \

asm(nop) ; }
#pragma check inline sp effects on
int func()
{
int a=1, b=1, c;
EnterCritical () ;
c = a+b;

ExitCritical() ;

}

This case will work because there are no control flow merge points. SP is modified
consistently along all paths from the beginning to the end of the function and is properly
aligned.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 145

h o
g |

user Stack Allocation
Listing: Example 2 - Illegal Modification of SP using Inline Assembly

#define EnterCritical () { asm(adda #2,SP);\
asm(move.l SR,X:(SP)+); \
asm(bfset #0x0300,SR); \
asm(nop) ; \

asm(nop) ; }

#define ExitCritical() { asm(deca.l SP);\
asm(move.l x: (SP)-,SR); \
asm (nop) ; \

asm (nop) ; }

#pragma check inline sp effects on

int func()

{

int a=1, b=1, c;
if (a)

EnterCritical () ;

c = a+b;

c = b++;

ExitCritical () ;

return (b+c);

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

146 Freescale Semiconductor, Inc.

g |

4
Chapter 4 C for DSP56800E

This example will generate the following warning because the SP entering the
"ExitCritical" macro is different depending on which branch is taken in the if. Therefore,
accesses to variables a, b, or ¢ may not be correct.

Warning : Inconsistent inline assembly modification of SP in this function.

M56800E main.c line 29 ExitCritical();
Listing: Example 3 - Modification of SP by a Run-time Dependent Amount

#define EnterCritical() { asm(adda RO, SP);\
asm(move,l SR,X:(SP)+); \
asm(bfset #0x0300,SR); \
asm(nop) ; \

asm(nop) ; }

#define ExitCritical() { asm(deca.l SP);\
asm(move.l X:(SP)-,SR); \
asm(nop) ; \

asm (nop) ; }

#pragma check inline sp effects on

int func/()

{

int a=1, b=1, c;

if (a)
EnterCritical () ;
c = a+b;

}

else {
EnterCritical () ;

c = b++;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 147

vy
N
user Stack Allocation

return (b+c);

}
This example will generate the following warning:

Warning : Cannot determine SP modification value at compile time

M56800E main.c line 20 EnterCritical() ;
This example is not legal since the SP is modified by run-time dependent amount.

If all inline assembly modifications to the SP along all branches are equal approaching
the exit of a function, it is not necessary to explicitly deallocate the increased stack space.
The compiler "cleans up" the extra inline assembly stack allocation automatically at the
end of the function.

Listing: Example 4 - Automatic Deallocation of Inline Assembly Stack Allocation

#pragma check inline sp effects on

int func()

{

int a=1, b=1, c;

if (a)

{
EnterCritical () ;
c = a+b;

1

else {
EnterCritical () ;
c = b++;

return (b+c);

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

148 Freescale Semiconductor, Inc.

Chapter 4 C for DSP56800E

This example does not need to call the "ExitCritical" macro because the compiler will
automatically clean up the extra inline assembly stack allocation.

4.4 Data Alighment Requirements

The data alignment rules for DSP56800E stack and global memory are:

* Bytes — byte boundaries.
* Words — word boundaries.
* Longs, floats, and doubles — double-word boundaries:
* Least significant word is always on an even word address.
* Most significant word is always on an odd word address.
* Long accesses through pointers in AGU registers (for example, RO through R5
or N) point to the least significant word. That is, the address is even.
* Long accesses through pointers using SP point to the most significant word. That
18, the address in SP is odd.
* Structures — word boundaries (not byte boundaries).

NOTE

A structure containing only bytes still is word aligned.

e Structures — double-word boundaries if they contain 32-bit elements, or if an inner
structure itself is double-word aligned.
» Arrays — the size of one array element.

This topic contains the following sub-topics:
* Word and Byte Pointers
» Reordering Data for Optimal Usage

4.4.1 Word and Byte Pointers

The alignment requirements explained above determine how the compiler uses
DSP56800E byte and word pointers to implement C pointer types. The compiler uses:

* Word pointers for all structures
» The SP to access the stack resident data of all types:
* Bytes
* Shorts
* Longs
* Floats

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 149

vaniables in Program Memory

* Doubles
e Any pointer variables
* Word pointers to access:
* Shorts
* Longs
* Any pointer variables
* Byte pointers for:
* Single global or static byte variable, if accessed through a pointer using X:(Rn)
* Global or static array of byte variables

The compiler does not use pointers to access scalar global or static byte variables
directly by their addresses. Instead, it uses an instruction with a .BP suffix:

MOVE [U] .BP X:xxxx,<dest>

MOVE.BP <srcC>, X : XXXX

4.4.2 Reordering Data for Optimal Usage

The compiler changes data order, for optimal usage. The data reordering follows these
guidelines:

» Reordering is mandatory if local variables are allocated on the stack.

* The compiler does not reorder data for parameter values passed in memory (instead
of being passed in registers).

» The compiler does not reorder data when locating fields within a structure.

4.5 Variables in Program Memory

This feature allows the programmer full flexibility in deciding the placement of variables
in memory. Variables can be now declared as part of the program memory, using a very
simple and intuitive syntax. For example:

__pmem int c¢; // 'c' is an integer that will be stored in program memory.

This feature is very useful when data memory is tight, because some or all of the data can
be moved to program memory. It can be handled exactly the same way as normal data.
This is almost completely transparent to the programmer, with a few exceptions that will
be presented in the next paragraphs.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

150 Freescale Semiconductor, Inc.

Chapter 4 C for DSP56800E

The CPU architecture only allows post increment addressing of words (16-bit data) in
program memory. While the compiler circumvents this restriction and allows full access
to all data types in program memory, the performance is decreased. If placement of some
variables in program memory is needed, and at the same time the execution speed is
important, here are some pointers that can be used to organize the code:

* Try to keep all variables that are used in a loop (the loop counter included) in data
memory. This condition becomes more important as the loop nesting level increases.

* If possible, place only int (16-bit) data in program memory. Data types with different
dimensions are accessed via sequences of code rather than single instructions. 16-bit
data is fastest, followed by 32-bit data and 8-bit data.

 Data in program memory can be loaded and stored in a limited number of DALU
registers. Because of this, a number of register save/restore sequences can appear if
there are not enough available DALU registers. This could be a problem with
computational intensive code because the operations do not take place only in
registers anymore, and the execution of the code will be slower. This can be avoided
by using as many variables in data memory as possible.

This topic contains the following sub-topics:
e Declaring Program Memory Variables
» Using Variables in Program Memory
* Linking with Variables in Program Memory

4.5.1 Declaring Program Memory Variables

A program memory variable is declared using the _ pmem qualifier. Here are some
examples:

typedef struct // simple structure declaration
{

int i;

char *p;

long 1;

} test;

__pmem int ipl = 5; // initialized int in program memory

__pmem int ip2; // uninitialized int in program memory

int * pmem ppxl; // pointer in program memory to int in data memory

__pmem int * pmem pppl; // pointer in program memory to int in program memory
__pmem int parr[100]; // array in program memory

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 151

vaniables in Program Memory

__pmem test sp; // structure in program memory
__pmem int aapl[2 1[2 1; // two dimensional array in program memory

__pmem int *pxpl; // pointer in data memory to int in program memory

4.5.2 Using Variables in Program Memory

Variables in program memory can be used almost exactly like variables in data memory.
The exceptions are presented below:

* The __pmem qualifier cannot be used in a structure declaration because a structure
can have all its members either in program memory or in data memory, but not in
both memory spaces. The compiler will issue an error message in this case. For
example:

typedef struct // simple structure declaration

{
int i;
char _ pmem *p; // error, _ pmem not allowed here
long 1;

} test;

* The compiler will signal an error when an implicit conversion between a pointer to
data in data memory and a pointer to data in program memory is attempted. For
example, using the previous definitions, the compiler gives an error for this
assignment:

pxpl = ppxl;

Explicit conversions are allowed, but they should be used with care. An explicit
conversion for the previous assignment that is accepted by the compiler is given below:

pxpl = (pmem int *)ppxl;

Another consequence of this restriction is that an important part of the MSL functions
that have at least an argument that is a pointer will not work with variables in program
memory. For example:

char *cl; // pointer in data memory to char in data memory

char _ pmem *c2; // pointer in data memory to char in program

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

152 Freescale Semiconductor, Inc.

Chapter 4 C for DSP56800E

memoryvstrcat(cl, ¢2); // error, the second argument can't be converted to 'const char *'

If variable argument lists are used, this problem is generally hidden. The program is
compiled with no errors from the compiler, but it doesn't work as expected. The most
common example is the princt function:

char *cl = "xmem"; // pointer in data memory to char in data memory

char pmem *c2 = "pmem"; // pointer in data memory to char in program memory
printf ("%s\n", cl); // works as expected

printf("$s\n", c2); // doesn't work as expected

Here, the type of the arguments is lost because printt uses a variable argument list. Thus
the compiler can not signal a type mismatch and the program will compile without errors,
but it won't work as expected, because princt assumes that all the data is stored in data
memory.

4.5.3 Linking with Variables in Program Memory
The compiler creates special sections in the output file for variables in program memory.
This is a description of all data in program memory sections:

 .data.pmem (initialized program memory data)
e .const.data.pmem (constant program memory data)
* bss.pmem (uninitialized program memory data)

The following sections are also generated if you choose to generate separate sections for
char data:

e .data.char.pmem (initialized program memory chars)
* .const.data.char.pmem (constant program memory chars)
* .bss.char.pmem (uninitialized program memory chars)

These sections are used in the linker command file just like normal sections. A typical
linker command file for a program that uses data in program memory looks like the
following listing

NOTE

_ pmem qualifier can be used only for global variable and is not
available for local variable.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 153

g |

varniables in Program Memory

Listing: Typical Linker Command File

MEMORY
{
.p_RAM (RWX) : ORIGIN = 0x0082, LENGTH = OxFF3E
.p_reserved regs (RWX) : ORIGIN = OxFFCO, LENGTH = 0x003F
.p_RAM2 (RWX) : ORIGIN = OxFFFF, LENGTH = 0x0000
.X_RAM (RW) : ORIGIN = 0x0001, LENGTH = Ox7FFE # SDM xRAM limit is
Ox7FFF
}
SECTIONS
{
.application_ code
{v # .text sections
* (.text)
* (rtlib.text)
* (fp_engine.text)
* (user.text)
* (.data.pmem) # program memory initalized data
* (.const.data.pmem) # program memory constant data
* (.bss.pmem) # program memory uninitialized data
} > .p_RAM
.data

.data sections

* (.const.data.char) # used if "Emit Separate Char Data Section" enabled
* (.const.data)v * (fp_state.data)

* (rtlib.data)

* (.data.char) # used if "Emit Separate Char Data Section" enabled

* (.data)

.bss sections

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

154 Freescale Semiconductor, Inc.

h o
g |

4
Chapter 4 C for DSP56800E

* (rtlib.bss.lo)
* (rtlib.bss)
= ALIGN(1);
_START BSS = .;
* (.bss.char) # used if "Emit Separate Char Data Section" enabled
* (.bss)

_END_BSS = .;

setup the heap address

= ALIGN(4) ;

_HEAP_ADDR = .;

_HEAP_SIZE = 0x100;

_HEAP _END = HEAP_ADDR + HEAP SIZE;
= HEAP END;

setup the stack address

_min_stack_size = 0x200;
_stack addr = HEAP END;
_stack end = _stack addr + min_stack size;

= stack_end;

export heap and stack runtime to libraries

F heap addr = HEAP ADDR;
F_heap_end = _HEAP_END;
F Lstack addr = HEAP END;
F_start_bss = _START_BSS;
F _end bss = END BSS;

} > .x RAM

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 155

rarye Data Model Support

4.6 Code and Data Storage

The DSP56800E processor has a dual Harvard architecture with separate cooz (P:
memory) and pata (X: memory) memory spaces. The following table shows the sizes and
ranges of these spaces, as well as the range of character data within X memory, for both
the small and large memory models. (You may need to use the ELF Linker and
Command Language or MS6800E Linker settings panel to specify how the project-
defined sections map to real memory.)

Table 4-4. Code and Data Memory Ranges

Section Small Model Large Model
Size Range ((Word Size Range ((Word
Address)) Address))
CODE (P: memory) 128 KB 0 - OXFFFF 1 MB 0 - OX7FFFF
DATA (X: memory) 128 KB 0 - OxXFFFF 32 MB 0 - OXFFFFFF
DATA (X: memory) 64 KB 0 - OX7FFF 16 MB 0 - OX7FFFFF
character data

A peculiarity of the DSP56800E architecture is byte addresses for character (1-byte) data,
but word addresses for data of all other types. To calculate a byte address, multiply the
word address by 2. An address cannot exceed the maximum physical address, so placing
character data in the upper half of memory makes the data unaddressable. (Address
registers have a fixed width.)

For example, in the small memory model (maximum data address: 64 KB), placing
character data at 0x8001 requires an access address of 0x10002. But this access address
does not fit into 16-bit storage, as the small data memory model requires. Under your
control, the compiler increases flexibility by placing all character data into specially-
named sections as described in DSC Compiler > Processor. You can locate these sections
in the lower half of the memory map, making sure that the data can be addressed.

4.7 Large Data Model Support

The DSP56800E extends the DSP56800 data addressing range, by providing 24-bit
address capability to some instructions. 24-bit address modes allow user accesses beyond
the 64K-word boundary of 16-bit addressing. To control large data memory model
support, use the M56800E Processor panel as shown in the following figure. See DSC
Compiler > Processor for explanations of this panel’s elements.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

156 Freescale Semiconductor, Inc.

Chapter 4 C for DSP56800E

@ Copkirnization

@ Processaor

@ Language

[create assembly Oubput
[JGenerate Code For Profiling

Check Inline Assembly For Pipeline | Mok Detected (default)

i85 Tool Settings Build Steps Build Arkifact @- Einary Parsers | € Error Parsers | Build Tool Yersions
@ Global Settings Hardware 0 Loops Mo D2 Loops (default) w
= Y i
& DSC Linker [5mall Program Model
(2 Input
-k FlL Data M Model
& Gereral arge Data Memary Mods
g Cukput
=& DSC Compiler [zero-Initiglized Globals Live in Data Instead of BSS
)
l%g Input |:| Segregate Data Section
(22 Access Paths o
v|Pad Pipeline for Deb
@ Warnings ad Pipeling for Debuager

=B84 DSC Assembler

@ Input Check C Source for Pipeling Mok Detecked (default) w

@ General

@ Cukput

3 DSC Preprocessar

@ Settings

= B89 DSC Disassembler

@ Settings

1
21

Figure 4-2. M56800E Processor Panel: Large Data Model

Extended data is data located beyond the 16-bit address boundary — as if it exists in
extended (upper) memory. Memory located below the 64K boundary is lower memory.

The compiler default arrangement is using 16-bit addresses for all data accesses. This
means that absolute addresses (X:xxxx addressing mode) are limited to 16 bits. Direct
addressing or pointer registers load or store 16-bit addresses. Indexed addressing indexes
are 16-bit quantities. The compiler treats data pointers as 16-bit pointers that you may
store in single words of memory.

NOTE
There 1s a known compiler limitation for the default small data
model. The data access from 0x8000 to OxFFFF can result in
wrong memory access due to the existing property of 'Index by
16-Bit Displacement: (Rn+xxxx)’ - Address-Register-Indirect
Addressing Mode. This is because the address plus offset
calculation is actually a signed operation in this mode. To
overcome this issue, the -1argenddrinsam compiler option should
be used, if data access above 0x7fff is required with the default
small data model. For details, refer -largeAddrInSdm.

Linker support is present to error out with correct help message
for data access above Ox7FFF (without -1argeaddrinsam Option
usage) for small data model cases.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 157

rarye Data Model Support

If the large data memory model is enabled, the compiler accesses all data by 24-bit
addressing modes. It treats data pointers as 24-bit quantities that you may store in two
words of memory. Absolute addressing occurs as 24-bit absolute addresses. Thus, you
may access the entire 24-bit data memory, locating data objects anywhere.

You do not need to change C source code to take advantage of the large data memory
model.

Examples in DSP56800E assembly code of extended data addressing are:
» Extended Data Addressing Example
» Accessing Data Objects Examples
e External Library Compatibility

4.7.1 Extended Data Addressing Example
Consider the code of the following listing.

Listing: Addressing Extended Data

move.w X:0x123456,A1 ; move int using 24 bit absolute address

tst.1 x: (R0-0x123456) ; test a global long for zero using 24-bit pointer indexed
; addressing

move.l r0,x: (RO)+ ; r0 stored as 24-bit quantity

cmpa r0,rl ; compare pointer registers as 24 bit quantities

The large data memory model is convenient because you can place data objects anywhere
in the 24-bit data memory map. But the model is inefficient because extended data
addressing requires more program memory and additional execution cycles.

However, all global and static data of many target applications easily fit within the 64 K
word memory boundary. With this in mind, you can check the Globals live in lower
memory checkbox of the M56800E Processor settings panel. This tells the compiler to
access global and static data with 16-bit addresses, but to use 24-bit addressing for all
pointer and stack operations. This arrangement combines the flexibility of the large data
memory model with the efficiency of the small data model’s access to globals and statics.

NOTE
If you check the Globals live in lower memory checkbox, be
sure to store data in lower memory.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

158 Freescale Semiconductor, Inc.

g |

4.7.2 Accessing Data Objects Examples

Chapter 4 C for DSP56800E

The tables below show appropriate ways to access a global integer and a global pointer
variable. The first two columns of each table list states of two checkboxes, Large Data
Model and Globals live in lower memory. Both checkboxes are in the M56800E

Processor settings panel; the first enables the second.

The following table lists ways to access a global integer stored at address X:0x1234.

int gil;

Table 4-5. Accessing Global Integer

Large Data Model Globals Live in Lower Instruction Comments
checkbox Memory Checkbox

Clear Clear move.w Default values
X:0x1234,y0

Checked Clear move.w
X:0x001234,y0

Clear Checked Combination not allowed

Checked Checked move.w Global accesses use 16-bit
X:0x1234,y0 addressing

The following table lists ways to load a global pointer variable, at X:0x4567, into an

address register.

int * gpl;

Table 4-6. Loading Global Pointer Variable

Large Data Model Globals Live in Lower Instruction Comments
checkbox Memory Checkbox

Clear Clear move.w Default 16-bit addressing, 16-
X:0x4567,10 bit pointer value

Checked Clear move.| 24-bit addressing, pointer
X:0x004567,10 value is 24-bit

Clear Checked Combination not allowed

Checked Checked move.| 16-bit addressing, pointer
X:0x4567,10 value is 24-bit

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

159

upumizing Code
4.7.3 External Library Compatibility

If you enable the large data model when the compiler builds your main application,
external libraries written in C also must be built with the large data model enabled. The
linker enforces this requirement, catching global objects located out of range for
particular instructions.

A more serious compatibility problem involves pointer parameters. Applications built
with the large data memory model may pass pointer parameter values in two words of the
stack. But libraries built using the small memory model may expect pointer arguments to
occupy a single word of memory. This incompatibility will cause runtime stack
corruption.

You may or may not build external libraries or modules written in assembly with
extended addressing modes. The linker does not enforce any compatibility rules on
assembly language modules or libraries.

The compiler encodes the memory model into the object file. The linker verifies that all
objects linked into an executable have compatible memory models. The ELF header’s
e_flags field includes the bit fields that contain the encoded data memory model
attributes of the object file:

#define EF_M56800E_LDMM 0x00000001 /* Large data memory model flag */
Additionally, C language objects are identified by an ELF header flag.

#define EF M56800E _C 0x00000002 /* Object file generated from C source */

4.8 Optimizing Code

Register coloring is an optimization specific to DSPS6800E development. The compiler
assigns two (or more) register variables to the same register, if the code does not use the
variables at the same time. The code of the following listing does not use variables i and]
at the same time, so the compiler could store them in the same register:

However, if the code included the expression myrunc (i+3), the variables would be in use
at the same time. The compiler would store the two variables in different registers.

For DSP56800E development, you can instruct the compiler to:

1. Store all local variables on the stack. — (That is, do not perform register coloring.)
The compiler loads and stores local variables when you read them and write to them.
You may prefer this behavior during debugging, because it guarantees meaningful
values for all variables, from initialization through the end of the function. To have

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

160 Freescale Semiconductor, Inc.

Chapter 4 C for DSP56800E

the compiler behave this way, specify Optimizations Off, in the Global
Optimizations settings panel.

2. Place as many local variables as possible in registers. — (That is, do perform
register coloring.) To have the compiler behave this way, specify optimization Level
1 or higher, in the Global Optimizations settings panel.

NOTE
Optimizations Off is best for code that you will debug
after compilation. Other optimization levels include register
coloring. If you compile code with an optimization level
greater than 0 and then debug the code, register coloring
could produce unexpected results.

Variables declared vo1atiie (or those that have the address taken) are not kept in
registers and may be useful in the presence of interrupts.

3. Run Peephole Optimization. — The compiler eliminates some compare instructions
and improves branch sequences. Peephole optimizations are small and local
optimizations that eliminate some compare instructions and improve branch
sequences. To have the compiler behave this way, specify optimization Levels 1
through 4, in the Global Optimizations settings panel.

4.9 Deadstripping and Link Order

The M56800E Linker deadstrips unused code and data only from files compiled by the
CodeWarrior C compiler. The linker never deadstrips assembler relocatable files or C
object files built by other compilers.

Libraries built with the CodeWarrior C compiler contribute only the used objects to the
linked program. If a library has assembly files or files built with other C compilers, the
only files that contribute to the linked program are those that have at least one referenced
object. If you enable deadstripping, the linker completely ignores files without any
referenced objects.

The Link Order page of the project window specifies the order (top to bottom) in which
the DSP56800E linker processes C source files, assembly source files, and archive (.a
and .1ib) files. If both a source-code file and a library file define a symbol, the linker uses
the definition of the file that appears first, in the link order. To change the link order, drag
the appropriate filename to a different place, in this page’s list.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 161

working with Peripheral Module Registers
4.10 Working with Peripheral Module Registers

This section highlights the issues and recommends programming style for using bit fields
to access memory mapped I/O. Memory mapped I/O is a way of accessing devices that
are not on the system. A part of the normal address space is mapped to I/O ports. A read/
write to that memory location triggers an access to the I/O device, though to the program
it seems like a normal memory access. Even if one byte is written to in the space
allocated to a peripheral register, the whole register is written to. So the other byte of the
peripheral register will not retain its data. This may happen because the compiler
generates optimal bit-field instructions with a read(byte)-mask-writeback(byte) code
sequence.

This topic contains the following sub-topics:

* Compiler Generates Bit Instructions
» Explanation of Undesired Behaviors
* Recommended Programming Style

4.10.1 Compiler Generates Bit Instructions
The compiler generates BFSET for |=, BFCLR for &=, and BFCHG for "= operators.
The following listing shows a C source example and the generated sample code.

Listing: C Source Example
int i;

int *ip;

void main (void)

{

i &= ~1;

/* generated codes
P: 00000082: 8054022D0001 bfclr #1,X:0x00022d

*/
(*(ip)) "= 1;

/* generated codes

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

162 Freescale Semiconductor, Inc.

h o
g |

P:00000085: F87C022C
P:00000087: 84400001

*/

* ((int*) (0x1234)) |=1;

/* generated codes
P:00000089: E4081234
P:0000008B: 82400001

*/

/* generated codes
P:0000008D: E708

*/

Note the following example:

#define word int
union {
word Word;
struct {
word SBK :1;
word RWU :1;
word RE :1;
word TE :1;
word REIE :1;
word RFIE :1;
word TIIE :1;
word TEIE :1;
word PT :1;
word PE :1;
word POL :1;
word WAKE :1;

word M :1;

moveu.w X:0x00022c¢,RO

bfchg

move. 1l

bfset

rts

#1,X: (RO)
#4660,R0
#1,X: (RO)

Chapter 4 C for DSP56800E

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

163

g |

working with Peripheral Module Registers

word RSRC :1;
word SWAI :1;

word LOOP :1;

} Bits;
} SCICR;
/* Code:*/
SCICR.Bits.TE = 1; /* SCICR content is 0x0800 */
SCICR.Bits.PE = 1; /* SCICR content is 0x0002 ??? */

4.10.2 Explanation of Undesired Behaviors

If “SCICR” is mapped to a peripheral register, the code that is used to access the register
is not portable and might be unsafe, like in DSP56800E at present.

Bit field behavior in C is almost all implementation defined. So generating the following
code is legal:

SCICR.Bits.TE = 1; /* SCICR content is 0x0800 */

/* generated codes

P:00000082:874802c moveu.w #SCICR, RO
P:00000084:FOE0000 move.b X:(RO) ,A
P:00000086:8350008 bfset #8,Al1
P:00000088:9800 move.b Al,X: (RO)
*/

SCICR.Bits.PE = 1; /* SCICR content is 0x0002 ??2? */

/* generated codes

P:00000089:FOE00001 move.b X: (RO+1) ,A
P:0000008B:83500002 bfset #2,A1
P:0000008D:9804 move.b Al,X: (RO+1)
*/

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

164 Freescale Semiconductor, Inc.

Chapter 4 C for DSP56800E

However, since the writes (at P:0x88 and at P:0x8D) are byte instructions and only 16
bits can be written to the SCICR register, the other bytes look as if they are filled with
zeros before the SCICR is overwritten.

The use of byte accesses is due to a compiler optimization that tries to generate the
smallest possible memory access.

4.10.3 Recommended Programming Style

The use of a union of a member that can hold the whole register (the “Word” member
above) and a struct that can access the bits of the register (the “Bits” member above) is a
good idea.

What is recommended is to read the whole memory mapped register (using the “Word”
union member) into a local instance of the union, do the bit-manipulation on the local,
and then write the result as a whole word into the memory mapped register. So the C
code would look something like:

#define word int

union SCICR union{

word Word;

struct {
word SBK :1;
word RWU :1;
word RE :1;
word TE :1;
word REIE :1;
word RFIE :1;
word TIIE :1;
word TEIE :1;
word PT :1;
word PE :1;
word POL :1;
word WAKE :1;
word M :1;
word RSRC :1;

word SWAI :1;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 165

h o
g |

working with Peripheral Module Registers

word LOOP :1;

} Bits;

} SCICR;

/* Code: */

union SCICR union localSCICR;

localSCICR.Word = SCICR.Word;

/* generated codes

P:00000083:F07C022C move.w X:#SCICR,A
P:00000085:907F move.w Al, X: (SP-1)
*/

localSCICR.Bits.TE = 1;

/* generated codes

P:00000086:8AB4FFFF adda #-1,SP,RO
P:00000088:FOE00000 move.b X:(RO) ,A
P:0000008A:83500008 bfset #8,A1
P:0000008C:9800 move.b Al,X: (RO)
*/

localSCICR.Bits.PE = 1;

/* generated codes

P:0000008D:FOE00001 move.b X: (RO+1),A
P:0000008F:83500002 bfset #2,A1
P:00000091:9804 move.b Al,x: (RO+1)
*/

SCICR.Word = localSCICR.Word;

*/ generated codes

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

166 Freescale Semiconductor, Inc.

g |

P:00000092:B67F022C move.w

*/

4.11 Generating MAC Instruction Set

The compiler generates the imac.1 instruction if the C code performs multiplication on

X:(SP-1) ,X:#SCICR

Chapter 4 C for DSP56800E

two 10ng operands which are casted to short type; and the product is added to a 1ong type.

For example, the following code:

short a;
short b;
long c;
long d = c+((long)a* (long)b) ;

generates the following assembly:

move.w X:0x000000,Y0 ; Fa
move.w X:0x000000,B ; Fb
move.l X:0x000000,A ; Fc

imac.l B1,Y0,A

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

167

}{ |

uenerating MAC Instruction Set

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

168 Freescale Semiconductor, Inc.

Chapter 5
C Compiler

The CodeWarrior C programming language closely follows the ISO C Standard (ISO/
IEC 9899:1990). CodeWarrior C also has extensions to work more effectively with the
target platform and to ensure compatibility with other compilers.

This chapter describes these extensions to the ISO C Standard and implementation-
defined behaviors:

» Extensions to Standard C
* Implementation-Defined Behavior

NOTE
For 56800/E Target-specific information, see either
CodeWarrior Development Studio for Freescale 56800/E
Digital Signal Controllers: DSP56FS80x/DSP56F82x
Family Targeting Manual or CodeWarrior Development
Studio for Freescale 56800/E Digital Signal Controllers:
MC56F83xx/DSP5685x Family Targeting Manual.

5.1 Extensions to Standard C
* Unnamed Arguments in Function Definitions
e C++ Comments
» A # Not Followed by a Macro Argument
e Using an Identifier After #endif
» Using Typecasted Pointers as lvalues
* Inline Functions
 Pascal Calling Conventions
* Character Constants as Integer Values
» Converting Pointers to Types of the Same Size
* Getting Alignment and Type Information at Compile Time
 Arrays of Zero Length in Structures

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 169

cxiensions to Standard C

* The "D" Constant Suffix
» The __typeof__() and typeof() Operators
* Specifying Variable Addresses in C

5.1.1 Unnamed Arguments in Function Definitions

(ISO C, §6.9.1) The C compiler can accept unnamed arguments in a function definition.

Listing: Unnamed Function Arguments

void f(int) {} /* OK if ANSI strict checking is disabled */

void f(int i) {} /* ALWAYS OK */
The compiler allows this extension if ANSI strict checking is disabled:

* In the IDE, use the C/C++ Language Settings panel's ANSI Strict setting
* On the command line, use the compiler's -ansi strict option
e In source COde, USC #pragma ANSI_ strict

5.1.2 C++ Comments

(ISO C, §6.4.9) The C compiler can accept C++ comments (//) in source code. C++
comments consist of anything that follows // on a line.

Listing: Example of a C++ Comment
a = b; // This is a C++ comment

To use this feature, disable the ANSI Strict setting in the IDE options under DSC
Compiler >> Language panel.

5.1.3 A # Not Followed by a Macro Argument

(ISO C, §6.10.3) The C compiler can accept # tokens that do not appear before arguments
in macro definitions.

Listing: Preprocessor Macros Using # Without an Argument

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

170 Freescale Semiconductor, Inc.

g |

4
Chapter 5 C Compiler

#define addl(x) #x #1 // OK, but probably not what you wanted:
// addl (abc) creates "abc"#1

#define add2(x) #x "2" // OK: add2 (abc) creates "abc2"

To use this feature, disable the ANSI Strict setting in the IDE options under DSC
Compiler >> Language panel.

5.1.4 Using an Identifier After #endif

(ISO C, §6.10.1) The C compiler can accept identifier tokens after #endaitr and #eise. This
extension helps you match an #enair statement with its corresponding #it, #ifdet, Or
#ifndet Statement, as shown here:

#ifdef MWERKS
ifndef _ cplusplus

/*

*/
endif _ cplusplus

#endif MWERKS
To use this feature, disable the ANSI Strict setting in the Language panel.
Tip
If you enable the ANSI Strict setting (thereby disabling this
extension), you can still match your #irdet and #enait directives.

Simply put the identifiers into comments, as sown in following
example:

#ifdef MWERKS
ifndef cplusplus
/*
CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 171

cxiensions to Standard C

* - - -
*/
endif /* _ cplusplus */

#endif /* _ MWERKS _ */

5.1.5 Using Typecasted Pointers as lvalues
The C compiler can accept pointers that are typecasted to other pointer types as lvalues.

Listing: Example of a Typecasted Pointer as an Ivalue

char *cp;

((long *) cp)++; /* OK if ANSI Strict is disabled. */

To use this feature, disable the ANSI Strict setting in the Language panel.

5.1.6 Inline Functions

As in C++, the CodeWarrior C compiler allows the inline, inline_, Or _ inline keyword
to appear before a function declaration and definition. An inline keyword specifies to the
compiler that it should attempt to replace calls to the function with the function's body.

5.1.7 Pascal Calling Conventions

The CodeWarrior C compiler allows the pasca1 keyword to precede a function declaration
and definition. This keyword specifies to the compiler that it should use Pascal calling
conventions to call this function.

5.1.8 Character Constants as Integer Values

(ISO C, §6.4.4.4) The C compiler lets you use string literals containing 2 to 8 characters
to denote 32-bit integer values. The following table shows the examples.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

172 Freescale Semiconductor, Inc.

4
Chapter 5 C Compiler

Table 5-1. Integer Values as Character String Constants

Character Constant Equivalent Hexadecimal Integer Value
'ABCD' 0x41424344 (32-bit value)
'ABC' 0x00414243 (32-bit value)
'AB' 0x4142 (16-bit value)

You cannot disable this extension, and it has no corresponding pragma or setting in any
panel.

NOTE
This feature differs from using multibyte character sets, where a
single character requires a data type larger than 1 byte.

5.1.9 Converting Pointers to Types of the Same Size

The C compiler allows the conversion of pointer types to integral data types of the same
size in global initializations. Since this type of conversion does not conform to the ANSI
C standard, it is only available if the ANSI Strict setting is disabled in the Language
panel.

Listing: Converting a Pointer to a Same-sized Integral Type

char c¢;
long arr = (long)&c; // accepted (not ISO C)

5.1.10 Getting Alignment and Type Information at Compile Time

The C compiler has two built-in functions that return information about a data type's byte
alignment and its data type.

The function call _ buiitin_align(fypelD) returns the byte alignment used for the data type
typelD. This value depends on the target platform for which the compiler is generating
object code.

The function call _ puiiltin_type (fypelD) returns an integral value that describes the data
type typelD. This value depends on the target platform for which the compiler is
generating object code.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 173

cxiensions to Standard C

5.1.11 Arrays of Zero Length in Structures

If you disable the ANSI Strict setting in the Language panel, the compiler lets you
specify an array of no length as the last item in a structure. The following listing shows
an example. You can define arrays with zero as the index value or with no index value.
Listing: Using Zero-Length Arrays
struct listOfLongs {

long listCount;

long list[0]; // OK if ANSI Strict is disabled, [] is OK, too.

}

5.1.12 The "D" Constant Suffix

When the compiler finds a " D" immediately after a floating point constant value, it treats
that value as data of type doubie.

5.1.13 The __typeof () and typeof() Operators

With the __typeor_ () Operator, the compiler lets you specify the data type of an
expression. Listing: Example of __typeof__ () and typeof() Operators shows an example.
__typeof (
expression)
where expression is any valid C expression or data type. Because the compiler translates

a _typeof_ () expression into a data type, you can use this expression wherever a normal
type would be specified.

Like the sizeot () Operator, _typeor_ () 1S only evaluated at compile time, not at runtime.

Listing: Example of __typeof__ () and typeof() Operators

char *cp;

int *ip;

long *1lp;

__typeof (*ip) 1i; /* equivalent to "int 1i;" */
__typeof (*1p) 1; /* equivalent to "long 1;" */
#pragma gcc_extensions on

typeof (*cp) c¢; /* equivalent to "char c;" */

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

174 Freescale Semiconductor, Inc.

Chapter 5 C Compiler

5.1.14 Specifying Variable Addresses in C

The user can tell the compiler to specify the address of a variable in a C file using the :
operator. The constant value following the : operator is the word address of the global
variable (i.e., int onereg : oxmcp ; specifies that the global variable onereg resides at word
address oxgcp).

NOTE
The Linker does not reserve space for global variables declared
with the : operator.

5.2 Implementation-Defined Behavior

The ISO C Standard cannot practically define every possible aspect of a compiler
implementation. It does, however, list issues that must be defined by the implementation
of the compiler. This section describes aspects of the CodeWarrior C compiler that the
ISO C standard refers that are not covered in the rest of this manual:

* Diagnostic Messages
* Identifiers

5.2.1 Diagnostic Messages

(ISO C, §6.3.1) In the CodeWarrior IDE, the CodeWarrior C compiler reports error and
warning messages in the Errors and Warnings window. On the command-line, the
CodeWarrior C compiler reports error and warning messages to the standard error file.

5.2.2 Identifiers

(ISO C, §6.4.2) The CodeWarrior C language allows identifiers to have unlimited length.
However, only the first 255 characters are significant for internal and external linkage.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 175

}{ |

unpiementation-Defined Behavior

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

176 Freescale Semiconductor, Inc.

Chapter 6
C++ Compiler

This chapter explains the CodeWarrior implementation of the C++ programming
language:

e Features and Limitations
e Implementation-Defined Behavior
e GCC Extensions

6.1 Features and Limitations
The CodeWarrior DSC C++ implementation complies with the ISO/IEC 14882:2003 C+
+ Standard with the following exceptions:

* No Exception Handling support

 Incomplete support for Runtime Type Information (RTTI)

 Incomplete support for Templates

6.2 Implementation-Defined Behavior

Annex A of the ISO/IEC 14882:2003 C++ Standard lists compiler behaviors that are
beyond the scope of the standard, but which must be documented for a compiler
implementation. This annex also lists minimum guidelines for these behaviors, although a
conforming compiler is not required to meet these minimums.

The CodeWarrior C++ compiler has these implementation quantities listed in the
following table, based on the ISO/IEC 14882:2003 C++ Standard, Annex A.

