h -
P

CodeWarrior Development Studio for
StarCore 3900FP DSP Architectures
SC3000 Linker Reference Manual

Document Number: CWSCLINREF
Rev. 10.9.0, 11/2015

<&,

Z“ freescale

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

h o
g |

Contents
Section number Title Page
Chapter 1
Introduction
1.1 ADOUL thiS AOCUIMENEeutiiiiiiieiieie ettt ettt et e bttt e bt e st e ebeeaeesbeea e e e bt embesbeembe bt amseebeenteeneanseeneenbeeneenaeeneenees 11
1.2 Accompanying dOCUMEITATION.ceuiruterterttetertteteett et ettt ettt ettesteestesbeestesbt e bt et e et e et b e bt ebsenbeebt e bt et esbeestesbeenaesbeenaenneen 12
Chapter 2
Tasks
2.1 Linker confiUration TASKSccoiiieriiiiiiiteiteet ettt sttt ettt b e bbbt eat e bbb eb et sae et sbeeaesaeen 13
2.1.1 How to create a Linker Command File (LCEF).........coooiiiiiiiiiiiieceee e 13
2.1.2 How to Make LCF Compatible for FIeXible Startup...........cccceeoueeierieienieiereeie st 16
2.1.2.1 Constraints With Flexible Startup Configuration.............coceecuerieiiinieriinieninieneieeneeeeseee e 17
2.1.3 How to Define and use a Custom Set Of TaSKS......cc.cocveruiriiriiiiiniiierieest ettt 18
2.1.4 How to Setup Virtual Trace Buffer (VTB) Using LCF.........cccoiiiiiiiieeee et 20
2.1.5 HOW 10 STUP CACKE. ...ccutiiiiiiiiiiieiteteeit ettt ettt ettt et sttt b e ettt e st e sbe et sbeentesbeenbesaeen 21
2.1.6 How to Define Physical Memory Address Space of Target ArchiteCture..........eevverveenieriieenienieeeeseesieesaeeen 22
2.1.7 How to define stack and heap memory area in LCF............cccooiiiiiiiiiiieeeee e 23
2.1.7.1 Example for Multi-Core ATChILECIUIES.c..ceouertiriieienieeiierieeie sttt sttt ettt et eae e naeeaees 24
2.1.8 How to Define Physical Memory Layout for a Multi-core AppliCation..........c.cucovveevieriienieniieniienieeiee e 26
2.1.9 How to Modify the LCF When Each Core Runs Different Code.............ccccoevuerieiiiieinininininenesenesieseeienens 29
2.1.10 How to Define the Shared IMEIMOTY.........c.eeiieiiiirienie ettt ettt eiee sttt site s btesaeesabeesabeesbeestbessbeenseesnbeensnesasees 33
2.1.11 How to Create Virtual Memory for Private SECtONS.ccocuiiiiiiiiiiiiiiieeiiere ettt 35
2.1.12 How to Define Virtual Memory for Read-Write-Execute (RWX) ACCESS.....cceruirieririeniiienieeieieieie e 38
2.2 GeNETAl HINKET TASKS ..ottt ettt et eb et e bttt e b bt e bt e s bt e st e s bt et e bt eabesbe et e ebt et e ebeenaeenee 40
2.2.1 How to Reserve PhySical MEMOTY ATa........cccuteriiiiiiiniiiiiieniie ettt ettt et ettt et et e st esatesabeesbaesareebeesabeensee s 40
2.2.2 How to Define Private Data Sections for Multiple COres...........coccereiiererienieeieieeetete et 41
2.2.3 How to troubleshoot INKEr eITOr MESSAZES.......c.eeveruiiriiriiiiintieieeit ettt sttt ste ettt et sttt ettt ses et seesaeene 43
2.2.4 How to build expressions in the SC3000 LCF..........cociiiiiiiiiiiie ettt e 43
2.2.5 How to Map Virtual Memory Areas to Physical Memory Address SPace...........ceceeeeruerienieeienieeieneeieseeeene 45
2.2.6 How to specify the content of virtual MEMOTY ArCAS.........covuiruiiriiriiririeniieteiteteee ettt ettt 47

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 3

h o
g |

Section number Title Page
2.2.7 How to Share Code and Data Partially Among Different Cores...........cooereeririinerieninnienieienieieseeie e 48
2.2.8 How to Limit Code and Data Visibility at Core LeVel........cocoviiiiiiiiiiiiiiiiiiiie ettt 54
2.2.9 How to Define Unlikely Block of Code as Private Block of Code in a Multi-core Application............c.ccccu.... 58

2.2.9.1 Scenario 1: True Private Code MOdel..........ccoceoviiriiiiiniiiiiiiinicieeetee et 58
2.2.9.2 Scenario 2: Code Partially Shared Among Different Cores..........cocceevueriieeniiinieeniieiiienieeieeneeeieene 58
2.2.10 How to Run Multiple Tasks on the Same COre..........ccccueiiiiiiiiiniiiiniieereseeteeeet ettt 59
2.2.11 How to Make Code or Data Sections Visible to a Subset of COTes..........cocevieririiriiiienieiiinieieeeeceeeseeeee 62
2.2.12 How to place a symbol in an another section in LCF...........cccccoiiiiiiiiiiiiieeeeeeeee e 62
2.2.13 How to Handle C++ Templates in Multi-core APpliCAtiONS.cc.eeueertirieriieieniieiesteeie ettt 64
2.2.14 How to Check Local SymboIs AdAIEsSES.......coveruiriiriiriiniieiiniteieeitente ettt ettt ettt ettt 65
2.2.15 How to use KEEP DITECHIVE........ccciiuiiiiiiiiiiiiiiiiiicicicicc et 66
2.2.16 How to reserve an MMU deScriptor ID.........c.oiiiiiiiiiiiieie ettt sttt s seeens 66
Chapter 3
Concepts

3.1 Linker cONfigUration COMEEPLSceeuiruiruirtiriirtirtietentent ettt ettt ettt ettt sttt e st be e e et et et e e eateatebeebeebesaesaeebesaesaennen 69
3.1.1 Understanding linker termMinOIOZYc..cecuerteriiriiiiiinieieeitee ettt sttt ettt ettt et st et sbeeaesinens 69
3.1.2 Understanding SC3000 LCTF SYNTAX......cccuirtieriieriieniieeieerite st et et esite et esteesbeesieesabeessbessbeesbsesseesseesseesseesases 70

3.1.2.1 USING NAMING COMVENMTIOMS.eeutiautetteutetteutesteetesttetesteesesteesesseeteeseenseestenseeneenseeneesseensesseensesseensesseas 70
3.1.2.2 SPECHYING INMEEZEIS. .c..eeveeuiiieeiiirieeitentt ettt ettt ettt ettt et se et e e s bt et sbeesbe s bt e e s bt et e e bt e bt ebeenaeenee 71
3.1.2.3 Specifying SYMDbBOL NAMIES.cc.eerviiriiiiiieite ittt ettt sttt sttt e st e bt e st e e bt e sabeebeesabeeseesaseas 71
3.1.2.4 Specifying global dIr@CHIVES.ccuieuiiruieiirtieieeie ettt et ettt et e sttt e sttt e et e seesbeeneesbeeneesnean 71
3.1.2.5 Specifying target archit@CtUIE.couiriirieiireiierieete ettt ettt ettt ettt st st sbeeanesbeeenenbeens 72
3.1.2.6 DETINING TASKS...eeiutiiiieitieiteeite ettt ettt ettt e b e e st et e s it e et e e s ab e e bt e sateeabeesatesabeesabeenbeenee 72
3.1.2.7 Defining virtual memory and OULPUL SECTIOMS.evuteuiruieriertieteetieteeteeteettesteeieenteeneeseeeeeseeeeeseeesesaeas 73
3.1.2.8 Configuring the Virtual MEMOTY......c..cocueririiririiniieieeeeeetee ettt ettt 74
3.1.2.9 Creating an OULPUL SECHIOM.ueeuterteeriieeteeriteesteenteeebeesttesteesabeesbee sttt ebeessteenbeessbeebeesaseeseessseenseessseenses 75
3.1.2.10 Configuring the Physical MEmMOTY........cccueiuteiiriieiiriieie ettt sttt s sbe e nbe e nneas 77
3.1.2.11 Specifying Address Translation CONSIIUCE........ccueouiriirirriirieriintene ettt 78
3.1.2.12 Linking self-contained IDTATIES.eeruiiriiiniierie ettt ettt ettt e st e e s e 79