NOTE
The term unlimited in the table listed below, means that a
behavior is limited only by the processing speed or memory

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 177

4
A |
unpiementation-Defined Behavior
capacity of the computer on which the CodeWarrior C++
compiler is running.
Table 6-1. Implementation Quantities for C/C++ Compiler (ISO/IEC 14882:2003 C++, §A)

Behavior Standard Minimum Guideline CodeWarrior Limit

Nesting levels of compound statements, |256 Unlimited
iteration control structures, and selection
control structures

Nesting levels of conditional inclusion 256 256

Pointer, array, and function declarators |256 Unlimited
(in any combination) modifying an
arithmetic, structure, union, or
incomplete type in a declaration

Nesting levels of parenthesized 256 Unlimited
expressions within a full expression

Number of initial characters in an 1024 Unlimited
internal identifier or macro name

Number of initial characters in an 1024 Unlimited
external identifier

External identifiers in one translation unit | 65536 Unlimited
Identifiers with block scope declared in | 1024 Unlimited
one block

Macro identifiers simultaneously defined |65536 Unlimited
in one translation unit

Parameters in one function definition 256 Unlimited
Arguments in one function call 256 Unlimited
Parameters in one macro definition 256 256
Arguments in one macro invocation 256 256
Characters in one logical source line 65536 Unlimited
Characters in a character string literal or |65536 Unlimited
wide string literal (after concatenation)

Size of an object 262144 2GB
Nesting levels for # include files 256 256
Case labels for a switch statement 16384 Unlimited
(excluding those for any nested switch

statements)

Data members in a single class, 16384 Unlimited
structure, or union

Enumeration constants in a single 4096 Unlimited
enumeration

Levels of nested class, structure, or 256 Unlimited

union definitions in a single struct-
declaration-list

Functions registered by atexit () 32 64

Direct and indirect base classes 16384 Unlimited
Direct base classes for a single class 1024 Unlimited
Members declared in a single class 4096 Unlimited

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

178 Freescale Semiconductor, Inc.

A
4

4
A 4
Chapter 6 C++ Compiler

Table 6-1. Implementation Quantities for C/C++ Compiler (ISO/IEC 14882:2003 C++, §A)

(continued)
Behavior Standard Minimum Guideline CodeWarrior Limit

Final overriding virtual functions in a 16384 Unlimited
class, accessible or not
Direct and indirect virtual bases of a 1024 Unlimited
class
Static members of a class 1024 Unlimited
Friend declarations in a class 4096 Unlimited
Access control declarations in a class 4096 Unlimited
Member initializers in a constructor 6144 Unlimited
definition
Scope qualifications of one identifier 256 Unlimited
Nested external specifications 1024 Unlimited
Template arguments in a template 1024 Unlimited
declaration
Recursively nested template 17 64 (adjustable upto 30000 using
instantiations #pragma template_depth(<n>))
Handlers per try block 256 Unlimited
Throw specifications on a single function |256 Unlimited
declaration

6.3 GCC Extensions

The CodeWarrior C++ compiler recognizes some extensions to the ISO/IEC 14882-2003

C++ standard that are also recognized by the GCC (GNU Compiler Collection) C++

compiler.

The compiler allows the use of the :: operator, of the form class: :member, in a class

declaration.

Listing: Using :: Operator in Class Declarations

class MyClass {

int MyClass::getval() ;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

179

}{ |

uuu Extensions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

180 Freescale Semiconductor, Inc.

Chapter 7
ELF Linker

The CodeWarrior Executable and Linking Format (ELF) Linker makes a program file out
of the object files of your project. The linker also allows you to manipulate code in
different ways. You can define variables during linking, control the link order to the
granularity of a single function, change the alignment, and even compress code and data
segments so that they occupy less space in the output file.

All of these functions are accessed through commands in the linker command file (LCF).
The linker command file has its own language complete with keywords, directives, and
expressions, that are used to create the specifications for your output code. The syntax
and structure of the linker command file is similar to that of a programming language.

This chapter includes the following sections:

 Structure of Linker Command Files

* Linker Command File Syntax

* Linker Command File Keyword Listing
e Command-Line Linker Options

* ELF Linker Options

* Project Options

e Linker C/C++ Support Options

* Errors and Warnings Options

* ELF Disassembler Options

7.1 Structure of Linker Command Files

Linker command files contain three main segments:

* Memory Segment
* Closure Blocks
* Sections Segment

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 181

ouucture of Linker Command Files

A command file must contain a memory segment and a sections segment. Closure
segments are optional.

7.1.1 Memory Segment

In the memory segment, available memory is divided into segments. The memory
segment format looks like the following listing.

Listing: Sample MEMORY segment

MEMORY {

segment 1 (RWX): ORIGIN = 0x8000, LENGTH = 0x1000

segment 2 (RWX): ORIGIN

AFTER (segment_1), LENGTH = O

segment 3 (RWX): ORIGIN = 0x4000, LENGTH = 0x1000, INITVAL = OxABCD

data (RW) : ORIGIN = 0x2000, LENGTH = 0x0000
#segment name (RW) : ORIGIN = memory address, LENGTH = segment
#length

#and so on...

}

The first memory segment definition (segment_1) can be broken down as follows:

* the (rwx) portion of the segment definition pertains to the ELF access permission of
the segment. The (RWX) flags imply r ead, w rite, and e x ecute access.

* or1cin represents the start address of the memory segment (in this case oxsooo).

* rengtH represents the size of the memory segment (in this case ox1000).

* nrrvar represents the link-time initialization value to be used for watermarking a
memory segment . For any ~ mtvar = (expression)' the “(expression)' is treated as a
word value.

Example

Assume for above example that there is a program section of length oxroo words and
it is placed in segment_ 3

section{

program_section 0x0F00;

}>segment _ 3

Then, the resulting memory map will have (ox1000-0xFoo-0x100) words at the end of
segment_3 that will be initialized with the pattern specified in mnrTvar = oxascp .

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

182 Freescale Semiconductor, Inc.

Chapter 7 ELF Linker

Memory segments with rux attributes are placed into P: memory while rw attributes are
placed into X: memory.

If you cannot predict how much space a segment will occupy, you can use the function
arrer and venete - o (unlimited length) to fill in the unknown values.

7.1.2 Closure Blocks

The linker is very good at deadstripping unused code and data. Sometimes, however,
symbols need to be kept in the output file even if they are never directly referenced.
Interrupt handlers, for example, are usually linked at special addresses, without any
explicit jumps to transfer control to these places.

Closure blocks provide a way to make symbols immune from deadstripping. The closure
is transitive, meaning that symbols referenced by the symbol being closed are also forced
into closure, as are any symbols referenced by those symbols, and so on.

NOTE
The closure blocks need to be in place before the SECTIONS
definition in the linker command file.

The two types of closure blocks available are:
* Symbol-level

Use rorce_acrive to include a symbol into the link that would not be otherwise
included. An example is shown in the following listing.

Listing: Sample symbol-level closure block
FORCE_ACTIVE {break handler, interrupt handler, my function}

e Section-level

Use xzer_secrron when you want to keep a section (usually a user-defined section) in
the link. The following listing shows an example.

Listing: Sample section-level closure block
KEEP_SECTION {.interruptl, .interrupt2}

A variant is rer_1ncrupe. It keeps a section in the link, but only if the file where it is
coming from is referenced. This is very useful to include version numbers. The following
listing shows an example of this.

Listing: Sample section-level closure block with file dependency

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 183

rimrer Command File Syntax

REF_INCLUDE {.version}

7.1.3 Sections Segment

Inside the sections segment, you define the contents of your memory segments, and
define any global symbols to be used in the output file.

The format of a typical sections block looks like the following listing.
NOTE

As shown in the following listing, the .bss section always needs
to be put at the end of a segment or in a standalone segment,
because it is not a loadable section.

Listing: Sample SECTIONS segment

SECTIONS ({
.section name : #the section name is for your reference
{ #the section name must begin with a '.'
filename.c .text) #put the .text section from filename.c
filename2.c (.text) #then the .text section from filename2.c

(
(
filename.c (.data
filename2.c (.data
(
(
0

filename.c .bss)
filename2.c (.bss)

. = ALIGN (0x10); #align next section on 16-byte boundary.

} > segment 1 #this means "map these contents to segment 1"

.next_section name:

{

more content descriptions
} > segment x # end of .next_section name definition
end of the sections block

7.2 Linker Command File Syntax

This section explains some practical ways in which to use the commands of the linker
command file to perform common tasks.

7.2.1 Alignment

To align data on a specific word-boundary, use the ALIGN and ALIGNALL commands
to bump the location counter to the preferred boundary. For example, the following
fragment uses arzen to bump the location counter to the next 16-byte boundary. An
example is given in the following listing.

Listing: Sample ALIGN command usage

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

184 Freescale Semiconductor, Inc.

A
4

4
A

4
Chapter 7 ELF Linker

file.c (.text)
. = ALIGN (0x10);

file.c (.data) # aligned on a word boundary.

You can also align data on a specific word-boundary with avienars, as shown in the
following listing.

Listing: Sample ALIGNALL command usage

file.c (.text)
ALIGNALL (0x10); #everything past this point aligned on word boundary

file.c (.data)

7.2.2 Arithmetic Operations

Standard C arithmetic and logical operations may be used to define and use symbols in
the linker command file. The following table shows the order of precedence for each
operator. All operators are left-associative.

Table 7-1. Arithmetic operators

Precedence Operators
highest (1) - 7

o|lw[N[o|a]s]w]n

I

I

I

\"

AN

AN

|

\

i

NOTE
The shift operator shifts two-bits for each shift operation. The
divide operator performs division and rounding.

7.2.3 Comments

Comments may be added by using the pound character (#) or C++ style double-slashes
(/7). C-style comments are not accepted by the LCF parser. The following listing shows
examples of valid comments.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 185

rimrer Command File Syntax
Listing: Sample comments

This is a one-line comment

* (.text) // This is a partial-line comment

7.2.4 Deadstrip Prevention

The M56800E linker removes unused code and data from the output file. This process is
called deadstripping. To prevent the linker from deadstripping unreferenced code and

data, use the FORCE_ACTIVE, KEEP_SECTION, and REF_INCLUDE directives to
preserve them in the output file.

7.2.5 Variables, Expressions, and Integral Types

This section explains variables, expressions, and integral types.

7.2.5.1 Variables and Symbols

All symbol names within a Linker Command File (LCF) start with the underscore
character (_), followed by letters, digits, or underscore characters. The following listing
shows examples of valid lines for a command file:

Listing: Valid command file lines

_dec_num = 99999999;

hex num = 0x9011276;

Variables that are defined within a secrrons section can only be used within a secrrons
section in a linker command file.

7.2.5.1.1 Global Variables

Global variables are accessed in a linker command file with an “F' prepended to the
symbol name. This is because the compiler adds an "F' prefix to externally defined
symbols.

The following listing shows an example of using a global variable in a linker command
file. This example sets the global variable _toot, declared in C with the extern keyword, to
the location of the address location current counter.

Listing: Using global variable in LCF

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

186 Freescale Semiconductor, Inc.

Chapter 7 ELF Linker

F _foot = .;

If you use a global symbol in an LCF, as in the above listing, you can access it from C
program sources as shown in the following listing.

Listing: Accessing a Global Symbol from C Program Sources

extern unsigned long Lstack addr([]; int main(void) { unsigned long* StackStartAddr;
StackStartAddr = Lstack addr;

7.2.5.2 Expressions and Assighments

You can create symbols and assign addresses to those symbols by using the standard
assignment operator. An assignment may only be used at the start of an expression, and a
semicolon is required at the end of an assignment statement. An example of standard
assignment operator usage is shown in the following listing.

Listing: Standard Assignment Operator Usage

_symbolicname =
some_expression
; # Legal

_syml + _sym2 = _sym3; # ILLEGAL!

When an expression is evaluated and assigned to a variable, it is given either an absolute
or a relocatable type. An absolute expression type is one in which the symbol contains the
value that it will have in the output file. A relocatable expression is one in which the
value is expressed as a fixed offset from the base of a section.

7.2.5.3 Integral Types

The syntax for linker command file expressions is very similar to the syntax of the C
programming language. All integer types are iong OF unsigned long.

Octal integers (commonly know as base eight integers) are specified with a leading zero,
followed by numeral in the range of zero through seven. The following listing shows
valid octal patterns that you can put into your linker command file.

Listing: Sample Octal patterns

_octal number = 012;

_octal number2 = 03245;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 187

rimrer Command File Syntax

Decimal integers are specified as a non-zero numeral, followed by numerals in the range
of zero through nine. To create a negative integer, use the minus sign (-) in front of the
number. The following listing shows examples of valid decimal integers that you can
write into your linker command file.

Listing: Sample Decimal integers

_dec_num = 9999;

_decimalNumber = -1234;

Hexadecimal (base sixteen) integers are specified as ox or ox (a zero with an X), followed
by numerals in the range of zero through nine, and/or characters a through r. Examples of
valid hexadecimal integers that you can put in your linker command file appear in the
following listing.

Listing: Sample Hex integers
__somenumber = 0xO0F21;
_fudgefactorspace = 0XF0OD;
_hexonyou = Oxcafe;

NOTE

When assigning a value to a pointer variable, the value is in
byte units despite that in the linked map (.xMAP file), the
variable value appears in word units.

7.2.6 File Selection

When defining the contents of a secrron block, specify the source files that are
contributing to their sections.

In a large project, the list can become very long. For this reason, you have to use the
asterisk (*) keyword. The * keyword represents the filenames of every file in your
project. Note that since you have already added the .cext sections from the main.c, filez.c,
and files.c files, the » keyword does not include the .text sections from those files again.

7.2.7 Function Selection

The OBJECT keyword allows precise control over how functions are placed within a
section. For example, if the functions pad and foot are to be placed before anything else in
a section, use the code as shown in the example in the following listing.

Listing: Sample function selection using OBJECT keyword

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

188 Freescale Semiconductor, Inc.

Chapter 7 ELF Linker
SECTIONS ({
.program_section :
{
OBJECT (Fpad, main.c)
OBJECT (Ffoot, main.c)
* (.text)

} > ROOT

NOTE
If an object is written once using the orsecr function selection
keyword, the same object will not be written again if you use
the ' +' file selection keyword.

7.2.8 ROM to RAM Copying

In embedded programming, it is common to copy a portion of a program resident in
ROM into RAM at runtime. For example, program variables cannot be accessed until
they are copied to RAM.

To indicate data or code that is meant to be copied from ROM to RAM, the data or code
1s assigned two addresses. One address is its resident location in ROM (where it is
downloaded). The other is its intended location in RAM (where it is later copied in C
code).

Use the uemory segment to specify the intended RAM location, and the ar (address)
parameter to specify the resident ROM address.

For example, you have a program and you want to copy all your initialized data into
RAM at runtime. The following listing shows the LCF you use to set up for writing data
to ROM.

Listing: LCF setup for ROM to RAM copy

MEMORY

.text (RWX) : ORIGIN = 0x8000, LENGTH = 0x0 # code (p:)

.data (RW) : ORIGIN = 0x3000, LENGTH = 0x0 # data (x:)-> RAM
}
SECTIONS{

.main application :

{

.text sections

(.text)
(.rtlib.text)
(.fp_engine.txt)

* %k ok

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 189

A
4

4
A

}

} o>
}

rimrer Command File Syntax

* (user.text)
> .text

ROM_Address = 0x2000

.data : AT(__ROM Address) # ROM Address definition

.data sections

F_ Begin Data =
*(.data)

* (fp_state.data
* (rtlib.data) ;
F__End Data =

.bss sections
* (rtlib.bss.lo
* (.bss)
F__ROM_Address

.data

. # Start location for RAM (0x3000)
Write data to the section (ROM)

)i

. # Get end location for RAM

)

= __ROM Address

To make the runtime copy from ROM to RAM, you need to know where the data starts in
ROM (_ rom_addaress) and the size of the block in ROM you want to copy to RAM. The

following listing shows an example to copy all variables in the data section from ROM to
RAM in C code.

Listing: ROM to RAM copy from C after writing data flash

#in
#in

int

clude <stdio.h>
clude <string.h>

GlobalFlash = 6;

// From linker command file
extern _ Begin Data, __ ROMAddress, __ End Data;

voi

{

d main(void)

unsigned short a

=0, b=20, c=0;

unsigned long datalen = 0x0;
unsigned short _ myArray[] = { Oxdead, Oxbeef, Oxcafe };

// Calculate the

data length of the X: memory written to Flash

}

datalLen = (unsigned long) & End Data -
unsigned long) & Begin Data;

// Block move from ROM to RAM
memcpy ((unsigned long *)& Begin Data,

(const unsigned long *)& ROMAddress,datalen) ;

a = GlobalFlash;

return;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

190

Freescale Semiconductor, Inc.

Chapter 7 ELF Linker

7.2.9 Utilizing Program Flash and Data RAM for Constant Data in
C

There are many advantages and one disadvantage if constant data in C is flashed to
program flash memory (pROM) and copied to data flash memory (xRAM) at startup,
with the usual pPROM-to-xRAM initialization.

The advantages are:

* constant data is defined and addressed conventionally via C language
* pROM flash space is used for constant data (pROM is usually larger than xROM)
 the pROM flash is now freed up or available

The disadvantage is that the XRAM is consumed for constant data at run-time.

If you wish to store constant data in program flash memory and have it handled by the
pROM- to-xRAM Startup process, a simple change is necessary to the prom-to-xram LCF. Simply,
place the constant data references into the data_in p_fiash_rom Section after the

_ xRAM data_start variable like the other data references and remove the "data in xROM"
section. See the following listing.

Listing: Using typical pROM-to-xRAM LCF

.data_in p flash ROM : AT(_ pROM data start)

{

~_ xRAM data_ start = .;

* (.const.data.char) # move constant data references here
* (.const.char)

* (.data.char)

* (.data)

etc.

7.2.10 Utilizing Program Flash for User-Defined Constant Section
in Assembler

There are many advantages and one disadvantage in writing specific data to pPROM with
linker commands and accessing this data in assembly,

The advantages are:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 191

rimrer Command File Syntax

* pROM flash space is used for user-specified constant data (pROM is usually larger
than XROM), where the constant data is defined and addressed by assembly language
e part of the pROM flash is now freed up or available

The disadvantage is that data is not defined or accessed conventionally via C language;
data is specifically flashed to pROM via the linker command file and fetched from
pROM with assembly.

If you want to keep specific constant data in pROM and access it from there, you can use
the linker commands to explicitly store the data in pPROM and then later access the data in
pROM with assembly.

The next two sections describe putting data in the pPROM flash at build and run-time.

7.2.10.1 Putting Data in pROM Flash at Build-time

The linker commands have specific instructions which set values in the binary image at
the build time, as shown in the following listing. For example, WRITEH inserts two
bytes of data at the current address of a section. These commands are placed in the LCF,
which tells the linker at build time to place data in P or X memory. Optionally, you can
also set the current location prior to the write command to ensure a specific location
address for easier reference later. The location within the section is not important.

For more information, see the LCF section in this document.

Listing: LCF write example using MC56F832x for build-time
.executing_code :

{

.text sections
. = 0x00A4; # optionally set the location -- we use 0x00A4 in this
case

WRITEH (0XABCD) ; # now set some value here; location within the
section is not important

* (.text)

* (interrupt routines.text)
* (rtlib.text)

* (fp_engine.text)

* (user.text)

etc

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

192 Freescale Semiconductor, Inc.

Chapter 7 ELF Linker

} > .p_flash ROM

Putting Data in pROM Flash at Run-time

The assembly example in the following listing fetches the pROM-flashed value at run-
time in the above listed code.

Listing: LCF write example using MC56F832x for run-time

move.l #$00A4, rl ; move the pROM address into r3

move.w p: (r3)+, x0 ; fetch data from pROM at address rl into xO0

7.2.11 Stack and Heap

To reserve space for the stack and heap, arithmetic operations are performed to set the
values of the symbols used by the runtime.

The Linker Command File (LCF) performs all the necessary stack and heap initialization.
When Stationery is used to create a new project, the appropriate LCFs are added to the
new project.

See any Stationery-generated LCFs for examples of how stack and heap are initialized.

7.2.12 Writing Data Directly to Memory

You can write data directly to memory using the wrrtex command in the linker command
file. The wrrter command writes a byte, the wrrter command writes two bytes, and the
wrrTEw command writes four bytes. You insert the data at the section's current address.

Listing: Embedding data directly into output

.example data section :
{
WRITEB 0x48; // 'H'
WRITEB 0x69; // it

WRITEB 0x21; // 'I!

7.3 Linker Command File Keyword Listing

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 193

rimrer Command File Keyword Listing

This section explains the keywords available for use when creating CodeWarrior™
Development Studio for 56800/E Digital Signal Controllers application objects with the
linker command file. Valid linker command file functions, keywords, directives, and
commands are:

7.3.1 . (location counter)

The period character (.) always maintains the current position of the output location.
Since the period always refers to a location in a SECTIONS block, it can not be used
outside a section definition.

A period may appear anywhere a symbol is allowed. Assigning a value to period that is
greater than its current value causes the location counter to move, but the location counter
can never be decremented.

This effect can be used to create empty space in an output section. In the example below,
the location counter is moved to a position that is 0x1000 words past the symbol rsTarT_.

Example

.data :
{
* (.data)
*(.bss)
FSTART = .;
. = FSTART + 0x1000;
_end = .;

} > DATA

7.3.2 ADDR

The apor function returns the address of the named section or memory segment.

Prototype

ADDR (sectionName | segmentName | symbol)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

194 Freescale Semiconductor, Inc.

g |

4
Chapter 7 ELF Linker

In the example below, aoor is used to assign the address of roor to the symbol

___rootbasecode.

Example

MEMORY {

ROOT (RWX) : ORIGIN = 0x8000, LENGTH = 0

SECTIONS {
.code :
___rootbasecode = ADDR (ROOT) ;
* (.text) ;

} > ROOT

NOTE
In order to use segmentName with this command, the
segmentName must start with the period character even though
segmentNames are not required to start with the period
character by the linker, as is the case with sectionName.

7.3.3 ALIGN

The avten function returns the value of the location counter aligned on a boundary
specified by the value of ai1ignvaiue. The a1ignvaiue must be a power of two.

Prototype

ALIGN (alignValue)

Note that arzen does not update the location counter; it only performs arithmetic. To
update the location counter, use an assignment such as:

Example

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 195

N
rimrer Command File Keyword Listing
. = ALIGN(0x10) ; #update location counter to 16

#byte alignment

7.3.4 ALIGNALL

artenant 1S the command version of the anren function. It forces the minimum alignment
for all the objects in the current segment to the value of a1ignvaiue. The ailignvaiue must be
a power of two.

Prototype

ALIGNALL (alignValue) ;

Unlike its counterpart ALIGN, avienars is an actual command. It updates the location
counter as each object is written to the output.

Example

.code :

{
ALIGNALL(16); // Align code on 16 byte boundary
* (.init)

* (.text)

ALIGNALL(16); //align data on 16 byte boundary
* (.rodata)

} > .text

7.3.5 FORCE_ACTIVE

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

196 Freescale Semiconductor, Inc.

g |

4
Chapter 7 ELF Linker

The rorce_acr1ve directive allows you to specify symbols that you do not want the linker
to deadstrip. You must specify the symbol(s) you want to keep before you use the
SECTIONS keyword.

Prototype

FORCE ACTIVE{ symbol[, symbol] }

7.3.6 INCLUDE

The mncrupe command let you include a binary file in the output file.

Prototype

INCLUDE filename

7.3.7 KEEP_SECTION

The xeer_secrron directive allows you to specify sections that you do not want the linker to
deadstrip. You must specify the section(s) you want to keep before you use the
SECTIONS keyword.

Prototype

KEEP_SECTION{ sectionTypel[, sectionTypel }

7.3.8 MEMORY

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 197

rimrer Command File Keyword Listing

The memory directive allows you to describe the location and size of memory segment
blocks in the target. This directive specifies the linker the memory areas to avoid, and the
memory areas into which it links the code and date.

The linker command file may only contain one memory directive. However, within the
confines of the memory directive, you may define as many memory segments as you wish.

Prototype
MEMORY { memory spec }
The memory spec 1S:

segmentName (accessFlags) : ORIGIN = address, LENGTH = length, [COMPRESS] [>
fileName]

segmentname Can include alphanumeric characters and underscore '_' characters.

accessFlags dAI'€ passed into the Output ELF file (Phdr.p_flags). The accessFlags Can be:

* R-read

* W-write

» X-executable (for P: memory placement)
ORIGIN address 1S one of the following:

Table 7-2. Origin Address

A memory address Specify a hex address, such as 0x8000.

An AFTER command Use the AFTER(name [,name]) command to tell the linker to
place the memory segment after the specified segment. In the
example below, overlay1 and overlay2 are placed after the
code segment. When multiple memory segments are
specified as parameters for AFTER, the highest memory
address is used.

Example

memory {

code (RWX) : ORIGIN = 0x8000, LENGTH = 0
overlayl (RWX) : ORIGIN = AFTER(code), LENGTH = 0
overlay2 (RWX) : ORIGIN = AFTER(code), LENGTH = 0
data (RW) : ORIGIN = 0x1000, LENGTH = 0

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

198 Freescale Semiconductor, Inc.

A 4
4\ . ___4

Chapter 7 ELF Linker
ORIGIN is the assigned address.

Lencth 1S one of the following:

Table 7-3. Length

A value greater than zero If you try to put more code and data into a memory segment
than your specified length allows, the linker stops with an
error.

Autolength by specifying zero When the length is 0, the linker lets you put as much code
and data into a memory segment as you want.

NOTE
There is no overflow checking with autolength. The linker can
produce an unexpected result if you use the autolength feature
without leaving enough free memory space to contain the
memory segment. For this reason, when you use autolength, use
the arrer keyword to specify origin addresses.

> fileName 1S an option to write the segment to a binary file on disk instead of an ELF
program header. The binary file is put in the same folder as the ELF output file. This
option has two variants:

Table 7-4. Option Choices

>fileName Writes the segment to a new file.

>>fileName Appends the segment to an existing file.

7.3.9 OBJECT

The orsecr keyword allows control over the order in which functions are placed in the
output file.

Prototype

OBJECT (function, sourcefile.c)

It is important to note that if you write an object to the output file using the osgrcr
keyword, the same object will not be written again by either the crour keyword or the *'
wildcard.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 199

rimrer Command File Keyword Listing

7.3.10 REF_INCLUDE

The rer_1ncrupe directive allows you to specify sections that you do not want the linker to
deadstrip, but only if they satisfy a certain condition: the file that contains the section
must be referenced. This is useful if you want to include version information from your
source file components. You must specify the section(s) you want to keep before you use
the SECTIONS keyword.

Prototype

REF_INCLUDE{ sectionType [, sectionTypel}

7.3.11 SECTIONS

A basic secrons directive has the following form:

Prototype
SECTIONS { <section spec> }

section_spec 1s one of the fOllOWing:

» sectionName: [AT (loadAddress)] {contents} > segmentName
» sectionName: [AT (loadAddress]] {contents} >> segmentName

sectionName 1S the section name for the output section. It must start with a period character.
For example, " .mysection”.

AT (loadaddress) 18 an optional parameter that specifies the address of the section. The
default (if not specified) is to make the load address the same as the relocation address.

contents are made up of statements. These statements can:

 Assign a value to a symbol.
* Describe the placement of an output section, including which input sections are
placed into it.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

200 Freescale Semiconductor, Inc.

g |

Chapter 7 ELF Linker

segmentname 18 the predefined memory segment into which you want to put the contents of
the section. The two variants are:

Table 7-5. Option Choices

>segmentName Places the section contents at the beginning of the memory
segment segmentName.
>>segmentName Appends the section contents to the memory segment
segmentName.
Example
SECTIONS ({
.text : {

F_textSegmentStart = .;
footpad.c (.text)
. = ALIGN (0x10);
padfoot.c (.text)
F textSegmentEnd = .;
} > TEXT
.data : { *(.data) } > DATA
.bss : { *(.bss) > BSS

* (COMMON)

}

7.3.12 SIZEOF

The stzeor function returns the size of the given segment or section. The return value is
the size in bytes.

Prototype

SIZEOF (sectionName | segmentName | symbol)

NOTE

In order to use segmentName with this command, the
segmentName must start with the period character even though

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 201

rimrer Command File Keyword Listing

segmentNames are not required to start with the period
character by the linker, as is the case with sectionName.

7.3.13 SIZEOFW

The s1zeorw function returns the size of the given segment or section. The return value is
the size in words.

Prototype

SIZEOFW (sectionName | segmentName | symbol)

NOTE
In order to use segmentName with this command, the
segmentName must start with the period character even though
segmentNames are not required to start with the period
character by the linker, as is the case with sectionName.

7.3.14 WRITEB

The WRITEB command inserts a byte of data at the current address of a section.

Prototype

WRITEB (expression) ;

expression 1S any expression that returns a value oxoo to oxrr.

7.3.15 WRITEH

The WRITEH command inserts two bytes of data at the current address of a section.

Prototype

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

202 Freescale Semiconductor, Inc.

A 4
N
Chapter 7 ELF Linker

WRITEH (expression) ;

expression 1S any expression that returns a value oxoooo tO oxFrFF.

7.3.16 WRITEW

The WRITEW command inserts 4 bytes of data at the current address of a section.

Prototype

WRITEW (expression) ;
expression 1S any expression that returns a value 0x00000000 tO oxFFFFFFFF.

7.4 Command-Line Linker Options
The command-line linker options are:

e -dis[assemble]
e -defaults

e _nofail

* -reverselibsearchpath
* -stdlib
e -S

7.4.1 -dis[assemble]

Disassembles object code and does not link.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 203

A\ 4
N
vummand-Line Linker Options
Syntax
-dis [assemble]

Remarks

This option is global and implies -nostairin. See -stdlib.

7.4.2 -defaults

Same as -stdlib.

Syntax

-defaults

-nodefaults

Remarks

This option is global.

7.4.3 -L+

Adds library search path; searches the current working directory and then system
directories. The search paths have global scope over the command line and are searched
in the given order.

Syntax

-L+path

-1 path
The parameters are:

path

The search path to append.
Remarks

This option is global and case-sensitive.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

204 Freescale Semiconductor, Inc.

Chapter 7 ELF Linker

7.4.4 -Ir

Adds recursive library search path; searches the current working directory and then
system directories. The search paths have global scope over the command line and are
searched in the given order.

Syntax
-1r path
The parameters are:
path
The recursive library search path to append.
Remarks

This option is global.

745 -+

Adds a library by searching access paths for a specified library filename.
Syntax
-l+file
The parameters are:
file
Name of the library path to search.
Remarks

The linker searches access path for the specified 1ib<files.<ext> Where <exts is a typical
library extension. If the file is not found then the linker searches for <siies> directly. This
option is case-sensitive.

7.4.6 -nofail

Continues importing or disassembling after getting error messages in earlier files.

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 205

3
4

4
A

vummand-Line Linker Options

-nofail

7.4.7 -reverselibsearchpath

Searches in reverse order of library paths.

Syntax
-reverselibsearchpath

Remarks

This option is global.

7.4.8 -stdlib

Uses system library access paths specified by the environment variable suwpibrariess to
add system libraries specified by the environment variable smwribraryriless at the end of
link order.

Syntax

-stdlib

-nostdlib

Remarks

This option is global.

749 -S

Disassembles all files and sends output to a file; it does not link. It is same as -nostdiib.
See -stdlib.

Syntax
-S
Remarks
This option is global and case-sensitive.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

206 Freescale Semiconductor, Inc.

g |

4
Chapter 7 ELF Linker

7.5 ELF Linker Options

The ELF linker options are:
* -dead[strip]
e _force active
 -keep[local]
e -mlain]

* -map
 -sortbyaddr
e -srec

e -sreceol
 -sreclength
 -usebyteaddr
e -V3

7.5.1 -dead[strip]

Enables dead-stripping of unused code.

Syntax

- [noldead [strip]

7.5.2 -force_active

Specifies a list of symbols as undefined; useful in force linking of static libraries.

Syntax

-force active symboll[, ...]

7.5.3 -keep[local]

Keeps local symbols, such as relocations and output segment names generated during
link.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 207

A\ 4

N
cur Linker Options
Syntax

-keep[local] on]|off

Remarks

Default setting is on.

7.5.4 -mlain]

nn

Sets main entry point for the application or shared library. Use -main
entry point.

to specify no

Syntax
-m[ain] symbol

Remarks

The maximum length for symvo1 1s 63 chars; default is rsTarT .

7.5.5 -map

Generates link map file.
Syntax

-map [keywordl[,...]]
The arguments of keywora are:
closure
To calculate symbol closures.
unused
To list unused symbols.
showbyte

To show byte relocation used on symbols.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

208 Freescale Semiconductor, Inc.

g |

4
Chapter 7 ELF Linker

7.5.6 -sortbyaddr

Sorts S-records by address.
Syntax

-sortbyaddr

Remarks

See -srec.

7.5.7 -srec

Generates an S-record file; not used for generating static libraries.

Syntax

-srec

7.5.8 -sreceol

Sets the end-of-line separator for S-record file.

Syntax
-sreceol keyword

The arguments of xeywora are:

Use Mac OS®-style (\r) end-of-line format.

dos

Use Microsoft® Windows®-style (\r\n) end-of-line format. This is the default choice.
Use a UNIX-style (\n) end-of-line format.

Remarks

See -srec.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 209

A 4
4\ |

rruject Options

7.5.9 -sreclength

Specifies the length of S-records.
Syntax

-sreclength length

Remarks

The length size should be a multiple of 4. The value of 1ength ranges from 8 to 252. The
default range is 64.

7.5.10 -usebyteaddr

Uses byte address in S-record file.

Syntax
-usebyteaddr

Remarks

See -srec.

7.5.11 -V3

Generates an elf file for S6800EX digital signal controller.
Syntax

-V3

7.6 Project Options
The DSP project for linker options are:

* -application
* -library

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

210 Freescale Semiconductor, Inc.

g |

7.6.1 -application

Generates an application.

Syntax
-application
Remarks

This option is global.

7.6.2 -library

Generates a static library.

Syntax
-library
Remarks

This option is global.

7.7 Linker C/C++ Support Options

The linker C/C++ support options are:

» -Cpp_exceptions
* -dialect | -lang

7.7.1 -Cpp_exceptions

Enables or disables C++ exceptions.

Syntax

-Cpp_exceptions on|off

Chapter 7 ELF Linker

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

211

A\ 4
N
crrors and Warnings Options

Remarks

The default option in on.

7.7.2 -dialect | -lang

Specifies the source language.

Syntax
-dialect | -lang keyword

The arguments of xeywora are:
C
Considers source as C++ unless its extension i8S .c, .h, Or .pch. This 1s the default.

C++

Considers source as C++ always.

7.8 Errors and Warnings Options
The errors and warnings options are:

* -w[arn[ings]

7.8.1 -w[arn[ings]

Specifies which warnings the linker command-line tool issues. This command is global.
Syntax
-wlarnlings]] keywordl, ...]
The options of keyword are:
off
To turn off all warnings.

on

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

212 Freescale Semiconductor, Inc.

Chapter 7 ELF Linker

To turn on all warnings.

[no] cmdline

To issue command-line parser warnings.
[nolerrfor] | [noliserr[or]

To treat warnings as errors.

noSymRedef

To suppress Symbol Redefined warnings.
display|dump

To display a list of active warnings.

7.9 ELF Disassembler Options

The ELF disassembler options are used along with -s or -ais commands. The ELF
disassembler options are:

* -show
* -dispaths

7.9.1 -show

Specifies the information to list in a disassembly.
Syntax

-show keywordl[, ...]
The choices for xeywora are:

only | none

Shows no disassembly. Begin a list of choices with on1y Or none to prevent default
information from appearing in the disassembly.

all

Shows binary, executable code, detailed, data, extended, and exception information in the
disassembly.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 213

cur Disassembler Options

code | nocode

Shows or does not show executable code sections.
text | notext

Equivalent to the code and nocode choices, respectively.
comments | nocomments

Shows or does not show comment field in code. The default is comments. This option also
shows code sections.

extended | noextended

Shows or does not show extended mnemonics. The default is extendgeda. This option also
shows code sections.

data | nodata

Shows hex dumps of sections with -show verbose. The default is data.
[noldebug | [nolsym

Shows symbolics information.

exceptions | noexceptions

Shows or does not show exception tables. The default is exceptions. This option also
shows data sections.

headers | noheaders

Shows or does not show ELF headers. The default is headers.

hex | nohex

Shows or does not show addresses and opcodes in code disassembly. The default is nex.
names | nonames

Shows or does not show symbol table. The default is names.

relocs | norelocs

Shows or does not show resolved relocations in code and relocation tables. The default is

relocs.
source | nosource

Shows source in disassembly with -show verbose. It displays entire source file in output
else shows only four lines around each function. The default is source.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

214 Freescale Semiconductor, Inc.

g |

4
Chapter 7 ELF Linker

xtables | noxtables
Shows or does not show exception tables. The default is xtabies.
verbose | noverbose

Shows or does not show verbose information including hex dump of program segments
in the applications. The default is verbose.

7.9.2 -dispaths

Used for disassembler file paths mapping; useful in mapping libraries sources.

Syntax

-dispaths="src"="dest"

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 215

}{ |

cur Disassembler Options

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

216 Freescale Semiconductor, Inc.

Chapter 8
Inline Assembly Language and Intrinsics

The CodeWarrior compiler supports inline assembly language and intrinsic functions

using the S6800E and 56800EX instructions. This chapter explains the implementation of

Freescale assembly language, with regard to DSP56800E/EX development. It also
explains the relevant intrinsic functions.

NOTE
Inline assembly support for 56800EX instructions is provided
in compiler for all 32/64 Integer and Fractional instructions,
that is Multiply, MAC, and BFSC instruction. The -V3
compiler option is used to enable the inline assembly support
for 56800EX instructions.

This chapter includes these sections:

* Inline Assembly Language
e Intrinsic Functions

8.1 Inline Assembly Language
This section explains how to use inline assembly language. It includes these sections:

* Inline Assembly Overview

* Assembly Language Quick Guide

 Calling Assembly Language Functions from C Code
* Calling Functions from Assembly Language

8.1.1 Inline Assembly Overview

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

mnne Assembly Language

To specify assembly-language interpretation for a block of code in your file, use the asm
keyword and standard DSP56800E instruction mnemonics.

NOTE

To make sure that the C compiler recognizes the asm keyword,
you must clear the ANSI Keywords Only checkbox of the
Language panel . Differences in calling conventions mean that
you cannot re-use DSP56800 assembly code in the DSP56800E
compiler.