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

4 Freescale Semiconductor, Inc.

h o
g |

L __4

Section number Title Page
3.1.3 Understanding Cache Optimization in SC3000 LinKeT........cc.ccceriiiiiriiniiiiniiieneecneeesieeeet e 79
3.1.4 Understanding Flexible Startup COnfigUuration..............covueeriiiiiinieniienieeieeiee ettt 81
3.1.4.1 Changes Made to Support Flexible Startup Configuration.............cccceecueruieiiirienenieneieeneseeneeeeies 82
3.2 GENETAl LINKET COMCRPLS ..nveuviimiiiiinieeitetieiteet ettt ettt ettt ettt st e b et beea e eb e e st e e bt et e e bt e bt s atesbeeste s bt esbesbeeabesbe et eebeentesbeenaeenee 82
3.2.1 Understanding Startup NVITOMIMENL.cevueerutirtierieertterteesttesiteesttesteesttesseesbeesabeesseesateesstessseessaesseesseesseesseesane 83
3.2.2 Understanding Flexible Segment Programming Model............ccccociiiiiiiniiiiiiiiieeeceeeee e 84
3.2.3 Understanding L1 DEfEnSe.co.eevuiiiiriiiiiriiieiectestceett ettt sttt ettt sttt sr e 84

Chapter 4
Linker Error Messages

4.1 CoNfiguration EITOT MESSAZEScoveeuteruerrterteeterteeterttetestteteatteteetteteestesseestesbeentesseentesaten st et senseestenbeestesseentesbeeneesseensesneen 87
4.1.1 EID_ARCH_INCOMPATIBLE_WITH_DIRECTIVE........ccoccioiiiiiiiiniinereeseeeeeeeeee e 87
4.1.2 EID_EXPR_SECNAME_CANNOT_EVAL....cciotritiiirieireteteretestetes ettt sttt ettt 87
4.1.3 EID_FAIL_LAYOUT ..ottt ettt ettt sttt 88
4.1.4 EID_FAIL_VIRTUAL_LAYOUT......ccciiiiiiiiciecteeeeee ettt 88
4.1.5 EID_FORCE_VALUE _TO_L..ccoiiititiiitiiiiteteeteet ettt ettt ettt st sttt sttt et 88
4.1.6 EID_INCONSISTENT_SYMADDR.....c.cocectrtitrtiiniintctietectete ettt sttt 89
4.1.7 EID_LAYOUT_UNRESOLVED......cccccooiiiiiiiiiiiietrictece ettt 89
4.1.8 EID_LNK_SECTION_TYPE _UNKNOWN.....ccoiitrttttrtitirtetiniettrietrtei ettt ettt enes 89
4.1.9 EID_MORE_AUTO_LAYOUT......cioitiiieinertctnetrtetete ettt ettt sttt ettt et 90
4.1.10 EID_MEM_CANNOT _FINAL......ccooiiriiiiiintiteeeeeer ettt s 90
4.1.11 EID_MEM_INCONSISTENT.......cctmttitititiietetetet ettt ettt ettt ettt sttt ettt eb et be st eb et enes 91
4.1.12 EID_MEM_MULTI_AT . ..c.ootiiiiiititctieetetetrtetrte ettt sttt ne 91
4.1.13 EID_MEM_NOT_FULLY_SPEC_RESERVE..........cceoiiiiiiiiiiieceee e 91
4.1.14 EID_MEM_SMALL_MBi.....c.ioittiiiiiiiinieirie ettt ettt ettt sttt b et be e b e 92
4.1.15 EID_MEM_UNDBEF.......cccciittiiiiimiieicrtct ettt ettt ettt ettt ae e ae e eaeaes 92
4.1.16 EID_MEM_UNDEF_ADDR.........ccooiiiiiiiiiitiiiieeeeeee ettt 92
4.1.17 EID_MEM_VIR _NO_PHY ..ottt ettt ettt ettt ettt ettt ess 93
4.1.18 EID_ASSERT _FAIL...c.coiiiitiiriiinieiitetetet ettt sttt ettt ettt sttt sttt sttt et et enenee 93
4.1.19 EID_ATTMMU_SIZE_UNSPECIFIED.........ccoccootitiiiniinieinieinietsieeeete ettt 93