The following listing shows how to use the asm keyword with braces, to specify that an
entire function is in assembly language.

Listing: Function-level syntax

asm <function header> {
<assembly instructionss

}

The function header can be any valid C function header; the local declarations are any
valid C local declarations.

The following listing shows how to use the asm keyword with braces, to specify that a
block of statements or a single statement is in assembly language.

Listing: Statement-level syntax

asm { inline assembly statement

inline assembly statement

}

asm {inline assembly statement}

The inline assembly statement is any valid assembly-language statement.

The following listing shows how to use the asm keyword with parentheses, to specify that
a single statement is in assembly language. Note that a semicolon must follow the close
parenthesis.

Listing: Alternate single-statement syntax

asm (inline assembly statement) ;

NOTE
If you apply the asm keyword to one statement or a block of
statements within a function, you must not define local
variables within any of the inline-assembly statements.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

218 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics

8.1.2 Assembly Language Quick Guide

Keep these rules in mind as you write assembly language functions:

» Each statement must be a label or a function.
* A label can be any identifier not already declared as a local variable.
* All labels must follow the syntax:

[LocalLabel:]

The following listing illustrates the use of labels.

Listing: Labels in MS6800E assembly

xl: add x0,vyl,a
x2:
add x0,vyl,a
X3 add x0,yl,a //ERROR, MISSING COLON
All instructions must follow the syntax:

((instruction) [operands])

Each statement must end with a new line
Assembly language directives, instructions, and registers are not case-sensitive. The
following two statements are the same:

add x0,y0
ADD XO0,YO0

Comments must have the form of C or C++ comments; they must not begin with
the ; or # characters. The following listing shows the valid syntax for comments.
Listing: Valid comment syntax

move.w x:(r3),y0 # ERROR
add.w x0,y0 // OK
move.w r2,x: (sp) ; ERROR
adda ro,rl,n /* OK */

To optimize a block of inline assembly source code, use the inline assembly

directive .optimize iasm on before the code block. Then use the directive .optimize iasm
ot£ at the end of the block. (Omitting .optimize iasm off means that optimizations
continue to the end of the function.)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 219

mmnne Assembly Language

8.1.3 Calling Assembly Language Functions from C Code

You can call assembly language functions from C just as you would call any standard C
function, using standard C syntax.

* Calling Inline Assembly Language Functions

 Calling Pure Assembly Language Functions

8.1.3.1 Calling Inline Assembly Language Functions

The following listing demonstrates how to create an inline assembly language function in
a C source file. This example adds two 16-bit integers and returns the result.

Notice that you are passing two 16-bit addresses to the aad_int function. You pick up
those addresses in R2 and R3, passing the sum back in YO.

Listing: Sample code - Creating an inline assembly language function

asm int add_int(int * i, int * j)

{

move.w x:(r2),vy0

move .w x:(r3),x0

add x0,vy0

// int result returned in yO
rts

}

The following listing shows the C calling statement for this inline-assembly-language
function.

Listing: Sample Code - Calling an Inline Assembly Language Function

int x = 4, y = 2;

y = add_int(&x, &y); /* Returns 6 */

8.1.3.2 Calling Pure Assembly Language Functions

If you want C code to call assembly language files, you must specify a secrron mapping
for your code, for appropriate linking. You must also specify a memory space location.
Usually, this means that the orc directive specifies code to program memory (P) space.

In the definition of an assembly language function, the crorar directive must specify the
current-section symbols that need to be accessible by other sections.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

220 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics

The following listing is an example of a complete assembly language function. This
function writes two 16-bit integers to program memory. A separate function is required
for writing to P: memory, because C pointer variables allow access only to X: data
memory.

The first parameter is a short value and the second parameter is the 16-bit address.

Listing: Sample code - Creating an assembly language function

;"my_asm.asm”

SECTION user ;map to user defined section in CODE

ORG P: ;put the following program in P
;memory

GLOBAL Fpmemwrite ;This symbol is defined within the

;current section and should be
;accessible by all sections

Fpmemwrite:

MOVE Y1l,RO ;Set up pointer to address

NOP ;Pipeline delay for RO

MOVE YO,P: (RO)+ ;Write 16-bit value to address
;pointed to by RO in P: memory and
;post-increment RO

rts ;return to calling function

ENDSEC ;End of section

END ;End of source program

The following listing shows the C calling statement for this assembly language function.

Listing: Sample code - Calling an assembly language function from C

void pmemwrite(short, short);/* Write a value into P: memory */
void main(void)
{
// ...other code
// Write the value given in the first parameter to the address
// of the second parameter in P: memory
pmemwrite ((short)0xE9C8, (short)0x0010);

// other code...

8.1.4 Calling Functions from Assembly Language
Assembly language programs can call functions written in either C or assembly language.

* From within assembly language instructions, you can call C functions. For example,
if the C function definition is:

void foot(void) {

/* Do something */

}

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 221

mrinisic Functions

Your assembly language calling statement is:
jsr Ffoot

* From within assembly language instructions, you can call assembly language
functions. For example, if premwrite is an assembly language function, the assembly
language calling statement is:

jsr Fpmemwrite

8.2 Intrinsic Functions

This section explains CodeWarrior intrinsic functions. It consists of these sections:

e Implementation

* Fractional Arithmetic

* Intrinsic Functions for Math Support

e Modulo Addressing Intrinsic Functions

8.2.1 Implementation

The CodeWarrior for DSP56800E and DSP56800EX has intrinsic functions to generate
inline-assembly-language instructions. These intrinsic functions are a CodeWarrior
extension to ANSI C.

Use intrinsic functions to target specific processor instructions. For example:

* Intrinsic functions let you pass in data for specific optimized computations. For
example, ANSI C data-representation rules may make certain calculations inefficient,
forcing the program to jump to runtime math routines. Such calculations would be
coded more efficiently as assembly language instructions and intrinsic functions.

* Intrinsic functions can control small tasks, such as enabling saturation. One method
1s using inline assembly language syntax, specifying the operation in an asm block,
every time that the operation is required. But intrinsic functions let you merely set
the appropriate bit of the operating mode register.

The IDE implements intrinsic functions as inline C functions in file intrinsics_s68008.h, In
the MSL directory tree. These inline functions contain mostly inline assembly language
code. An example is the aps_s Intrinsic, defined as:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

222 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics
Listing: Example code - Definition of intrinsic function: abs_s

#define abs s(a) _ abs s(a)

/* ABS S */

inline Wordlé __ abs s(register Wordlé svarl)
{
/*
* Defn: Absolute value of a 16-bit integer or fractional value
* returning a 16-bit result.
* Returns $7fff for an input of $8000

* DSP56800E instruction syntax: abs FFF
* Allowed src regs: FFF

* Allowed dst regs: (same)

* Assumptions: OMR's SA bit was set to 1 at least 3 cycles
* before this code.
*/

asm(abs svarl) ;

return svarl;

8.2.2 Fractional Arithmetic

Many of the intrinsic functions use fractional arithmetic with implied fractional values.
An implied fractional value is a symbol declared as an integer type, but calculated as a

fractional type. Data in a memory location or register can be interpreted as fractional or
integer, depending on program needs.

All intrinsic functions that generate multiply or divide instructions perform fractional
arithmetic on implied fractional values. (These intrinsic functions are DIV, MPY, MAC,
MPYR, and MACR) The relationship between a 16-bit integer and a fractional value is:

Fractional Value = Integer Value / (215)
The relationship between a 32-bit integer and a fractional value is similar:
Fractional Value = Long Integer Value / (231)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 223

mrinisic Functions

The following table shows how 16- and 32-bit values can be interpreted as either
fractional or integer values.

Table 8-1. Interpretation of 16- and 32-bit Values

Type Hex Integer Value Fixed-Point Value
short int 0x2000 8192 0.25
short int 0xE000 -8192 -0.25
long int 0x20000000 536870912 0.25
long int 0xE0000000 -536870912 -0.25
NOTE

Intrinsic functions use these two macros, Word16. - A macro
for signed short, and Word32. - A macro for signed long.

8.2.3 Intrinsic Functions for Math Support

The following table lists the math intrinsic functions. See Modulo Addressing Intrinsic
Functions for explanations of the remaining intrinsic functions.

For the latest information about intrinsic functions, refer to file intrinsics 56800E.h.

NOTE
Intrinsics for integers contain int in the name. Intrinsics for
long long support contain v in the name.

NOTE
To use 1ong 1ong Intrinsics, you must include the
instrinsics_LL_56800E.h file. Other intrinsics reside in

intrinsics 56800E.h.

NOTE
Intrinsics library functions of the 56800EX instructions inline
assembly support reside in the intrinsics_sesooex.n in the MSL
directory tree. The existing -vs compiler option is used to
enable this inline assembly support for 56800EX instructions.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

224 Freescale Semiconductor, Inc.

h o
g |

4
Chapter 8 Inline Assembly Language and Intrinsics
To view intrinsics library functions of the 56800EX
instructions, see Table 8-3.
Table 8-2. Intrinsic Functions for DSP56800E
Category Function Category (cont.) Function (cont.)
Absolute/Negate abs_s Multiplication/MAC (continued |mult_r
negate from previous column) MULT_R_INT
L_abs L_mac
L_negate L_MAC_INT
LL_ABS L_msu
LL_NEGATE L_MSU_INT
Addition/Subtraction add L_mult
sub L_MULT_INT
L_add L _mult_Is
L_sub L MULT_LS_INT
LL_ADD LL_LL MULT_INT
LL_SuB LL_MULT_INT
Control stop LL_LL_MAC_INT
wait LL_MAC_INT
turn_off_conv_rndg LL_MSU_INT
turn_off_sat LL_LL_MSU_INT
turn_on_conv_rndg LL_MULT_LS_INT
turn_on_sat LL_LL_MULT
Deposit/Extract extract_h LL_MULT
extract_| LL_LL_MAC
L_deposit_h LL_MAC
L_deposit_| LL_MSU
LL_DEPOSIT_H LL_LL_MSU
LL_DEPOSIT_L LL_MULT_LS
Deposit/Extract (cont.) LL_EXTRACT_H Normalization ffs_s
LL_EXTRACT_L norm_s
Division div_s ffs_|
DIV_S_INT norm_|
div_s4q Rounding round_val
DIV_S4Q_INT ROUND_INT
div_ls LL_ROUND
DIV_LS_INT Shifting shl
div_ls4q shlftNs
DIV_LS4Q_INT shlfts
LL_DIV shr
LL_DIV_INT shr_r
LL_DIV_S4Q_INT shrtNs

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

225

‘

mnrinisic Functions

4
4\ |

Table 8-2. Intrinsic Functions for DSP56800E (continued)

Category Function Category (cont.) Function (cont.)
Multiplication/MAC mac_r L_shl
MAC_R_INT L_shlftNs
msu_r L_shlfts
MSU_R_INT L_shr
mult L_shr_r
MULT_INT L_shrtNs

Table 8-3. Intrinsic Functions for DSP56800EX

Category

Function

Multiplication/MAC (56800EX)

V3_L_mult_int

V3_L_mac_int

V3_L_mult

V3_L_mac

V3_LL_mult_int

V3_LL_mult

8.2.3.1 Absolute/Negate

The intrinsic functions of the absolute-value/negate group are:

e abs_s

* negate

e [, abs

* L_negate
e LLL_ABS

« LL_NEGATE

8.2.3.1.1

abs s

Absolute value of a 16-bit integer or fractional value returning a 16-bit result. Returns
O0x7FFF for an input of 0x8000.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

226

Freescale Semiconductor, Inc.

g |

Prototype

Wordlé abs s (Wordlé svarl)

Example
int result, sl = 0xE000; /* - 0.25 */
result = abs_s(sl);

// Expected value of result: 0x2000 = 0.25

8.2.3.1.2 negate

Chapter 8 Inline Assembly Language and Intrinsics

Negates a 16-bit integer or fractional value returning a 16-bit result. Returns Ox7FFF for

an input of 0x8000.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data

ALU results enabled.
Prototype

Wordlé negate (Wordlé svarl)

Example

int result, sl = 0xE000; /* - 0.25 */
result = negate(sl);

// Expected value of result: 0x2000 = 0.25

8.2.3.1.3 L _abs

Absolute value of a 32-bit integer or fractional value returning a 32-bit result. Returns

0x7FFFFFFF for an input of 0x80000000.

Assumptions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

227

g |

mnrinisic Functions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L abs(Word32 lvarl)

Example
long result, 1 = 0xE0000000; /* - 0.25 */
result = L abs(sl);

// Expected value of result: 0x20000000 = 0.25

8.2.3.1.4 L_negate

Negates a 32-bit integer or fractional value returning a 32-bit result. Returns
O0x7FFFFFFF for an input of 0x80000000.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L negate (Word32 lvarl)

Example

long result, 1 = 0xE0000000; /* - 0.25 */
result = L negate(sl);

// Expected value of result: 0x20000000 = 0.25

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

228 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

8.2.3.1.5 LL_ABS

Absolute value of a 64-bit integer or fractional value returning a 64-bit result.

Prototype

Wordé64 LL abs(Wordé4 llvar)

Example

long long sl = O0xXEDCBA98800000000;
long long result;
result = LL abs (sl);

// Expected value of result: abs(0xEDCBA98800000000) = 0x1234567800000000

8.2.3.1.6 LL_NEGATE

Negates a 64-bit integer or fractional value returning a 64-bit result.

Prototype

Wordé64 _ LL negate (Wordé4 llvar)

Example

long long sl = 0x2345678900000000;
long long result;
result = LL negate (sl);

// Expected value of result: neg(0x2345678900000000) = OxXDCBA987700000000

8.2.3.2 Addition/Subtraction

The intrinsic functions of the addition/subtraction group are:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 229

\ ¥ 4
g gl
mumisic Functions

e add

e sub

e], add

e [, sub

« LL ADD
e LLL_SUB

8.2.3.2.1 add

Addition of two 16-bit integer or fractional values, returning a 16-bit result.
Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Wordlé add(Wordlé src_dst, Wordlé src2)

Example

short sl 0x4000; /* 0.5 */

short s2 = 0x2000; /* 0.25 */

short result;

result = add(sl,s2);

// Expected value of result: 0x6000 = 0.75

8.2.3.2.2 sub

Subtraction of two 16-bit integer or fractional values, returning a 16-bit result.
Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

230 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

Wordlé sub (Wordlé src_dst, Wordlé src2)

Example

short sl 0x4000; /* 0.5 */

short s2 = 0xE000; /* -0.25 */

short result;

result = sub(sl,s2);

// Expected value of result: 0x6000 = 0.75

8.2.3.2.3 L_add

Addition of two 32-bit integer or fractional values, returning a 32-bit result.
Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L add(Word32 src dst, Word32 src2)

Example

long la 0x40000000; /* 0.5 */

long 1lb = 0x20000000; /* 0.25 */

long result;

result = L add(la,lb);

// Expected value of result: 0x60000000 = 0.75

8.23.24 L_sub

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 231

A
4

4
A

long 1b

mnrinisic Functions

Subtraction of two 32-bit integer or fractional values, returning a 32-bit result.
Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L sub(Word32 src dst, Word32 src2)

Example

long la = 0x40000000; /* 0.5 */

0xE0000000; /* -0.25 */

long result;

result = L sub(la,lb);

// Expected value of result: 0x60000000 = 0.75

8.2.3.2.5 LL_ADD

Addition of two 64-bit integer or fractional values, returning a 64-bit result.

Prototype

Word64 LL add(Wordé4 src _dst, Wordé64 src2)

Example

long long sl = 0x3579BDEF00000000;
long long s2 = 0xA864213500000000;
long long result;

result = L _add (s1l, s2);

// Expected value of result: 0x3579BDEF00000000 + 0xA864213500000000 = OxDDDDDF2400000000

8.2.3.2.6 LL_SUB

Subtraction of two 64-bit integer or fractional values, returning a 64-bit result.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

Prototype

Wordé64 LL sub(Wordé4 src _dst, Wordée4 src2)

Example

long long sl = 0x2345678900000000;

long long s2 0xDCBA987700000000;

long long result;
result = L _sub (sl, s2);

// Expected value of result: 0x2345678900000000 - O0xDCBA987700000000 = 0x468ACF1200000000

8.2.3.3 Control

The intrinsic functions of the control group are:

* stop

e wait
turn_off_conv_rndg
turn_off_sat

* turn_on_conv_rndg
e turn_on_sat

8.2.3.3.1 stop

Generates a STOP instruction which places the processor in the low power STOP mode.

Prototype

void stop(void)

Usage

stop () ;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 233

g |

mnrinisic Functions

8.2.3.3.2 wait

Generates a WAIT instruction which places the processor in the low power WAIT mode.

Prototype

void wait (void)

Usage

wait () ;

8.2.3.3.3 turn_off _conv_rndg

Generates a sequence for disabling convergent rounding by setting the R bit in the OMR
register and waiting for the enabling to take effect.

NOTE
If convergent rounding is disabled, the assembler performs twos
complement rounding.

Prototype

void turn off conv_ rndg(void)

Usage

turn off conv_rndg() ;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

234 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

8.2.3.3.4 turn_off_sat
Generates a sequence for disabling automatic saturation in the MAC Output Limiter by
clearing the SA bit in the OMR register and waiting for the disabling to take effect.

Prototype

void turn off sat(void)

Usage

turn_off sat();

8.2.3.3.5 turn_on_conv_rndg
Generates a sequence for enabling convergent rounding by clearing the R bit in the OMR
register and waiting for the enabling to take effect.

Prototype

void turn on conv_rndg(void)

Usage

turn on conv_rndg() ;

8.2.3.3.6 turn_on_sat

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 235

3
4

4
A

mnrinisic Functions

Generates a sequence for enabling automatic saturation in the MAC Output Limiter by
setting the SA bit in the OMR register and waiting for the enabling to take effect.

Prototype
void turn on sat (void)

Usage

turn on sat () ;

8.2.3.4 Deposit/Extract

The intrinsic functions of the deposit/extract group are:

e extract_h

e extract_l

* [_deposit_h

* L_deposit_l

« LLL DEPOSIT_H
e LL_DEPOSIT_L
e LLL EXTRACT_H
 LLL EXTRACT_L

8.2.3.4.1 extract h

Extracts the 16 MSBs of a 32-bit integer or fractional value. Returns a 16-bit value. Does
not perform saturation. When an accumulator is the destination, zeroes out the LSP
portion. Corresponds to truncation when applied to fractional values.

Prototype
Wordlé extract h(Word32 lsrc)
Example

long 1 = 0x87654321;

short result;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

236 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

result = extract h(l);

// Expected value of result: 0x8765

8.2.3.4.2 extract_|

Extracts the 16 LSBs of a 32-bit integer or fractional value. Returns a 16-bit value. Does
not perform saturation. When an accumulator is the destination, zeroes out the LSP
portion.

Prototype

Wordlé extract 1 (Word32 lsrc)
Example

long 1 = 0x87654321;

short result;

result = extract 1(1);

// Expected value of result: 0x4321

8.2.3.4.3 L_deposit_h

Deposits the 16-bit integer or fractional value into the upper 16 bits of a 32-bit value, and
zeroes out the lower 16 bits of a 32-bit value.

Prototype

Word32 L_deposit_h(Wordlé ssrc)

Example

short sl = O0x3FFF;

long result;

result = L deposit h(sl);

// Expected value of result: 0x3f£f£f0000

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 237

\ ¥ 4
g gl
mumisic Functions

8.2.3.4.4 L_deposit_|

Deposits the 16-bit integer or fractional value into the lower 16 bits of a 32-bit value, and
sign extends the upper 16 bits of a 32-bit value.

Prototype

Word32 L_deposit_ 1 (Wordlé ssrc)

Example

short sl = O0x7FFF;

long result;

result = L_deposit_1(sl);

// Expected value of result: 0x00007FFF

8.2.3.4.5 LL_DEPOSIT_H

Deposits the 32-bit integer or fractional value into the upper 32-bits of a 64 bit value, and
zeros out the lower 32-bits of a 64-bit value.

Prototype

Wordée4 _ LL deposit h(Word32 lsrc)

Example

long s = 0x12341234;
long long result;
result = LL deposit _h (s);

// Expected value of result: 0x0000000012341234

8.2.3.4.6 LL_DEPOSIT_L

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

238 Freescale Semiconductor, Inc.

g |

4
Chapter 8 Inline Assembly Language and Intrinsics

Deposits the 32-bit integer or fractional value into the lower 32-bits of a 64 bit value, and
sign extends the upper 32-bits of a 64-bit value.

Prototype

Worde4 _ LL deposit 1 (Word32 lsrc)

Example

long s = 0x12341234;
long long result;
result = LL deposit 1 (s);

// Expected value of result: 0x0000000012341234

8.2.3.4.7 LL_EXTRACT_H

Extracts the 32 MSBs of a 64-bit integer or fractional value. Returns a 32-bit value.
Prototype

Word32 _ LL extract h(Wordé4 llsrc)

Example

long long s = 0x1234123443214321;
long result;
result = LL_extract_h (s);

// Expected value of result: 0x12341234

8.2.3.4.8 LL_EXTRACT_L

Extracts the 32 LSBs of a 64-bit integer or fractional value. Returns a 32-bit value.

Prototype

Word32 LL extract 1 (Wordé64 llsrc)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 239

A
4

4
A

mnrinisic Functions

Example

long long s = 0x1234123443214321;
long result;
result = LL_extract_h (s);

// Expected value of result: 0x43214321

8.2.3.5 Division

The intrinsic functions of the division group are:

e div_s

e DIV_S INT

» div_sdq

e DIV_S4Q_INT
e div_Is

e DIV_LS_INT

e div_lsdq

e DIV_LS4Q_INT
« LL DIV

e LL_DIV_INT

e LL_DIV_S4Q_INT

8.2.3.5.1 div_s

Single quadrant division, that is, both operands are of positive 16-bit fractional values,
returning a 16-bit result. If both operands are equal, returns Ox7FFF (occurs naturally).

NOTE
Does not check for division overflow or division by zero.

Prototype

Wordlé div_s(Wordlé s numerator, Wordlé s denominator)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

240 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics
Example

short s1=0x2000; /* 0.25 */
short s2=0x4000; /* 0.5 */

short result;

result = div_s(sl,s2);

// Expected value of result: 0.25/0.5 = 0.5 = 0x4000

8.2.3.5.2 DIV_S_INT

Single quadrant division (i.e. both operands positive) of two 16-bit integer values,
returning a 16-bit result. If both operands are equal, returns $7FFF (occurs naturally).

Prototype

Wordlé _ div_s_ int (Wordlé s_denominator, Wordlé s numerator)

Example

int sl = 0x2000; /* 8192 x/
int s2 = 0x0800; /* 2048 */
int result;

result = div_s_int (s1,s2);

// Expected value of result: 8192 / 2048 = 4 = 0x0004

8.2.3.5.3 div_s4q

Four quadrant division of two 16-bit fractional values, returning a 16-bit result.

NOTE

Does not check for division overflow or division by zero.

Prototype

Wordlé div_s4qg(Wordlé s numerator, Wordlé s_denominator)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 241

A 4
4\ |

mnrinisic Functions

Example
short s1=0xE000; /* -0.25 */
short s2=0xC000; /* -0.5 */

short result;
result = div_s4qg(sl,s2);

// Expected value of result: -0.25/-0.5 = 0.5 = 0x4000

8.2.3.5.4 DIV_S4Q_INT

Four quadrant division of a 16-bit integer dividend and a 16-bit integer divisor, returning
a 16-bit result.

Prototype

Wordlé _ div_s4qg int (Wordl6é s_numerator, Wordlé

s_denominator)

Example

int sl = 0xXE000; /* -8192 */
int s2 = 0x0800; /* 2048 */
int result;

result = div_s4qg int (s1,s2);

// Expected value of result: -8192 / 2048 = -4 = OxXFFFC

8.2.3.5.5 div_Is

Single quadrant division, that is, both operands are positive two 16-bit fractional values,
returning a 16-bit result. If both operands are equal, returns Ox7FFF (occurs naturally).

NOTE
Does not check for division overflow or division by zero.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

242 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

Prototype

Wordlé div_1s(Word32 1 numerator, Wordlé s _denominator)

Example

long 1 =0x20000000;/* 0.25 */
short s2=0x4000;/* 0.5 */

short result;

result = div_1s(1,s2);

// Expected value of result: 0.25/0.5 = 0.5 = 0x4000

8.2.3.5.6 DIV_LS_INT

Single quadrant division (i.e. both operands positive) of a 32-bit integer dividend and a
16-bit integer divisor, returning a 16-bit result. If both operands are equal, returns $7FFF
(occurs naturally).

Prototype

Wordlé _ div_1s int (Wordlé s denominator, Word32 1 numerator)

Example

int sl = 0x2000; /* 8192 */

long s2 = 0x08000000; /* 134217728 */
int result;

result = div_s int (sl,s2);

// Expected value of result: 134217728 / 8192 = 16384 = 0x4000

8.2.3.5.7 div_Is4q

Four quadrant division of a 32-bit fractional dividend and a 16-bit fractional divisor,
returning a 16-bit result.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 243

A 4
4\ |

mnrinisic Functions

NOTE

Does not check for division overflow or division by zero.

Prototype

Wordlé div_1s4qg(Word32 1 numerator, Wordlé s_denominator)

Example

long 1 =0xE0000000; /* -0.25 */
short s2=0xC000;/* -0.5 */

short result;

result = div_1ls4q(sl,s2);

// Expected value of result: -0.25/-0.5 = 0.5 = 0x4000

8.2.3.5.8 DIV_LS4Q_INT

Four quadrant division of a 32-bit integer dividend and a 16-bit integer divisor, returning
a 16-bit result.

Prototype

Wordlé _ div_1s4qg int (Wordlé s_denominator, Word32

1 numerator)

Example

int sl = 0xE000; /* -8192 */

long s2 = 0x08000000; /* 134217728 */
int result;

result = div_1ls4qg int (sl1,s2);

// Expected value of result: 134217728 / -8192 = -16384 = 0xC000

8.2.3.5.9 LL_DIV

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

244 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

Division of one 64-bit fractional value and one 32-bit fractional value, returning a 32-bit
result.

Prototype

Word32 _ LL div(Wordé64 s numerator, Word32 s denominator)

Example

ong long sl = 0x1807E01E00000000;
long s2 = 0x300F0000;

long result;

result = LL div (sl,s2);

// Expected value of result: 0x1807E01E00000000 / 0x300F0000 = 0x40010000

NOTE

The intrinsics 11 _sesoor.n file must be included.

8.2.3.5.10 LL_DIV_INT

Single quadrant division (i.e. both operands positive) of two 64-bit integer values,
returning a 64-bit result.

Prototype

Worde4 _ LL div int (Wordé64 s numerator, Wordé4 s denominator)

Example

long long sl 0x000000001807E01E;
long long s2 = 0x000000000000300F;
long long result;

result = LL div_int (sl, s2);

// Expected value of result: 0x000000001807E01E / 0x000000000000300F = 0x0000000000008002

8.2.3.5.11 LL_DIV_S4Q_INT

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 245

\ ¥ 4
g gl
mumisic Functions

Four quadrant division of a 64-bit integer dividend and a 64-bit integer divisor, returning
a 64-bit result.

Prototype

Worde4 _ LL div s4qg_int (Wordé4 s_denominator, Wordé64

s_numerator)

Example

long long sl

0x000000001807E01E;
long long s2 = 0x000000000000300F;
long long result;

result = LL div s4q int (sl, s2);

// Expected value of result: 0x000000001807E01E / 0x000000000000300F = 0x0000000000008002

8.2.3.6 Multiplication/MAC

The intrinsic functions of the multiplication/MAC group are:

* mac_r
e MAC_R_INT
e msu_r

e MSU_R_INT
e mult

e« MULT _INT

e mult r

e« MULT_R_INT
* [L_mac

e L MAC_INT
e L msu

e L MSU_INT
e L mult

e L MULT_INT
e L mult_Is

« L MULT_LS_INT
 LL_LL_MULT_INT
e LL MULT_INT

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

246 Freescale Semiconductor, Inc.

A
4

4
A

« LL_LL_MAC_INT
e LL_MAC_INT

e LL_MSU_INT

e LI LL_MSU_INT
e LL_ MULT_LS_INT
 LL_ LL_MULT

« L MULT

« LL_LL_MAC

e LL_MAC

« L MSU

« LL_LL_MSU

« LL_ MULT_LS

8.2.3.6.1 mac_ r

Chapter 8 Inline Assembly Language and Intrinsics

Multiply two 16-bit fractional values and add to 32-bit fractional value. Round into a 16-
bit result, saturating if necessary. When an accumulator is the destination, zeroes out the

LSP portion.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data

ALU results enabled.

OMR's R bit was set to 1 at least three cycles before this code, that is, twos complement

rounding, not convergent rounding.

Prototype

Wordlé mac_r (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

short sl1 = 0xC000;/* - 0.5 */
short s2 = 0x4000;/* 0.5 x/
short result;

long Acc = 0x0000FFFF;

result = mac_r (Acc,sl,s2);

// Expected value of result:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

247

3
4

4
A

mnrinisic Functions

8.2.3.6.2 MAC_R_INT

Multiply two 16-bit integer values and add to 32-bit integer value. Round into a 16-bit
result.

Prototype

Wordlé _ mac_r int (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

long s1 = 0x20000000;/* 536870912 */
int s2 = 0x2000;/* 8192 */

int s3 = 0x2000;/* 8192 */

int result;

result = mac_r int (sl, s2, s3);

// Expected value of result : round (8192 * 8192 + 536870912) = round (603979776) = 9216
0x2400

8.2.3.6.3 msu_r

Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional
value. Round into a 16-bit result, saturating if necessary. When an accumulator is the
destination, zeroes out the LSP portion.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

OMR's R bit was set to 1 at least three cycles before this code, that is, twos complement
rounding, not convergent rounding.

Prototype

Wordlé msu_r (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

short sl = 0xC000;/* - 0.5 */

short s2 0x4000;/* 0.5 */

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

248 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

short result;

long Acc = 0x20000000;

result = msu r(Acc,sl,s2);

// Expected value of result: 0x4000

8.2.3.6.4 MSU_R_INT

Multiply two 16-bit integer values and substract this product from a 32-bit integer value.
Round into a 16-bit result.

Prototype

Wordlé msu_r int (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

long s1 = 0x20000000;/* 536870912 */
int s2 = 0x2000;/* 8192 */

int s3 = 0x2000;/* 8192 */

int result;

result = msu r int (sl, s2, s3);

// Expected value of result : round (536870912 - 8192 * 8192) = round (469762048) = 7168 =
0x1c00

8.2.3.6.5 mulit

Multiply two 16-bit fractional values and truncate into a 16-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes out
the LSP portion.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 249

A
4

4
A

mnrinisic Functions

Wordlé mult (Wordlé sinpl, Wordlé sinp2)

Example

short s1 = 0x2000;/* 0.25 */

short s2 0x2000;/* 0.25 */

short result;

result = mult(sl,s2);

// Expected value of result: 0.625 = 0x0800

8.2.3.6.6 MULT_INT

Multiply two 16-bit integer values and truncate into a 16-bit integer result.

Prototype

Wordlé _ mult int (Wordlé sinpl, Wordlé sinp2)

Example

int sl 0x2000;/* 8192 */

int s2 0x2000;/* 8192 */

int result;
result = mult_int (sl1, s2);

// Expected value of result : 8192 * 8192 = high (67108864) = 1024 = 0x0400

8.2.3.6.7 mult_r

Multiply two 16-bit fractional values, round into a 16-bit fractional result. Saturates only
for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes out the
LSP portion.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

250 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

OMR's R bit was set to 1 at least three cycles before this code, that is, twos complement
rounding, not convergent rounding.

Prototype

Wordlé mult r (Wordlé sinpl, Wordlé sinp2)

Example

short si1 0x2000; /* 0.25 */

short s2 = 0x2000;/* 0.25 */

short result;

result = mult r(sl,s2);

// Expected value of result: 0.0625 = 0x0800

8.2.3.6.8 MULT_R_INT

Multiply two 16-bit integer values and round into a 16-bit integer result.

Prototype

Wordlé _ mult r int (Wordlé sinpl, Wordlé sinp2)

Example

int sl 0x2000;/* 8192 */

int s2 = 0x2000;/* 8192 */

int result;
result = mult_int (s1, s2);

// Expected value of result : 8192 * 8192 = round (67108864) = 1024 = 0x0400

8.2.3.6.9 L mac

Multiply two 16-bit fractional values and add to 32-bit fractional value, generating a 32-
bit result, saturating if necessary.

Assumptions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 251

\
Y

4
A

mnrinisic Functions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L mac (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

short sl1 = 0xC000;/* - 0.5 */

short s2

0x4000;/* 0.5 x/

long result, Acc = 0x20000000;/* 0.25 */

result = L mac(Acc,sl,s2);

// Expected value of result: 0

8.2.3.6.10 L_MAC_INT

Multiply two 16-bit integer values and add to 32-bit integer value, generating a 32-bit
result.

Prototype

Word32 _ L mac_int (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

long sl = 0x20000000;/* 536870912 */

int s2

0x2000;/* 8192 */

int s3 = 0x2000;/* 8192 */

long result;

result = L mac_int (sl, s2, s3);

// Expected value of result: 8192 * 8192 + 536870912 = 603979776 = 0x24000000

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

252

Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

8.2.3.6.11 L _msu

Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional
value, saturating if necessary. Generates a 32-bit result.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L msu(Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

short sl = 0xC000;/* - 0.5 */
short s2 = 0xC000;/* - 0.5 */

long result, Acc = 0;

result = L msu(Acc,sl,s2);

// Expected value of result: 0.25

8.2.3.6.12 L_MSU_INT

Multiply two 16-bit integer values and substract this product from a 32-bit integer value.
Generates a 32-bit result.

Prototype

Word32 L msu_int (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example

long sl = 0x20000000;/* 536870912 */

int s2 = 0x2000;/* 8192 */

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 253

A
mnrinisic Functions
int s3 = 0x2000;/* 8192 */
long result;

result = L msu_int (sl, s2, s3);

// Expected value of result : 536870912 - 8192 * 8192 = 469762048 = 0x1c000000

8.2.3.6.13 L_muit

Multiply two 16-bit fractional values generating a signed 32-bit fractional result.
Saturates only for the case of 0x8000 x 0x8000.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Word32 L mult (Wordlé sinpl, Wordlé sinp2)

Example

short si1 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

long result;

result = L mult(sl,s2);

// Expected value of result: 0.0625 = 0x08000000

8.2.3.6.14 L_MULT_INT

Multiply two 16-bit integer values generating a 32-bit integer result.

Prototype

inline Word32 _ L mult int(register Wordlé sinpl, Wordlé sinp2)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

254 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics
Example

#include <intrinsics 56800E.h>

int sl = 0x2000;/* 8192 */

int s2 = 0x2000;/* 8192 */
long result;

result = L mult int (sl, s2);

// Expected value of result : 8192 * 8192 = 67108864 = 0x04000000

8.23.6.15 L_mulit_Is

Multiply one 32-bit and one-16-bit fractional value, generating a signed 32-bit fractional
result. Saturates only for the case of 0x80000000 x 0x8000.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L mult ls(Word32 linpl, Wordlé sinp2)

Example

long 11 = 0x20000000;/* 0.25 */
short s2 = 0x2000;/* 0.25 */

long result;

result = L mult(1l1l,s2);

// Expected value of result: 0.625 = 0x08000000

8.2.3.6.16 L_MULT_LS_INT

Multiply one 32-bit and one 16-bit integer value, generating a signed 32-bit integer result.
Prototype

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 255

A 4
4\ |

mnrinisic Functions

Word32 L mult 1ls int (Word32 linpl, Wordlé sinp2)

Example

long s1 = 0x20000000;/* 536870912 */
int s2 = 0x2000;/* 8192 */

long result;

result = L mult 1ls int (sl, s2);

// Expected value of result : high(8192 * 536870912) = high(4398046511104) = 67108864 =
0x04000000

8.2.3.6.17 LL_LL _MULT_INT

Multiply two 64-bit integer values generating a signed 64-bit integer result.

Prototype

Wordé64 LL LL mult int (Wordé4 sinpl, Wordé64 sinp2)

Example

long long sl = 0x000000000000A003;
long long s2 = 0x000000000000B005;
long long result;

result = LL LL mult int (sl, s2);

// Expected value of result: 0x000000000000A003 * 0x000000000000B005 = 0x000000006E05300F

8.2.3.6.18 LL_MULT_INT

Multiply two 32-bit integer values generating a signed 64-bit integer result.

Prototype

Wordé64 LL mult int (Word32 sinpl, Word32 sinp2)

Example

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

256 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics
long s1 = 0x0000A003;

long s2 = 0x0000BO005;

long long result;
result = LL mult int (sl, s2);

// Expected value of result: 0x0000A003 * 0x0000B005 = 0x000000006E05300F

8.2.3.6.19 LL_LL_MAC_INT
Multiply two 64-bit integer values and add to 64-bit integer value, generating a 64-bit
result.

Prototype

Wordé64 _ LL LL mac_int (Wordé64 laccum, Wordé64 sinpl, Wordé64 sinp2)

Example
long long sl = 0x000000000000A003;
long long s2 = 0x000000000000BOO5;

long long s = 0x00000000D000800O0;
long long result;
result = LL LL mac_int (s, sl, s2);

// Expected value of result: 0x00000000D0008000 + 0x000000000000A003 * 0x000000000000B005 =
0x00000001305B0O0F

8.2.3.6.20 LL_MAC_INT
Multiply two 32-bit integer values and add to 64-bit integer value, generating a 64-bit
result.

Prototype

Word64 _ LL mac_int (Wordé64 laccum, Word32 sinpl, Word32 sinp2)

Example

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 257

A
4

4
A

mnrinisic Functions

long s1 = 0x0000A003;

long s2

0x0000B0O05;

long long s = 0x00000000D0008000;
long long result;

result = LL mac_int (s, sl, s2);

// Expected value of result: 0x00000000D0008000 + 0x0000A003 * 0x0000B005 = 0x00000001305BOOF

8.2.3.6.21 LL_MSU_INT
Multiply two 32-bit integer values and subtract this product from a 64-bit integer value.
Generates a 64-bit result.

Prototype

Wordée4 _ LL msu_int (Wordé64 laccum, Word32 sinpl, Word32 sinp2)

Example
long s1 = 0x0000A003;
long s2 = 0x0000B005;

long long s = 0x00000000D0008000;
long long result;
result = LL msu_int (s, sl, s2);

// Expected value of result: 0x00000000D0008000 - 0x0000A003 * 0x0000B005 = 0x000000061FB4FF1

8.2.3.6.22 LL_LL_MSU_INT

Multiply two 64-bit integer values and subtract this product from a 64-bit integer value.
Generates a 64-bit result.

Prototype

Worde4 LL LL msu_int (Wordé4 laccum, Wordé4 sinpl, Wordé4 sinp2)

Example

long long sl

0x000000000000A003;
long long s2 = 0x000000000000B005;
long long s = 0x00000000D0008000;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

258 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

long long result;
result = LL LL msu int (s, sl, s2);

// Expected value of result: 0x00000000D0008000 - 0x000000000000A003 * 0x000000000000B0O05 =
0x000000061FB4FF1

8.2.3.6.23 LL_MULT_LS_INT

Multiply a 64-bit integer value with a 32-bit integer value, generating a 64-bit result.
Prototype

Wordé64 _ LL mult 1ls int (Wordé64 linpl, Word32 sinp2)

Example

long long sl = 0x00000000A0030000;
long s2 = 0x0000BO005;

long long result;

result = LL mult 1s int (sl, s2);

// Expected value of result: 0x00000000A0030000 * 0x0000B005 = 0x00006E05300F0000

8.23.6.24 LL_LL MULT

Multiply two 64-bit fractional values generating a signed 64-bit fractional result.

Prototype

Wordé64 _ LL LL mult (Wordé64 sinpl, Wordé64 sinp2)

Example

long long sl = 0x00000000A0030000;

long long s2 = 0x00000000B0050000;
long long result;
result = LL LL mult (sl, s2);

// Expected value of result: 0x00000000A0030000 * 0x00000000B0050000 = O0xDCOA601E00000000

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 259

A
4

4
A

mnrinisic Functions

8.2.3.6.25 LL_MULT

Multiply two 32-bit fractional values generating a signed 64-bit fractional result.

Prototype

Wordée4 _ LL mult (Word32 sinpl, Word32 sinp2)

Example

long s1 = 0xA0030000;

long s2 = 0xB0050000;

long long result;

result = LL mult (sl, s2);

// Expected value of result: 0xXA0030000 * 0xB0050000 = OxX3BFA601E00000000

8.2.3.6.26 LL_LL _MAC
Multiply two 64-bit fractional values and add to 64-bit fractional value, generating a 64-
bit result.

Prototype

Wordé64 _ LL LL mac (Wordé4 laccum, Wordé64 sinpl, Wordé64 sinp2)

Example
long long sl = 0x000000000000A003;
long long s2 = 0x000000000000B005;

long long s = 0x00000000D0008000;
long long result;
result = LL_LL mac (s, sl, s2);

// Expected value of result: 0x00000000D0008000 + 0x000000000000A003 * 0x000000000000B0O05 =
0x00000001ACOAEOQLE

8.2.3.6.27 LL_MAC

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

260 Freescale Semiconductor, Inc.

g |

long s2

Chapter 8 Inline Assembly Language and Intrinsics

Multiply two 32-bit fractional values and add to 64-bit fractional value, generating a 64-
bit result.

Prototype

Wordée4 _ LL mac(Wordé4 laccum, Word32 sinpl, Word32 sinp2)

Example
long s1 = 0x0000A003;
long s2 = 0x0000B005;

long long s = 0x00000000D0008000;
long long result;
result = LL mac (s, sl, s2);

// Expected value of result: 0x00000000D0008000 + 0x0000A003 * 0x0000B0O05 =
0x00000001ACOAEQLE

8.2.3.6.28 LL_MSU

Multiply two 32-bit fractional values and subtract this product from a 64-bit fractional
value. Generates a 64-bit result.

Prototype

Wordée4 _ LL msu(Wordé4 laccum, Word32 sinpl, Word32 sinp2)
Example

long s1 = 0x0000A003;

0x0000B005;

long long s = 0x00000000D0008000;
long long result;
result = LL msu (s, sl, s2);

// Expected value of result: 0x00000000D0008000 - 0x0000A003 * 0x0000B005 =
OXFFFFFFFFF3F61FE2

8.2.3.6.29 LL_LL_MSU

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 261

A
4

4
A

mnrinisic Functions

Multiply two 64-bit fractional values and subtract this product from a 64-bit fractional
value. Generates a 64-bit result.

Prototype

Worde4 _ LL LL msu(Wordé4 laccum, Wordé64 sinpl, Wordé64 sinp2)

Example
long long sl = 0x000000000000A003;
long long s2 = 0x000000000000B005;

long long s = 0x00000000D0008000;
long long result;
result = LL LL msu (s, sl, s2);

// Expected value of result: 0x00000000D0008000 - 0x000000000000A003 * 0x000000000000B005 =
OxXFFFFFFFFF3F61FE2

8.2.3.6.30 LL_MULT_LS

Multiply a 64-bit fractional value with a 32-bit fractional value, generating a 64-bit result.

Prototype

Wordé64 _ LL mult 1ls(Wordé4 linpl, Word32 sinp2)
Example

long long sl = 0x00000000A0030000;
long long s2 = 0x0000BOO5;

long long result;

result = LL_LL msu (sl, s2);

// Expected value of result: 0x00000000A0030000 * 0x0000B005 = 0x0000DCOA601E0000

8.2.3.7 Multiplication/MAC (56800EX)

The intrinsic functions of the multiplication/MAC group for 56800EX instructions are:
* V3_L_mult_int

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

262 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics

_LL_mult_int
_LL_mult

8.2.3.7.1 V3_L_mult_int

Multiply two 32-bit integer values and truncate into a 32-bit integer result (using the
IMPY 32 instruction).

Prototype

Word32 V3 L mult int (Word32 slinpl, Word32 slinp2)

8.2.3.7.2 V3 L mac int

Multiply two 32-bit integer values, and add the lower 32-bits of the product to 32-bit
integer value, generating a 32-bit result (using the IMAC32 instruction).

Prototype

Word32 V3 _L mac_int (Word32 laccum, Word32 slinpl, Word32 slinp2)

8.2.3.7.3 V3_L_mulit

Multiply two 32-bit fractional values and truncate into a 32-bit fractional result (using the
MPY 32 instruction).

Prototype

Word32 V3 L mult (Word32 slinpl, Word32 slinp2)

8.2.3.7.4 V3 L mac

Multiply two 32-bit fractional values, and add the higher 32-bits of the product to 32-bit
fractional value, generating a 32-bit result (using the MAC32 instruction).

Prototype

Word32 V3 L mac(Word32 laccum, Word32 slinpl, Word32 slinp2)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 263

mnrinisic Functions

8.2.3.7.5 V3_LL_mult_int

Multiply two 32-bit integer values generating a signed 64-bit integer result (using the
IMPY 64 instruction).

NOTE
To enable 64-bit long long data type support, compile the
pI'OjGCt with #pragma slld on.

Prototype

Wordé64 V3 LL mult int (Word32 slinpl, Word32 slinp2)

8.23.7.6 V3_LL_mult

Multiply two 32-bit fractional values generating a signed 64-bit fractional result (using
the MPY 64 instruction).

NOTE
To enable 64-bit long long data type support, compile the
project with #pragma slld on".

Prototype

Wordé64 V3 _LL mult (Word32 slinpl, Word32 slinp2)

8.2.3.8 Normalization

The intrinsic functions of the normalization group are:

e ffs s
* norm_s
e ffs 1
e norm_|I

8.2.3.8.1 ffs_s

Computes the number of left shifts required to normalize a 16-bit value, returning a 16-
bit result (finds 1st sign bit). Returns a shift count of 31 for an input of 0x0000.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

264 Freescale Semiconductor, Inc.

g |

4
Chapter 8 Inline Assembly Language and Intrinsics

NOTE

Does not actually normalize the value! Also see the intrinsic
norm_s which handles the case where the input == 0x0000
differently.

Prototype
Wordlé ffs s (Wordlé ssrc)
Example

short sl = 0x2000;/* .25 */

short result;

result = ffs s(sl);

// Expected value of result: 1

8.2.3.8.2 norm_s

Computes the number of left shifts required to normalize a 16-bit value, returning a 16-
bit result. Returns a shift count of 0 for an input of 0x0000.

NOTE
Does not actually normalize the value! This operation is not
optimal on the DSP56800E because of the case of returning 0
for an input of 0x0000. See the intrinsic ffs_s which is more
optimal but generates a different value for the case where the
input == 0x0000.

Prototype

Wordlé norm_ s (Wordlé ssrc)

Example

short s1 = 0x2000;/* .25 */

short result;

result = norm s (sl);

// Expected value of result: 1

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 265

mnrinisic Functions

8.2.3.8.3 ffs_|

Computes the number of left shifts required to normalize a 32-bit value, returning a 16-
bit result (finds 1st sign bit). Returns a shift count of 31 for an input of 0x00000000.

NOTE

Does not actually normalize the value! Also, see the intrinsic
norm_]| which handles the case where the input == 0x00000000
differently.

Prototype
Wordlée ffs 1(Word32 lsrc)
Example

long 11 = 0x20000000;/* .25 */

short result;

result = ffs 1(11);

// Expected value of result: 1

8.2.3.8.4 norm |

Computes the number of left shifts required to normalize a 32-bit value, returning a 16-
bit result. Returns a shift count of O for an input of 0x00000000.

NOTE
Does not actually normalize the value! This operation is not
optimal on the DSP56800E because of the case of returning 0
for an input of 0x00000000. See the intrinsic ffs_l which is

more optimal but generates a different value for the case where
the input == 0x00000000.

Prototype

Wordlé norm 1 (Word32 lsrc)

Example

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

266 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

long 11 = 0x20000000;/* .25 */

short result;

result = norm 1(11);

// Expected value of result: 1

8.2.3.9 Rounding

The intrinsic functions of the rounding group are:

e round_val
e ROUND INT
« LL ROUND

8.2.3.9.1 ROUND_INT

Rounds a 32-bit integer value into a 16-bit result. When an accumulator is the destination,
zeroes out the LSP portion.

Prototype

Wordlé _ round int (Word32 lvarl)

Example

long s = 0x12347FFF;
int result;
result = round int (s);

// Expected value of result: 0x1234

8.2.3.9.2 round val

Rounds a 32-bit fractional value into a 16-bit result. When an accumulator is the
destination, zeroes out the LSP portion.

Assumptions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 267

g |

mnrinisic Functions

OMR's R bit was set to 1 at least three cycles before this code, that is, two's complement
rounding, not convergent rounding.

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Wordlé round (Word32 lvarl)

Example

long 1 = 0x12348002;/*if low 16 bits = OXFFFF > 0x8000 then add 1 */

short result;

result = round val (1) ;

// Expected value of result: 0x1235

8.2.3.9.3 LL_ROUND

Rounds a 64-bit integer or fractional value. Returns a 32-bit value.

Prototype

Word32 _ LL round(Wordé4 llvar)

Example

long long s = 0x1234123443214321;
long result;
result = LL round (s);

// Expected value of result: 0x43214321

8.2.3.10 Shifting

The intrinsic functions of the shifting group are:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

268 Freescale Semiconductor, Inc.

g |

4
Chapter 8 Inline Assembly Language and Intrinsics
* shl
* shlftNs
* shlifts
* shr
e shr_r
* shrtNs
L_shl
e L_shlftNs
e [, shlfts
e [shr
e[shrr
e [, shrtNs

8.2.3.10.1 shl

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation may occur during
a left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE
This operation is not optimal on the DSP56800E because of the
saturation requirements and the bidirectional capability. See the
intrinsic shlftNs or shlfts which are more optimal.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé shl (Wordlée sval2shft, Wordlé s shftamount)

Example

short result;

short sl = 0x1234;

short s2

1;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 269

mnrinisic Functions

result = shl(sl,s2);

// Expected value of result: 0x2468

8.2.3.10.2 shlftNs

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation does not occur
during a left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE
Ignores upper N-5 bits of s_shftamount €xcept the sign bit
(MSB). If s_shftamount is positive and the value in the lower 5
bits of s_shftamount is greater than 15, the result is 0. If
s_shftamount 18 negative and the absolute value in the lower 5
bits of s_shftamount 1S greater than 15, the result is O if svai2shfe
is positive, and oxrrrr if svaizsntt 1S negative.

Prototype

Wordlé shlftNs (Wordlé sval2shft, Wordlé s_shftamount)

Example

short result;

short sl = 0x1234;

short s2

1;

result = shlftNs(sl,s2);

// Expected value of result: 0x2468

8.2.3.10.3 shlfts

Arithmetic left shift of 16-bit value by a specified shift amount. Saturation does occur
during a left shift if required. When an accumulator is the destination, zeroes out the LSP
portion.

NOTE
This 1s not a bidirectional shift.

Assumptions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

270 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics

Assumed s_shftamount 18 pOSitiVC.

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé shlfts(Wordlé sval2shft, Wordlé s shftamount)

Example

short result;
short sl = 0x1234;

short s2 = 3;

result = shlfts(sl,s2);

// Expected value of result: 0x91a0

8.2.3.10.4 shr

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation may occur during
a left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE
This operation is not optimal on the DSP56800E because of the
saturation requirements and the bidirectional capability. See the
intrinsic shrtNs which is more optimal.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé shr (Wordlé sval2shft, Wordlé s shftamount)

Example

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 271

mnrinisic Functions

short result;
short sl = 0x2468;

short s2= 1;

result = shr(sl,s2);

// Expected value of result: 0x1234

8.2.3.10.5 shr_ r

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. If a right shift is performed,
then rounding performed on result. Saturation may occur during a left shift. When an
accumulator is the destination, zeroes out the LSP portion.

NOTE
This operation is not optimal on the DSP56800E because of the
saturation requirements and the bidirectional capability. See the
intrinsic shrtNs which is more optimal.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé shr r(Wordlé s_val2shft, Wordlé s_shftamount)

Example

short result;
short sl = 0x2468;

short s2= 1;

result = shr(sl,s2);

// Expected value of result: 0x1234

8.2.3.10.6 shriNs

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

272 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation does not occur
during a left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE
Ignores upper N-5 bits of s_shftamount €xcept the sign bit
(MSB). If s_shftamount is positive and the value in the lower 5
bits of s_shframount 1s greater than 15, the result is O if svaiz2shst
is positive, and oxrrrr if svaizshfe 1S negative. If s_shftamount 1S
negative and the absolute value in the lower 5 bits of
s_shftamount 18 greater than 15, the result is 0.

Prototype

Wordlé shrtNs (Wordlé sval2shft, Wordlé s_shftamount)

Example

short result;
short sl = 0x2468;

short s2= 1;

result = shrtNs(sl,s2);

// Expected value of result: 0x1234

8.2.3.10.7 L_shl

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation may occur during
a left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE
This operation is not optimal on the DSP56800E because of the
saturation requirements and the bidirectional capability. See the
intrinsic L_shlftNs or L_shlfts which are more optimal.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 273

\ ¥ 4
g gl
mumisic Functions

Prototype

Word32 L_shl (Word32 lval2shft, Wordlé s shftamount)

Example

long result, 1 = 0x12345678;

short s2 = 1;

result = L _shl(1l,s2);

// Expected value of result: 0x2468ACFO0

8.2.3.10.8 L _shilftNs

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation does not occur
during a left shift.

NOTE
Ignores upper N-5 bits of s_shftamount except the sign bit
(MSB).

Prototype

Word32 L shlftNs (Word32 lval2shft, Wordlé s shftamount)

Example

long result, 1 = 0x12345678;

short s2= 1;

result = L shlftNs(1l,s2);

// Expected value of result: 0x2468ACF0

8.2.3.10.9 L_shlfts

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

274 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics

Arithmetic left shift of 32-bit value by a specified shift amount. Saturation does occur
during a left shift if required.

NOTE

This is not a bidirectional shift.
Assumptions
Assumed s_shftamount 1S positive.

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_shlfts (Word32 lval2shft, Wordlé s_shftamount)

Example

long result, 1 = 0x12345678;

short s1 = 3;

result = shlfts(l, sl);

// Expected value of result: 0x91A259E0

8.2.3.10.10 L_shr

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation may occur during
a left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE
This operation is not optimal on the DSP56800E because of the
saturation requirements and the bidirectional capability. See the
intrinsic L_shrtNs which is more optimal.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 275

A 4
4\ |

mnrinisic Functions

Word32 L_shr (Word32 lval2shft, Wordlé s shftamount)

Example

long result, 1 = 0x24680000;

short s2= 1;

result = L shrtNs(l,s2);

// Expected value of result: 0x12340000

8.2.3.10.11 L_shr_r

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. If a right shift is performed,
then rounding performed on result. Saturation may occur during a left shift.

Assumptions

OMR's SA bit was set to 1 at least three cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Word32 L_shr r(Word32 lval2shft, Wordlé s_shftamount)

Example

long 11 = 0x41111111;
short s2 = 1;

long result;

result = L_shr r(1l1,s2);

// Expected value of result: 0x20888889

8.2.3.10.12 L_shrtNs

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

276 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics

Arithmetic shift of 32-bit value by a specified shift amount.If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation does not occur
during a left shift.

NOTE
Ignores upper N-5 bits of s_shttamount €xcept the sign bit
(MSB).

Prototype

Word32 L_shrtNs (Word32 lval2shft, Wordlé s_shftamount)

Example

long result, 1 = 0x24680000;

short s2= 1;

result = L shrtNs(l,s2);

// Expected value of result: 0x12340000

8.2.4 Modulo Addressing Intrinsic Functions

A modulo buffer is a buffer in which the data pointer loops back to the beginning of the
buffer once the pointer address value exceeds a specified limit.

The following figure depicts a modulo buffer with the limit six. Increasing the pointer
address value to 0x106 makes it point to the same data it would point to if its address
value were 0x100.

Address | Data
0x100 0.68
0x101 0.73
0x102 0.81
0x103 0.86
0x104 0.90
0x105 0.95

Figure 8-1. Example of Modulo Buffer

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 277

mnrinisic Functions

The CodeWarrior C compiler for DSPS6800E uses intrinsic functions to create and
manipulate modulo buffers. Normally, a modulo operation, such as the % operator,
requires a runtime function call to the arithmetic library. For normally timed critical DSP
loops, this binary operation imposes a large execution-time overhead.

The CodeWarrior implementation, however, replaces the runtime call with an efficient
implementation of circular-address modification, either by using hardware resources or
by manipulating the address mathematically.

Processors such as the DSP56800E have on-chip hardware support for modulo buffers.
Modulo control registers work with the DSP pointer update addressing modes to access a
range of addresses instead of a continuous, linear address space. But hardware support
imposes strict requirements on buffer address alignment, pointer register resources, and
limited modulo addressing instructions. For example, RO and R1 are the only registers
available for modulo buffers.

Accordingly, the CodeWarrior C compiler uses a well-defined set of intrinsic APIs to
implement modulo buffers.

8.2.4.1 Modulo Addressing Intrinsic Functions
The intrinsic functions for modulo addressing are:

e mod_init

e mod_initintl6
e mod_start

e mod_access

* __mod_update
__mod_stop

e __mod_getintl6
e mod_setintl6
e mod_error

8.2.4.1.1 _ mod._init

Initialize a modulo buffer pointer with arbitrary data using the address specified by the
<addr_expr>. This function expects a byte address. <adadr_exprs is an arbitrary C expression
which normally evaluates the address at the beginning of the modulo buffer, although it
may be any legal buffer address. The <moda_gesc> evaluates to a compile time constant of
either O or 1, represented by the modulo pointers RO or R1, respectively. The <mod_sz> 1S a

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

278 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics

compile time integer constant representing the size of the modulo buffer in bytes. The
<data_sz> 1 @ compile time integer constant representing the size of data being stored in
the buffer in bytes. <data_sz- is usually derived from the sizeof () Operator.

The _moa_init function may be called independently for each modulo pointer register.
If _woda_error has not been previously called, no record of _mod_init errors are saved.

If mod error has been previously called, _wod_init may set one of the error condition in
the static memory location defined by _ mod_error. (S€e _ mod_error description for a
complete list of error conditions).

Prototype

void = mod init (
int <mod descs>,
void * <addr exprs>,
int <mod sz>,

int <data sz>);

Example

Initialize a modulo buffer pointer with a buffer size of 3 and where each element is a
structure:

__mod init (0, (void *)&struct buf[0], 3, sizeof (struct

mystruct));

8.2.4.1.2 _ mod initint16

Initialize modulo buffer pointer with integer data. The _ mod_initint16 function behaves
similarly to the _mod_init function, except that word addresses are used to initialize the
modulo pointer register.

Prototype

void _ mod_initint1é6 (
int <mod descs>,

int * <addr_exprs>,

int <mod sz>);

Example

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 279

mnrinisic Functions

Initialize an integer modulo buffer pointer with a buffer size of 10.

~_mod initintl6(0, &int buf[9], 10);

8.2.4.1.3 = mod_ start

Write the modulo control register. The _ moa_start function simply writes the modulo
control register (MO1) for each modulo pointer register which has been previously
initialized. The values written to MO1 depends on the size of the modulo buffer and
which pointers have been initialized.

Prototype

void _ mod start(void)

8.24.14 mod access

Retrieve the modulo pointer. The _ mod_access function returns the modulo pointer value
specified by <mod_descs in the R2 register, as per calling conventions. The value returned
is a byte address. The data in the modulo buffer may be read or written by a cast and
dereference of the resulting pointer.

Prototype

void * mod access(int <mod descs>) ;

Example

Assign a value to the modulo buffer at the current pointer.

* ((char *)_ mod access(0)) = (char)i;

8.2.4.1.5 _ mod_update

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

280 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics

Update the modulo pointer. The _ mod_updaate function updates the modulo pointer by the
number of data type units specified in <amounts. <amount> may be negative. Of course, the
pointer will wrap to the beginning of the modulo buffer if the pointer is advanced beyond
the modulo boundaries. <amount> must be a compile time constant.

Prototype

void _ mod update(int <mod desc>, int <amount>) ;

Example

Advance the modulo pointer by 2 units.

__mod_update (0, 2);

8.2.4.1.6 _ mod_stop

Reset modulo addressing to linear addressing. This function writes the modulo control
register with a value which restore linear addressing to the RO and R1 pointer registers.

Prototype

void _ mod stop(int <mod desc) ;

8.2.4.1.7 __mod_getint16

Retrieve a 16-bit signed value from the modulo buffer and update the modulo
pointer.This function returns an integer value from the location pointed to by the modulo
pointer. The function then updates the modulo pointer by <amount> integer units

(<amounts+*2 bytes). <amount> Must be a compile time constant.

Prototype

int mod getintlé6(int <mod desc>, int <amounts>);

Example

Retrieve an integer value from a modulo buffer and update the modulo buffer pointer by
one word.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 281

mnrinisic Functions

int y;

y = _ mod_getintlé6(0, 1);

8.2.4.1.8 _ mod_setint16

Write a 16-bit signed integer to the modulo buffer and update the pointer. This function
evaluates <int_expr> and copies the value to the location pointed to by the modulo pointer.
The modulo pointer is then updated by <amounts. <amount> must be a compile-time constant.

Prototype

int mod setintl6(int <mod desc>, int <int expr>, int

<amount>) ;

Example

Write the modulo buffer with a value derived from an expression, do not update modulo
pointer.

__mod_setintlé6(0, getrandomint(), 0);

8.2.4.1.9 __ _mod error

Set up a modulo error variable. This function registers a static integer address to hold the
error results from any of the modulo buffer API calls. The function returns O if it is
successful, 1 otherwise. The argument must be the address of a static, global integer
variable. This variable holds the result of calling each of the previously defined API
functions. This allows the user to monitor the status of the error variable and take action
if the error variable 1s non-zero. Typically, use _ mod_error during development and
remove it once debugging is complete. moda_error generates no code, although the error
variable may occupy a word of memory. A non-zero value in the error variable indicates
a misuse of the one of the API functions. Once the error variable is set it is reset when
__mod_stop 18 called. The error variable contains the error number of the last error. A
successful call to an API function does not reset the error variable; only _ moa_stop resets
the error variable.

Prototype

int mod error(int * <static object addrs);

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

282 Freescale Semiconductor, Inc.

g |

Chapter 8 Inline Assembly Language and Intrinsics

Example

Register the error number variable

static int myerrno;

assert (_ mod error (&myerrno) == 0) ;

8.2.4.2 Modulo Buffer Examples

The following listing is a modulo buffer example.

Listing: Modulo Buffer Example 1

#pragma define section DATA INT MODULO ".data_int modulo"

/* Place the buffer object in a unique section so the it can be aligned properly in the
linker control file. */

#pragma section DATA INT MODULO begin
int int buf[10];

#pragma section DATA INT MODULO end

/* Convenient defines for modulo descriptors */

#define MO 0

#define M1 1

int main (void)

{

int i;

/* Modulo buffer will be initialized. RO will be the modulo pointer register. The buffer
size is 10 units. The unit size is ‘sizeof (int)’. */

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 283

g |

mnrinisic Functions

_ mod_init (MO, (void *)&int buf[0], 10, sizeof(int));
/* Write the modulo control register */
__mod_start () ;

/* Write int buf [0] through int buf[9]. RO initially points at int buf[0] and wraps when the
pointer value exceeds int _buf [9] . The pointer is updated by 1 unit each time through the
loop */

for (1i=0; 1<100; i+4+)

{

*((int *) mod access(M0)) = 1i;

__mod_update (MO, 1);

/* Reset modulo control register to linear addressing mode */

__mod_stop () ;

}

The following listing is an another modulo buffer example.

Listing: Modulo Buffer Example 2

/* Set up a static location to save error codes */

if (! _ mod error(&err codes))

printf (* mod error set up failed\n”);

}

/* Initialize a modulo buffer pointer, pointing to an array of 10 ints. */

__mod initintl6 (MO, &int buf[9], 10);

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

284 Freescale Semiconductor, Inc.

Chapter 8 Inline Assembly Language and Intrinsics

/* Check for success of previous call */
if (err_code) { printf (“* mod initintlé failed\n”) };

~_mod_start () ;

/* Write modulo buffer with the result of the expression “i”.
Decrement the buffer pointer for each execution of the loop.

The modulo buffer wraps from index 0 to 9 through the entire execution of the loop. */
for (i=100; i»0; i--) {

__mod_setintlé (MO, 1, -1);

__mod_stop () ;

8.2.4.3 Points to Remember
As you use modulo buffer intrinsic functions, keep these points in mind:

* You must align modulo buffers properly, per the constraints that the M56800F User's
Manual explains. There is no run-time validation of alignment. Using the modulo
buffer API on unaligned buffers will cause erratic, unpredictable behavior during
data accesses.

e Calling _ mod_start () to write to the modulo control register effectively changes the
hardware's global-address-generation state. This change of state affects all user
function calls, run-time supporting function calls, standard library calls, and
interrupts.

* You must account for any side-effects of enabling modulo addressing. Such a side-
effect is that RO and R1update in a modulo way.

* If you need just one modulo pointer is required, use the RO address register. Enabling
the R1 address register for modulo use also enables the RO address register for
modulo use. This is true even if _ mod_init() OF _mod_initint16 () have not explicitly
initialized RO.

A successful API call does not clear the error code from the error variable. Only
function _moa_stop clears the error code.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 285

g |

mnrinisic Functions

8.2.4.4 Modulo Addressing Error Codes

To register a static variable for error-code storage, use _moda_error (). If an error occurs,
this static variable will contain one of the values the following table explains.

Table 8-4. Modulo Addressing Error Codes

Code Meaning

11 <mod_desc> parameter must be zero or one.

12 RO modulo pointer is already initialized. An extraneous call to
_ mod_init or _mod initint1é to initialize RO has been
made.

13 R1 modulo pointer is already initialized. An extraneous call to
__mod_initor _mod_initint16 to initialize R1 has been
made.

14 Modulo buffer size must be a compile time constant.

15 Modulo buffer size must be greater than one.

16 Modulo buffer size is too big.

17 Modulo buffer size for RO and R1 must be the same.

18 Modulo buffer data types for RO and R1 must be the same.

19 Modulo buffer has not been initialized.

20 Modulo buffer has not been started.

21 Parameter is not a compile time constant.

22 Attempt to use word pointer functions with byte pointer
initialization. _ mod_getintlé and _ mod setintlé
were called but _mod init was used for initialization.
__mod_initint16 is required for pointer initialization.

23 Modulo increment value exceeds modulo buffer size.

24 Attempted use of R1 as a modulo pointer without initializing
RO for modulo use.

The following table lists the error codes possible for each modulo addressing intrinsic
function.

Table 8-5. Possible Error Codes

Function Possible Error Code
__mod_init 11,12, 13, 14, 15, 16, 17, 18, 21
__mod_stop none
__mod_getintlé 11, 14, 20, 22, 24
__mod_setintlé 11, 14, 20, 22, 24
__mod_start none
__mod_access 11,19, 20, 24

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

286 Freescale Semiconductor, Inc.

h o
g |

Chapter 8 Inline Assembly Language and Intrinsics

Table 8-5. Possible Error Codes (continued)

Function

Possible Error Code

__mod_update

11, 14, 20, 23, 24

~_mod_initintlé

11,12, 13, 14,15,16, 17

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

287

}{ |

mumnsic Functions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

288 Freescale Semiconductor, Inc.

g |

Chapter 9
Pragmas

The #pragma preprocessor directive specifies option settings to the compiler.

This chapter describes how to use pragmas and lists the pragmas that the compiler
recognizes:

* Using Pragmas

* Pragma Scope

 Standard C and C++ Conformance Pragmas

* Language Translation and Extensions Pragmas

* Errors, Warnings, and Diagnostic Control Pragmas
* Preprocessing and Precompilation Pragmas
 Library and Linking Control Pragmas

* Object Code Organization and Generation Pragmas
* Avoiding Possible Hitches with Enabled Pragma Interrupt
e Optimization Pragmas

* Profiler Pragmas

9.1 Using Pragmas

Pragma settings may be manipulated to control the compiler's code generation. The
compiler has additional capabilities to manage pragma settings themselves:

* Checking Pragma Settings

» Saving and Restoring Pragma Settings

e Determining which Settings are Saved and Restored
e Illegal Pragmas

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 289

A
4

4
A

|
using Pragmas

9.1.1 Checking Pragma Settings

The preprocessor function _ option() returns the state of pragma settings at compile-time.
The syntax is

__option(setting-name)
where setting-name is the name of a pragma that accepts the on, off, and reset options.

If setting-name 1S on, _option (Setting-name) returns 1. If setting-name is ott,

__option (setting-name) returns 0. If setting-name is not the name of a pragma,

__option (Setting-name) returns false. If setting-name is the name of a pragma that does not
accept the on, off, and reset Options, the compiler issues a warning message.

The following listing shows an example.

Listing: Using the __option() Preprocessor Function

#if option(ANSI strict)

#include "portable.h" /* Use the portable declarations. */

#else

#include "custome.h" /* Use the specialized declarations. */

#endif

Table 9-1.

Preprocessor Setting Names for __option()

Argument

Corresponding Setting or Pragma

always_inline

Pragma always_inline.

ANSI_strict ANSI Strict setting in the Language panel and pragma
ANSI_strict.
auto_inline Auto-Inline setting of the Inlining menu in the Language

panel and pragma auto_inline.

check inline sp effects

Pragma check inline sp effects.

const_strings

Pragma const_strings.

defer_codegen

Pragma defer_codegen.

dollar_identifiers

Pragma dollar_identifiers.

dont_inline

Don't Inline setting in the Language panel and pragma
dont_inline.

dont_reuse_strings

Reuse Strings setting in the Language panel and pragma
dont_reuse_strings.

enumsalwaysint

Enums Always Int setting in the Language panel and
pragma enumsalwaysint.

explicit zero data

Pragma explicit zero_ data.

factorl Pragma factorl.
factor2 Pragma factor2.
factor3 Pragma factor3.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

290

Freescale Semiconductor, Inc.

g |

Chapter 9 Pragmas

Table 9-1. Preprocessor Setting Names for __option() (continued)

Argument

Corresponding Setting or Pragma

extended errorcheck

Extended Error Checking setting in the Language panel
and pragma extended_errorcheck.

fullpath prepdump

Pragma fullpath_ prepdump.

initializedzerodata

Pragma initializedzerodata.

inline bottom up

Pragma inline bottom up.

interrupt

Pragma interrupt.

line prepdump

Pragma line prepdump.

mpwc_newline

Map newlines to CR setting in the Language panel and
pragma mpwc_newline.

mpwc_relax

Relaxed Pointer Type Rules setting in the Language panel
and pragma mpwc_relax.

nofactorl Pragma nofactorl.
nofactor2 Pragma nofactor2.
nofactor3 Pragma nofactor3.

only std keywords

ANSI Keywords Only setting in the Language panel and
pragma only std keywords.

opt common subs

Pragma opt_common_subs.

opt dead assignments

Pragma opt dead_assignments.

opt dead code

Pragma opt _dead_code.

opt_lifetimes

Pragma opt_lifetimes.

opt_loop_ invariants

Pragma opt _loop_ invariants.

opt_propagation

Pragma opt _propagation.

opt_strength reduction

Pragma opt_strength reduction.

opt_strength reduction strict

Pragma opt_strength reduction_ strict.

opt _unroll loops

Pragma opt_unroll loops.

optimize for size

Pragma optimize_for_ size.

packstruct

Pragma pactstruct.

peephole

Pragma peephole.

pool strings

Pool Strings setting in the Language panel and pragma
pool strings.

profile

Pragma profile.

readonly strings

Make String Read Only setting in the M56800 Processor
settings panel and pragma readonly strings.

require prototypes

Require Function Prototypes setting in the Language panel
and pragma require prototypes.

reverse bitfields

Pragma reverse bitfields.

simple prepdump

Pragma simple prepdump.

suppress_init code

Pragma suppress_init code.

suppress_warnings

Pragma suppress warnings.

syspath once

Pragma syspath_once.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

291

\
Y

4
A

using Pragmas

Table 9-1. Preprocessor Setting Names for __option() (continued)

Argument

Corresponding Setting or Pragma

unsigned char

Use Unsigned Chars setting in the Language panel and
pragma unsigned char.

warn_any ptr int conv

Pragmawarn_any ptr_int conv.

warn_emptydecl

Empty Declarations setting in the Language panel and
pragma warn_emptydecl.

warn_extracomma

Extra Commas setting in the Preprocessor panel and
pragma warn_extracomma.

warn_ filenamecaps

Pragma warn_filenamecaps.

warn filenamecaps system

Pragma warn filenamecaps system.

warn_illegal instructions

Pragma warn_illegal instructions.

warn_ illpragma

lllegal Pragmas setting in the panel and pragma
warn_illpragma.

warn_impl f2i conv

Pragma warn_impl £2i conv.

warn_impl_ i2f conv

Pragma warn_impl i2f conv.

warn_impl_s2u_ conv

Pragma warn_impl s2u_conv.

warn_implicitconv

Implicit Arithmetic Conversions setting in the processor
panel and pragma warn_implicitconv.

warn_ largeargs

Pragma warn_largeargs.

warn missingreturn

Pragma warn_missingreturn

warn no_side effect

Pragma warn no side effect.

warn notinlined

Non-Inlined Functions setting in the processor panel and
pragma warn notinlined.

warn_padding

Pragma warn_padding.

warn_possunwant

Possible Errors setting in the Preprocessor panel and
pragma warn possunwant.

warn_ptr int conv

Pragma warn_ptr_ int conv

warn_ resultnotused

Pragma warn_resultnotused.

warn undefmacro

Pragma warn_undefmacro.

warn_unusedarg

Unused Arguments setting in the processor panel and
pragma warn_unusedard.

warn_unusedvar

Unused Variables setting in the Language panel and pragma
warn_unusedvar.

warning errors

Treat Warnings As Errors setting in the Preprocessor panel
and pragma warning errors.

9.1.2 Saving and Restoring Pragma Settings

There are some occasions when you would like to apply pragma settings to a piece of
source code independently from the settings in the rest of the source file. For example, a
function might require unique optimization settings that should not be used in the rest of

the function's source file.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

292

Freescale Semiconductor, Inc.

Chapter 9 Pragmas

Remembering which pragmas to save and restore is tedious and error-prone. Fortunately,
the compiler has mechanisms that save and restore pragma settings at compile time. All
pragma settings and some individual pragma settings may be saved at one point in a
compilation unit (a source code file and the files that it includes), changed, then restored
later in the same compilation unit. Pragma settings cannot be saved in one source code
file then restored in another unless both source code files are included in the same
compilation unit.

Pragmas push and pop save and restore, respectively, most pragma settings in a
compilation unit. Pragmas push and pop may be nested to unlimited depth. The following
listing shows an example.