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 5

h o
g |

|

Section number Title Page
4.1.20 EID_MATT_MAPTL_ORG.....coiiiiiiiiiiieieteete ettt ettt ettt sae et sbe ettt enesinens 94
4.1.21 EID_MATT _SPECottt ettt ettt et sttt et s b e e as et e be s e sae e e saeennes 94
4.1.22 EID_MATT _VITOPI .ttt ettt ettt sb e et s bt et e bt st e bt e st eesbeesaeeenaee 94
4.1.23 EID_MATT_VP_UNMATCH.......cotitiitieiiieiteeite ettt ettt sttt s e et e steesbeesasaeseesabeensaessseensaesnsesnseesnsesseenes 94
4.1.24 EID_MATT _WX ..ottt ettt ettt ettt et ettt a e sae et sat et sae e ae e s e beeasebeesnesueennene 95
4.1.25 EID_MATTS_OVERNUMBER..........ootitiiat ettt ettt ettt ettt be et b et bt e e eneenaeene 95
4.1.26 EID_MEM_ADDR_SIZE_UNALIGN......coiittitteitteiitertesteette et eteesteeiteseteesieeseseesbaesnseenseessseesseessseessnesseenss 95
4.1.27 EID_MEM_EMPTY ..ottt ettt st sttt ettt et sae e st saeeaesanenaeeanenaees 96
4.1.28 EID_MEM_OVERLAP.....coiiii ettt ettt sttt et e sb e et e bt st e bt e st e sbeeeareens 96
4.1.29 EID_MEM_PLACE_INTO_RESERVE.........coottiiiiitiieeit ettt sttt et s ve et st esaeesnbeesanesnseenes 96
4.1.30 EID_MEM_REAL_OVERLAP......cccoiiitiie ettt ettt et 97
4.1.31 EID_MEM_REAL_OVERLAP _L...coiiiiiiiieee ettt ettt ettt ettt st e s 97
4.1.32 EID_MULTI_ATTMMUL_SIZE........ccoittttteiiteiteeie ettt ettt ettt st site st e satesabeesaaeesbeeseesaseenseesaseesssesnseenses 97
4.1.33 EID_PHY_CANNOT _LAYOUT.......coiiiieieieetetetee ettt sttt ettt e sae e st s 97
4.1.34 EID_PHY_MEM_ADDR_SIZE.....ccccioottititoteete ettt ettt ettt sttt ettt st sbe e s be e bt sabeessaesnee e 98
4.1.35 EID_PHY_MEM_INVALID_RESERVE_PM......ccccciiitiiiiiiiiiiiieieee ettt ettt s n 98
4.1.36 EID_PHY_MEM_MULTL.....c..cociiiiiiiititieteetet ettt ettt sttt et e ae e st saeennesaees 98
4.1.37 EID_PHY_MEM_OVERLAP........coiititieitt ettt ettt sttt ettt e sbe e st e bt st e saeesane e 99
4.1.38 EID_PHY_MEM_OVERLAPPED........cooitiitiiiteie ettt ettt sttt st satesteestaesbeeseessbeesaeesnbeessnesnseenns 99
4.1.39 EID_PHY_MEM_PRIVATE.......ctiiiiteee ettt ettt et e sanens 99
4.1.40 EID_PHY_MEM_RESERVE_OVERLAP_RESERVE........cooiiiiiiiiieteeteeeeete et 100
4.1.41 EID_PHY_MEM _UNDBEF.......ccooiiitiiitiiieiit ettt ettt et site ettt et esitesabeesaaeesseestbeesbeesssesnbeenseesaseesssesnseensns 100
4.1.42 EID_PHY_MEM_UNDEF_ADDR.......oiittitiitiie ettt ettt ettt sttt st bt e b e bt e sabeesaeesaes 100
4.1.43 EID_PHY_NO_RESULToottiiiitiite ettt ettt st e sb e et s bt et e bt sabeesbe e st e e saeesaeeenaee 100
4.1.44 EID_PHY_PROBLEM_OVERSIZE........coioitiittiieit ettt ettt ettt ettt st e st esbeesabessbeenaeesnbeensnesanes 102
4.1.45 EID_PHY_SIZE OVERFLOW ..ottt ettt ettt st e sae e 102
4.1.46 EID_PL_AFTER _CYCLE..... .ottt ettt ettt b et h et e b et es e bt e st e ebeemeesbeeneesbeensesneennesneans 102
4.1.47 EID_PL_MULTI_MAPPING........ceoitiiiteiieiit ettt ettt et ste et stee bt e sttesabeessbeeaseessseenbeenseesnseenssesnseesssesseenes 103
4.1.48 EID_PL_MMATTc.oiiiiiieee ettt ettt ettt st et a e e s bt e b e ssesaeesaeeaeenneeae 103
CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015
6 Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
4.1.49 EID_PL_PORG......c.cctitiirtiiitiietitcttetse ettt ettt ettt sb et b et b et b e 103
4.1.50 EID_PROGBIT_AFTER_NOBITS.......c.ccoiiitiiiiieieiieiseertee sttt 104
4.1.51 EID_SCL_DIRECTIVE......cciittriiirietnte ettt ettt sttt sttt b et bbb 104
4.1.52 EID_SEC_BAD_ATTR....ccoctrtiteirteirtetete ettt ettt sttt ettt eb e ens 105
4.1.53 EID_SEC_MEM_ATTR....cc.ciiiiiiiieeeereteeee ettt 105
4.1.54 EID_SEC_MEM _SIZE.......ccctittiieietrie ettt ettt ettt sttt b et b et be e 105
4.1.55 EID_SEC_MULTI_DEF......ccccositittiiimieineinetrieteietete ettt sttt 106
4.1.56 EID_SEC_NO_MEDM......ccocciiiiiiiiiiiniie ittt st sttt ettt 106
4.1.57 EID_SEC_NOT _PLACED......ccocctsttttrtttirietinietsee sttt ettt ettt b ettt sttt sttt ettt ettt et ebeseebenaeben 107
4.1.58 EID_SEC_OSEC_ATTR...ccocctrtiireitiintctnet ettt sttt sttt ettt st ne 107
4.1.59 EID_SEC_PC_BACK ...ttt ettt et 107
4.1.60 EID_SEC_SIZE_OVERFLOW......cciititititiiiititiertetestete ettt sttt sttt sttt st ee 108
4.1.61 EID_SEC_UNDEF _MEM.....cccccosiitiiiiiiniiiiitettetnetse sttt ettt ettt sttt 108
4.1.62 EID_SEC_UNMATCH_ATTR......cciriiiiiiinteeeeeree ettt 108
4.1.63 EID_SMALL_ATTMMU_SIZE.......cocciottttiiiitinieeneteneet sttt ettt ettt b sttt sttt sttt sttt ettt 109
4.1.64 EID_SOME_CORES_WITHOUT_TASKS ...ttt ettt 109
4.1.65 EID_START_ADDR_EXPR.......ccciiiiiiiiiiiiiteieeeeeeee ettt 110
4.1.66 EID_START_ADDR_IMULTL....c.coiitiitiiriiintetntctnet ettt sttt sttt 110
4.1.67 EID_START_ADDR_REDEF.......ccccootiriiimiiiniinieinceeteetete ettt sttt 110
4.1.68 EID_TASK_OVERFLOW......ccooiiiiiiiiiiiiiiiit ettt s sttt 110
4.1.69 EID_TASK_REDEF_VM......ccitiitiiiiiieitnietnte ettt bttt ettt be e 111
4.1.70 EID_TASK _UNDEFccositmtiimiiiitietiete ettt sttt ettt ettt ettt ettt sttt sa et et sttt et enenees 111
4.1.71 EID_UNRESOLVE_REF........cccciiiiiiiiiiiiiierc ettt sttt 111
4.1.72 EID_WRONG_AT _ORG....cceeiiiitiiitiietinieiirtetste ettt sttt ettt ettt b e bbb bbbt eaens 112
4.1.73 EID_WRONG_VM_ORG......cocctriimiiiinieinieinteteiet ettt sttt st sttt sttt bbbt aeae e 112
4.2 PATSET EITOT TNESSAZES «.uvveeuveerureetterueerteessseattesiteesseessseassaesssesseessseeseessseenstessseenstessseanseesaseestesateeseeeaseebeesaseebeesaseenseenanes 112
42.1 EID_BAD_CORENAME.......ccocttrttirteirteintet ettt ettt ettt b e bbb bbbt saeaes 112
422 EID_COMMENT......ciitiiitiineere ettt ettt sttt bbbt b et b e e 113
423 EID_DEFINE........ccooiiiiiiiiieee ettt sttt s et n e aenas 113

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 7

h o
g |

|

Section number Title Page
4.2.4 EID_EMPTY _EXP....coiiiiitieetenee ettt ettt et sttt sttt sttt b et b et sbe et sbeeaesbtenbeeanenaeas 113
4.2.5 EID_INCLUDE........ooiiiitiieent ettt ettt st ettt st ae et b e e s e be e ettt esaeesneeaeenneeae 114
4.2.6 EID_INCOMPLETE_EXP.......coititiiiiiiee ittt ettt ettt ettt et st s e be e bt e b e e st et e e st e bt entesbeeneesaeeneas 114
4.277 EID_MISSING_PAREN_EXP......ooitiititiiitieet ettt ettt ettt ettt sbe et sttt st e nbeeanenaeas 114
4.2.8 EID_MATT _WX .ottt ettt ettt ettt et e a e et sae et saeesse st e bt s s e beeasebeessesueennenne 115
4.2.9 EID_OLD_LCF_FORMATttt ettt ettt ettt e b e st e s bt e et e s bt e e beesbeesabeesseesans 115
4.2.10 EID_PREPROCESS........oo ittt ettt et ettt h et be et ebe e et e bt e sbe et e sbeentesbeenenbnens 115
4.2.11 EID_UNDEF_OPER _IIN_EXP......ccciiiititiitiiiiiieieceet ettt ettt ettt et et n e ae e 116
4.2.12 EID_UNEXPECTED_TOKEN.......ciiittiittitittitete ettt ettt ettt st ettt e sbe e et be e sate b e sateenseesaeees 116
4.2.13 EID_UNKNOWN_INTRINSIC.......coctitiiiitiitetentteeett ettt ettt ettt ettt sttt ettt sbt et et sae et e sae e 116
4.2.14 EID_UNKNOWN_PERM_FLAG......cccccttttitimiiiiiiett ettt sttt sttt ettt ene s enesanens 116
4.2.15 EID_UNSUPPORTED_ATTR ..ottt ettt sttt sttt st b ettt et b et esa et e sseenaeeseenbeeneennean 117