Listing: Using push and pop to Save and Restore Pragma Settings

/* Settings for this file. */
#pragma opt unroll loops on

#pragma optimize for size off

void fast func A (void)

{

/* oL %/

}

/* Settings for slow func(). */
#pragma push /* Save file settings. */
#pragma optimization size 0

void slow_func (void)

{

/* ... %/

}

#pragma pop /* Restore file settings. */
void fast func B (void)

{

/* ... %/

}

Pragmas that have a reset option perform the same actions as pragmas push and pop, but
apply to a single pragma. A pragma's on and ot settings save the pragma's current setting
before changing it to the new setting. A pragma's reset oOption restores the pragma's
setting. The on/ off and reset Options may be nested to an unlimited depth. The following
listing shows an example.

Listing: Using the Reset Option to Save and Restore a Pragma Setting

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 293

3
4

4
A

using Pragmas

/* Setting for this file. */
#pragma opt unroll loops on

void fast func A (void)

{

/* ...

}

*/

/* Setting for smallslowfunc (). */

#pragma opt unroll loops off

void small func(void)

{

/* ...

}

*/

/* Restore previous setting. */

#pragma opt unroll loops reset

void fast func B(void)

{

/* ...

}

*/

9.1.3 Determining which Settings are Saved and Restored

Not all pragma settings are saved and restored by pragmas push and pop. Pragmas that do
not change compiler settings are not affected by push and pop. For example, pragma
message cannot be saved and restored.

The following listing shows an example that checks if the ans1_strict pragma setting is
saved and restored by pragmas push and pop.

Listing: Testing if Pragma's Push and Pop Save and Restore a Setting

/* Preprocess this source code. */
#pragma ANSI strict on

#fpragma push

#pragma ANSI strict off

#fpragma pop

#if _ option (ANSI_strict)

#ferror "Saved and restored by push and pop."

#telse

#terror "Not affected by push and pop."

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

294

Freescale Semiconductor, Inc.

Chapter 9 Pragmas

#endif

9.1.4 lllegal Pragmas

If you enable the Illegal Pragmas setting, the compiler issues a warning when it
encounters a pragma it does not recognize. For example, the pragma statements in The
following listing generate warnings with the Illegal Pragmas setting enabled.

Listing: Illegal Pragmas

#ipragma near data off // WARNING: near data is not a pragma.

#pragma ANSI strict select // WARNING: select is not defined

#pragma ANSI strict on // OK

The Illegal Pragmas setting corresponds to the pragma warn_i11pragma, described at
warn_illpragma. To check this setting, use _ option (warn_illpragma).

See Checking Pragma Settings for information on how to use this directive.

9.2 Pragma Scope

The scope of a pragma setting is limited to a compilation unit (a source code file and the
files that it includes).

At the beginning of compilation unit, the compiler uses its default settings. The compiler
then uses the settings specified by the CodeWarrior IDE's build target or in command-
line options.

The compiler uses the setting in a pragma beginning at the pragma's location in the
compilation unit. The compilers continues using this setting:

 Until another instance of the same pragma appears later in the source code
* Until an instance of pragma pop appears later in the source code
 Until the compiler finishes translating the compilation unit

9.3 Standard C and C++ Conformance Pragmas

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 295

swndard C and C++ Conformance Pragmas

The 56800x has the following pragmas:

e ANSI strict
* only_std_keywords

9.3.1 ANSI strict

Controls the use of non-standard language features.

Syntax
#pragma ANSI strict on | off | reset

Remarks

If you enable the pragma anst_strict, the compiler generates an error if it encounters any
of the following common ANSI extensions:

e C++-style comments. The following listing shows an example.
Listing: C++ Comments

a = b; // This is a C++-style comment

* Unnamed arguments in function definitions. The following listing shows an example.
Listing: Unnamed Arguments

void f(int) {} /* OK, if ANSI Strict is disabled */

void f(int i) {} /* ALWAYS OK */

* A # token that does not appear before an argument in a macro definition. The
following listing shows an example.
Listing: Using # in Macro Definitions

#define addl (x) #x #1

/* OK, if ANSI strict is disabled,
but probably not what you wanted:
addl (abc) creates "abc"#1 */
#define add2(x) #x "2"

/* ALWAYS OK: add2 (abc) creates "abc2" */
* An identifier after #endaif. The following listing shows an example.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

296 Freescale Semiconductor, Inc.

Chapter 9 Pragmas
Listing: Identifiers After #endif
#ifdef _ MWERKS

/* .. L */
#endif _ MWERKS_ /* OK, if ANSI_strict is disabled */

#ifdef MWERKS
/* .. L%/

#endif /* MWERKS */ /* ALWAYS OK */

This pragma corresponds to the ANSI Strict setting in the Language panel. To check this
setting, use _ option (ansI_strict), described in Checking Pragma Settings. By default,
this pragma is disabled.

9.3.2 only_std_keywords

Controls the use of ISO keywords.
Syntax

#pragma only std keywords on | off | reset

Remarks

The C/C++ compiler recognizes additional reserved keywords. If you are writing code
that must follow the ANSI standard strictly, enable the pragma on1y stda_keywords.

This pragma corresponds to the ANSI Keywords Only setting in the Language panel. To
check this setting, use _ option (only std keywords), described in Checking Pragma
Settings. By default, this pragma is disabled.

9.4 Language Translation and Extensions Pragmas

The 56800x has the following pragmas:

* gcc_extensions

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 297

Lanyguage Translation and Extensions Pragmas

e mpwc_newline
* mpwc_relax

9.4.1 gcc_extensions

Controls the acceptance of GNU C language extensions.

Syntax
#pragma gcc extensions on | off | reset

Remarks

If you enable this pragma, the compiler accepts GNU C extensions in C source code. This
includes the following non-ANSI C extensions:

* Initialization of automatic struct Or array variables with non- const values. The
following listing provides an example.
Listing: Example of Array Initialization with a Non-const Value

int foo(int arg)

{

int arr([2] = { arg, arg+l };

}

® sizeof (void) ==

* sizeof (function-type)--1

* Limited support for GCC statements and declarations within expressions. The
following listing provides an example.
Listing: Example of GCC Statements and Declarations Within Expressions

#pragma gcc_extensions on

#define POW2 (n) ({ int i,r; for(r=1,i=n; i>0; --1i) r<<=1l; r;})

int main()

return POW2 (4) ;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

298 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

This feature only works for expressions in function bodies.

* Macro redefinitions without a previous #undet.
* The GCC keyword typeot.

This pragma does not correspond to any setting in the Language panel. To check the
global optimizer, use _ option (gcc_extensions), described in Checking Pragma Settings.
By default, this pragma is disabled.

9.4.2 mpwc_newline

Controls the use of newline character convention used by the Apple MPW C.

Syntax
#pragma mpwc_newline on | off | reset

Remarks

If you enable this pragma, the compiler uses the MPW conventions for the '\a' and \z
characters. Otherwise, the compiler uses the Freescale C/C++ conventions for these
characters.

In MPW, \ ' is a Carriage Return (0xOD) and '\r' 1s a Line Feed (Ox0A). In Freescale C/
C++, they are reversed: "\n' is a Line Feed and '\r' 1s a Carriage Return.

If you enable this pragma, use ANSI C/C++ libraries that were compiled when this
pragma was enabled.

If you enable this pragma and use the standard ANSI C/C++ libraries, you cannot read
and write '\n' and '\r' properly. For example, printing '\n' brings you to the beginning of
the current line instead of inserting a newline.

This pragma corresponds to the Map newlines to CR setting in the Language panel. To
check this setting, use _ option (mpwc_newline), described in Checking Pragma Settings. By
default, this pragma is disabled.

Enabling this setting is not useful for the DSP56800 target.

9.4.3 mpwc_relax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 299

crrors, Warnings, and Diagnostic Control Pragmas

Controls the compatibility of the char* and unsigned char+ types.

Syntax
#pragma mpwc_relax on | off | reset

Remarks

If you enable this pragma, the compiler treats char* and unsigned char* as the same type.
This setting is especially useful if you are using code written before the ANSI C standard.
This old source code frequently used these types interchangeably. This setting has no
effect on C++ source code.

You can use this pragma to relax function pointer checking:

#pragma mpwc relax on
extern void f (char ¥*);
extern void(*£fpl) (void *) = &f; // error but allowed

extern void (*fp2) (unsigned char *) = &f; // error but allowed

This pragma corresponds to the Relaxed Pointer Type Rules setting in the Language
panel. To check this setting, _ option (mpwc_relax), described in Checking Pragma
Settings. By default, this pragma is disabled.

9.5 Errors, Warnings, and Diagnostic Control Pragmas

The 56800x has the following pragmas:

 check_c_src_pipeline
 check_inline_asm_pipeline
* check_inline_sp_effects
e extended_errorcheck

* require_prototypes

* suppress_init_code

* suppress_warnings

* unsigned_char

e unused

e warn_any_ptr_int_conv
» warn_emptydecl

e warn_extracomma

» warn_filenamecaps

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

300 Freescale Semiconductor, Inc.

g |

4
Chapter 9 Pragmas
» warn_filenamecaps_system
e warn_illpragma
e warn_impl_f2i_conv
e warn_impl_i2f_conv
e warn_impl_s2u_conv
* warn_implicitconv
e warn_largeargs
e warn_missingreturn
e warn_no_side_effect
e warn_notinlined
* warn_padding
» warn_possiblyuninitializedvar
* warn_possunwant
* warn_ptr_int_conv
e warn_resultnotused
e warn_undefmacro
e warn_uninitializedvar
e warn_unusedarg
e warn_unusedvar
* warning_errors

9.5.1 check_c_src_pipeline

This pragma controls detection of a pipeline conflict in the C language code.
Compatibility

This pragma is not compatible with the DSP56800 compiler, but it is compatible with the
DSP56800E compiler.

Syntax
#pragma check ¢ src pipeline [off|conflict]

Remarks

Use this pragma for extra validation of generated C code. The compiler already checks
for pipeline conflicts; this pragma tells the compiler to add another check for pipeline
conflicts. Should this pragma detect a pipeline conflict, it issues an error message.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 301

crrors, Warnings, and Diagnostic Control Pragmas

NOTE
The pipeline conflicts that this pragma finds are rare. Should
this pragma report such a conflict with your code, you should
report the matter to Freescale.

9.5.2 check_inline_asm_pipeline

This pragma controls detection of a pipeline conflicts and stalls in assembly language
source code.

Compatibility

This pragma is not compatible with the DSP56800 compiler, but it is compatible with the
DSP56800E compiler.

Syntax
#pragma check inline asm pipeline

[off|conflict|conflict and stall]

Remarks

Use this pragma to detect a source-code, assembly language pipeline conflict or stall,
then generate an error message. In some cases, the source code can be a mix of assembly
language and C language.

The option conf1ict only detects and generates error messages for pipeline conflict.

The option confiict_and sta11 detects and generates error messages for pipeline conflicts
and stalls.

9.5.3 check_inline_sp_effects

Generates a warning if the user specifies an inline assembly instruction which modifies
the SP by a run-time dependent amount.

Syntax
#pragma check inline sp effects on | off | reset

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

302 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

If this pragma is not specified off, instructions which modify the SP by a run-time
dependent amount are ignored. In this case, stack-based references may be silently
wrong. This pragma is added for compatibility with existing code which may have run-
time modifications of the SP already. However, known compile times inconsistencies in
SP modifications are always flagged as errors, since the SP must be correct to return from
functions.

This pragma does not correspond to any panel setting in the Warnings panel. To check
this setting, US€ option (check inline sp effects), described in Checking Pragma
Settings. By default, this pragma is disabled.

9.5.4 extended errorcheck

Controls the issuing of warnings for possible unintended logical errors.

Syntax
#pragma extended errorcheck on | off | reset

Remarks

If you enable this pragma, the C compiler generates a warning (not an error) if it
encounters some common programming errors.

This pragma corresponds to the Extended Error Checking setting in the Warnings
panel. To check this setting, use _ option (extended_errorcheck), described in Checking
Pragma Settings. By default, this pragma is disabled.

9.5.5 require_prototypes

Controls whether or not the compiler should expect function prototypes.

Syntax
#pragma require prototypes on | off | reset

Remarks
This pragma only works for non-static functions.

If you enable this pragma, the compiler generates an error if you use a function that does
not have a prototype. This pragma helps you prevent errors that happen when you use a
function before you define it or refer to it.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 303

crrors, Warnings, and Diagnostic Control Pragmas

This pragma corresponds to the Require Function Prototypes setting in the Language
panel. To check this setting, use _ option (require prototypes), described in Checking
Pragma Settings. By default, this pragma is disabled.

9.5.6 suppress_init_code

Controls the suppression of static initialization object code.

Syntax
#pragma suppress_init code on | off | reset

Remarks

If you enable this pragma, the compiler does not generate any code for static data
initialization.
CAUTION

Beware when using this pragma because it can produce erratic
or unpredictable behavior in your program.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (suppress_init_code), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.5.7 suppress_warnings

Controls the issuing of warnings.

Syntax
#pragma suppress_warnings on | off | reset

Remarks

If you enable this pragma, the compiler does not generate warnings, including those that
are enabled.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use€ _ option (suppress_warnings), described in Checking Pragma Settings. By
default, this pragma is disabled.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

304 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

9.5.8 unsigned_char

Controls whether or not declarations of type char are treated as unsigned char.

Syntax
#pragma unsigned char on | off | reset

Remarks

If you enable this pragma, the compiler treats a char declaration as if it were an
unsignedchar declaration.

NOTE
If you enable this pragma, your code might not be compatible
with libraries that were compiled when the pragma was

disabled. In particular, your code might not work with the
ANSI libraries included with CodeWarrior.

This pragma corresponds to the Use Unsigned Chars setting in the Language panel. To
check this setting, use _ option(unsigned_char), described in Checking Pragma Settings. By
default, this setting is disabled.

9.5.9 unused

Controls the suppression of warnings for variables and parameters that are not referenced
in a function.

Syntax
#pragma unused (var name [, var name]...)

Remarks

This pragma suppresses the compile time warnings for the unused variables and
parameters specified in its argument list. You can use this pragma only within a function
body, and the listed variables must be within the scope of the function.

Listing: Example of Pragma unused() in C

#pragma warn unusedvar on // See pragma warn unusedvar.

#pragma warn_unusedarg on // See pragma warn unusedarg.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 305

g |

crrors, Warnings, and Diagnostic Control Pragmas

static void ff (int a)

int b;
#pragma unused(a,b) // Compiler does not warn
// that a and b are unused
!/

}

This pragma does not correspond to any panel setting in the Language panel. By default,
this pragma is disabled.

9.5.10 warn_any_ptr_int_conv

Controls if the compiler generates a warning when an integral type is explicitly converted
to a pointer type or vice versa.

Syntax
#pragma warn any ptr int conv on | off | reset

Remarks

This pragma is useful to identify potential pointer portability issues. An example is
shown in the following listing.

Listing: Example of warn_any_ptr_int_conv

#pragma warn_ptr_int conv on

short i, *ip
void foo()

i = (short)ip; // WARNING: integral type is not large

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

306 Freescale Semiconductor, Inc.

g |

4
Chapter 9 Pragmas

// large enough to hold pointer

#pragma warn_any_ptr_int_conv on

void bar()
i = (int)ip; // WARNING: pointer to integral
// conversion
ip = (short *)i; // WARNING: integral to pointer

}

// conversion

See also warn_ptr_int_conyv.

This pragma corresponds to the Pointer/Integral Conversions setting in the Warnings
panel. To check this setting, use _ option (Warn_any_ptr_int_conv), described in
Checking Pragma Settings. By default, this pragma is ost.

9.5.11 warn_emptydecl

Controls the recognition of declarations without variables.

Syntax

#pragma warn_emptydecl on | off | reset

Remarks

If you enable this pragma, the compiler displays a warning when it encounters a
declaration with no variables.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 307

crrors, Warnings, and Diagnostic Control Pragmas

Listing: Example of Pragma warn_emptydecl
int ; // WARNING

int 1i; // OK

This pragma corresponds to the Empty Declarations setting in the Warnings panel. To
check this setting, use _ option (warn_emptydecl), described in Checking Pragma Settings.
By default, this pragma is disabled.

9.5.12 warn_extracomma

Controls the recognition of superfluous commas.
Syntax
#pragma warn extracomma on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters an extra
comma.

Listing: Example of Pragma warn_extracomma

enum {l,m,n,o,}; // WARNING: When the warning is enabled, it will

// generate :

This pragma corresponds to the Extra Commas setting in the Warnings panel. To check
this setting, Use _ option (warn_extracomma), described in Checking Pragma Settings.By
default, this pragma is disabled.

9.5.13 warn_filenamecaps

Controls the recognition of conflicts involving case-sensitive filenames within user
includes.

Syntax
#pragma warn_filenamecaps on | off | reset

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

308 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

If you enable this pragma, the compiler issues a warning when an inciude directive
capitalizes a filename within a user include differently from the way the filename appears
on a disk. It also recognizes 8.3 DOS filenames in Windows when a long filename is
available. This pragma helps avoid porting problems to operating systems with case-
sensitive filenames.

By default, this pragma only checks the spelling of user includes such as the following:
#include "file"

For more information on checking system includes, see warn_filenamecaps_system.

This pragma does not correspond to any panel setting in the Warnings panel. To check
this setting, us€ _ option (warn_filenamecaps), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.5.14 warn_filenamecaps_system

Controls the recognition of conflicts involving case-sensitive filenames within system
includes.

Syntax
#pragma warn filenamecaps system on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when an inciude directive
capitalizes a filename within a system include differently from the way the filename
appears on a disk. It also recognizes 8.3 DOS filenames in Windows when a long
filename is available. This pragma helps avoid porting problems to operating systems
with case-sensitive filenames.

To check the spelling of system includes such as the following:
#include <file>

use this pragma along with the warn_filenamecaps pragma.

This pragma does not correspond to any panel setting in the Warnings panel. To check
this setting, use€ _ option (warn_filenamecaps_system), described in Checking Pragma
Settings. By default, this pragma is disabled.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 309

crrors, Warnings, and Diagnostic Control Pragmas

9.5.15 warn_illpragma

Controls the recognition of illegal pragma directives.

Syntax
#pragma warn illpragma on | off | reset

Remarks

If you enable this pragma, the compiler displays a warning when it encounters a pragma
it does not support. For more information about this warning, see Illegal Pragmas.

This pragma corresponds to the Illegal Pragmas setting in the Language panel. To check
this setting, use _ option (warn_illpragma), described in Checking Pragma Settings. By
default, this setting is disabled.

9.5.16 warn_impl_f2i_conv

Controls the issuing of warnings for implicit ficat-to- int conversions.

Syntax
#pragma warn impl f2i conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning for implicitly converting
floating-point values to integral values. The following listing provides an example.

Listing: Example of Implicit float-to-int Conversion

#pragma warn implicit conv on

#pragma warn impl f2i conv on
float f;
signed int si;

int main()

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

310 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

si = £; // WARNING
#pragma warn impl f2i conv off

si = £; // OK

Use this pragma along with the warn_implicitconv pragma.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use€ _ option (warn_impl_f2i_conv), described in Checking Pragma Settings. By
default, this pragma is enabled.

9.5.17 warn_impl_i2f_conv

Controls the issuing of warnings for implicit inc-to- £1cat cOnversions.

Syntax
#pragma warn impl i2f conv on | off | reset
Remarks

If you enable this pragma, the compiler issues a warning for implicitly converting integral
values to floating-point values. The following listing provides an example.

Listing: Example of Implicit <codeph>int</codeph>-to-<codeph>float</codeph>
Conversion

#pragma warn implicit conv on

#pragma warn impl i2f conv on
float f£f;
signed int si;

int main()

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 311

crrors, Warnings, and Diagnostic Control Pragmas

f = si; // WARNING
#pragma warn_impl i2f conv off
f = si; // OK

}

Use this pragma along with the warn_implicitconv pragma.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (warn_impl_i2f_conv), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.5.18 warn_impl_s2u_conv

Controls the issuing of warnings for implicit conversions between the signed int and
unsigned int data types.

Syntax
#pragma warn impl s2u_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning for implicitly converting either
from signed int tO unsigneda int Or vice versa. The following listing provides an example.

Listing: Example of Implicit Conversions Between Signed int and Unsigned int

#pragma warn implicit conv on

#pragma warn_ impl s2u conv on
signed int si;
unsigned int ui;

int main()

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

312 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

ui = si; // WARNING

si = ui; // WARNING
#pragma warn_impl s2u conv off

ul = si; // OK

si = ui; // OK

}

Use this pragma along with the warn_implicitconv pragma.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (warn_impl_s2u_conv), described in Checking Pragma Settings. By
default, this pragma is enabled.

9.5.19 warn_implicitconv

Controls the 1ssuing of warnings for all implicit arithmetic conversions.

Syntax
#pragma warn_implicitconv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning for all implicit arithmetic
conversions when the destination type might not represent the source value. The
following listing provides an example.

Listing: Example of Implicit Conversion

#pragma warn implicitconv on

float £f;

signed int si;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 313

3
4

4
A

crrors, Warnings, and Diagnostic Control Pragmas

unsigned int ui;

int main ()

f = si; // OK

si = £; // WARNING
ui = si; // WARNING
si = ui; // WARNING

}

The default setting for warn_imp1_i2fcont pragma is disabled. Use the warn_implicitconv
pragma along with the warn_imp1_i2f conv pragma to generate the warning for the int-to-
float conversion.

This pragma corresponds to the Implicit Arithmetic Conversions setting in the
Language panel. To check this setting, use _ option (warn_implicitconv), described in
Checking Pragma Settings. By default, this pragma is disabled.

9.5.20 warn_largeargs

Controls the issuing of warnings for passing non-integer numeric values to undeclared
functions.

Syntax
#pragma warn_largeargs on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning if you attempt to pass a non-
integer numeric value, such as a f1oat Or 1ong 1long, to an undeclared function when the
require_prototypes pragma is disabled.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

314 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (warn_largeargs), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.5.21 warn_missingreturn

Issues a warning when a function that returns a value is missing a return statement.
Syntax

#pragma warn missingreturn on | off | reset

Remarks

An example is shown in the following listing.

Listing: Example of warn_missingreturn pragma

#pragma warn missingreturn on

int foo()

{

// no return statement in foo ()

} // generates a warning: return value expected

This pragma corresponds to the Missing “return' Statements option in the Language
panel. To check this Setting, US€ option(warn missingreturn), described in ChCCkil’lg
Pragma Settings.

By default, this pragma is set to the same value as _ option (extended_errorcheck).

9.5.22 warn_no_side effect

Controls the issuing of warnings for redundant statements.

Syntax
#pragma warn no side effect on | off | reset

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

315

crrors, Warnings, and Diagnostic Control Pragmas

If you enable this pragma, the compiler issues a warning when it encounters a statement
that produces no side effect. To suppress this warning, cast the statement with (voia). The
following listing provides an example.

Listing: Example of Pragma warn_no_side_effect

#pragma warn no side effect on

void foo(int a,int b)

a+b; // WARNING: expression has no side effect

(void) (a+b); // void cast suppresses warning

}

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use€ _ option (warn_no_side_effect), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.5.23 warn_notinlined

Controls the issuing of warnings for functions the compiler cannot inline.
Syntax

#pragma warn notinlined on | off | reset
Remarks

The compiler issues a warning for non-inlined inline function calls.

This pragma corresponds to the Non-Inlined Functions setting in the Language panel.
To check this setting, use _ option (warn_notinlined), described in Checking Pragma
Settings. By default, this pragma is disabled.

9.5.24 warn_padding

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

316 Freescale Semiconductor, Inc.

Chapter 9 Pragmas
Controls the issuing of warnings for data structure padding.
Syntax

#pragma warn padding on | off | reset

Remarks

If you enable this pragma, the compiler warns about any bytes that were implicitly added
after an ANSI C struct member to improve memory alignment.

This pragma corresponds to the Pad Bytes Added setting in the Language panel. To
check this setting, use _ option (warn_padding), described in Checking Pragma Settings. By
default, this setting is disabled.

9.5.25 warn_possiblyuninitializedvar

This pragma is different from warn_uninitializedavar. that uses a slightly different process
to detect the uninitialized variables. It gives a warning whenever local variables are used
before being initialized along any path to the usage. As a result, you get more warnings.
However, some of the warnings are false ones. The warnings will be false when all paths
with uninitialized status turn out to be paths that can never actually be taken.

NOTE

warn_possiblyuninitializedvariS a.SIq)erset()f
warn_uninitializedvar

Syntax
#pragma warn_possiblyuninitializedvar on | off | reset

Remarks

This pragma has no corresponding setting in the CodeWarrior IDE. By default, this
pragma is off.

9.5.26 warn_possunwant

Controls the recognition of possible unintentional logical errors.

Syntax
#pragma warn possunwant on | off | reset

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 317

crrors, Warnings, and Diagnostic Control Pragmas

Remarks

If you enable this pragma, the compiler checks for common errors that are legal C/C++
but might produce unexpected results, such as putting in unintended semicolons or
confusing - and --.

This pragma corresponds to the Possible Errors setting in the Language panel. To check
this setting, Use _ option (warn_possunwant), described in Checking Pragma Settings. By
default, this setting is disabled.

9.5.27 warn_ptr_int_conv

Controls the recognition the conversion of pointer values to incorrectly-sized integral
values.

Syntax
#pragma warn_ptr int conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning if an expression attempts to
convert a pointer value to an integral type that is not large enough to hold the pointer
value.

Listing: Example for #pragma warn_ptr_int_conv

#pragma warn_ptr_int conv on

char *my ptr;

char too_small = (char)my ptr; // WARNING: char is too small

See also warn_any_ptr_int_conv.

This pragma corresponds to the Pointer / Integral Conversions setting in the Language
panel. To check this setting, use _ option (warn_ptr_int_conv), described in Checking
Pragma Settings. By default, this setting is disabled.

9.5.28 warn_resultnotused

Controls the issuing of warnings when function results are ignored.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

318 Freescale Semiconductor, Inc.

Chapter 9 Pragmas
Syntax
#pragma warn resultnotused on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters a statement
that calls a function without using its result. To prevent this, cast the statement with
(void). The following listing provides an example.

Listing: Example of Function Calls with Unused Results

#pragma warn_ resultnotused on

extern int bar();

void foo ()

{
bar () ; // WARNING: result of function call is not used
(void)bar () ; // ~void' cast suppresses warning

}

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (warn_resultnotused), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.5.29 warn_undefmacro

Controls the detection of undefined macros in #if/#e1if conditionals.

Syntax
#pragma warn_undefmacro on | off | reset

Remarks
The following listing provides an example.

Listing: Example of Undefined Macro

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 319

crrors, Warnings, and Diagnostic Control Pragmas

#if UNDEFINEDMACRO == 4 // WARNING: undefined macro
// 'UNDEFINEDMACRO' used in
// #if/#elif conditional

Use this pragma to detect the use of undefined macros (especially expressions) where the
default value O is used.

NOTE
A warning is only issued when a macro is evaluated. A short-
circuited " s&" or " ||" test or unevaluated " »:" will not produce

a warning.

This pragma corresponds to the Undefined Macro in #if setting in the Language panel.
To check this setting, use _ option (warn_undefmacro), described in Checking Pragma
Settings. By default, this pragma is of+.

9.5.30 warn_uninitializedvar

Controls the compiler to perform data flow analysis and emits a warning message
whenever there is a usage of a local variable and no path exists from any initialization of
the same local variable.

Usages will not receive a warning if the variable is initialized along any path to the usage,
even though the variable may be uninitialized along some other path. The
warn_possiblyunitializedvar pragma is introduced for such cases. Refer to pragma
warn_possiblyuninitializedvar for more details.

Syntax
#pragma warn uninitializedvar on | off | reset

Remarks

This pragma has no corresponding setting in the CodeWarrior IDE. By default, this
pragma is on.

9.5.31 warn_unusedarg

Controls the recognition of unreferenced arguments.

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

320 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

#pragma warn_unusedarg on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters an argument
you declare but do not use. To suppress this warning in C++ source code, leave an
argument identifier out of the function parameter list.

This pragma corresponds to the Unused Arguments setting in the Language panel. To
check this setting, use _ option (warn_unusedarg), described in Checking Pragma Settings.
By default, this pragma is disabled.

9.5.32 warn_unusedvar

Controls the recognition of unreferenced variables.

Syntax
#pragma warn unusedvar on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning when it encounters a variable
you declare but do not use. To suppress this warning in C++ source code, leave an
argument identifier out of the function parameter list.

This pragma corresponds to the Unused Variables setting in the Language panel. To
check this setting, use _ option (warn_unusedvar), described in Checking Pragma Settings.
By default, this pragma is disabled.

9.5.33 warning_errors

Controls whether or not warnings are treated as errors.

Syntax
#pragma warning errors on | off | reset

Remarks

If you enable this pragma, the compiler treats all warnings as though they were errors and
does not translate your file until you resolve them.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 321

rreprocessing and Precompilation Pragmas

This pragma corresponds to the Treat All Warnings as Errors setting in the Language
panel. To check this setting, use _ option (warning errors), described in Checking Pragma
Settings. By default, this pragma is disabled.

9.6 Preprocessing and Precompilation Pragmas

The 56800x has the following pragmas:

e dollar_identifiers
fullpath_prepdump
* mark

* notonce

* once

* pop, push
syspath_once

9.6.1 dollar_identifiers

Controls use of dollar signs ($) in identifiers.

Syntax
#pragma dollar identifiers on | off | reset

Remarks

If you enable this pragma, the compiler accepts dollar signs ($) in identifiers. Otherwise,
the compiler issues an error if it encounters anything but underscores, alphabetic, and
numeric characters in an identifier.

This pragma does not correspond to any panel setting. To check this setting, use the
__option (dollar_identifiers), described in Checking Pragma Settings. By default, this
pragma is disabled.

9.6.2 fullpath_prepdump

Shows the full path of included files in preprocessor output.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

322 Freescale Semiconductor, Inc.

Chapter 9 Pragmas
Syntax
#pragma fullpath prepdump on | off | reset

Remarks

If you enable this pragma, the compiler shows the full paths of files specified by the
#include directive as comments in the preprocessor output. Otherwise, only the file name
portion of the path appears.

This pragma does not correspond to any panel setting. To check this setting, use the
__option (fullpath prepdump), described in Checking Pragma Settings. By default, this
pragma is disabled.

9.6.3 mark

Adds an item to the Function pop-up menu in the IDE editor.

Syntax
#pragma mark itemName

Remarks

This pragma adds itemName to the source file's Function pop-up menu. If you open the
file in the CodeWarrior Editor and select the item from the Function pop-up menu, the
editor brings you to the pragma. Note that if the pragma is inside a function definition,
the item does not appear in the Function pop-up menu.

If itemName begins with "-", a menu separator appears in the IDE's Function pop-up
menu:

#pragma mark -

This pragma does not correspond to any setting in the Language panel. By default, this
pragma is disabled.

9.6.4 notonce

Controls whether or not the compiler lets included files be repeatedly included, even with

#pragma once on.

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 323

rreprocessing and Precompilation Pragmas

#pragma notonce

Remarks

If you enable this pragma, inciude statements can be repeatedly included, even if you have
enabled #pragmaonceon. For more information, see once.

This pragma does not correspond to any setting in the Language panel. By default, this
pragma is disabled.

9.6.5 once

Controls whether or not a header file can be included more than once in the same source
file.

Syntax
#pragma once [on]

Remarks

Use this pragma to ensure that the compiler includes header files only once in a source
file.

There are two versions of this pragma: #pragma once and #pragma once on. Use #pragma once
in a header file to ensure that the header file is included only once in a source file. Use
#pragma once on 1N @ header file or source file to insure that any file is included only once
in a source file.

This pragma does not correspond to any setting in the Language panel. By default, this
pragma is disabled.

9.6.6 pop, push

Save and restore pragma settings.

Syntax
#pragma push
#pragma pop

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

324 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

The pragma push saves all the current pragma settings. The pragma pop restores all the
pragma settings that resulted from the last pusn pragma. For example, see the following
listing.

Listing: push and pop Example

#pragma peephole on

#pragma packstruct on
#pragma push // push all compiler settings
#pragma peephole off
#pragma packstruct off
// pop restores "peephole" and "packstruct"

#pragma pop

If you are writing new code and need to set a pragma setting to its original value, use the
reset argument, described in Using Pragmas.

This pragma does not correspond to any panel setting in the Language panel.

9.6.7 syspath_once

Controls how include files are treated.

Syntax
#pragma syspath once on | off | reset

Remarks

If you enable this pragma, files called in #inciude <> and #inciuge »r directives are treated
as distinct, even if they refer to the same file.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (syspath_once), described in Checking Pragma Settings. By
default, this setting is enabled. For example, the same include file could reside in two
distinct directories.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 325

3
4

4
A

Liorary and Linking Control Pragmas

9.7 Library and Linking Control Pragmas

The 56800x has the following pragmas:

e define_section
 explicit_zero_data
initializedzerodata
e section
use_rodata

9.7.1 define_section

This pragma controls the definition of a custom section.

Syntax
#pragma define section <sectname> <istring> [<ustring>] [<accmode>]

Remarks

Arguments:
<sectname>

Identifier by which this user-defined section is referenced in the source, that is, via the
following instructions:

#pragma section <sectname> begin
__declspec (<sectname>)
<istring>

Section name string for initialized data assigned to <section>.

For example:
".data"

Optional Arguments:
<ustring>

Section name string for uninitialized data assigned to <section>. If ustring 1S not specified
then istring 1s used.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

326 Freescale Semiconductor, Inc.

g |

4
Chapter 9 Pragmas

<accmode>
One of the following indicates the attributes of the section

Table 9-2. Section Attributes

R Readable

RW (default) Readable and writable

RX Readable and executable

RWX Readable, writable, and executable
NOTE

For an example of gefine section, see Listing: Sample Code -
pragma define_section and pragma section.

Related Pragma

section

9.7.2 explicit_zero_data

Controls the section where zero-initialized global variables are emitted.

Syntax
#pragma explicit zero data on | off | reset

Remarks

If you enable this pragma, zero-initialized global variables are emitted to the .data section
(which is normally stored in ROM) instead of the .BSS section. This results in a larger
ROM image. This pragma should be enabled if customized startup code is used and it
does not initialize the .BSS section. The .BSS section is initialized to zero by the default
CodeWarrior startup code.

This pragma does not correspond to any setting in the Language panel. To check this
setting, Use _ option (explicit_zero_data), described in Checking Pragma Settings. By
default, this pragma is disabled.

NOTE

The pragmas explicit_zero_data and initializedzerodata are the
same, however, the preferred syntax is explicit_zero_data.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 327

Liorary and Linking Control Pragmas

9.7.3 initializedzerodata

Controls the section where zero-initialized global variables are emitted.

Syntax
#pragma initializedzerodata on | off | reset

Remarks

If you enable this pragma, zero-initialized global variables are emitted to the .data section
(which is normally stored in ROM) instead of the .BSS section. This results in a larger
ROM image. This pragma should be enabled if customized startup code is used and it
does not initialize the .BSS section. The .BSS section is initialized to zero by the default
CodeWarrior startup code.

This pragma does not correspond to any setting in the Language panel. To check this
setting, US€ _ option(initializedzerodata), described in Checking Pragma Settings. By
default, this pragma is disabled.

NOTE
The pragmas initializedzerodata and explicit zero data aArt the
same, however, the preferred syntax is explicit_zero data.

9.7.4 section

This pragma controls the organization of object code.

Syntax

#pragma section <sectname> begin
[...data..]

#pragma section <sectname> end

Remarks
Argument:
<sectname>

Identifier by which this user-defined section is referenced in the source.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

328 Freescale Semiconductor, Inc.

g |

4
Chapter 9 Pragmas

Listing: Sample Code - pragma define_section and pragma section

/* 1. Define the section */

#pragma define section mysection ".mysection.data" RW
/* 2. Specify the data to be put into the section. */
#pragma section mysection begin
int af[10] = {'0','1','2",131, 141, 151, 161,171,181 191},
int b[10];
#pragma section mysection end
int main(void) {

int i;

for (i=0;1<10;i++)

blil=ali];

/* 3. In the linker command file, add ".mysection.data" in the ".data"
sections area of the linker command file by inserting the following

line:
* (.mysection.data)

*/
RelatedPragma

define_section

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 329

Liorary and Linking Control Pragmas

9.7.5 use_rodata

Controls the section where constant data is emitted.
Compatibility

This pragma is compatible with the DSP56800, but it is not compatible with the
DSP56800E.

Syntax
#pragma use rodata [on | off | reset]

Remarks

By default, the compiler emits const defined data to the .data section. There are two ways
to cause the compiler to emit const defined data to the .rodata section:

 Setting the "write const data to .rodata section" option in the M56800 Processor
Settings panel.

This method is a global change and emits all const-defined data to the .rodata section
for the current build target.

* Using #pragma use_rodata [on | off | reset].
on Write const data to .rodata section.
off Write const data to .data section.

reset Toggle pragma state.

To use this pragma, place the pragma before the const data that you wish the compiler to
emit to the .rodata section. This method overrides the target setting and allows a subset of
constant data to be emitted to or excluded from the .rodata section.

To see the usage of the pragma use_rodata see the code example in the following listing.

Listing: Sample Code _ Pragma use_rodata

const UIntlé len 1 mult 1ls data = sizeof(l_mult 1ls data) /
sizeof (Frac32) ;

const Intlé g = a+b+c;

#pragma use rodata on

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

330 Freescale Semiconductor, Inc.

g |

const Intlé d[]={o0xdddd};
const Intlé e[l ={0oxeeee};
const Intlé f[]={0xffff};

#pragma use rodata off

main ()

// ... code

}

Chapter 9 Pragmas

You must then appropriately locate the .rodata section created by the compiler using the
linker command file. For example, see the following listing.