4.3 SCLUP EITOL TNIESSAZES. c..eeuvevterrerurenteeitentteutentteutesteesteeteesteestenteestesteestesbeeasesbeeeae bt eas e bt eateebeemteebeemsesbee bt emtesbeemtenbeessenbeennenbeens 117
4.3.1 EID_ARCH_NOT_SPECIFIED......c..cccciitttitiiiiietetteteett ettt sttt sttt ettt sttt e st sae e saeeanesuees 117
4.3.2 EID_EXPR_CANNOT_EVAL... .ottt sttt st ettt e b e et be e s abe e bt e sateesbeesaeeenne 117
4.3.3 EID_LCF_INCOMPLETE......c..ecotitittitetteteet ettt sttt ettt ettt sb ettt sae et naeeatesbeenesieens 118
4.3.4 EID_LCF_INCORRECT.....cc.eootititiitit ettt ettt ettt et st st ea e s ae e b e sbeennesueenneeae 118
4.3.5 EID_NUM_CORES_GT_ARCH......coittiittiieeeetee ettt ettt et et et e sttt e sbeentesbeeaesbeans 118
4.3.6 EID_NUM_CORES_LT _ONE......cccciititirtitinititenit ettt ettt ettt et ettt et st et sbe et sbt et sbe et sbeenteebeenaeenee 119
4.3.77 EID_NUM_CORES _NAN. ...ttt ettt ettt et et ettt st s b e st eas e teeanesaeennesaeennes 119
4.3.8 EID_REDEFE _LCE _SYM. .ottt ettt et sttt ettt st e bt sateesbeesateebeesaneenee e 119
4.3.9 EID_REDEF_MM_SYM ..ottt ettt ettt ettt e s b et eh et e st e saeeatesbeeatesbeenaesbeenesbnens 120
4.3.10 EID_REPEATED_SECTION_DIFF_OS......cccoooioiiitiiiieentee ettt ettt ettt 120
4.3.11 EID_REPEATED_SECTION_SAME_OS.....co ittt ettt ettt ettt e s 120
4.3.12 EID_TASK_REDEF_VM.....oiiititiititiiiiitee ettt sttt sttt st sttt s be bbbt et sbe et eaee e e 121
4.3.13 EID_TASKS_NOT_SPECIFIED.......ccceccttittetitiiiinteteetee ettt ettt sttt sae ettt et saeenesaeens 121
4.3.14 EID_UNSUPPORTED_ARCH....c..coiiitiiiiieieete ettt ettt ettt e sb e et sbe e st e s s es 121

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015
8 Freescale Semiconductor, Inc.

g |

Section number Title Page
Chapter 5
LCF Expression Functions
5.1 Context-dependent intrinSiC fUNCLIONSccouiiieruirieitieieit ettt ettt e et ettt e sbeeaee s bt e te st e entesseenbeeseeteeneenbeeneesaeeneas 123
S Ll e h et h bbbt bbbt e bbbt b e a et b et b et b e b e 124
5120 ALEN ceii ettt et b et a ettt n et ene s 124
S.13 0 @IAOL ittt h bbbttt b ettt et et ea et eae bt b b nae e 124
5104 OTIINOT ettt ettt st et b et h et h et h bbbttt e h e bt et sae et bt eaesaeen 124
515 COTE It e 125
5.0 SIZEOT .ttt h bt bbb sh et b e a ettt ettt et ae et 125
ST BASK A0ttt ettt b et ee 125
S5.1.8 L0 _PRYSICAL .ttt ettt h e et h e e bt e bt e bt e eh b e ea bt e sbaeeabe e baeebeeaeeeas 125
S5.1L9 VIMOTE i e e e st a e s s 126
5.2 Context-independent iNtrinSiC fUNCHIONS. c...c..eitiriiiitirtieieeteteee ettt ettt ettt et sbe et sbtesae st e b eaaenaes 126
S.21 MUMLEASK..c.coiiiiiiiiiiii e 126
5.2.2 PRYSICAL_AAAIESS...eueintieiieiteee ettt ettt ettt et s a et e et e bt e bt e et e bt ea e e bt en e e et e et e eh e et e eate bt ente bt et e nbeentenbeens 126
T I 1111 o W o) (= PP OO RRRPRPRPRRRTN 127
524 dEfINEA......iiiiiiiieic ettt ns 127
525 ST ATCH et ——————————etaeeee e e et et e e —ea—a e e e e e —————————————toteteeeeaaeaeaaaaaaaaaaaas 127
Chapter 6
LCF Expression Operators
6.1 LICF @XPIESSION OPEIALOTS.euvivitinrentententententeueetteutetteteeteste et eebesse st estensenseseeatestest et eebesae et e ebesae st ess et ensensennenteneeueeaesueeseesenae 129
Chapter 7
LCF Preprocessing
7.1 LLCF PIOPIOCESSIIIZ ..uveuvieuteeuienteeuienteettenteeute s st estesteeate et e emte et eeate et e emteeaeeneeeaeeaseemeeaaeemeeebeemse bt embeebeentees e emseeseenteenee bt emeenbeeneenees 131
ToLL COMIMENLS. ..ttt ettt st b e et b ettt e s e a e bt e ae et b e b s b b e b st e st et ent et eseeneeneeresueas 131
7.1.2 The INCIUAE dIFCIIVE.oiuiiiiiiiiiiiiiiiiiic e ea e 132
T.1.3 The defiNe QITECLIVE.....ccuiruiiiieieiciieiietette ettt b et sttt et et eat bbbt b sae et nee 132
714 Conditional dITECTIVES.euviuieiiiiiiiiiieiieiieit ettt ettt b e s sttt et eae e eae s 132

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 9

h o
g |

|
Section number Title Page
Chapter 8
Linker Predefinitions
8.1 Predefined Symbols fOr MIMU DE@SCIIPLOTS.c..eetietieiietientteiientt et st ete st ete st ete et et et e bt esee bt estesbeeneesaeensesseeaesneansesnnans 135
8.2 Predefined Physical MemOTy REZIONS.c.eoiiriiriiiiiiirieiieneeett ettt ettt sttt st et sttt e it e 137

Chapter 9
Command-Line Options

Chapter 10
Sections in LCF

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015

10

Freescale Semiconductor, Inc.

Chapter 1
Introduction

The StarCore linker is a part of StarCore development tools and generates an executable
file for the StarCore family of digital signal processors. In addition, the linker also lets
you define a Linker Command File (LCF) that you use to instruct the linker to store
different parts of the executable file in different areas of the processor address space.

Currently, StarCore development tools support following linker version:

* SC3000

The SC3000 linker specifically targets SC3900 family of processors. This user guide
explains SC3000 linker.

In this chapter:

* About this document
* Accompanying documentation

1.1 About this document

This chapter describes the structure of this manual.

The StarCore SC3000 Linker User Guide is written using a task-based authoring
approach. The document consists of:

» tasks chapter that contains linker configuration and general tasks, where:
* linker configuration tasks help you configure the linker according to your
application requirements.
* general linker tasks help you use the linker during the general development
process.
 concepts chapter that contains linker configuration and general concepts, where:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 11

Accumpanying documentation

* linker configuration concepts present linker concepts that you might need to
comprehend to accomplish linker configuration tasks.
» general linker concepts present linker concepts that you might need to
comprehend to accomplish general linker tasks.
 appendices (reference information), such as error/warning messages, linker pre-
defined symbols, LCF pre-processing directives, etc. to which you might need to
refer to accomplish certain linker tasks.

In addition, each linker task and concept provides a cross reference to:

e related tasks
* related concepts
 related references

Table 1-1 lists each chapter and appendix in this user guide and provides a summary of
each.

Table 1-1. Structure of the StarCore SC3000 linker user guide

Chapter/Appendix name Description

Tasks Consists of step-by-step instructions that help you configure
and use the linker.

Concepts Consists of linker concepts that you might need to
comprehend to accomplish the linker tasks.

Linker Error Messages Explains linker error/warning messages and how to resolve
them.

LCF Expression Functions Explains the expressions that you use in the LCF.

LCF Expression Operators Explains the operators that you use in the LCF.

LCF Preprocessing Explains the LCF pre-processing directives.

Linker Predefinitions Explains the linker pre-defined symbols.

Command-Line Options Lists the command-line options that sc3000-Id linker supports.

Sections in LCF Explains and lists the sections generated by the CodeWarrior

linker and compiler.

1.2 Accompanying documentation

The Documentation page describes the documentation included in this version of
CodeWarrior Development Studio for StarCore 3900FP DSP Architectures. You can
access Documentation page by:

* a shortcut link on the Desktop that the installer creates by default, or
b opening START HERE.html n CWInstallDir\SC\Help folder.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

12 Freescale Semiconductor, Inc.

g |

Chapter 2
Tasks

This chapter consists of step-by-step instructions that help you configure and use the
linker during the general development process.