Listing: Sample Linker Command Flle - Pragma use_rodata

MEMORY
.text segment (RWX) : ORIGIN
.data_segment (RW) : ORIGIN
.rodata segment (R) : ORIGIN
SECTIONS ({

.main application :

.text sections

0x2000,

0x3000,

0x5000,

LENGTH

LENGTH

LENGTH

0x00000000

0x00000000

0x00000000

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

331

g |

vuject Code Organization and Generation Pragmas

} > .text segment

.main application data :

.data sections
.bss sections

} > .data_segment

.main application constant data:

constant data sections
* (.rodata)

} > .rodata_segment

9.8 Object Code Organization and Generation Pragmas

The 56800x has the following pragmas:

* always_inline

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

332 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

e auto_inline

* const_strings

* defer_codegen

e dont_inline

* dont_reuse_strings

* enumsalwaysint

* inline_bottom_up

* interrupt (for the DSP56800)
* interrupt (for the DSP56800E)
* packstruct

* pool_strings

* readonly_strings

e reverse_bitfields

* suppress_init_code

* syspath_once

9.8.1 always_inline

Controls the use of inlined functions.

Syntax
#pragma always inline on | off | reset

Remarks

This pragma is strongly deprecated. Use the Inline Depth pull-down menu of the
Language panel instead.

If you enable this pragma, the compiler ignores all inlining limits and attempts to inline
all functions where it is legal to do so.

This pragma does not correspond to any panel setting. To check this setting, use _ option
(always_inline), described in Checking Pragma Settings. By default, this pragma is
disabled.

9.8.2 auto _inline

Controls which functions to inline.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 333

vuject Code Organization and Generation Pragmas
Syntax

#pragma auto inline on | off | reset
Remarks

If you enable this pragma, the compiler automatically chooses functions to inline for you.

This pragma corresponds to the Auto-Inline setting in the Language panel. To check this
setting, Use€ _ option (auto_inline), described in Checking Pragma Settings. By default,
this pragma is disabled.

9.8.3 const_strings

Controls the const-ness of string literals.

Syntax
#pragma const strings [on | off | reset]

Remarks

If you enable this pragma, the compiler will generate a warning when string literals are
not declared as const. The following listing shows an example.

Listing: const_strings example

char *stringl = "hello"; /*0K, if const strings is disabled*/

const char *string2 = "world"; /* Always OK */

This pragma does not correspond to any setting in the Language panel. To check this
setting, US€ _ option (const_strings), described in Checking Pragma Settings.

9.8.4 defer_codegen

Controls the inlining of functions that are not yet compiled.

Syntax
#pragma defer codegen on | off | reset

Remarks

This setting lets you use inline and auto-inline functions that are called before their
definition:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

334 Freescale Semiconductor, Inc.

g |

Chapter 9 Pragmas
Listing: defer_codegen Example

#pragma defer codegen on

#pragma auto inline on
extern void £ () ;
extern void g();

main ()

£f(); // will be inlined

g(); // will be inlined

inline void £ () {}

void g() {}

NOTE
The compiler requires more memory at compile time if you
enable this pragma.

This pragma corresponds to the Deferred Inlining setting in the Language panel. To
check this setting, use the _ option (defer codegen), described in Checking Pragma
Settings. By default, this pragma is disabled.

9.8.5 dont_inline

Controls the generation of inline functions.

Syntax
#pragma dont inline on | off | reset

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 335

vuject Code Organization and Generation Pragmas

Remarks

If you enable this pragma, the compiler does not inline any function calls. However, it
will not override those declared with the in1ine keyword. Also, it does not automatically
inline functions, regardless of the setting of the auto_in1ine pragma. If you disable this
pragma, the compiler expands all inline function calls, within the limits you set through
other inlining-related pragmas.

This pragma corresponds to the Don't Inline setting of the Inline Depth pull-down menu
of the Language panel. To check this setting, use _ option (dont_inline), described in
Checking Pragma Settings. By default, this pragma is disabled.

9.8.6 dont_reuse_strings

Controls whether or not to store each string literal separately in the string pool.

Syntax
#pragma dont reuse_ strings on | off | reset

Remarks

If you enable this pragma, the compiler stores each string literal separately. Otherwise,
the compiler stores only one copy of identical string literals. This pragma helps you save
memory if your program contains a lot of identical string literals that you do not modify.
For example, take this code segment:

char *strl="Hello";

char *str2="Hello";

*str2 = 'Y';

If you enable this pragma, scr1 1S "me1ior, and strz 1S "veilor. Otherwise, both str1 and str2
are "vello".

This pragma corresponds to the Reuse Strings setting in the Language panel. To check
this setting, Use _ option (dont_reuse_strings), described in Checking Pragma Settings. By
default, this pragma is disabled.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

336 Freescale Semiconductor, Inc.

Chapter 9 Pragmas
9.8.7 enumsalwaysint

Specifies the size of enumerated types.

Syntax
#pragma enumsalwaysint on | off | reset

Remarks

If you enable this pragma, the C compiler makes an enumerated type the same size as an
int. If an enumerated constant is larger than int, the compiler generates an error.
Otherwise, the compiler makes an enumerated type the size of any integral type. It
chooses the integral type with the size that most closely matches the size of the largest
enumerated constant. The type could be as small as a char or as large as a 1ong int.

The following listing shows an example.

Listing: Example of Enumerations the Same as Size as int

enum SmallNumber { One = 1, Two = 2 };

/* If you enable enumsalwaysint, this type is
the same size as an int. Otherwise, this type is
short int. */
enum BigNumber
{ ThreeThousandMillion = 3000000000 };
/* If you enable enumsalwaysint, the compiler might
generate an error. Otherwise, this type is
the same size as a long int. */
This pragma corresponds to the Enums Always Int setting in the Language panel. To

check this setting, use _ option (enumsalwaysint), described in Checking Pragma Settings.
By default, this pragma is disabled.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 337

vuject Code Organization and Generation Pragmas

NOTE
The size of a char on the DSP56800 target is 16 bits, and 8 bits
on the DSP56800E.

9.8.8 inline_bottom_up

Controls the bottom-up function inlining method.

Syntax
#pragma inline bottom up on | off | reset
Remarks

Bottom-up function inlining tries to expand up to eight levels of inline leaf functions. The
maximum size of an expanded inline function and the caller of an inline function can be
controlled by the pragmas shown in the following two listings.

Listing: Maximum Complexity of an Inlined Function

// maximum complexity of an inlined function

#pragma inline max size(max) // default max == 256
Listing: Maximum Complexity of a Function that Calls Inlined Functions

// maximum complexity of a function that calls inlined functions

#pragma inline max total size(max) // default max == 10000

where max loosely corresponds to the number of instructions in a function.

If you enable this pragma, the compiler calculates inline depth from the last function in
the call chain up to the first function that starts the call chain. The number of functions
the compiler inlines from the bottom depends on the values of iniine_depth,

inline max_size, aNd inline max_total size. This method generates faster and smaller source
code for some (but not all) programs with many nested inline function calls.

If you disable this pragma, top-down inlining is selected, and the iniine depth setting
determines the limits for top-down inlining. The in1line max_size and inline max total size
pragmas do not affect the compiler in top-down mode.

This pragma corresponds to the Bottom-up Inlining setting in the Language panel. To
check this setting, use _ option (inline bottom up), described in Checking Pragma Settings.
By default, this pragma is disabled.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

338 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

9.8.9 interrupt (for the DSP56800)

Controls the compilation of object code for interrupt service routines (ISR).
Compatibility

This pragma is compatible with the DSP56800, but it is not compatible with the
DSP56800E. For the DSP56800E, see interrupt (for the DSP56800E).

Syntax
#pragma interrupt [called|warn|saveall [warn]]

Remarks

The compiler generates a special prologue and epilogue for functions so that they may be
used to handle interrupts. The contents of the epilogue and prologue vary depending on
the mode selected.

The compiler also emits an RTI or RTS for the return statement depending upon the
mode selected. The SA, R, and CC bits of the OMR register are set to system default.

There are several ways to use this pragma as described below:
® pragma interrupt [warn]

The compiler performs the following using the pragma interrupt [warn] argument:

* Sets MO1 to -1 if MO1 is used by ISR

* Sets OMR to system default (see OMR settings)

» Saves/restores only registers used by ISR

* Generates an RTI to return from interrupt.

e If [warn] is present, then emits warnings if this ISR makes a function call that is
not defined with #pragma interruptcalled

Important considerations of usage:
* This type of usage is required within the ISR function body as follows:
void ISR (void)
{
#pragma interrupt
... code here

pragma interrupt [called]

The compiler performs the following using the pragma interrupt [called] argument:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 339

vuject Code Organization and Generation Pragmas

» Saves/restores only registers used by routine
* Generates an RTS to return from function

Important considerations of usage:

* You must use this argument before the interrupt body is compiled
* You can use this argument on the function Syntax or within the function body as

described below.
On the function Syntax:

#pragma interrupt called

void function called from interrupt (void);

Within the function body:

void function called from interrupt (void)

{

#pragma interrupt called
asm (nop) ;

}

You should use this pragma for all functions called from #pragma interrupt
enabled ISRs. This is optional for #pragma interrupt saveall enabled ISRs, since

for this case, the entire context is saved.

pragma interrupt saveall [warn]

The compiler performs the following using the pragma interrupt saveall [warn]
argument:

Always sets MO1 to -1

Sets OMR to system default (see OMR settings)
Saves/restores entire hardware stack via runtime call
Generates an RTI to return from interrupt

If [warn] is present, then emits a warning if the ISR makes a function call that is

not defined with #pragma interrupt called

Important considerations of usage:

 This type of usage is required within the ISR function body as follows:

void interrupt function (void)

{

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

340

Freescale Semiconductor, Inc.

Chapter 9 Pragmas
#pragma interrupt saveall
... code here

 Use this pragma if the runtime library is called by the interrupt routine

In the following table, the advantages and disadvantages of the interrupt and interrupt
saveall pragmas are listed.

Table 9-3. Comparision of Usage

Pragma Advantages Disadvantages
interrupt saveall e Entire context save Larger initial performance hit due to
¢ No need for #pragma entire context save, but becomes
interrupt called for called advantageous for ISRs with several
functions function calls
interrupt ¢ Smaller context save, less #pragma interrupt called
performance hit required for all called functions
* Generally good for ISRs with a
small number of function calls

9.8.10 interrupt (for the DSP56800E)

This pragma controls the compilation of object code for interrupt routines.
Compatibility

This pragma is not compatible with the DSP56800, but it is compatible with the
DSP56800E. For the DSP56800, see interrupt (for the DSP56800).

Syntax

#pragma interrupt [<options>] [<mode>] [on|off|reset]
Remarks

An Interrupt Service Routine (ISR) is a routine that is executed when an interrupt occurs.
Setting C routines as ISRs is done using pragmas (pragma interrupt). To make a routine
service an interrupt, you must:

e Write the routine.
 Set up the routine so that it is called when some interrupt occurs.

The pragma interrupt option can be used to:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 341

g |

vuject Code Organization and Generation Pragmas

* Instruct the compiler to push register values on the software stack at entry to a C
function and restore them upon exit.

* Preserve the register values for the function that was interrupted.

* Emit an RTI for the return statement depending upon the mode selected. If the
interrupt routine has a return value, the return register is not saved.

There are several ways to use this pragma, with an onloffireset arguments, or with no

arguments.

Table 9-4. Arguments

<options>

alignsp

Aligns the stack pointer register correctly
to allow long values to be pushed on to
the stack. Use this option when your
project mixes C code and assembly
code. Use this option specifically on
ISRs which may interrupt assembly
routines that do not maintain the long
stack alignment requirements at all
times. Restores the stack pointer to its
original value before returning from the
subroutine.

comr

The Operating Mode Register (OMR) is
set for the following to ensure correct
execution of C code in the ISR:
* 36-bit values used for condition
codes.(CM bit cleared)
¢ Convergent Rounding(R bit
cleared)
¢ No Saturation mode(SA bit
cleared)
¢ Instructions fetched from P
memory.(XP bit cleared)

<mode>

saveall

Preserves register values by saving and
restoring all registers by calling the
INTERRUPT_SAVEALL and
INTERRUPT _ RESTOREALL routines
in the Runtime Library.

called

Preserves register values by saving and
restoring registers used by the routine.
The routine returns with an RTS.
Routines with pragma interrupt enabled
in this mode are safe to be called by
ISRs.

default

This is the mode when no mode is
specified. In this mode, the routine
preserves register values by saving and
restoring the registers that are used by
the routine. The routine returns with an
RTI.

fast

Table continues on the next page...

56800E fast interrupt processing has
lower overhead than normal interrupts
processing and should be used for all

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

342

Freescale Semiconductor, Inc.

Chapter 9 Pragmas
Table 9-4. Arguments (continued)

low-latency time-critical interrupts. Place
before any function that is a fast interrupt
handler: #pragma interrupt fast.

onlofflreset on Enables the option to compile all C
routines as interrupt routines.
off Disables the option to compile all C
routines as interrupt routines.
reset Restores the option to its previous
setting.

Use on or off to change the pragma setting, and then use reset
to restore the previous pragma setting.

To disable the pragma, use #pragma interrupt off after #pragma interrupt, in the following
listing.

Listing: Sample Code - #pragma interrupt on | off | reset

#pragma interrupt off // To be used as default value
// Non ISR code

#pragma interrupt on
void ISR_1(void) {
// ISR _1 code goes here.

void ISR_2(void) {
// ISR _2 code goes here.

#pragma interrupt reset

If the pragma is inside a function block, compile the current routine as an interrupt
routine. If the pragma is not inside a function block, compile the next routine as an
interrupt routine. This concept is developed in the following listing.

Listing: Sample Code - #pragma interrupt and Function Block

// Non ISR code
void ISR_1(void) {
#pragma interrupt
// ISR 1 code goes here.

#pragma interrupt
void ISR_2(void) {
// ISR_2 code goes here.

#pragma interrupt off

See the following listing for an example of using the 'called' option in the interrupt
pragma.

Listing: Sample Code - Using the “called' Option in #pragma interrupt

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 343

vuject Code Organization and Generation Pragmas

extern long Datal, Data2, Datain;
void ISR1_inc Datal by Data2 (void)

/* This is a routine called by the interrupt service routine ISR1(). */
#pragma interrupt called

Datal+=Data2;

return;

void ISR1 (void)

/* This is an interrupt service routine. */
#pragma interrupt

Data2 = Datain+2;

ISR inc Datal by Data2() ;

56800E fast interrupt processing has lower overhead than normal interrupts processing
and should be used for all low-latency time-critical interrupts. A new compiler pragma
exists and it has to be placed before any function that is a fast interrupt handler: #pragma
interrupt fast.

Fast interrupt processing uses the FRTID instruction to return from the handler. The
FRTID instruction has 2 delay slots in which instructions from the handler can be
scheduled and the compiler performs this task automatically. If no eligible instructions
are found, NOPs are inserted in these delay slots.

For the following C function:

#pragma interrupt fast
void foo () {
int x = 0;

The compiler generates the following assembly code:

clr.w X: (SP+0)
frtid

adda #0x000002,SP
suba #2,SP

Instead of:

clr.w X: (SP+0)
adda #0x000002,SP
suba #2,SP

frtid

nop

nop

According to 56800E core manual, there are a series of limitations for the first

instructions in a fast interrupt handler. The compiler generates assembly code following
these associated rules.

Consider the handler below:

#pragma interrupt fast
void foo()

asm (jsr 0);

asm (move.w 1, xO0);

}

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

344 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

for which the compiler generates the following sequence with 3 NOPs before the JSR
instruction, according to the hardware rules for fast interrupts handlers:

adda #0x000002,SP

move.wX0,X: (SP)

nop

nop

nop

jsr 0x000000

move.w#1l,XO0

frtid

move.wX: (SP), X0
suba #2,SP

9.8.10.1 Avoiding Possible Hitches with Enabled Pragma Interrupt

If a routine that has pragma interrupt enabled (caller) calls another C function/routine
(callee), it is possible that the callee can change some registers that are not saved by the
caller. For example, use of volatile registers by callee.

//Example of a hitch

#pragma interrupt
ISR caller()

// Register B not used
Subroutine Callee() ;

}

Subroutine Callee()

// Register B used and won't be saved/restored as this is volatile register

To avoid this, use either of the following options:

» Use pragma interrupt called mode for the callee
» Use the pragma interrupt saveall mode for the caller.

// Solution for the hitch using called mode

#pragma interrupt
ISR caller()

{

// Register B not used
Subroutine Callee();

}

#pragma interrupt called
Subroutine Callee()

// Register B used and will be saved and restored due to use of interrupt called mode

The first option may be more efficient because only the registers that are used are
preserved. The second option is easier to implement, but is likely to have a large
overhead.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 345

vuject Code Organization and Generation Pragmas

The situation described above also holds true for library functions because library
functions do not have pragma interrupt enabled. These calls include: C Standard Library
calls and Runtime Library calls (such as multiplication, division and floating point math).

9.8.11 packstruct

Controls the alignment of long words in structures.
Compatibility

This pragma is compatible with the DSP56800, but it is not compatible with the
DSP56800E.

Syntax
#pragma packstruct on | off | reset

Remarks

If you enable this pragma, integer 10ngs Within structures are aligned on four byte
boundaries. When this pragma is disabled there is no alignment within structures. This
pragma does not correspond to any setting in the Language panel. To check this setting,
use _ option(packstruct), described in Checking Pragma Settings. By default, this pragma
1s enabled.

9.8.12 pool_strings

Controls how the compiler stores string constants.
Compatibility

This pragma is not compatible with the DSP56800, but it is compatible with the
DSP56800E.

Syntax
#pragma pool strings on | off | reset

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

346 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

If you enable this setting, the compiler collects all string constants into a single data
object so that your program needs only one TOC entry for all of them. While this
decreases the number of TOC entries in your program, it also increases your program size
because it uses a less efficient method to store the address of the string.

If you disable this setting, the compiler creates a unique data object and TOC entry for
each string constant.

Enable this setting if your program is large and has many string constants.

The Pool Strings setting corresponds to the pragma poolstring. To check this setting, use
__option (pool_strings), described in Checking Pragma Settings. By default, this pragma is
disabled.

9.8.13 readonly_strings

Controls the output of C strings to the read only data section.

Syntax

#pragma readonly strings on | off | reset

Remarks

If you enable this pragma, C strings used in your source code (for example, " he110") are
output to the read-only data section (.rodata) instead of the global data section (.data). In
effect, these strings act like const char *, even though their type is really char =.

For the DSP56800, this pragma corresponds to the "Make Strings Read Only" panel
setting in the M56800 Processor settings panel. To check this setting, use _ option
(readonly strings), described in Checking Pragma Settings.

For the DSP56800E, there is no "Make Strings Read Only" panel setting in the MS6800E
Processor settings panel.

9.8.14 reverse bitfields

Controls whether or not the compiler reverses the bitfield allocation.

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 347

vuject Code Organization and Generation Pragmas

#pragma reverse bitfields on | off | reset

Remarks
This pragma reverses the bitfield allocation.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (reverse_bitfields), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.8.15 suppress_init_code

Controls the suppression of static initialization object code.

Syntax
#pragma suppress_init code on | off | reset

Remarks

If you enable this pragma, the compiler does not generate any code for static data
initialization.
Warning

Using this pragma can produce erratic or unpredictable
behavior in your program.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, Use _ option (suppress_init_code), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.8.16 syspath_once

Controls how include files are treated.

Syntax
#pragma syspath once on | off | reset

Remarks

If you enable this pragma, files called in #inciude <> and #inciuge "r directives are treated
as distinct, even if they refer to the same file.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

348 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (syspath_once), described in Checking Pragma Settings. By
default, this setting is enabled. For example, the same include file could reside in two
distinct directories.

C Standard Library and Runtime Library (CW libraries) functions require the AGU
(Address Generation Unit) to be in linear addressing mode, that is, the MO1 registers are
set to -1. If a function is interrupted and was using modulo address arithmetic, any calls
to CW libraries from the ISR do not work unless the MO1 is set to -1 in the ISR. Also, the
MOI register would need to be restored before exiting the ISR so that the interrupted
function can resume as before, with the same modulo address arithmetic mode settings.

9.9 Optimization Pragmas

The 56800x has the following pragmas:

 div_nonstd32by16_canoverflow
e factorl

 factor2

factor3

e nofactorl

e nofactor2

e nofactor3

* opt_common_subs

» opt_dead_assignments

* opt_dead_code
 opt_lifetimes

* opt_loop_invariants

e opt_propagation

* opt_strength_reduction

» opt_strength_reduction_strict
 opt_unroll_loops

* optimization_level

* optimize_for_size

peephole

9.9.1 div_nonstd32by16_canoverflow

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 349

uvpumization Pragmas
Enables the F_idiv_1ls canoverflow and F_idiv_uls_ canoverflow runtime functions.
Syntax

#pragma div_nonstd32bylé canoverflow on

Remarks

The high-performance, specialized integer 32-bit by 16-bit runtime functions
F_idiv_ls_canoverflow and F_idiv_uls_canoverflow are intended for use in applications. The
calling code ensures that the division result of a 32-bit numerator and a 16-bit
denominator fits into a 16-bit field and does not overflow. These functions reduce
execution time. Use this pragma to generate calls to these functions.

9.9.2 factori

Turns on factorization step 1.

Syntax
#pragma factorl

Remarks

Compiler performs the factorization step 1. To turn off factorl, use nofactorl. This
optimization is performed on global variables before register allocation, takes into
account register pressure, and replaces absolute addressing with indirect addressing.

This pragma does not correspond to any panel setting in the Language panel. By default,
this pragma is enabled at global optimization level 2 and above.

9.9.3 factor2

Turns on factorization step 2.

Syntax
#pragma factor2

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

350 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

Compiler performs the factorization step 2. To turn off factor2, use nofactor2.This
optimization is performed on global variables after register allocation, replaces absolute
addressing with indirect addressing, and detects a physical address register that is
available to do the factorization. Register allocation spilling decreases pressure so new
webs, that could not be created before register allocation, can be created.

This pragma does not correspond to any panel setting in the Language panel. By default,
this pragma is enabled at global optimization level 2 and above.

9.9.4 factor3

Turns on factorization step 3.

Syntax
#fpragma factor3

Remarks

Compiler performs the factorization step 3. To turn off factor3, use nofactor3. This
optimization is performed on local variables after register allocation. (SP-offset)
addressing is transformed in register indirect addressing. This optimization is performed
after register allocation because only at this point are the local variables accessed by stack
location.

This pragma does not correspond to any panel setting in the Language panel. By default,
this pragma is enabled at global optimization level 2 and above.

9.9.5 nofactor1

Turns off factorization step 1.

Syntax
#pragma nofactorl

Remarks

Compiler does not perform the factorization step 1. To turn on factorization step 1, use
factorl.

This pragma does not correspond to any panel setting in the Language panel.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 351

uvpumization Pragmas

9.9.6 nofactor2

Turns off factorization step 2.

Syntax
#pragma nofactor2

Remarks

Compiler does not perform the factorization step 2. To turn on factorization step 2, use
factor2.

This pragma does not correspond to any panel setting in the Language panel.

9.9.7 nofactor3

Turns off factorization step 3.

Syntax
#pragma nofactor3

Remarks

Compiler does not perform the factorization step 3. To turn on factorization step 3, use
factor3.

This pragma does not correspond to any panel setting in the Language panel.

9.9.8 opt_common_subs

Controls the use of common subexpression optimization.

Syntax
#pragma opt common_subs on | off | reset

Remarks

If you enable this pragma, the compiler replaces similar redundant expressions with a
single expression. For example, if two statements in a function both use the expression

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

352 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

a* b *c+ 10

the compiler generates object code that computes the expression only once and applies
the resulting value to both statements.

The compiler applies this optimization to its own internal representation of the object
code it produces.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (opt_common_subs), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.9.9 opt_dead_assignments

Controls the use of dead store optimization.

Syntax
#pragma opt dead assignments on | off | reset

Remarks

If you enable this pragma, the compiler removes assignments to unused variables before
reassigning them.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, Use€ _ option (opt_dead assignments), described in Checking Pragma Settings.
By default, this pragma is disabled.

9.9.10 opt_dead_code

Controls the use of dead code optimization.

Syntax
#pragma opt dead code on | off | reset

Remarks

If you enable this pragma, the compiler removes a statement that other statements never
execute or call.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 353

uvpumization Pragmas

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, Use _ option (opt_dead_code), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.9.11 opt._lifetimes

Controls the use of lifetime analysis optimization.

Syntax
#pragma opt lifetimes on | off | reset

Remarks

If you enable this pragma, the compiler uses the same processor register for different
variables that exist in the same routine but not in the same statement.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (opt_lifetimes), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.9.12 opt_loop_invariants

Controls the use of loop invariant optimization.

Syntax
#pragma opt loop invariants on | off | reset

Remarks

If you enable this pragma, the compiler moves all computations that do not change inside
a loop outside the loop, which then runs faster.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (opt_loop_invariants), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.9.13 opt_propagation

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

354 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

Controls the use of copy and constant propagation optimization.

Syntax
#pragma opt propagation on | off | reset
Remarks

If you enable this pragma, the compiler replaces multiple occurrences of one variable
with a single occurrence.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use€ _ option (opt_propagation), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.9.14 opt_strength_reduction

Controls the use of strength reduction optimization.

Syntax
#pragma opt_ strength reduction on | off | reset

Remarks

If you enable this pragma, the compiler replaces array element arithmetic instructions
with pointer arithmetic instructions to make loops faster.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (opt_strength_reduction), described in Checking Pragma Settings.
By default, this pragma is disabled.

9.9.15 opt_strength_reduction_strict

Uses a safer variation of strength reduction optimization.

Syntax
#pragma opt strength reduction strict on | off | reset

Remarks

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 355

uvpumization Pragmas

Like the opt_strength_reduction pragma, this setting replaces multiplication instructions
that are inside loops with addition instructions to speed up the loops. However, unlike the
regular strength reduction optimization, this variation ensures that the optimization is
only applied when the array element arithmetic is not of an unsigned type that is smaller
than a pointer type.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, US€ option (opt_strength reduction strict), described in Checking Pragma
Settings. By default, this pragma is disabled.

9.9.16 opt_unroll_loops

Controls the use of loop unrolling optimization.

Syntax
#pragma opt_unroll loops on | off | reset

Remarks

If you enable this pragma, the compiler places multiple copies of a loop's statements
inside a loop to improve its speed.

This pragma does not correspond to any panel setting in the Language panel. To check
this setting, use _ option (opt_unroll_loops), described in Checking Pragma Settings. By
default, this pragma is disabled.

9.9.17 optimization_level

Controls global optimization.
Syntax
#pragma optimization level 0 | 1 | 2 | 3 | 4
Remarks
This pragma specifies the degree of optimization that the global optimizer performs.

To select optimizations, use the pragma optimization_level With an argument from o to 4.
The higher the argument, the more optimizations performed by the global optimizer.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

356 Freescale Semiconductor, Inc.

Chapter 9 Pragmas

These pragmas correspond to the settings in the Global Optimizations panel. By default,
this pragma is disabled.

9.9.18 optimize_for_size

Controls optimization to reduce the size of object code.

Syntax
#pragma optimize for size on | off | reset
Remarks

This setting lets you choose what the compiler does when it must decide between creating
small code or fast code. If you enable this pragma, the compiler creates smaller object
code at the expense of speed. This pragma does not effect the inline directive or the
inlining of explicitly inlined functions. This pragma can be used in conjunction with the
dont_inline pragma to decrease the code size. If you disable this pragma, the compiler
creates faster object code at the expense of size.

The pragma corresponds to the Optimize for Size setting on the Global Optimizations
panel. To check this setting, use _ option (optimize_for_size), described in Checking
Pragma Settings. By default, this pragma is disabled.

9.9.19 peephole

Controls the use peephole optimization.

Syntax
#fpragma peephole on | off | reset

Remarks

If you enable this pragma, the compiler performs peephole optimizations, which are
small, local optimizations that eliminate some compare instructions and improve branch
sequences.

For the DSP56800, this pragma corresponds to the Peephole Optimization setting in the
M56800 Processor settings panel. Yet for the DSP56800E, there is no corresponding
setting for the M56800 Processor settings panel. To check this setting, use _ option
(peephole), described in Checking Pragma Settings.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 357

rrounler Pragmas

9.10 Profiler Pragmas

The 56800x has just one profiler pragma:

* profile

9.10.1 profile

Controls code to enable or disable the profiler.

Syntax
#pragma profile on | off | reset

Remarks

This setting lets you choose whether the compiler adds code to a function to call profiler
library functions. If you enable this pragma, the compiler calls profiling functions at the

beginning and end of the current function. If you disable this pragma, the compiler adds
no additional code. For further information on the profiler, see the Chapter "Profiler" in

either of the Targeting Manuals.

The pragma corresponds to the Generate code for profiling setting on the MS6800E
Processor settings panel. To check this setting, use _ option (profile), described in
Checking Pragma Settings. By default, this pragma is disabled.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

358 Freescale Semiconductor, Inc.

Chapter 10
Predefined Symbols

The compiler preprocessor has predefined macros that describe the compile-time
environment and properties of the target processor.

This chapter describes how to use these predefined symbols and lists them:

 Using Predefined Symbols

e Version Symbol

* Date and Time Symbol

e Name Symbols

* Object Code Organization and Generation Symbol
* C Symbols

10.1 Using Predefined Symbols

Predefined symbols are in the preprocessor, available at compile-time only.

10.2 Version Symbol

Version symbols:

e _ MWERKS__

10.2.1 _ MWERKS__

Defined with the version of the CodeWarrior compiler.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 359

vawe and Time Symbol

CodeWarrior compilers issued after 1995 define this macro with the compiler's version.
For example, if the compiler version is 3.2, the value of _ mwerks__ 1S ox3200.

This macro is defined as 1 if the compiler was issued before the CodeWarrior CW7 that
was released in 1995.

10.3 Date and Time Symbol

Date and time symbol:

e DATE__
e TIME__

10.3.1 _ DATE__

Defined as the date during compilation.

During compilation, the compiler defines this macro with a character string
representation of the current date.

10.3.2 _ TIME__

Defined as the time of day during compilation.

During compilation, the compiler defines this macro with a character string
representation of the current time.

10.4 Name Symbols

Name symbols:

e FILE__
e LINE__

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

360 Freescale Semiconductor, Inc.

Chapter 10 Predefined Symbols

10.41 _ FILE__

The name of the source code file being compiled.

During compilation, the compiler defines this macro with a character string
representation of the name of the file being compiled.

10.4.2 _ LINE__

The number of the line of source code being compiled.

During compilation, this macro is defined as an integer value representing the number of
line of source code being compiled.

10.5 Object Code Organization and Generation Symbol

Object code organization and generation symbol:

e m56800E__
e _ profile__
» _ optlevelx

10.5.1 _ _mb56800E__

This preprocessor macro is defined always from the m5S6800E compiler.

Syntax
__m56800E

Remarks

This macro is defined by default.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 361

A
4

4
A

vuject Code Organization and Generation Symbol

10.5.2 __ profile__

Defined as 1 when generating object code that works with a profiler. Undefined
otherwise.

10.5.3 __ optlevelx

Optimization level exported as a predefined macro.

Syntax

__optlevel0
__optlevell
__optlevel2
__optlevel3

__optlevel4

Remarks

Using these macros, user can conditionally compile code for a particular optimization
level. The following table lists the level of optimization provided by the _ optievelx

macro.
Table 10-1. Optimization Levels
Macro Optimization Level

__optlevelo 00

__optlevell o1

__optlevel2 02

__optlevel3 (0K

__optlevel4 04

Example

The listing below shows an example of _ optieveix macro usage.

Listing: Example usage of __optlevel macro

int main()

#if optleveloO

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

g |

4
Chapter 10 Predefined Symbols

// This code compiles
level 0O
#elif _ optlevell

// This code compiles
level 1
#elif optlevel2

// This code compiles
level 2
#elif _ optlevel3

// This code compiles
level 3
#elif optlevel4

// This code compiles
level 4

#tendif

}

10.6 C Symbols

C symbol:
« STDC__

10.6.1

__STDC__

only

only

only

only

only

if this

if this

if this

if this

if this

code

code

code

code

code

compiled with Optimization

compiled with Optimization

compiled with Optimization

compiled with Optimization

compiled with Optimization

Defined as 1 when compiling ISO Standard C source code, undefined otherwise.

The compiler defines this macro as 1 when the compiler's settings are configured to
restrict the compiler to translate source code that conforms to the ISO C Standard. The
compiler does not define this macro otherwise.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

363

}{ |

v oymbols

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

364 Freescale Semiconductor, Inc.

Chapter 11
Optimization

CodeWarrior build tools offer features to reduce the size of object code, improve a
program's execution speed, and often do both at the same time. Compiler optimizations
rearrange, add, or remove instructions to reduce size or improve performance.

This chapter describes how to take advantage of these optimizations:

* Optimization Considerations
* Inlining

* Profiling

 String Literals

* Optimizations

11.1 Optimization Considerations

There are several issues to take into consideration when selecting optimizations. Code
can be optimized for size or for speed, and there are optimizations that could effect the
size and the performance of the compiler. It is important to understand the full effects of
the optimizations. For example, inlining will decrease the overhead of making function
calls. However, if too many functions are called the resulting executable could be too
large to run on the target platform.

Inlining also effects the ability to debug a program. Programs are optimally debugged at
optimization level 0, and with no additional optimization options enabled. Users should
keep in mind that optimization could result in incorrect data being displayed while
debugging, and stepping through functions could also seem incorrect.

Finally, the performance of the compiler could also be negatively effected by enabling
optimizations. If there are many optimizations enabled, the compile time could increase
because of the extra time needed to process the optimizations.

All of these issues should be considered when selecting optimizations.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 365

g

11.2 Inlining

When inlining is enabled certain function calls are replaced with the function code.
Inlining function optimizes for speed, as there is no call. However, overall code may be
larger if function code is repeated in several places.

The inlining of a function is based on the complexity of the function and the settings of
several compiler options: IPA, Inline Depth, Auto Inline and Bottom up inline.

11.3 Profiling

For more details about profiling, see the CodeWarrior Development Studio for
Microcontrollers Versionl0.x Profiling and Analysis Tools User Guide.

11.4 String Literals

The compiler and linker manage character strings so that they occupy less space in the
object code and executable file.

String literals are:

* Pooling Strings
* Reusing Strings

11.4.1 Pooling Strings

The Pool Strings setting in the C/C++ Language Panel controls how the compiler stores
string constants.

If you enable this setting, the compiler collects all string constants into a single data
object so that your program needs only one TOC (table of content) entry for all of them.
While this decreases the number of TOC entries in your program, it also increases your
program size because it uses a less efficient method to store the address of the string.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

366 Freescale Semiconductor, Inc.

Chapter 11 Optimization

If you disable this setting, the compiler creates a unique data object and TOC entry for
each string constant.

Enable this setting if your program is large and has many string constants.

The Pool Strings setting corresponds to the pragma pool_strings. To check this setting,
use __option (pool_strings). By default, this setting is disabled. See also pool_strings and
Checking Pragma Settings.

11.4.2 Reusing Strings

The Reuse Strings setting in the C/C++ Language Panel controls how the compiler
stores string literals.

If you enable this setting, the compiler stores each string literal separately. Otherwise, the
compiler stores only one copy of identical string literals. This means if you change one of
the strings, you change them all. For example, look at this code:

char *strl="Hello";
char *str2="Hello"; // two identical strings
*str2 = 'Y';

This setting helps you save memory if your program contains identical string literals
which you do not modify. If you enable the Reuse Strings setting, the strings are stored
separately. After changing the first character, strl is still ze110, but str2 is vei1o.

If you disable the Reuse Strings setting, the two strings are stored in one memory location
because they are identical. After changing the first character, both strl and str2 are vei1o,
which is counterintuitive and can create bugs that are difficult to locate. The Reuse
Strings setting corresponds to the pragma dont_reuse_strings. To check this setting, use
__option (dont_reuse_strings). By default, this setting is enabled, so strings are not
reused. See also dont_reuse_strings and Checking Pragma Settings.

11.5 Optimizations

The following is a collection of optimization types and examples of how the resulting
generated code is affected:

¢ Dead Code Elimination

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 367

A
4

4
A

vpumizations

* Expression Simplification

* Common Subexpression Elimination
* Copy Propagation

* Dead Store Elimination

e Live Range Splitting

* Loop-Invariant Code Motion

» Strength Reduction

e Loop Unrolling

* M56800E Specific Optimizations

11.5.1 Dead Code Elimination

Listing: Dead Code Elimination, Before Optimization

void func (void)

(0)

otherfuncil () ;

otherfunc2 () ;
Listing: Dead Code Elimination, After Optimization

void func_optimized(void)

otherfunc2 () ;

11.5.2 Expression Simplification

Listing: Expression Simplification, Before Optimization

#define MY OFFSET 4

void func(int* resultl, int* result2, int* result3, int* result4, int x)

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

Chapter 11 Optimization

*resultl = x + 0;
*result2 = x * 2;
*result3 = X - X;
*result4 = 1 + x + MY OFFSET;

Listing: Expression Simplification, After Optimization

#define MY OFFSET 4

void func optimized(int* resultl, int* result2, int* result3, int* result4, int x)

*resultl = Xx;
*result2 = X << 2;
*result3 = 0;
*result4d = 5 + X;

}

11.5.3 Common Subexpression Elimination

Listing: Common Subexpression Elimination, Before Optimization

void func(int* vec, int size, int x, int y, int wvalue)

{

if (x * y < size)

{

vec[x * y] = value;

}
Listing: Common Subexpression Elimination, After Optimization

void func optimized(int* wvec, int size, int x, int y, int value)

{
int temp;
temp = x * y;
if (temp < size)

vec [temp] = value;

11.5.4 Copy Propagation

Listing: Copy Propagation, Before Optimization

void func (int* a, int x)

Lo
int 1;
int j;
j o= x;
for (i = 0; 1 < j; i++)

{

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 369

Listing: Copy Propagation, After Optimization

void func optimized(int* a, int x)
int i;
int j;
j = x;
for (i = 0; 1 < x; i++)

{
}

a[i] = X;

11.5.5 Dead Store Elimination

Listing: Dead Store Elimination, Before Optimization

void func (int x, int y)
X =Yy *vy;
otherfuncl (y)

X = getresult();
otherfunc2 (y) ;

Listing: Dead Store Elimination, After Optimization

void func optimized(int x, int y)

otherfuncl (y) ;
x = getresult() ;
otherfunc2 (y) ;

11.5.6 Live Range Splitting

Listing: Live Range Splitting, Before Optimization

void func (int x, int y)

int a;

int b;

otherfunc(a) ;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

370

Freescale Semiconductor, Inc.

b =x+y;
otherfunc (b) ;
c=x-Y;
otherfunc (c) ;
}
Listing: Live Range Splitting, After Optimization
void func_optimized(int x, int y)
{
int temp;
temp = x * y;
otherfunc (temp) ;
temp = x + vy;
otherfunc (temp) ;
temp = x - y;

otherfunc (temp) ;

11.5.7 Loop-Invariant Code Motion

Listing: Loop-Invariant Code Motion, Before Optimization

void func (float* vec, int max, float val)
float circ;
int i;
for (i = 0; 1 < max; ++1)
circ = val * 2 * PI;
vec[i] = circ;

Listing: Loop-Invariant Code Motion, After Optimization

void func optimized(float* , int max, float wval)

{

float circ;

int i;

circ = val * 2 * PI;

for (i = 0; i < max; ++1)
vec[i] = circ;

}
}

Chapter 11 Optimization

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

371

g |

vpumizations

11.5.8 Strength Reduction

Listing: Strength Reduction, Before Optimization

void func (int* vec, int max, int fac)

{
int i;
for (i = 0; 1 < max; ++1i)
vec[i] = fac * i;
!