In this chapter:

* Linker configuration tasks
e General linker tasks

2.1 Linker configuration tasks

This chapter decsribes the linker configuration tasks.
In this section:

* How to create a Linker Command File (LCF)

* How to Make LCF Compatible for Flexible Startup

* How to Define and use a Custom set of Tasks

e How to Setup Virtual Trace Buffer (VITB) Using LCF

* How to Setup Cache

* How to Define Physical Memory Address Space of Target Architecture
e How to define stack and heap memory area in LCF

* How to Define Physical Memory Layout for a Multi-core Application

* How to Modify the LCF When Each Core Runs Different Code

e How to Define the Shared Memory

* How to Create Virtual Memory for Private Sections

* How to Define Virtual Memory for Read-Write-Execute (RWX) Access

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

13

cinker configuration tasks

2.1.1 How to create a Linker Command File (LCF)

Follow these steps:

1.

Create a new file using an editor, such as vi Or votepad, and specify the extension
as .13k.

The .13x extension indicates an LCF for StarCore SC3000 linker.

Specify the architecture. For example:

arch (b4860); //for multi-core applications

. Specify the number of cores:

a. If developing a single core application, skip this step and see Step 4

b. If developing a multi-core application and wish to assign all available cores to
the application, skip this step and see Step 4

c. If developing a multi-core application and wish to assign an explicit number of
cores to the application, specify:

number of cores(3); //3 indicates explicit no. of cores

number_of cores(1l); //1 indicates explicit no. of cores

Set the SR register. This step is mandatory for both single core and multi-core
applications. The listing below shows an example for a multi-core application
(b4860).

Listing: Setting the SR register for b4860 application

// The value to set the Core Status Register (SR) after reset:

// - Exception mode
// - Saturation on
// - Rounding mode: 2's complement rounding

_ SR _Setting = 0xc;

. Specify the system entry point. For example:

entry (" crt0_start");

You can also define a linker symbol and set it as the system entry point. For
example:

_program start = VBAddr+0x100;
entry (" program start") ;

Optional. Specify a task for the core (or each core in case of a multi-core
application).

The linker by default creates a task for each core. To create a user-defined task, see
How to Define and use a Custom set of Tasks.

Specify the memory layout:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015

14

Freescale Semiconductor, Inc.

Chapter 2 Tasks

a. If developing a single core application, skip this step and see Step 8
b. Optional for multi-core applications. See How to Define Physical Memory
Layout for a Multi-core Application.
8. Specify the virtual memory. You must instruct the linker about where to place the
data and code sections of the user application.
a. If developing a single core application, see How to Create Virtual Memory for
Private Sections.
b. If developing a multi-core application, see How to Create Virtual Memory for
Private Sections, and How to Define the Shared Memory.
9. Specify the address translation entries. You must instruct the linker about how to
map the virtual memory area to the physical memory area.
a. Optional for single core applications. See How to Map Virtual Memory Areas to
Physical Memory Address Space.
b. If developing a multi-core application, see How to Map Virtual Memory Areas
to Physical Memory Address Space.

Example

You can access the example LCF files for the multi-core applications from the following
directories:

CWInstallDir/SC/StarCore_ Support/compiler 3900/etc/b4860/1cE
CWInstallDir/SC/StarCore_Support/compiler 3900/etc/b4420/1lcft
For example:

® 1,4860/1cf/common.13k: Provides definition common to all cores
® base0/lcf/mmu_attr.13k: Provides definition for the MMU and Cache configuration
® 1,4860/1cf/bass0.13k: Provides definition for the b4860 core

Notes

* [t is a best practice to define the information in separate files, and include the files in
the main LCF by using the inciuge directive. For example, if you develop multiple
applications for the same architecture, you might define common specifications in
one file, and include this file in the multiple LCFs by using the inciuge directive:

#include "common specs.txt"

* If you want, you can first rename some input sections, and then refer them in the
LCF with the new name. You can use the renave directive, where the last parameter of
the directive represents the new name. You can use renaming to exclude specific
sections from specific cores by using the core visibility notation. For example:

RENAME "*startup_ *.eln", ".text", ".text boot"

RENAME "*rtlib *.elb(target asm start.eln)", ".text", ".text boot"
unit shared(task0 c2,task0_c3) {

RENAME "cOcl partial shared code.eln", ".text", "cO0 exclude" }

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 15

cinker configuration tasks

Related Tasks

e How to Define and use a Custom set of Tasks

* How to Define Physical Memory Layout for a Multi-core Application

e How to Map Virtual Memory Areas to Physical Memory Address Space
* How to Make Code or Data Sections Visible to a Subset of Cores

Related Concepts

* Understanding linker terminology
e Understanding SC3000 LCF syntax

Related References

* LCF Expression Functions
* LCF Expression Operators

2.1.2 How to Make LCF Compatible for Flexible Startup

To make an LCF compatible for the flexible startup configuration, follow the steps given
below. However, note that when you continue developing a project, a few changes in
LCEF are required to have the memory map expose asymmetry with respect to the
previously referred sections, such as stack, heap, .att_mmu etc.

In addition, note that with each step given below, you must remove definitions of some
specific symbols, while for some other symbols, it is not necessary to remove their
definition. You may keep or remove such definitions depending upon the context of the
application.

1. Core independent (flexible) placement of the stack and the .att_mmu section.
a. You may remove the definitions of following symbols because linker can
compute them by using the following definitions:

_StackStart= originof ("stack");
_TopOfStack =(endof ("stack")-7)&0xFFFFFFF8;

If these definitions are not present in the LCF and the stack name is different
from "stack", linker cannot compute the stack boundaries.

b. Symbol definitions that you must remove:
_LocalbData b

_LocalData_size

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

16 Freescale Semiconductor, Inc.

Chapter 2 Tasks

LocalbData Phys b

However, note that the stack and the .acc_mmu sections still must be placed in the
same output_section:

descriptor xxx cacheable wb sys private data boot ({

LNK SECTION(att mmu, "rw", MMU TABLES size, 0x4, ".att mmu");
LNK_SECTION(stack, "rw", _StackSize, 0x4,"stack");

} > data_boot c;

2. Core independent (flexible) placement of heap.
a. You may remove the definitions of following symbols because linker can
compute them by using the following definitions:

__ _BottomOfHeap = originof ("heap") ;
_ TopOfHeap = (endof ("heap")-7)&0xFFFFFFF8;

If these definitions are not present in the LCF and the heap name is different
from "heap", linker cannot compute the heap boundaries.

3. Core independent (flexible) placement of exception table and static initialization
table.
a. You may remove the definitions of following symbols because linker can
compute them by using the following definitions:

_cpp_staticinit start= originof (".staticinit");

_cpp_staticinit end= endof (".staticinit");

__exception_table start = (ENABLE_ EXCEPTION) ?2originof (".exception_ index") :0;
__exception table end = (ENABLE EXCEPTION) ?endof (".exception index"):0;

If these symbols definitions still exist, linker computes the new corresponding
symbols based on the provided value.

2.1.2.1 Constraints With Flexible Startup Configuration

* The .text_boot sections must be shared and mapped 1-1.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 17

cinker configuration tasks

* The .act_mmu section and stack must be defined using the same descriptor.

» All exception and staticinit tables need to be consecutive and some of them may need
privatization, which can be achieved by renaming to .exception_index because of RT
binary search.

Related Concept

e Understanding Flexible Startup Configuration

2.1.3 How to Define and use a Custom set of Tasks

A task is a static software unit, which has a unique ID that is recognized by the operating
system and the hardware. The linker by default creates one task for each core. However,
one or more tasks can be mapped to a single core. The name of the default task is the core
number prefixed by the taskO_c string.

Follow these steps to define and use a custom set of tasks:

1. Create a new task by using the tasks construct in the LCF. The listing below shows
an example.
Listing: Creating a new task

tasks
{ //core name: task name, task_id, pid, did;

cO0 : sys0O, 0, 0, O;

c0 : sub task, 2, 2, 2;

}
2. Use the application configuration file, or the __attribute__((section())) qualifier to

place the task specific data and task specific code sections in an input section. In the
current StarCore programming model, new tasks created with the tasks construct are
not explicitly extended at the C/C++ language level.

The listing below shows an example of how you specify the task specific data and
the task specific code sections in an application configuration file.

Listing: Specifying task specific data and code in an application configuration
file

program = [
subtask _program: ".subtask pgm" //input code section for
//sub_task

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

18 Freescale Semiconductor, Inc.

Chapter 2 Tasks

data = [

subtask_data: ".subtask data" //input data section for
//sub_task

]

You can also use the __attribute__ ((section())) qualifier, instead of an application
file. For example:

__attribute ((section(".subtask data"))) int data;
__attribute ((section(".subtask pgm"))) void func() {}

3. Specify the virtual memory area and the address translation entries for the task
specific input sections in the LCF. The listing below shows an example.
Listing: Specifying the virtual memory area and address translation entries

unit private (sub_task) {

MEMORY {
m3_ data nc wt_sub ("rw"): org = _sub VIRTUAL start;
m3_ text c sub ("rx"): AFTER(m3_ data nc_wt_ sub);

}

SECTIONS ({

out_sub dataf{
.subtask _data
} > m3_ data nc_wt_sub;
out_sub_text{
.subtask_pgm
} > m3_ text c_sub;
}
}

address_translation (sub_task) {

m3_ data nc_wt_sub(USER_DATA MMU DEF REGA, USER DATA MMU DEF_REGC) :M3;

m3__ text c sub(USER PROG MMU DEF REGA, USER_PROG MMU DEF REGC) :M3;
}

4. Specify the same start address for the tasks specific code, if the application runs two
or more tasks on the same core. The listing below shows an example, where the code
for sub_task and the sub_task_two tasks start at the same virtual memory address.
Listing: Specifying same start address for multiple tasks on same core

unit private (sub_task)

MEMORY
m3__data nc_wt_sub ("rw"): org = _sub VIRTUAL start;
m3_ text ¢ sub ("rx"): AFTER(m3_data nc_wt sub);

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 19

cinker configuration tasks

}

unit private (sub_task_two) {

MEMORY
m3__data nc_wt_sub_two ("rw"): org = _sub VIRTUAL start;
m3_ text ¢ sub two ("rx"): AFTER(m3__data nc_wt sub two);

}

In such cases, the system level task must perform the MMU management so that the
associated descriptors are enabled and disabled in accordance with the active task,
and also the current program/ data ID registers are updated with the task PID/DID.

Notes

* [t is a best practice to define the task specific data and task specific code in a separate
C/C++ language module. This makes the specifications in the application file easy.
For example:

module "b4860 subtask" [
data = subtask data
program = subtask program

]
Related Concepts

* Understanding linker terminology

2.1.4 How to Setup Virtual Trace Buffer (VTB) Using LCF

Follow these steps:

1. Enable the VTB by using the _snxaeie_vre symbol. The listing below shows an
example.
Listing: Defining _ ENABLE_VTB symbol

// Definitions for the VTB
// 1f 1 = reserve VTB in M2 memory

// if 2 = reserve VTB in M3 memory
// else VIB will not be configured automatically

_ENABLE_VTB = 1;

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

20 Freescale Semiconductor, Inc.

3
4

4
A

4
Chapter 2 Tasks
2. Specify the start and end addresses (physical addresses) for the VIB by using the
_vre_start and _vre_end symbols. The listing below shows an example.
Listing: Defining _ VTB_start and _VTB_end symbols
// Reserve TRACE_BUFFER in physical memory
// Set TRACE BUFFER start address and size for DDR
_TRACE_BUFFER_size = (_ENABLE TB == 1)? 0x20000: //128K for each core
0x0;
_TRACE_BUFFER start= ENABLE TB == 1)? DDR PRIVATE end -
_TRACE_BUFFER size + 1:
0x0;
_TRACE_BUFFER end = _TRACE BUFFER start + _TRACE BUFFER size;
3. Reserve a physical address space that the VTB can use

See How to Reserve Physical Memory Area

Notes

» The VTB does not require virtual address space. Therefore, no address translation

entries are required for VIB in the LCF.

Related Tasks

* How to Reserve Physical Memory Area
Related Concepts

e Understanding linker terminology

Related References

e Linker Predefinitions

2.1.5 How to Setup Cache

Follow these steps:

1. Enable the cache by using the _snaere_cacae symbol. For example:
_ENABLE CACHE = 1;

Specifying -1 as the value disables the cache.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

cinker configuration tasks

2. Partition the m3/13 memory by specifying an appropriate size for the vz memory. You
use the m3_setting Symbol to specify the m2 memory size. Table 2-1 lists the

supported values that you can specify for the m3_setting symbol.
Table 2-1. Supported Values for _M3_Setting

Symbol
_M3_Setting Value M3 Memory Size
0x00 - all memory used as L3Cache OKB
0xof 512KB
Oxff 1024KB

The default value sets the L.3/M3 as L3 cache.
3. Specify the cacheable attributes by using the MMU descriptors.

When you map the virtual memory area to the physical memory area, you specify the
MMU descriptors. A few descriptors refer to caching. The listing below shows an
example.

Listing: Using MMU Descriptors for Caching

SYSTEM DATA MMU DEF_REGA = MMU DATA CACHEABLE |
MMU_DATA_PREFETCH_ANY |
MMU DATA DEF WPERM |
MMU_DATA DEF _RPERM ;

SYSTEM DATA MMU DEF_REGC = MMU DATA COHERENCY MODE;

address_translation (*) {

data boot c (SYSTEM DATA MMU DEF_REGA, SYSTEM DATA MMU DEF REGC): DDR, org =
_PRIVATE_DATA BOOT start;

}
Related Tasks

* How to define stack and heap memory area in LCF

2.1.6 How to Define Physical Memory Address Space of Target
Architecture

The physical memory address space of the target architecture is automatically defined
when you specify the architecture in the LCF. However, by using the physical_memory
construct you can explicitly define:

* boundaries for each physical memory on the target architecture
« attributes for each physical memory on the target architecture

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

22 Freescale Semiconductor, Inc.

Chapter 2 Tasks

Follow one of these steps to explicitly define the physical memory address space:

* Use the physical_memory construct to define a physical memory address space that
overlaps with the default physical memory address space

* Use the physical_memory construct to define a physical memory address space that has
the same name as the default physical memory address space

The listing below shows default physical memory definitions for the b4860 architecture.

Listing: Default physical memory definitions for b4860 architecture

physical memory shared (*) ({

M3: org = M3 start, len = M3 size;
DDR: org = DDR start, len = DDR size;
}
Notes

* If the default physical memory address space is private, then the explicitly defined
physical memory address space must also be private

* If the default physical memory address space is shared, then the explicitly defined
physical memory address space must also be shared. In addition, the core list must
also be identical.

Related Tasks

e How to Define Physical Memory Layout for a Multi-core Application
* How to Reserve Physical Memory Area
* How to Map Virtual Memory Areas to Physical Memory Address Space

Related Concepts
e Understanding SC3000 LCF syntax
Related References

e Linker Predefinitions

2.1.7 How to define stack and heap memory area in LCF

Follow these steps:

1. Define the stack and heap memory size. For example, you might use user-defined
symbols:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 23

cinker configuration tasks

app_StackSize = 0x7£00;
app_HeapSize = 0x1000;

2. Declare the stack and heap memory area by using the 1nx_secrron construct. The
listing below shows an example.
Listing: Declaring stack and heap memory area

LNK SECTION (stack, //section type
"rw", //flags

app_StackSize, //length
0x8, //alignment
"app stack"); //name
LNK_SECTION (heap, "rw", app HeapSize, 0x8, "app_ heap");

The stack and heap memory alignment value for the StarCore architectures is eight
bytes (oxs).