Listing: Strength Reduction, After Optimization

void func_optimized(int* vec, int max, int fac)

{

int i;

int temp = 0;

for (1 = 0; 1 < max; ++1)
vec[i] = temp;

temp = temp + fac;
}
}

11.5.9 Loop Unrolling

Listing: Loop Unrolling, Before Optimization

const int MAX = 100;

void func (int* wvec)

int 1i;
for (i = 0; i < MAX; ++1)

{

otherfunc (vec[i]) ;

}
Listing: Loop Unrolling, After Optimization

const int MAX = 100;
void func optimized(int* vec)

{
int 1i;
for (i = 0; 1 < MAX;)
otherfunc (vec[i]) ;

++1;
otherfunc (vec[i]) ;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

372 Freescale Semiconductor, Inc.

Chapter 11 Optimization

++1;

11.5.10 M56800E Specific Optimizations

This section provides techniques, programming style suggestions, and information to
maximize the efficiency of the Freescale C compiler for the 56800/E Digital Signal
controllers.

11.5.10.1 Overview of the 56800E Architecture

The 56800/E processors are member of the 56800x family of digital signal
microcontrollers. The 56800x instruction set is targeted for efficient microcontroller code
generation and DSP (Digital Signal Processing). The 56800/E are digital signal
processors, because they both have a microcontroller and DSP.

Microcontroller instructions include:

* Bit manipulation instructions
* Flexible branching instructions
» Absolute (global) addressing modes to maximize control code density.

DSP features include:

* Single cycle MAC (Multiply-Accumulate)

» Separate address register file

 Separate data/program memory spaces,

* Multiple addressing modes, including pointer post-update addressing modes.

The C compiler attempts to target the post-update addressing modes in loops. In this
chapter, we describe the programming style that promotes the selection of the post-update
addressing modes.

The 56800x family is a native 16-bit machine - data and addresses are 16 bits wide. The
56800/E extends the address bus width to 24-bits (called the large data model), allowing
a wider range of data addresses, but at a cost of performance and code density. In this
chapter, we discuss the techniques used to minimize the cost of enabling the large data
model.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 373

vpumizations

NOTE
Although ANSI-C data types are fully supported, in this
chapter, we show that the best code is generated when the
programmer favors the native data type size (16-bits).

11.5.10.2 Working with the 56800E Memory Models

The Freescale 56800E C Compiler supports large and small program and data memory
models as shown in the following table. The small data model is more code efficient.
However, sometimes the application requires a larger data address space.

Table 11-1. Code and Data Memory Ranges

Section Small Data Model Large Data Model
Size (KB) Range (Word Size (MB) Range (Word
Address) Address)
CODE (P:memory) 128 0 - OXFFFF 1 0 - OX7FFFF
DATA (X:memory) 128 0 - OXFFFF 32 0 - Ox7FFFF
DATA (X:memory) 64 0 - OXFFFF 16 0 - OX7FFFF
character data

The large data memory model allows data to be placed in memory at addresses greater
than the 16-bit address limitation of the small data model. The large data memory model
can be selected at DSC Compiler > Processor Options in the Tool Settings panel. This
selection informs the compiler that global and static data should be addressed with the
24-bit variants of the absolute addressing modes of the device. Also in the large memory
model, pointers are treated as 24-bit quantities when moved from register to register,
memory to register, or register to memory. For information on how the large memory
model is selected, see the Freescale 56800/E Hybrid Controllers: MC56F83xx/
DSP5685x Family Targeting Manual.

One likely scenario in an embedded programming environment is that the total static and
global data size, that is, the total size of data objects that the compiler accesses with
absolute addressing modes (X:xxxx or X:xxxxxx addressing modes) will comfortably
reside within the 16-bit data addressing range. However, the heap (dynamically allocated
data memory) or the stack (local, automatic data memory) may require extended
addressing as this data may extend beyond the 16-bit address range.

To optimize the program size, use the CodeWarrior IDE targets settings panel M56800E
Processor: Large Data Model: Globals live in lower memory panel option in
conjunction with the large data memory model. The Globals live in lower memory panel
option reverts the absolute addressing modes to the small data model for static and global

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

374 Freescale Semiconductor, Inc.

Chapter 11 Optimization

variables, while using the large memory model for any address pointers or local
variables. Thus, for static and global variables, the efficiency of the small data model is

retained even for programs where the total data size may exceed the 16-bit addressing
range.

The following listing shows the code generation differences between the large and small
data model. In this example, the code performs a bubble sort on an array of integers. At
maximum optimization, the code runs in 579 cycles in the small data memory model. The
code takes 760 cycles using the large data memory model. When the large data memory
model and Globals live in lower memory option is selected, the code runs in 729 cycles.
The difference in the cycle count of the two large data model runs is due to the way
global variables are addressed. The Globals live in lower memory option forces the
access of the global variable "next" to be there as it would be for the small data model.

Listing: Example 1: Memory Model Comparison Code

int vector([] = { 3,7,6,1,2,5 }; int next; int main()
{
int i=0, j=0;
int sz = sizeof (vector)/sizeof (int) ;
for (i=0; i<sz; i++)({
for (j=0; j<sz-i; j++){
if (vector[j]svector[j+1])

next=vector[j];

vector [j]l=vector[j+1];

vector [j+1]=next;

}

Table 11-2. Example 1 at Maximum Optimization

Small Data Model Large Data Model Large Data Model and Global Live in
Lower Memory

579 cycles 760 cycles 729 cycles

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 375

vpumizations

If the Globals live in lower memory option is selected, be sure to locate the .4ata
and .bss sections in lower memory. Dynamically allocated memory and the stack may be
located in either lower or upper memory for the large data model.

11.5.10.3 Targeting Post-Update Addressing Modes in Loops

Post-update addressing modes are available for many S6800E instructions. At
optimization level 2 and above, the compiler attempts to locate register-based address
expressions which change by a linear amount for each iteration through a loop. If such an
expression is located and certain conditions are met, the compiler may replace the address
update expression with a post-update addressing mode that is performed concurrently
with the move or arithmetic operation. Such a transformation is called “strength
reduction' in compiler terminology and means replacing an instruction operation with a
cheaper (fewer cycles or words) instruction. Address expressions are normally either
address registers that have been loaded directly with the addresses of objects (variables)
or address registers holding the calculated address of array elements. Array indices which
vary by a regular, linear amount for each iteration through a loop are called “induction
variables.' Many times induction variables are completely eliminated when their function
is replaced by a post-update addressing mode.

Listing: Example 2: Post-Update Addressing Modes

X: (Rn) + Address is incremented by 1 (2 for move.l)
X: (Rn) - Address is decremented by 1 (2 for move.l)
X: (Rn) +N Address is incremented by value in N register

Some programming guidelines which promote the successful targeting of the post-update
addressing mode are:

* The address expression must be within a loop.

» The address expressions must be register based, therefore, global pointer variables
are usually not targeted for strength reduction since they may be accessed with
absolute addressing modes. Sometimes, it is useful to load the address of a global
array into a local pointer variable to make the address expression more obvious to the
compiler.

» The address expression should be executed each iteration of the loop. Address
expressions embedded in "if-then-else' blocks will not be targeted for post-update
addressing.

* Induction variables must be defined at one point in the loop and must vary linearly
from its previous value.

In the following listing, a simple loop that calculates the sum of elements in a local array
is shown. For this example, the induction variable "1' is completely eliminated because:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

376 Freescale Semiconductor, Inc.

A\ 4
g gl 4
Chapter 11 Optimization
* A DO loop instruction has been generated, eliminating the need for a test on “i' to
determine if the loop has ended
* The use of "1' in the calculation of the array addresses has been eliminated, in favor of
a post-update addressing mode (see line 11 in the following listing)
Listing: Example 3: Successful Strength Reduction
int 1i;
int sum=0;
int arr[] = { 13,14,18,3,7,0,1,4,11,20 };
int sz = sizeof (arr)/sizeof (int) ;
for (i=0; i < sz; i++)
sum += arr[i];
printf ("Sum is %d\n",sum);

Assembly output:

(1) adda #<10,SP ;allocate stack

(2) move.w #<0,B jsum = 0

(3) adda #-9,SP,R1 ;&arr [0] ->R1

(4) moveu.w #F47,RO0 ;temp F47->R0

(5) do #<10,> L8 0 ;compiler generated init loop
(6) move.w X:(RO)+,A ;initialize arr|[]

(7) move.w Al,X: (R1)+

(8) L8 0:

(9) adda #-9,SP,R0 ;&arr [0] ->RO

(10) do #<10,> L8 1 ;for loop

(11) move.w X: (RO)+,A ;arr[i] ->A

(12) add A,B ;sum = arr[i] +sum

(13) 18 1:

(14) adda #<2,8P ;printf call setup

(15) moveu.w #@lb (F54),N ;string temp to stack

(16) move.w N,X: (SP)

(17) move.w B1l,X: (SP-1) ;sum to stack
(18) jsr >Fprintf ;call printf
(19) suba #<2,SP ;restore stack

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 377

vpumizations

The following listing shows a case where strength reduction of the address expression
was not possible, mainly because the access to the array is conditionally executed in the
loop. Also, the induction variable “1' is used in the “if' test, but this would not normally
prevent a post-update transformation from occurring.

Listing: Example 4: Array Update In Conditional Block
for (i=0; 1 < sz; i++)
if (1 & 1)
sum += arr(il;

Assembly output:

(1) do #<10,> L8 1 ;for loop

(2) brclr #1,Y0,< L8 2 ;if (1 & 1)

(3) move.w X:(RO),A ;arr[i] ->Av

(4) add A,B ;sum = arr[i] +sum
(5) L8 2:

(6) adda #<1,RO ; &arr = &arr + 1;
(7) add.w #<1,Y0 ;=1 + 1

(8) nop

(9) L8 1:

In the following listing, another situation is shown where strength reduction will fail to
find a post-update opportunity. This is when the loop or induction variable is multiply
defined in a loop.

NOTE
This also kills the hardware do loop as the compiler cannot
determine the static loop count.

Listing: Example 5: Induction Variable is Multiply Defined
for (i=0; i < sz; i++)
sum += arr[i++];

Assembly output:

(1) move.w #<0,A ; 1=0

(2) L8 1:

(3) move.w Al,B ;1 -> temp

(4) add.w #<1,B ; temp++

(5) move.w Al,N ; temp++ -> N

(6) adda #-9,SP,R0 ; &arr[0] -> RO

(7) move.w X: (RO+N) ,A ; arr[temp++] -> A

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

378 Freescale Semiconductor, Inc.

Chapter 11 Optimization

(8) add A,YO0 ; sum = arr[i++] + sum
(9) move.w Bl,A ; temp++ -> i
(10)add.w #<1,A ;01 =1+ 1

(11)cmp.w #<10,A

(12)blt < 18 1 ;1< 102

The following listing demonstrates a simple delay line loop that is structured so post-
update addressing is impossible. The final store to memory in the loop is a memory plus
displacement addressing mode, move.w A1,X:(R0+1), which doesn't allow post-update
addressing. The loop written as is takes approximately 29 cycles and 9 words for
NTAPS=6.

Listing: Example 6: Loop Structure Doesn't Allow Post-Update Addressing

for (ii = NTAPS - 2; ii >= 0; ii--) {
z[1ii + 1] = z[ii];
!

Assembly output:

(1) do #<5,> Ll12 1 ; for ()

(2) move.w YO,RO ; 11 -> RO

(3) adda R3,RO0 ; &z [0] + 1

(4) move.w X:(RO),A ; z[ii] -> A

(5) move.w Al,X: (RO+1) ; z[1i] -> z[ii1i + 1]
(6) sub.w #<1,Y0 ; o1i--

(7)_Li12 1:

The loop in the above listing may be re-written slightly as shown in the following listing
to allow for much more efficient processing. The idea is to try to get an instruction that
has a post-update variant as the final load or store in the loop. This loop executes in 17
cycles and 8 words.

Listing: Example 7: Loop Re-Written to Allow Post-Update Addressing

int *pl = &z [NTAPS-1];
for (ii = NTAPS - 2; ii »>= 0; ii--) {
*pl-- = z[ii];

}

Assembly output:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 379

vpumizations

(1) tfra R1,R3 ; &z [NTAPS-1] -> R3
(2) adda #-5,SP,RO ; &z [NTAPS-2] -> RO
(3) tfra RO,R2 ;RO -> R2

(4) do #<5,> L9 1 jfor ()

(5) move.w X:(R2)-,B ;z[11] -> B

(6) move.w B1l,X: (R3)- ;B -> z[ii+1]
(7)_L9 1:

11.5.10.3.1 The Effects of Casting on Code Quality

The 56800x family is a native 16-bit architecture. Type casting to and from 16-bit data
types requires extra instruction words and cycles. Use 16-bit types (int, short, unsigned
int, unsigned short) whenever possible to minimize to program memory required for the
application. Also be aware that ANSI-C requires implicit promotion of integral types for
arithmetic operations and this may cause implicit type casting. Of course, favoring 16-bit
data types may cause an increase in the total data size of an application. The trade off
between program and data memory will have to be judged for each application. In
general, if program memory is the limiting resource, favor 16-bit types. If data memory is
the limiting resource, then using 8-bit data types where possible may be preferred.

Casting ints to char or long types are usually the least costly in terms of words and cycles.
Since accumulators (A,B,C,D registers in the 56800E) are the only registers capable of
holding 32-bit quantities, they must be used for long operations. Accumulators are
composed of two individually addressable 16-bit parts, the MSP or most significant
portion and the LSP or least significant portion. The MSP is often treated as a 16-bit
register containing an int or short sized quantity (16-bits). An int to long cast requires an
asr16 instruction to move the MSP to the LSP of the accumulator.

Listing: Example 8: Casting an integer to a Long Data Type

int 1ls;

long 11;

11 = (long)ls;
move.w X: (SP-2) ,A;
asrle A,A

move.l Al0,X: (SP-4)

Bytes or char variables are stored as portions of integer sized registers. The S6800E does
not contain 8-bit registers. An int to char cast requires an explicit sign extension (sxt.b) of
the integer to properly format the register so that the sign bit of the char is extended into
the entire word. This is required for proper arithmetic operations on the char since
arithmetic in C occurs on integers by definition. Also, the 56800E only performs 16-bit
and 32-bit arithmetic.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

380 Freescale Semiconductor, Inc.

Chapter 11 Optimization
Listing: Example 9: Casting an int to a char Data Type

char 1lc;
int 1s;

lc = (char)ls;

Assembly output:

move.w X: (SP-2),A

sxt.b A,A

move.b Al,X: (SP)

chars that are converted to int Or 10ng first require a sign extension of the byte into an
integer value. If the cnar 1s converted to a long, an addition asr16 is required to convert to

a 32-bit value.

Listing: Example 10: Casting a char to long

long 11;
char 1lc;

11 = (long)lc;

Assembly output:

moveu.b X: (SP),A

sxt.b A,A

asrle A,A

move.l Al0,X: (SP-4)

It should be clear now that casting causes runtime penalties in terms of code size and
cycles. Sometimes the perceived benefit of using shorter data types to save data memory

results in runtime costs.

The 56800E has a unique model for handling pointers to character data. Although the
data memory is organized by words, that is, each address points to a word (two bytes) of
data, individual bytes within a word can be still be addressed. The compiler handles this
addressing invisibly, but the programmer should be aware of the costs of converting from
byte pointers to word pointers and vice versa.

A byte address is generated by the compiler when the programmer chooses to use
character data to represent an object. Strings are character data by default in the 56800E
compiler and are addressed with byte pointers. Special instructions in the S6800E
instruction set expect to see and operate on byte pointer values. A word pointer may be
converted to a byte pointer by multiplying the word address by two. Similarly, a byte
address is converted to a word address by dividing the byte address by two. When a byte
pointer is cast to a word pointer, an explicit, runtime conversion of the pointer quantity is
performed. The cost is a one word, one cycle penalty to bit shift the address value to the
left, that is, multiply by two, to convert to a byte pointer. The cost is the same to convert
to a word pointer, except the shift is to the right, effectively dividing by two. The void
pointer is a byte pointer since the void pointer should be able to represent any data type,
including chars. Since there is a runtime penalty for converting pointer types, casts back

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 381

vpumizations

and forth should be limited for efficient C programs. This may be a factor when the void
pointer is used to point to generic data and cast to the proper type at runtime. The
following listing shows the effect of casting byte and word pointers.

Listing: Example 11: Casting Byte and Word Pointers

void * pvoid;
int wvint;

int * pint;
char *pchar;

pint = (int *)é&vint;
adda #-5,SP,RO
move.w RO,X: (SP-6)

pvoid = (void *)pint;
moveu.w X: (SP-6),R0
asla RO,RO

move.w RO,X: (SP-4)

pchar = (char *)pint;
move.w X: (SP-6),R0
asla RO,RO

move.w RO, X: (SP-7)

pint = (int *)pvoid;
moveu.w X: (SP-4),R0
lsra RO

move.w RO, X: (SP-6)

11.5.10.3.2 Miscellaneous Techniques

There are other several minor techniques to be aware of when writing the most efficient
C code for the compiler.

Initialize local arrays and structures at declaration time, if possible. Local arrays and
structures are initialized optimally by the compiler.

Functions with a large number of parameters will probably have to pass some parameters
on the stack causing costly memory accesses. Make sure that frequently called functions
pass their parameters in registers. For information on the parameter passing rules for the
56800E C Compiler see the Freescale 56800/E Hybrid Controllers: MC56F83xx/
DSP5685x Family Targeting Manual.

Forcing enums as integers (C/C++ Language Panel, "Enums Always Ints") may yield
better code since integers are usually handled more efficiently.

Loading frequently used global variables into local temporary variables sometimes has a
positive effect on code size and performance, since accessing variables through registers
is more efficient that absolute addressing modes.

As an illustration of the final point in the list above, the code in the following listing
executes in 98 cycles and 20 program memory words. The same function is performed by
the code in Listing: Example 13: Modified Global Structure Example, but it executes in

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

382 Freescale Semiconductor, Inc.

g |

4
Chapter 11 Optimization

57 cycles and 13 program memory words. A temporary local variable is used in
processing instead of the global variable. Fewer absolute addressing instructions account
for the difference.

Listing: Example 12: Global Structure Example

#define ARRAY SIZE 5
static struct sl
{
unsigned char value a;
unsigned char value_b;
unsigned char value c;
} s _s1[ARRAY SIZE];
unsigned int ril;
int main()
{
int 1i;
for (i = 0; 1 < ARRAY SIZE; i++)
{
rl += s_sl[i].value a;
rl += s _sl1[i] .value b;
rl += s_sl1[i].value c;
}
return (rl);
}
Listing: Example 13: Modified Global Structure Example

int main() {

int i;

unsigned int local var;

local_var = rl;

for (i = 0; 1 < ARRAY SIZE; i++)

{
local var += s_sl[i].value_a;
local var += s_sl[i].value b;

local var += s_sl[i].value c;

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 383

vpumizations

}

rl = local var;

return (rl);

11.5.10.4 Software Pipelining

Software pipelining is a loop transformation that changes the initial loop so that parts of
different iterations execute at the same time. This scheduling technique exploits
architectural instruction level parallelism.

It may also produce better loop schedules when stalls, hazards or latencies exist between
instructions in the initial loop, if they can be avoided in the transformed loop.

Note that the DSP56800e architecture provides limited parallelism by means of parallel
move instructions. These limitations narrow down the applicability of this transformation.

An example of software pipelining transformation:

#include "intrinsics 56800e.h"
int x([100], y[100], 1i;

long res;

void main()

{
long t=0;
for (i=0; 1<100; i++)

{

t = L_mac(t, x[il, yI[il);

}

This code will compile the loop-body into one cycle:

rep R1

mac Y0,X0,A X:(RO)+,Y0 X:(R3)+,X0
where mac instruction from first iteration of the loop executes in parallel with load
instructions from the second iteration of the initial loop.

This transformation applies to the inner most loops of a program, and currently is enabled
only for DO loops.

It is controlled by the - o1 swp command line switch, and it is by default enabled for
optimization levels higher than 2. Otherwise #pragma swplevel on/off may be used to
control the transformation. When optimizing for size, software pipelining is disabled, as
it usually increases program size.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

384 Freescale Semiconductor, Inc.

Chapter 11 Optimization

11.5.10.5 Stack Sequence Optimization

This transformation replaces several accesses to adjacent stack locations with a post-
increment/-decrement addressing mode by using an available address register.

For DSP56800E, this transformation may bring performance gain both in execution speed
and code size. Speed is improved as instructions using post-increment access usually take
only one cycle as opposed to instructions with immediate offsets that can take 2 or 3
cycles. Code size is reduced when large immediates are present.

An example of stack sequence optimization where the following low-level intermediate
piece of code:

move.w X:(SP-2),A
move.w X:(SP-1),Y1
move.w X:(SP-2),A
move.w X:(sSp-3),B
add.w X:(Sp-4),B

will become:

adda #-2,SP,R0
move .w X:(RO)+,A
move.w X:(RO)-,Y1
move.w X:(RO)-,A
move .w X:(RO)+,B
add.w X:(RO),B

which brings an improvement of 3 cycles (2+2+2+2+43 as opposed to 2+1+1+1+1+2).

In the example above, the transformation actually increases the code size, and that is why
it will not be performed on this example when -Os optimization is required.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 385

vpumizations

Note that this transformation makes use of both post increment and post decrement
update modes, and it can also exploit all instructions accessing the stack, not only loads
and stores.

Transformation is controlled by the - (no] stackseq command line switch, and it is enabled
by default for an optimization level higher than one. Also, #pragma stackseg on/off may be
used to control the transformation.

11.5.10.6 Constant to Array Reallocation

Constants/large constants encoded in instructions are stored into an array in data memory
and immediate operands are changed into data memory access using register-indirect,
post-increment operands.

The main target of this optimization is speed, but occasionally size improvements can
also be obtained.

Each transformed instruction reduces the execution time of an instruction by 1-2 cycles
and reduces program memory size by 1-2 words, but also causes an increase of data
memory by 1-2 words, depending on the size of immediates.

Besides the operand mode transformation, grouping transformed instructions can further
decrease total program memory size.

The following instructions take between 2-3 words of program memory and 2-3 cycles to
execute:

MOVE . W#xxxx, HHHHH

MOVE . L#xxxXxXx, HHHHH
and they are transformed to:

MOVE.W (Rx) +, HHHHH

MOVE.L (Rx) +, HHHHH

so that the resulting instruction will take 1word of program memory and 1 cycle to
execute, but it will add an extra 1-2 words into data memory (the immediate values). It
will also add an overhead of one instruction per sequence for computing the address of
the first element.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

386 Freescale Semiconductor, Inc.

g |

4
Chapter 11 Optimization

If no instruction grouping happens with instructions transformed to post-increment
indirect addressing, the total memory size used will slightly increase, due to the
computation of stack offset for the first element in a sequence.

An example of how this optimization works on the following piece of low-level
intermediate code:

.code
move.w X:(R3)+, XO
move.w #<number 1>, YO
mac Y0, X0, A
move.w X:(R3)+, XO
move.w #<number 2>, YO

mac Y0, X0, A

The code above can be optimized to:

.code
move.w #<array starting_address>, RO
move.w X:(R3)+, XO
move.w X:(RO)+, YO
mac YO, X0, A
move.w X:(R3)+, XO
move.w X:(RO)+, YO

mac Y0, X0, A

.data
array_starting address:
<number 1>

<number_2>

This optimization is disabled for -os and is automatically enabled on speed optimization
level >= 2. Constant to array reallocation can be enabled/disabled at any optimization
level using - inol constarray Options in the command line. At function level, you should use

#pragma constarray on/off.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 387

vpumizations

NOTE
This optimization creates extra data for its own use in the .4ata
section. If the .4ata section load address is different from
the .data section run address (e.g., because of an AT linker
command file directive) avoid using the constant to array
optimization in any functions executing before the run address.
Use #pragma constarray off tO ensure proper function execution.

11.5.10.7 Interprocedural Analysis Support

Interprocedural Analysis (IPA) allows the compiler to generate better and/or smaller code
by inspecting more than just one function or data object at the same time. This
technology is currently used by the inliner.

The compiler supports three different interprocedural analysis modes: off (default), file,
and program.

With the function mode -ipa off, functions are optimized and code is generated when the
function has been parsed. This mode allows no interprocedural analysis.

With the mode -ipa file, a translation unit is completely parsed before any code or data is
generated. This allows optimizations and inlining on a per-file basis. This mode will
require more memory and it can be slightly slower than the -ipa otr£f mode. The compiler
will also do an early dead code/data analysis in this mode, so objects with internal linkage
that are not referenced will be dead-stripped in the compiler rather than in the linker.

With the mode -ipa program all translation units are completely parsed. Optimizations and
code generation are done in a final stage enabling true "whole program" optimizations.
For example, auto-inlining of functions that are defined in another translation unit.

"Program IPA" can require a lot of memory and will also be slower, especially in the
change/build/debug cycle because all code generation and optimizations will have to be
redone whenever a program has to be relinked.

Using this mode from command-line tools is more complicated. If you specify all source
files on the command-line you can use -ipa program:

mwcc56800e -ipa program testl.c test2.c [all sources and libraries]...
This will compile, optimize, codegen, and link binary in "program" ipa mode.
If you want to separate compilation from linking you can either use:

mwcc56800e -ipa program -c testl.c

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

388 Freescale Semiconductor, Inc.

Chapter 11 Optimization

This generates testl.o file (empty) and a test1.irobj file.

mwce56800e -ipa program -c test2.c

This generates test2.o file (empty) and a test2.irobj file.

mwcc56800e -ipa program testl.o test2.o [all *.o and libraries]...

This will optimize, codegen, and link binary in "program" ipa mode.
If you want to invoke the linker separately you will have to use:
mwce56800e -ipa program -c testl.c

This generates testl.o file (empty) and a test1.irobj file.

mwce56800e -ipa program -c test2.c

This generates test2.o file (empty) and a test2.irobj file.

mwcc56800e -ipa program-final testl.irobj test2.irobj [all *.irobjs]...
This will optimize and codegen in "program" ipa mode and update the .o files.
mwld56800e -0 test.exe testl.obj test2.obj [all *.objs and libraries]...
This will link binaries.

The .irobj files contain an intermediate program representation. Thus the build step
corresponding to "make clean" should remove these when the matching .o file is deleted.

NOTE
-ipa program mode is available only with command line
compiler.
WARNING

-ipa program mode is not fully-tested for DSC development.
Use at your own risk.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 389

}{ |

upumizations

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

390 Freescale Semiconductor, Inc.

Chapter 12
Tool Performance

CodeWarrior compilers can "precompile” a header file to speed up translation of source
code. Precompiling a header file that is included often in other source files will reduce the
time the compiler uses to translate source code.

Some options for CodeWarrior compilers and linkers affect how much time these tools
use. By managing these options so that they are used only when they are needed, you can
reduce the time needed to build your software.

12.1 Precompiled Header Files

This topic contains the following sub-topics:

* When to Use Precompiled Files

* What Can be Precompiled

* Precompiling C++ Source Code

» Using a Precompiled Header File

* Preprocessing and Precompiling

e Pragma Scope in Precompiled Files

* Precompiling a File in the CodeWarrior IDE
» Updating a Precompiled File Automatically

12.1.1 When to Use Precompiled Files

Source code files in a project typically use many header files. Typically, the same header
files are included by each source code file in a project, forcing the compiler to read these
same header files repeatedly during compilation. To shorten the time spent compiling and
recompiling the same header files, CodeWarrior compilers can precompile a header file,
allowing it to be subsequently preprocessed much faster than a regular text source code
file.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 391

rrecompiled Header Files

For example, as a convenience, programmers often create a header file that contains
commonly-used preprocessor definitions and includes frequently-used header files. This
header file is then included by each source code file in the project, saving the
programmer some time and effort while writing source code.

This convenience comes at a cost, though. While the programmer saves time typing, the
compiler does extra work, preprocessing and compiling this header file each time it
compiles a source code file that includes it.

This header file can be precompiled so that, instead of preprocessing multiple
duplications, the compiler needs to load just one precompiled header file.

12.1.2 What Can be Precompiled

A file to be precompiled does not have to be a header file (.n or .npp files, for example),
but it must meet these requirements:

e The file must be a source code file in text format.
You cannot precompile libraries or other binary files.

» A C source code file that will be automatically precompiled must have .pcnh file name
extension.

* Precompiled files must have a .mch file name extension.

* The file to be precompiled does not have to be in a CodeWarrior IDE project,
although a project must be open to precompile the file.

The CodeWarrior IDE uses the build target settings to precompile a file.
» The file must not contain any statements that generate data or executable code.
However, the file may define static data.

* Precompiled header files for different build targets are not interchangeable.
* A source file may include only one precompiled file.
* A file may not define any items before including a precompiled file.

Typically, a source code file includes a precompiled header file before anything else
(except comments).

12.1.3 Precompiling C++ Source Code

The CodeWarrior C++ compiler has these requirements for precompiling source code:

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

392 Freescale Semiconductor, Inc.

Chapter 12 Tool Performance

* C source code may not include precompiled C++ header files and C++ source code
may not include precompiled C header files.

* C++ source code can contain inline functions and constant variable declarations
(const)

* A C++ source code file that will be automatically precompiled must have a .pcn++ file
name extension.

12.1.4 Using a Precompiled Header File

Although a precompiled file is not a text file, you use it like you would a regular header
file. To include a precompiled header file in a source code file, use the #inciuge directive.

NOTE
Unlike regular header files in text format, a source code file
may include only one precompiled file.

Tip

Instead of explicitly including a precompiled file in each source
code file with the #inciuge directive, put the #inciuge directive in
the Prefix Text field of the C/C++ Preprocessor settings panel
and make sure that the Use prefix in precompiled headers
option is on. If the Prefix File field already specifies a file

name, include the precompiled file in the prefix file with the
#include directive.

The following listing shows an example.

Listing: Header File that Creates a Precompiled Header File for C

// sock_header.pch

// When compiled or precompiled, this file will generate a
// precompiled file named "sock_ precomp.mch"

#pragma precompile target "sock precomp.mch"

#define SOCK VERSION "SockSorter 2.0"

#include "sock std.h"

#include "sock string.h"

#include "sock sorter.h"

The following listing shows another example.
Listing: Using a Precompiled File

// sock_main.c

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 393

rrecompiled Header Files

// Instead of including all the files included in
// sock_header.pch, we use sock precomp.h instead.

//
// A precompiled file must be included before anything else.
#include "sock precomp.mch"

int main(void)

{
/] ...

return O;

12.1.5 Preprocessing and Precompiling

When precompiling a header file, the compiler preprocesses the file too. In other words, a
precompiled file is preprocessed in the context of its precompilation, not in the context of
its compilation.

The preprocessor also tracks macros used to guard #inciuge files to reduce parsing time.
Thus, if a file's contents are surrounded with:

#ifndef FOO_H
#define FOO_H

// file contents
#endif

The compiler will not load the file twice, saving some small amount of time in the
process.

12.1.6 Pragma Scope in Precompiled Files

Pragma settings inside a precompiled file affect only the source code within that file. The
pragma settings for an item declared in a precompiled header file (such as data or a
function) are saved then restored when the precompiled header file is included.

For example, the source code in the following listing specifies that the variable xxx is a
far variable.

Listing: Pragma Settings in a Precompiled Header

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

394 Freescale Semiconductor, Inc.

Chapter 12 Tool Performance
// my_pch.pch
// Generate a precompiled header named pch.mch.
#pragma precompile target "my pch.mch"
#pragma far data on
extern int xxx;

The source code in the following listing includes the precompiled version of the above
listing.

Listing: Pragma Settings in an Included Precompiled File

// test.c

#pragma far data off // far data is disabled

#include "my pch.mch" // this precompiled file sets far data on
// far_data is still off but xxx is still a far variable

The pragma setting in the precompiled file is active within the precompiled file, even
though the source file including the precompiled file has a different setting.

12.1.7 Precompiling a File in the CodeWarrior IDE

To precompile a file in the CodeWarrior IDE, use the Precompile command in the
Project menu:

1. Start the CodeWarrior IDE.
. Open or create a project.
. Choose or create a build target in the project.

W N

The settings in the project's active build target will be used when preprocessing and
precompiling the file you want to precompile.

4. Open the source code file to precompile.

See What Can be Precompiled for information on what a precompiled file may
contain.

5. From the Project menu, choose Precompile.
A save dialog box appears.

6. Choose a location and type a name for the new precompiled file.
The IDE precompiles the file and saves it.

7. Click Save.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 395

rrecompiled Header Files

The save dialog box closes, and the IDE precompiles the file you opened, saving it in
the folder you specified, giving it the name you specified.

You may now include the new precompiled file in source code files.

12.1.8 Updating a Precompiled File Automatically

Use the CodeWarrior IDE's project manager to update a precompiled header
automatically. The IDE creates a precompiled file from a source code file during a
compile, update, or make operation if the source code file meets these criteria:

* The text file name ends with .pch (for C header files).
* The file is in a project's build target.

e The file uses the precompile_target Pragma.

 The file, or files it depends on, have been modified.

The IDE uses the build target's settings to preprocess and precompile files.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

396 Freescale Semiconductor, Inc.

Chapter 13
Libraries and Runtime Code

You can use a variety of libraries with the CodeWarrior™ IDE. The libraries include
ANSI-standard libraries for C, runtime libraries, and other codes. This chapter explains
how to use these libraries for DSPS6800E development.

With respect to the Main Standard Library (MSL) for C, this chapter is an extension of
the MSL C Reference. Refer the MSL C Reference manual for general details on the
standard libraries and their functions.

This chapter includes the following sections:

e MSL for DSP56800E
e Runtime Initialization

13.1 MSL for DSP56800E

This section explains MSL that has been modified for use with DSP56800E. The
compiler library supports C++ support functions, including trigonometric, hyperbolic,
power, absolute value functions, exponential, and logarithmic functions.

NOTE
To use double precision function versions, you must use
libraries that support 1ong 10ng and double data types. Libraries
that support these types have names that include _SLLD. Use
#pragma s11d on to compile the project.

NOTE
Libraries are available that are precompiled for speed (the
library name contains the specifier o4p) or precompiled for code
size (the library name contains the specifier oss).

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 397

wioL for DSP56800E

13.1.1 Using MSL for DSP56800E

CodeWarrior™ Development Studio for 56800/E Digital Signal Controllers includes a
version of MSL. MSL is a complete C library for use in embedded projects. All of the
sources necessary to build MSL are included in CodeWarrior™ Development Studio for
56800/E Digital Signal Controllers, along with the project files for different
configurations of MSL. If you already have a version of the CodeWarrior IDE installed
on your computer, the CodeWarrior installer adds the new files needed for building
versions of MSL for DSP56800E.

The project directory for the DSPS6800E MSL is: codewarrior\Ms6800E Support\ms1\MSL_C
\DSP_56800E\projects\MSL C 56800E.mcp.

Do not modify any of the source files included with MSL. If you need to make changes
based on your memory configuration, make changes to the runtime libraries.

Ensure that you include one or more of the header files located in the following directory:
CodeWarrior\M56800E Support\msl\MSL C\DSP 56800E\inc

When you add the relative-to-compiler path to your project, the appropriate MSL and
runtime files will be found by your project. If you create your project from Stationery, the
new project will have the proper support access path.

13.1.1.1 Console and File I/0

DSP56800E Support provides standard C calls for I/O functionality with full ANSI/ISO
standard 1/O support with host machine console and file I/O for debugging sessions (Host
I/O) through the JTAG port or HSST in addition to such standard C calls such as memory
functions malloc () and free ().

A minimal “thin” printf via “console_write” and “fflush_console” is provided in addition
to standard 1/0.

See the MSL C Reference manual (Main Standard Library).

13.1.1.1.1 Library Configurations

There are Large Data Model and Small Data Model versions of all libraries. (Small
Program Model default is off for all library and Stationery targets.)