The wnx_secrron construct defines an input section of one of the following predefined
types: stack, heap, stack_and_heap, .att_mmu OI .bss Of the given size and alignment.

3. Define the following symbols for CodeWarrior runtime support routines:

StackStart = originof ("app stack");

_TopOfStack = (endof ("app stack") - 7) & OxXFFFFFFF8;
__BottomOfHeap = originof ("app heap");

__ TopOfHeap = (endof ("app heap") - 7) & OxXFFFFFFF8;

The originot and endot functions are intrinsic functions that return the address of the
specified input section. The input section can be a regular input section (identified by
its name), or a special input section (defined and identified by using the xx_secrron
construct).

4. Define the common memory area, if required, for the stack and heap memory by
using the predefined stack_and_neap section. The listing below shows an example.
Listing: Defining the common memory area for stack and heap memory

LNK_SECTION (stack_and heap, "rw", StackHeapSize, 0x8, "
app_stack and heap") ;

_StackStart = originof ("app stack and heap ");
_TopOfStack = (endof ("app_stack and heap ") - 7) & OxXFFFFFFF8;
__BottomOfHeap = originof ("app stack and heap ");

__ TopOfHeap = (endof ("app_stack and heap ") - 7) & OxXFFFFFFF8;

2.1.7.1 Example for Multi-Core Architectures

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

24 Freescale Semiconductor, Inc.

Chapter 2 Tasks

For multi-core architectures that have MMU support, for example b4860, the stack must
be placed in the same construct as the .act_mmu section. The size of this construct
(generally, the size of stack + the size reserved for the .att_mmu section) must be a power
of two, and must be aligned to the size.

The listing below shows an example of private data_ boot construct (output section) of a
multi-core application.

Listing: Example output section of a multi-core application

private data boot {
LNK_SECTION (att mmu, "rw", MMU TABLES size, 0x4, ".att mmu");

LNK_SECTION(stack, "rw", StackSize, 0x4,"stack");

} > data_boot_ vmemory;

The listing below shows the definition of the data_boot_vmemory memory area.

Listing: Definition of data_boot_vmemory memory area

MEMORY {
data boot vmemory ("rw"): org = VIRTUAL DATA BOOT_ start, len =
_DATA BOOT_size;

}

_DATA BOOT size = _StackSize + MMU TABLES size;

In the listing above, VIRTUAL DATA BOOT start 1S a multiple of para Boor size, and
_DATA BOOT_size 1S @ power of two.

You must define the following symbols because of specific constraints in the runtime
library:

® LocalData b

Specifies the virtual memory address of the construct, where the .att_mmu section and
the stack are placed

® LocalData size

Specifies the memory size of the construct, where the .att_mmu section and the stack
are placed

® LocalData Phys b

Specifies the physical memory address of the construct on the first core, where
the .att_mmu section and the stack are placed

For the construct defined in the listing, Example output section of a multi-core
application, the values of _rocalpata b, Localpata_size, and rocalpata_phys b symbols are:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 25

cinker configuration tasks

_LocalData b = _VIRTUAL DATA BOOT start;
_LocalData_size = _DATA BOOT_ size;

_LocalData Phys b = PRIVATE DATA BOOT start - (core id() *
0x01000000); // first descriptor is placed in the M2 memory

The _prrvare para moor_start address is an address in the M2 memory, and is also aligned
{0 DATA BOOT size.

Related Tasks
* How to Setup Cache

Related References

e Linker Predefinitions

2.1.8 How to Define Physical Memory Layout for a Multi-core
Application

As a prerequisite, it is recommended that you see Appendix E on Linker Predefinitions
before continuing with this task.

In case of single core applications, defining a memory layout is not required as the linker
predefined physical memory regions are sufficient in most of the cases.

However, in case of multi-core applications, the physical memory address space is shared
by all the cores on the platform. As a result, you might need to classify the shared
physical memory address space into the private and shared memory regions. You specify
the private and shared memory regions by creating a set of symbols for the start address,
the end address, and the size of these regions.

Follow these steps to specify a private memory region in the shared physical memory
space:

1. Define the size of the private memory region in the shared physical memory space.
For example:
// Define the size for private data to stay in M3
_PRIVATE_M3 DATA size = 0x1000;
The rrrvate M3_paTa size Symbol defines the size of private memory region for each
core on the platform. If the application uses n cores, the size of M3 private memory
region will be n+_prIVATE M3_DATA size.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

26 Freescale Semiconductor, Inc.

Chapter 2 Tasks

2. Define the start address of the private memory region. The listing below shows an
example.

Listing: Defining the start address of private memory region

// Define the physical memory for M3 private data
// The private space is placed at the beginning of M3 if the size of

// private space is bigger than size of shared space; otherwise at the
// end of M3.
_M3 PRIVATE start = (PRIVATE M3 DATA size <

_M3_size-(core_num()* PRIVATE M3 DATA size)) °?

M3 start+ M3 size-(core num()* PRIVATE M3 DATA size) +
(core_id()* _PRIVATE M3_DATA_ size):

M3 start + (core id() * _PRIVATE M3 DATA size);

The listing above specifies two linker intrinsic functions:

* num_core () - returns the number of cores on the platform. You can specify a
smaller number of cores per the application requirements.
* core_id() - returns the core ID. Core ID begin from 0.

Following Step 1 and Step 2, you have specified a private M3 memory region
that you can use to place the private data for each core. The core_id() intrinsic
function specifies the location of private memory region for each core preventing
overlapping memory regions.

3. Define the end address of the private memory region. For example:

// Define the end of M3 private data.
_PRIVATE M3 DATA end = M3 PRIVATE start + _PRIVATE M3 DATA size - 1;

Example

The listing below shows an example of how the private memory region created in the M3
memory is used in the virtual memory specification and address translation constructs.

Listing: Using private memory region

/*

// This is linker predefined from the architecture specification
_M3 start = 0x30000000 ;

*/

// Define the size for private data to stay in M3
_PRIVATE M3 DATA size = 0x10000;

// Define the physical memory for M3 private data

// The private space is placed at the beginning of M3

// 1f the size of private space is bigger than size of shared space.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 27

g |

|
cinker configuration tasks
M3 PRIVATE start=(PRIVATE M3 DATA size <
M3 size-(core num()* PRIVATE M3 DATA size)) °?

M3 start+ M3 size- (core num()* PRIVATE M3 DATA size)
+ (core_id()* PRIVATE M3 DATA size):

_M3 start + (core id() * PRIVATE M3 DATA size);

_M3 _PRIVATE end = M3 PRIVATE start + PRIVATE M3 DATA size -1;

// Define the physical memory for M3 shared data and code
// The shared space is placed at the beginning of M3
// 1f the size of shared space is bigger than size of private space.

M3 SHARED start= (PRIVATE M3 DATA size < M3 size - (core num() *
_PRIVATE_M3 DATA size))?

_M3_start:

M3 start + (core num() * PRIVATE M3 DATA size);
// Defines for virtual memory map placement

_VIRTUAL PRIVATE MEM DATA start= 0x70000000;

/* creating the private virtual memories*/

unit private (*){

MEMORY {
ddr private data c wb ("rw"): org = VIRTUAL PRIVATE MEM DATA start;
m3_private data c wb ("rw"): AFTER(m2_ private data_c_wb);

}
SECTIONS ({

descriptor m3_ cacheable wb__sys private data ({
.m3__ cacheable wb_ sys private data
reserved_crt tls

.data

.m3__ cacheable wb_sys private rom
.bsstab

.init table

.rom_init

.rom_init tables

.exception

.exception index

.staticinit

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

28 Freescale Semiconductor, Inc.

g |

Chapter 2 Tasks

.m3__ cacheable wb_sys private bss
.bss

} > m3 _private data c_wb;

}

}

address_translation (*) {

ddr private data_c_wb (SYSTEM DATA MMU DEF REGA, SYSTEM DATA MMU DEF REGC): M2,
org=_DDR_PRIVATE start;

m3_private data c wb (SYSTEM DATA MMU DEF REGA, SYSTEM DATA MMU DEF REGC): M3, org =
_M3_PRIVATE_ start;

}
Related Tasks

* How to Define Physical Memory Address Space of Target Architecture
* How to Reserve Physical Memory Area

Related References

e Linker Predefinitions

2.1.9 How to Modify the LCF When Each Core Runs Different
Code

Follow these steps:

1. Consider an LCF for a multi-core application where all the cores share code. Further,
consider a shared_func function as a start point where all the cores begin to run
different code. The listing below shows an example where the sharea_func function is
placed in the .text section.