MSL provides standard C library support.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

398 Freescale Semiconductor, Inc.

Chapter 13 Libraries and Runtime Code

The Runtime libraries provide the target-specific low-level functions below the high-level
MSL functions. There are two types of Runtime libraries:

e JTAG-based Host I/O
e HSST-based Host I/O

For each project requiring standard C library support, a matched pair of MSL and
Runtime libraries are required (SDM or LDM pairs).

The HSST library is added to HSST client-to-client DSP56800E targets.

NOTE
DSP56800E stationery creates new projects with LDM and
SDM targets and the appropriate libraries.

Below is a list of the DSP56800E libraries:

e Main Standard Libraries
® MSL C 56800E.1lib

Standard C library support for Small Data Model.
® MSL C 56800E lmm.lib
Standard C library support for Large Data Model.

e Runtime Libraries

® runtime 56800E.1lib

Low-level functions for MSL support for Small Data Model with Host I/O via
JTAG port.

® runtime 56800E 1lmm.lib

Low-level functions for MSL support for Large Data Model with Host I/O via
JTAG port.

® runtime hsst 56800E.lib

Low-level functions for MSL support for Small Data Model with Host I/O via
HSST.

® runtime_hsst 56800E_lmm.lib

Low-level functions for MSL support for Large Data Model with Host I/O via
HSST.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 399

wioL for DSP56800E
13.1.1.1.2 Host File Location

Files are created with fopen On the host machine as shown in the table below:

Table 13-1. Host File Creation Location

fopen Filename Parameter Host Creation Location

filename with no path target project file folder

full path location of full path

13.1.2 Allocating Stacks and Heaps for DSP56800E

Stationery linker command files (LCF) define heap, stack, and bss locations. LCFs are
specific to each target board. When you use M56800E stationery to create a new project,
CodeWarrior automatically adds the LCF to the new project.

See ELF Linker for general LCF information. See each specific target LCF in Stationery
for specific LCF information.

See the following table for the variables defined in each Stationery LCF.
Table 13-2. LCF Variables and Address

Variables Address
_stack_addr Start address of the stack
_heap_size Size of the heap
_heap_addr Start address of the heap
_heap_end End address of the heap
_bss_start Start address of memory reserved for uninitialized variables
_bss_end End address of bss

To change the locations of these default values, modify the linker command file in your
DSP56800E project.

NOTE
Ensure that the stack and heap memories reside in data
memory.

13.1.2.1 Definitions
The following definitions are used throughout this document:
e Stack

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

400 Freescale Semiconductor, Inc.

Chapter 13 Libraries and Runtime Code

* Heap
* BSS

13.1.2.1.1 Stack

The stack is a last-in-first-out (LIFO) data structure. Items are pushed on the stack and
popped off the stack. The most recently added item is on top of the stack. Previously
added items are under the top, the oldest item at the bottom. The “top” of the stack may
be in low memory or high memory, depending on stack design and use. M56800E uses a
16- bit-wide stack.

13.1.2.1.2 Heap

Heap is an area of memory reserved for temporary dynamic memory allocation and
access. MSL uses this space to provide heap operations such as malloc. M56800E does
not have an operating system (OS), but MSL effectively synthesizes some OS services
such as heap operations.

13.1.2.1.3 BSS

BSS is the memory space reserved for uninitialized data. The compiler will put all
uninitialized data here. If the Zero initialized globals live in data instead of BSS
checkbox in the M56800E Processor Panel is checked, the globals that are initialized to
zero reside in the .data section instead of the .bss section. The stationery init code zeroes
this area at startup. See the M56852 init (startup) code in this chapter for general
information and the stationery init code files for specific target implementation details.

NOTE
Instead of accessing the original Stationery files themselves (in
the Stationery folder), create a new project using Stationery

which will make copies of the specific target board files such as
the LCF.

13.2 Runtime Initialization

The default init function is the bootstrap or glue code that sets up the DSP56800E
environment before your code executes. This function is in the init file for each board-
specific stationery project. The routines defined in the init file performs other tasks such
as clearing the hardware stack, creating an interrupt table, and retrieving the stack start
and exception handler addresses.

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 401

vy
N
runime Initialization

The final task performed by the init function is to call the main() function.

The starting point for a program is set in the Entry Point field in the DSC Linker > Input
settings panel.

The project for the DSP56800E runtime iS: codewarrior\M56800E Support\runtime 56800E

\projects\Runtime 56800E.mcp

Table 13-3. Library Names and Locations

Library Name Location
Large Memory Model CodeWarrior\M56800E Support\runtime_56800E\lib
Runtime 56800E lmm.lib
Small Memory Model CodeWarrionM56800E Support\runtime_56800E\lib
Runtime 56800E.Lib

When creating a project from R1.1 or later Stationery, the associated init code is specific
to the DSP56800E board. See the startup folder in the new project folder for the init code.

Listing: Sample Initialization File (DSP56852EVM)

; 56852 init.asm

; sample
description: main entry point to C code.

; setup runtime for C and call main

NL_MODE EQU $8000

CM_MODE EQU $0100

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

402 Freescale Semiconductor, Inc.

h o
g |

4
Chapter 13 Libraries and Runtime Code

XP_MODE EQU $0080
R_MODE EQU $0020
SA MODE EQU $0010

section rtlib

XREF F_stack_addr

org p:

GLOBAL Finit M56852

SUBROUTINE "Finit M56852 ",Finit M56852 ,Finit M56852END-Finit M56852

Finit M56852_:

; setup the OMr with the values required by C

bfset #NL_MODE, omr ; ensure NL=1 (enables nsted DO loops)
nop
nop
bfclr #(CM_MODE|XP_MODE|R_MODE|SA_MODE) ,omr ; ensure CM=0 (optional for C)
; ensure XP=0 to enable harvard architecture
; ensure R=0 (required for Q)

; ensure SA=0 (required for Q)

; Setup the m0l1 register for linear addressing

move.w #-1,x0

moveu.w x0,m01 ; Set the m register to linear addressing
moveu.w hws, la ; Clear the hardware stack

moveu.w hws, la nop

nop

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 403

\
Y

4
A

runime Initialization

CALLMAIN: ; Initialize compiler environment

;Initialize the Stack
move.l #>>F Lstack addr,r0
bftsth #$0001,r0

bcc noinc

adda #1,r0

noinc:
tfra r0,sp ; set stack pointer too
move.w #0,rl
nop
move.w rl,x:(sp)
adda #1,sp

jsr F__init_sections

; Call main()
move.w #0,y0 ; Pass parameters to main()
move.w #0,R2

move.w #0,R3

jsr Fmain ; Call the Users program

; The fflush calls where removed because they added code
; growth in cases where the user is not using any debugger IO.

; Users should now make these calls at the end of main if they use debugger IO

; move.w #0,r2
; jsr Ffflush ; Flush File IO

; jsr Ffflush console ; Flush Console IO

; end of program; halt CPU

debughlt

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

404 Freescale Semiconductor, Inc.

h

4
Chapter 13 Libraries and Runtime Code

rts

Finit M56852END:

endsec

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 405

}{ |

riundme Initialization

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual, Rev. 10.6, 02/2014

406 Freescale Semiconductor, Inc.

g |

Index

__builtin_align() /73
__builtin_type() 173
__DATE__ 360
__FILE__ 361
__LINE__ 361
__m56800E__ 361
__mod_access 280
__mod_error 282
__mod_getintl6 28/
__mod_init 278
__mod_initint16 279
__mod_setint16 282
__mod_start 280
__mod_stop 281
__mod_update 280
__MWERKS__ 359
__optlevelx 362
__profile__ 362
__STDC__ 363
__TIME__ 360
__typeof () 174

. (location counter) /94
.cmd 52

#else 171

#endif 171
-allow_macro_redefs 74
-allowREP 85

-ansi 54

-application 271
-asmout 85
-assert_nop /01
-c85

-case 101

-char 55

-chkasm 85
-chkcsrepipeline 86
-constarray 87
-convertpaths 74
-Cpp_exceptions 271
-cwd 74

-D+75

-data 102
-dead[strip] 207
-debug 702
-debug_workaround /02
-defaults 56, 204
-define 75

-dialect | -lang 212
-dis[assemble] 203
-disassemble 53, 64
-dispaths 215

-Do 87

-E 76

Index

-encoding 56

-enum 87

-EP 76

-ext 88

-factorl 93

-factor2 94

-factor3 94

-flag 57
-for_scoping 88
-force_active 207
-fullLicenseSearch 58
-g 100
-gcc_extensions 58
-gccdepends 76
-geeext 58
-gecincludes 77
-globalsInLowerMemory 89
-help 65

-hprog | -hugeprog 89
-1- 77

-1+ 78

-include 78
-initializedzerodata 89
-inline 94

-ipa 95

-ir 78

-keep[local] 207
-keepobjects 82

-L+ 204
-largeAddrInSdm 90
-ldata | -largedata 89
-legacy 103

-library 271

-list 7103

-Ir 205

-M 58

-m[ain] 208
-macro_expand /03
-make 59

-map 208

-mapcr 59

-map showbyte 83
-maxerrors 66
-maxwarnings 66
-MD 60

-MDfile 61

-Mfile 60
-min_enum_size 90
-MM 59

-MMD 60
-MMDfile 61
-MMfile 61
-msgstyle 67
-multibyteaware 62

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual

Freescale Semiconductor, Inc.

407

\
Y

y
A

muex

-nodefaults 53
-nofactorl 96
-nofactor2 96
-nofactor3 96
-nofail 67, 205
-nolink 83
-nolonglong 62
-noprecompile 79
-nosyspath 79

-0 83

-097

-0+ 97

-once 62

-opt 98

-P79

-padpipe 90
-ppopt 80
-pragma 62
-precompile 80
-prefix 81
-preprocess 80
-profile 97

-prog 103
-progress 68
-relax_pointers 63
-requireprotos 63

-reverselibsearchpath 206

-S 68, 206
-scheduling 97
-search 63
-segchardata 97
-show 213
-sortbyaddr 209

-sprog | -smallprog 91/

-srec 209
-sreceol 209
-sreclength 210
-stackseq 92
-stderr 68
-stdinc 87
-stdkeywords 54
-stdlib 206
-strict 54

-strings 92

-swp 92

-sym /00
-timing 69
-trigraphs 64
-U+ 82
-undefine 82
-usebyteaddr 270
-V3 93,104,210
-verbose 68
-version 69
-wlarn[ings] 212
-warn_nop /04
-warn_odd_sp 104
-warn_stall /04

-warning pragma 69
-warnings 69
-wraplines 73

56800E memory model 374

A

abs_s 226
Absolute/Negate 226
add 230
Addition/Subtraction Intrinsic Functions 229
ADDR 794
ALIGN 195
ALIGNALL 196
always_inline pragma 333
ANSI_strict 296
Arguments

Unnamed /70
Assembler Control Options /34
auto_inline pragma 333
auto-inlining 334

Cc

C++ comments /70
C++ Compiler 177
Calling Conventions /39
Casting 380
Casting on code quality 380
Characters
as integer values /72
check_c_src_pipeline 301/
check_inline_asm_pipeline 302
check_inline_sp_effects 302
Code storage 156
Command Files 52
Command-line linker options
-dis[assemble] 203
-defaults 204
-L+ 204
-Ir 205
-nofail 205
-reverselibsearchpath 206
-S 206
-stdlib 206
Command-Line Linker Options /28
Command Line Tools /05
Common Subexpression Elimination 369
Compiler Options /70
const_strings pragma 334
Constant to Array Reallocation 386
Control Intrinsic Functions 233
Copy Propagation 369
C Symbols 363

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual

408

Freescale Semiconductor, Inc.

g |

D

Data Alignment /49

Data storage 156

Data Types 137

Date symbol 360

D constant suffix /74

Dead Code Elimination 368
Dead Store Elimination 370
Deadstripping 161
defer_codegen pragma 334
Deferred Inlining 335
define_section pragma 326
Deposit/Extract Intrinsic Functions 236
Diagnostic Control Pragmas 300
div_ls 242

DIV_LS_INT 243

div_Is4q 243

DIV_LS4Q_INT 244
div_nonstd32by16_canoverflow pragma 349
div_s 240

DIV_S_INT 241

div_s4q 241

DIV_S4Q_INT 242

Division Intrinsic Functions 240
dollar_identifiers pragma 322
dollar sign 322

dont_inline pragma 335
dont_reuse_strings pragma 336
Don’t Inline option 290

DOS batch file 106

DOS BAT file 106

E

ELF Disassembler options
-dispaths 215
-show 213
ELF linker options
-m[ain] 208
-force_active 207
-keepl[local] 207
-map 208
-sortbyaddr 209
-srec 209
-sreceol 209
-sreclength 210
-dead[strip] 207
-usebyteaddr 270
-V3 210
enumerated types 337
enumsalwaysint pragma 337
Error Control Pragmas 300
Errors and Warnings options
-wlarn[ings] 2712
explicit_zero_data pragma 327
Expression Simplification 368

Index

extended_errorcheck 303
extract_h 236
extract_l 237

F

factorl pragma 350

factor2 pragma 350

factor3 pragma 351

ffs_1266

ffs_s 264

FORCE_ACTIVE 196
fullpath_prepdump pragma 322

G

gce_extensions 298
GCC Extensions 179
General command-Line options /07
GNU C
pragma 298

identifier
$322
dollar signs in 322
Identifier
significant length 775
size 175
[llegal Pragmas 295
Implementation-Defined Behavior /77
INCLUDE 197
initializedzerodata pragma 328
INITVAL 182
inline_bottom_up pragma 338
Inline Assembly
calling functions 220
Inlining
stopping 335
Integer
specified as character literal /72
Interprocedural Analysis 388
interrupt pragma 339, 341
Intrinsic Functions
__mod_access 280
__mod_error 282
__mod_getintl6 28/
__mod_init 278
__mod_initint16 279
__mod_setint16 282
__mod_start 280
__mod_stop 281
__mod_update 280
abs_s 226
add 230
div_ls 242

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual

Freescale Semiconductor, Inc.

409

\
Y

4
A

muex

Intrinsic Functions (index-continued-string)

DIV_LS_INT 243
div_Is4q 243
DIV_LS4Q_INT 244
div_s 240

DIV_S_INT 241
div_sdq 241
DIV_S4Q_INT 242
extract_h 236
extract_1237

ffs_1266

ffs_s 264

Fractional Arithmetic 223
Implementation 222
L_abs 227

L_add 23/

L_deposit_h 237
L_deposit_1238
L_mac 251
L_MAC_INT 252
L_msu 253
L_MSU_INT 253
L_mult 254
L_MULT_INT 254
L_mult_Is 255
L_MULT_LS_INT 255
L_negate 228

L_shl 273

L_shlftNs 274

L_shlfts 274

L_shr 275

L_shr_r 276

L_shrtNs 276

L_sub 231

LL_ABS 229
LL_ADD 232
LL_DEPOSIT_H 238
LL_DEPOSIT_L 238
LL_DIV 244
LL_DIV_INT 245
LL_DIV_S4Q_INT 245
LL_EXTRACT_H 239
LL_EXTRACT_L 239
LL_LL_MAC 260
LL_LL_MAC_INT 257
LL_LL_MSU 261
LL_LL_MSU_INT 258
LL_LL_MULT 259
LL_LL_MULT_INT 256
LL_MAC 260
LL_MAC_INT 257
LL_MSU 261
LL_MSU_INT 258
LL_MULT 260
LL_MULT_INT 256
LL_MULT_LS 262
LL_MULT_LS_INT 259
LL_NEGATE 229

Intrinsic Functions (index-continued-string)
LL_ROUND 268
LL_SUB 232
mac_r 247
MAC_R_INT 248
Math support 224
msu_r 248
MSU_R_INT 249
mult 249
MULT_INT 250
mult_r 250
MULT_R_INT 25/
negate 227
norm_1 266
norm_s 265
ROUND_INT 267
round_val 267
shl 269
shlftNs 270
shlfts 270
shr 271
shr_r 272
shrtNs 272
stop 233
sub 230
turn_off_conv_rndg 234
turn_off _sat 235
turn_on_conv_rndg 235
turn_on_sat 235
V3_L_mac 263
V3_L_mac_int 263
V3_L_mult 263
V3_L_mult_int 263
V3_LL_mult 264
V3_LL_mult_int 264
wait 234

IPA 388

K

KEEP_SECTION /97

L

L_abs 227

L_add 23/
L_deposit_h 237
L_deposit_1238
L_mac 251
L_MAC_INT 252
L_msu 253
L_MSU_INT 253
L_mult 254
L_MULT_INT 254
L_mult_Is 255
L_MULT_LS_INT 255
L_negate 228

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual

410

Freescale Semiconductor, Inc.

g |

Index
L_shl 273 LL_MSU_INT 258
L_shlftNs 274 LL_MULT 260
L_shlfts 274 LL_MULT_INT 256
L_shr 275 LL_MULT_LS 262
L_shr_r 276 LL_MULT_LS_INT 259
L_shrtNs 276 LL_NEGATE 229
L_sub 231 LL_ROUND 268
Language Translation and Extensions Pragmas 297 LL_SUB 232
Large Data Model Support 756 LM_LICENSE_FILE 49
LCF Variables and Address 400 Loop-Invariant Code Motion 371
Libraries and runtime code 397 loops
Library Control Pragmas 326 optimization 356
Linker C/C++ Support options Loop Unrolling 372
-Cpp_exceptions 211
-dialect | -lang 212 M
Linker Command Files
keywords /93 mac r 247
structure /81 MAC R INT 248
syntax /84 Main Standard Library 397
Linker keywords mark pragma 323
- (location counter) /94 Math support intrinsic functions 224
ADDR 794 MEMORY 197
ALIGN 795 Modulo Addressing Error Codes 286
ALIGNALL 196 Modulo Addressing Intrinsic Functions 277
FORCE_ACTIVE 796 Modulo Buffer Examples 283
INCLUDE /97 mpwc_newline 299
KEEP_SECTION /97 mpwe_relax 299
MEMORY 197 MSL 397
OBIJECT 199 msu r 248
REF_INCLUDE 200 MSU R INT 249
SECTIONS 200 mult 249
SIZEOF 201 MULT_INT 250
SIZEOFW 202 mult 1250
WRITEB 202 MULT_R_INT 251
WRITEH 202 Multiplication/MAC (56800EX) Intrinsic Functions
WRITEW 203 262
L%nking Control Pragmas 326 Multiplication/MAC Intrinsic Functions 246
L}nk Order /61 MW Asmlncludes 52
Literals 366 MWClncludes 52
Live Range Splitting 370 MWLibraries 53
LL_ABS 229 MWLibraryFiles 53
LL_ADD 232
LL_DEPOSIT_H 238
LL_DEPOSIT_L 238 N
II:II::giz_ZIﬁT 245 Name symbol 360
LL_DIV_S4Q_INT 245 negate 227
LL_EXTRACT H 239 nofactorl pragma 351
LL_EXTRACT L 239 nofactor2 pragma 352
LL_LL_MAC 260 nofactor3 pragma 352
LL_LL_MAC_INT 257 norm_I 266
LL_LL_MSU 261 norm._s 265 o .
LL_LL_MSU_INT 258 Normalization Intrinsic Functions 264
LL_LL_MULT 259 notonce pragma 323
LL_LL_MULT_INT 256
LL_MAC 260 (0]
LL_MAC_INT 257
LL_MSU 261 OBIJECT 199
CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual
Freescale Semiconductor, Inc. 411

\
Y

4
A

muex

Object Code Generation Pragmas 332
Object Code Generation Symbol 367
Object Code Organization Pragmas 332
Object Code Organization Symbol 367
once pragma 324
only_std_keywords 297
opt_common_subs pragma 352
opt_dead_assignments pragma 353
opt_dead_code pragma 353
opt_lifetimes pragma 354
opt_loop_invariants pragma 354
opt_propagation pragma 354
opt_strength_reduction_strict pragma 355
opt_strength_reduction pragma 355
opt_unroll_loops pragma 356
optimization

global 356

size 357
Optimization 367
optimization_level pragma 356
Optimization Pragmas 349
Optimizations

MS56800E specific 373
optimize_for_size pragma 357
Optimizing code 160

P

packstruct pragma 346

PATH 49

peephole pragma 357

pool_strings pragma 346

Pooling Literals 366

pop pragma 324

Pragma
Scope 295

Pragmas
check_c_src_pipeline 301
check_inline_asm_pipeline 302
check_inline_sp_effects 302
extended_errorcheck 303
require_prototypes 303
suppress_init_code 304
suppress_warnings 304
unsigned_char 305
unused 305
warn_any_ptr_int_conv 306
warn_emptydecl 307
warn_extracomma 308
warn_filenamecaps 308
warn_filenamecaps_system 309
warn_illpragma 3170
warn_impl_f2i_conv 310
warn_impl_i2f _conv 371/
warn_impl_s2u_conv 372
warn_implicitconv 373
warn_largeargs 374

Pragmas (index-continued-string)
warn_missingreturn 375
warn_no_side_effect 315
warn_notinlined 376
warn_padding 316
warn_possiblyuninitializedvar 3717
warn_possunwant 377
warn_ptr_int_conv 318
warn_resultnotused 378
warn_undefmacro 3/9
warn_uninitializedvar 320
warn_unusedarg 320
warn_unusedvar 32/
warning_errors 321

Precompilation Pragmas 322

Precompile 391

Precompiling
header file 391

Preprocessing Pragmas 322

Preprocessor
and # 170

profile pragma 358

Profiler Pragmas 358

Project options
-application 271
-library 271

push pragma 324

R

readonly_strings pragma 347
REF_INCLUDE 200
require_prototypes 303
Response File 106

Reusing Strings 367
reverse_bitfields pragma 347
ROUND_INT 267
round_val 267

Rounding Intrinsic Functions 267
Runtime code 397

Runtime Initialization 401/

S

section pragma 328
SECTIONS 200
Shifting Intrinsic Functions 268
shl 269

shlftNs 270

shifts 270

shr 271

shr_r 272

shrtNs 272

SIZEOF 201

SIZEOFW 202
Software Pipelining 384
Stack Frames /42

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual

412

Freescale Semiconductor, Inc.

g |

Stack Sequence Optimization 385
Standard C Conformance Pragmas 295

stop 233
Storage, code and data /56
Strength Reduction 372
String Literals 366
strings

pooling 336

storage 336
Strings 366
sub 230
suffix, constant /74
suppress_init_code 304
suppress_init_code pragma 348
suppress_warnings 304
syspath_once pragma 325, 348

T

Time symbol 360
turn_off_conv_rndg 234
turn_off_sat 235
turn_on_conv_rndg 235
turn_on_sat 235

U

unsigned_char 305
unused 305
use_rodata pragma 330

\'}

V3_L_mac 263
V3_L_mac_int 263
V3_L_mult 263
V3_L_mult_int 263
V3_LL_mult 264
V3_LL_mult_int 264
Version symbol 359

w

wait 234
warn_any_ptr_int_conv 306
warn_emptydecl 307
warn_extracomma 308
warn_filenamecaps 308
warn_filenamecaps_system 309
warn_illpragma 295, 310
warn_impl_f2i_conv 370
warn_impl_i2f_conv 3171
warn_impl_s2u_conv 372
warn_implicitconv 373
warn_largeargs 374
warn_missingreturn 375
warn_no_side_effect 315

Index

warn_notinlined 316
warn_padding 316
warn_possiblyuninitializedvar 3717
warn_possunwant 377
warn_ptr_int_conv 318
warn_resultnotused 378
warn_undefmacro 3/9
warn_uninitializedvar 320
warn_unusedarg 320
warn_unusedvar 32/
warning_errors 321

Warning Control Pragmas 300
WRITEB 202

WRITEH 202

WRITEW 203

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools

Reference Manual

Freescale Semiconductor, Inc.

413

PR 4

muex

CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build Tools
Reference Manual

414 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and Processor Expert are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
All other product or service names are the property of their respective
owners.

© 2011-2014 Freescale Semiconductor, Inc.

Document Number CWMCUDSCCMPREF
Revision 10.6, 02/2014

2

Z“ freescale

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Introduction
	Compiler Architecture
	Linker Architecture

	Chapter 2: Using Build Tools with the CodeWarrior IDE
	IDE Options and Pragmas
	Build Properties for DSC
	Global Settings
	DSC Linker
	DSC Linker > Input
	DSC Linker > General
	DSC Linker > Output

	DSC Compiler
	DSC Compiler > Input
	DSC Compiler > Access Paths
	DSC Compiler > Warnings
	DSC Compiler > Optimization
	DSC Compiler > Processor
	DSC Compiler > Language

	DSC Assembler
	DSC Assembler > Input
	DSC Assembler > General
	DSC Assembler > Output

	DSC Preprocessor
	DSC Preprocessor > Settings

	DSC Disassembler
	DSC Disassembler > Settings

	Chapter 3: Using Build Tools on the Command Line
	Naming Conventions
	Configuring Command-Line Tools
	CWFolder Environment Variable
	Setting the PATH Environment Variable

	Invoking Command-Line Tools
	Getting Help
	Help Guidelines
	Parameter Formats
	Option Formats
	Common Terms

	File Name Extensions
	Specifying Source File Locations
	Environmental Variables
	Standard C and C++ Conformance Options
	-ansi
	-stdkeywords
	-strict

	Language Translation and Extensions Options
	-char
	-defaults
	-encoding
	-flag
	-fullLicenseSearch
	-gccext
	-gcc_extensions
	-M
	-make
	-mapcr
	-MM
	-MD
	-MMD
	-Mfile
	-MMfile
	-MDfile
	-MMDfile
	-multibyteaware
	-nolonglong
	-once
	-pragma
	-relax_pointers
	-requireprotos
	-search
	-trigraphs

	Errors, Warnings, and Diagnostic Options
	-disassemble
	-help
	-maxerrors
	-maxwarnings
	-msgstyle
	-nofail
	-progress
	-S
	-stderr
	-verbose
	-version
	-timing
	-warnings
	-wraplines

	Preprocessing and Precompilation Options
	-allow_macro_redefs
	-convertpaths
	-cwd
	-D+
	-define
	-E
	-EP
	-gccdepends
	-gccincludes
	-I-
	-I+
	-include
	-ir
	-noprecompile
	-nosyspath
	-P
	-precompile
	-preprocess
	-ppopt
	-prefix
	-stdinc
	-U+
	-undefine

	Library and Linking Options
	-keepobjects
	-map showbyte
	-nolink
	-o

	Object Code Organization and Generation Options
	-allowREP
	-asmout
	-c
	-chkasm
	-chkcsrcpipeline
	-codegen
	-constarray
	-Do
	-enum
	-ext
	-for_scoping
	-globalsInLowerMemory
	-hprog | -hugeprog
	-initializedzerodata
	-ldata | -largedata
	-largeAddrInSdm
	-min_enum_size
	-padpipe
	-profile
	-scheduling
	-segchardata
	-sprog | -smallprog
	-stackseq
	-strings
	-swp
	-V3

	Optimization Options
	-factor1
	-factor2
	-factor3
	-inline
	-ipa
	-nofactor1
	-nofactor2
	-nofactor3
	-O
	-O+
	-opt

	Debugging Control Options
	-g
	-sym

	Assembler Control Options
	-assert_nop
	-case
	-data
	-debug
	-debug_workaround
	-legacy
	-list
	-macro_expand
	-prog
	-warn_nop
	-warn_stall
	-warn_odd_sp
	-V3

	Command Line Tools
	Usage
	Response File
	Sample Build Script
	Arguments

	Chapter 4: C for DSP56800E
	Data Types
	Ordinal Data Types
	Floating Point Types
	64-Bit Data Types

	Calling Conventions and Stack Frames
	Passing Values to Functions
	Returning Values From Functions
	Volatile and Non-Volatile Registers
	Stack Frame and Alignment

	User Stack Allocation
	Data Alignment Requirements
	Word and Byte Pointers
	Reordering Data for Optimal Usage

	Variables in Program Memory
	Declaring Program Memory Variables
	Using Variables in Program Memory
	Linking with Variables in Program Memory

	Code and Data Storage
	Large Data Model Support
	Extended Data Addressing Example
	Accessing Data Objects Examples
	External Library Compatibility

	Optimizing Code
	Deadstripping and Link Order
	Working with Peripheral Module Registers
	Compiler Generates Bit Instructions
	Explanation of Undesired Behaviors
	Recommended Programming Style

	Generating MAC Instruction Set

	Chapter 5: C Compiler
	Extensions to Standard C
	Unnamed Arguments in Function Definitions
	C++ Comments
	A # Not Followed by a Macro Argument
	Using an Identifier After #endif
	Using Typecasted Pointers as lvalues
	Inline Functions
	Pascal Calling Conventions
	Character Constants as Integer Values
	Converting Pointers to Types of the Same Size
	Getting Alignment and Type Information at Compile Time
	Arrays of Zero Length in Structures
	The "D" Constant Suffix
	The __typeof__() and typeof() Operators
	Specifying Variable Addresses in C

	Implementation-Defined Behavior
	Diagnostic Messages
	Identifiers

	Chapter 6: C++ Compiler
	Features and Limitations
	Implementation-Defined Behavior
	GCC Extensions

	Chapter 7: ELF Linker
	Structure of Linker Command Files
	Memory Segment
	Closure Blocks
	Sections Segment

	Linker Command File Syntax
	Alignment
	Arithmetic Operations
	Comments
	Deadstrip Prevention
	Variables, Expressions, and Integral Types
	Variables and Symbols
	Global Variables

	Expressions and Assignments
	Integral Types

	File Selection
	Function Selection
	ROM to RAM Copying
	Utilizing Program Flash and Data RAM for Constant Data in C
	Utilizing Program Flash for User-Defined Constant Section in Assembler
	Putting Data in pROM Flash at Build-time

	Stack and Heap
	Writing Data Directly to Memory

	Linker Command File Keyword Listing
	. (location counter)
	ADDR
	ALIGN
	ALIGNALL
	FORCE_ACTIVE
	INCLUDE
	KEEP_SECTION
	MEMORY
	OBJECT
	REF_INCLUDE
	SECTIONS
	SIZEOF
	SIZEOFW
	WRITEB
	WRITEH
	WRITEW

	Command-Line Linker Options
	-dis[assemble]
	-defaults
	-L+
	-lr
	-l+
	-nofail
	-reverselibsearchpath
	-stdlib
	-S

	ELF Linker Options
	-dead[strip]
	-force_active
	-keep[local]
	-m[ain]
	-map
	-sortbyaddr
	-srec
	-sreceol
	-sreclength
	-usebyteaddr
	-V3

	Project Options
	-application
	-library

	Linker C/C++ Support Options
	-Cpp_exceptions
	-dialect | -lang

	Errors and Warnings Options
	-w[arn[ings]

	ELF Disassembler Options
	-show
	-dispaths

	Chapter 8: Inline Assembly Language and Intrinsics
	Inline Assembly Language
	Inline Assembly Overview
	Assembly Language Quick Guide
	Calling Assembly Language Functions from C Code
	Calling Inline Assembly Language Functions
	Calling Pure Assembly Language Functions

	Calling Functions from Assembly Language

	Intrinsic Functions
	Implementation
	Fractional Arithmetic
	Intrinsic Functions for Math Support
	Absolute/Negate
	abs_s
	negate
	L_abs
	L_negate
	LL_ABS
	LL_NEGATE

	Addition/Subtraction
	add
	sub
	L_add
	L_sub
	LL_ADD
	LL_SUB

	Control
	stop
	wait
	turn_off_conv_rndg
	turn_off_sat
	turn_on_conv_rndg
	turn_on_sat

	Deposit/Extract
	extract_h
	extract_l
	L_deposit_h
	L_deposit_l
	LL_DEPOSIT_H
	LL_DEPOSIT_L
	LL_EXTRACT_H
	LL_EXTRACT_L

	Division
	div_s
	DIV_S_INT
	div_s4q
	DIV_S4Q_INT
	div_ls
	DIV_LS_INT
	div_ls4q
	DIV_LS4Q_INT
	LL_DIV
	LL_DIV_INT
	LL_DIV_S4Q_INT

	Multiplication/MAC
	mac_r
	MAC_R_INT
	msu_r
	MSU_R_INT
	mult
	MULT_INT
	mult_r
	MULT_R_INT
	L_mac
	L_MAC_INT
	L_msu
	L_MSU_INT
	L_mult
	L_MULT_INT
	L_mult_ls
	L_MULT_LS_INT
	LL_LL_MULT_INT
	LL_MULT_INT
	LL_LL_MAC_INT
	LL_MAC_INT
	LL_MSU_INT
	LL_LL_MSU_INT
	LL_MULT_LS_INT
	LL_LL_MULT
	LL_MULT
	LL_LL_MAC
	LL_MAC
	LL_MSU
	LL_LL_MSU
	LL_MULT_LS

	Multiplication/MAC (56800EX)
	V3_L_mult_int
	V3_L_mac_int
	V3_L_mult
	V3_L_mac
	V3_LL_mult_int
	V3_LL_mult

	Normalization
	ffs_s
	norm_s
	ffs_l
	norm_l

	Rounding
	ROUND_INT
	round_val
	LL_ROUND

	Shifting
	shl
	shlftNs
	shlfts
	shr
	shr_r
	shrtNs
	L_shl
	L_shlftNs
	L_shlfts
	L_shr
	L_shr_r
	L_shrtNs

	Modulo Addressing Intrinsic Functions
	Modulo Addressing Intrinsic Functions
	__mod_init
	__mod_initint16
	__mod_start
	__mod_access
	__mod_update
	__mod_stop
	__mod_getint16
	__mod_setint16
	__mod_error

	Modulo Buffer Examples
	Points to Remember
	Modulo Addressing Error Codes

	Chapter 9: Pragmas
	Using Pragmas
	Checking Pragma Settings
	Saving and Restoring Pragma Settings
	Determining which Settings are Saved and Restored
	Illegal Pragmas

	Pragma Scope
	Standard C and C++ Conformance Pragmas
	ANSI_strict
	only_std_keywords

	Language Translation and Extensions Pragmas
	gcc_extensions
	mpwc_newline
	mpwc_relax

	Errors, Warnings, and Diagnostic Control Pragmas
	check_c_src_pipeline
	check_inline_asm_pipeline
	check_inline_sp_effects
	extended_errorcheck
	require_prototypes
	suppress_init_code
	suppress_warnings
	unsigned_char
	unused
	warn_any_ptr_int_conv
	warn_emptydecl
	warn_extracomma
	warn_filenamecaps
	warn_filenamecaps_system
	warn_illpragma
	warn_impl_f2i_conv
	warn_impl_i2f_conv
	warn_impl_s2u_conv
	warn_implicitconv
	warn_largeargs
	warn_missingreturn
	warn_no_side_effect
	warn_notinlined
	warn_padding
	warn_possiblyuninitializedvar
	warn_possunwant
	warn_ptr_int_conv
	warn_resultnotused
	warn_undefmacro
	warn_uninitializedvar
	warn_unusedarg
	warn_unusedvar
	warning_errors

	Preprocessing and Precompilation Pragmas
	dollar_identifiers
	fullpath_prepdump
	mark
	notonce
	once
	pop, push
	syspath_once

	Library and Linking Control Pragmas
	define_section
	explicit_zero_data
	initializedzerodata
	section
	use_rodata

	Object Code Organization and Generation Pragmas
	always_inline
	auto_inline
	const_strings
	defer_codegen
	dont_inline
	dont_reuse_strings
	enumsalwaysint
	inline_bottom_up
	interrupt (for the DSP56800)
	interrupt (for the DSP56800E)
	Avoiding Possible Hitches with Enabled Pragma Interrupt

	packstruct
	pool_strings
	readonly_strings
	reverse_bitfields
	suppress_init_code
	syspath_once

	Optimization Pragmas
	div_nonstd32by16_canoverflow
	factor1
	factor2
	factor3
	nofactor1
	nofactor2
	nofactor3
	opt_common_subs
	opt_dead_assignments
	opt_dead_code
	opt_lifetimes
	opt_loop_invariants
	opt_propagation
	opt_strength_reduction
	opt_strength_reduction_strict
	opt_unroll_loops
	optimization_level
	optimize_for_size
	peephole

	Profiler Pragmas
	profile

	Chapter 10: Predefined Symbols
	Using Predefined Symbols
	Version Symbol
	__MWERKS__

	Date and Time Symbol
	__DATE__
	__TIME__

	Name Symbols
	__FILE__
	__LINE__

	Object Code Organization and Generation Symbol
	__m56800E__
	__profile__
	__optlevelx

	C Symbols
	__STDC__

	Chapter 11: Optimization
	Optimization Considerations
	Inlining
	Profiling
	String Literals
	Pooling Strings
	Reusing Strings

	Optimizations
	Dead Code Elimination
	Expression Simplification
	Common Subexpression Elimination
	Copy Propagation
	Dead Store Elimination
	Live Range Splitting
	Loop-Invariant Code Motion
	Strength Reduction
	Loop Unrolling
	M56800E Specific Optimizations
	Overview of the 56800E Architecture
	Working with the 56800E Memory Models
	Targeting Post-Update Addressing Modes in Loops
	The Effects of Casting on Code Quality
	Miscellaneous Techniques

	Software Pipelining
	Stack Sequence Optimization
	Constant to Array Reallocation
	Interprocedural Analysis Support

	Chapter 12: Tool Performance
	Precompiled Header Files
	When to Use Precompiled Files
	What Can be Precompiled
	Precompiling C++ Source Code
	Using a Precompiled Header File
	Preprocessing and Precompiling
	Pragma Scope in Precompiled Files
	Precompiling a File in the CodeWarrior IDE
	Updating a Precompiled File Automatically

	Chapter 13: Libraries and Runtime Code
	MSL for DSP56800E
	Using MSL for DSP56800E
	Console and File I/O
	Library Configurations
	Host File Location

	Allocating Stacks and Heaps for DSP56800E
	Definitions
	Stack
	Heap
	BSS

	Runtime Initialization

	Index