Listing: Example unit construct

unit shared (*) {
MEMORY {

m3_shared_text_c ("rx"): org = _M3_SHARED start;

SECTIONS ({
descriptor m3_ cacheable sys shared text {

.m3__ cacheable sys shared text

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 29

g |

cinker configuration tasks

.text
.default
.unlikely

} > m3_shared text c;
}

2. The sharea_func functions calls a private function, private_entry point that has different
code on each core but it has to be placed at the same virtual address on all cores. You
specify the private_entry point function in a C source file as:
extern void private entry point (void) ;

void shared func (void) {
private entry point () ;

}
3. Create different C source code files for different private code that runs on each core.

For example, create co_private text.c and c1_private_text.c files for cores co and c1
respectively. In each of such C source code files, specify an entry function,

private entry point() ;.
When specifying the entry function, you must follow these steps:

a. Define core specific code sections in the application configuration file so that the
resolution of private_entry point Symbol is correct. For example:

Pgm0_shared to private : ".text" core="cO "/* private section c0~.text for core 0
*/
Pgml_shared to_private : ".text" core="cl "/* private section cl”.text for core 1
*/

b. Set the code sections at the function level. The listing below shows an example.
Listing: Setting code sections at function level

module "cO_private text" [

function _private_entry point [

program = PgmO_shared to private

]

module "cl private text" [

function _private_entry point [

program = Pgml shared to private

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

30 Freescale Semiconductor, Inc.

Chapter 2 Tasks

c. Place the functions at the same address in tasks' virtual memory space on all the
cores by using the LCF. This is required because the functions are private, but
called from shared code. The listing below shows an example.

Listing: Placing functions at the same address in virtual memory space

unit private (task0 c0)
MEMORY {

ddr_shared to_private text cO ("rx"): org =
_VIRTUAL DDR_PRIVATE text start;

}

SECTIONS
outsec_{

"cO0~.text" // input section with function private entry point for
core 0

} > ddr_shared to private text cO;

}
}

unit private (task0 cl) {
MEMORY {

ddr shared to private text cl ("rx"): org =
_VIRTUAL DDR PRIVATE text start;

}

SECTIONS
outsec_{

"clT.text" // input section with function _private_ entry point for
core 1

} > ddr_shared to private text cl;

}
}

4. Place all the functions that are called from the private_entry point function in separate
input sections, so that the functions are further easily placed in the private memory
areas defined in the LCF. Follow these steps:

a. Define the code input sections for private code in the application configuration
file. For example:
program = [...
Pgm0:"private code cO" /* private code for c0 */ ,

Pgml:"private code cl" /* private code for cl */

]
b. Specify the defined input sections at the module level in the application file. For

example:

module "cO0 private text" [...
program = Pgm0

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 31

g |

cinker configuration tasks

1
module "cl private text" [...
program = Pgml
1

c. Place the defined input sections separately in the task virtual memory space. The
listing below shows an example.
Listing: Placing the input section in task virtual memory space

unit private (task0_c0)
MEMORY {

ddr private text cO ("rx"): AFTER(ddr shared to private text cO0);
SECTIONS({

outsec_ {

" private code coO"

} > ddr private text cO;

}

unit private (task0 _cl) {
MEMORY {

ddr private text cl ("rx"): AFTER(ddr shared to private text cl);

}

SECTIONS({
outsec_ {
" private code cl"

} > ddr private text cl;

}
5. Specity the virtual to physical memory mapping using the address_translation

construct. The listing below shows an example.
Listing: Specifying the virtual to physical memory mapping
address_translation (task0 _c0) {

ddr shared to private text cO (SYSTEM PROG MMU DEF REGA, SYSTEM PROG MMU DEF_REGC) :

DDR, org =
_DDR_PRIVATE_start;

ddr private text cO (SYSTEM PROG MMU DEF REGA, SYSTEM PROG MMU DEF REGC): DDR;

}

address_translation (task0 _cl) {

ddr shared to private text cl (SYSTEM PROG MMU DEF REGA, SYSTEM PROG MMU DEF REGC) :
DDR, org =
_DDR_PRIVATE start;

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

32 Freescale Semiconductor, Inc.

g |

Chapter 2 Tasks

ddr private text cl (SYSTEM PROG MMU DEF REGA, SYSTEM PROG MMU DEF_REGC): DDR;

}
Related Tasks

* How to create a Linker Command File (LCF)
* How to Map Virtual Memory Areas to Physical Memory Address Space
* How to specify the content of virtual memory areas

2.1.10 How to Define the Shared Memory

Follow these steps:

1. Define the unit construct for specifying the memory areas and output sections. The
listing below shows an example.
Listing: Defining the unit statement for shared memory area

unit shared (taskl, task2) {
memory {

//typical virtual memory definitions

virtual shared data memory ("rw") : org = _VirtualData b;

virtual shared const memory ("r") : AFTER
(virtual shared data memory), len=0x200;

virtual shared code memory ("rx") : org = 0xC0000000, len=0x1000;

virtual_shared_libs_memory ("rx") : AFTER

(virtual shared code memory) ;
// minimal memory specification
virtual_ shared memory 1;

// other examples

virtual shared memory 2 : org _SomeSharedVirtualAddress;

virtual shared memory 3 : len 0x100;

}
In the listing below:

* task1 and taskz2 indicate the tasks that share the memory; the wildcard («) can be
used to specify all tasks on the platform

® virtual_shared_data_memory Specifies the shared virtual memory

* the rv keyword sets the Read and Write flags for the memory

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 33

cinker configuration tasks

* the org keyword sets the memory start address in the virtual memory space; the
start address specified must adhere to architecture constraints

* the 1en keyword specifies the maximum memory size in bytes; if not specified,
the linker uses the minimum size

* the arter keyword instructs the linker to start placing the memory after the end
address of the specified virtual memory area

NOTE

The atter keyword does not mean right after. The
memory can be placed starting at an address that is
beyond the end address of the specified virtual
memory.

2. Place the data/code in the virtual memory areas by using the output sections. The
listing below shows an example.
Listing: Placing the data/code in the virtual memory area

unit shared (taskl, task2) {
MEMORY {

//typical virtual memory definitions
virtual_shared_data memory ("rw") : org = _VirtualData_b;

virtual shared const memory ("r") : AFTER
(virtual shared data memory), len=0x200;

virtual shared code memory ("rx") : org = 0xC0000000, len=0x1000;

virtual shared libs memory ("rx") : AFTER
(virtual shared code memory) ;

// minimal memory specification
virtual shared memory 1;
// other examples

virtual shared memory 2 : org

_SomeSharedVirtualAddress;
virtual shared memory 3 : len = 0x100;
virtual_shared _memory 4 DATA;

}

SECTIONS {

//create an output section that uses a selection of data sections
to be placed into

// the virtual memory.
output_section shared data {
.m3__ non_ cacheable wt sys shared data
reserved crt mutex

.m3__non_ cacheable wt sys shared rom

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

34 Freescale Semiconductor, Inc.

Chapter 2 Tasks

.m3__non_cacheable_wt__sys shared bss
} > virtual shared data memory;

// some read only data to place into read only shared virtual
/ /memory

read_only output section {
.rom

} > virtual_shared const memory;

}
3. Specify the address translation entries to map the virtual memory to the physical

memory areas. See How to Map Virtual Memory Areas to Physical Memory Address
Space.

Notes

* Using the arter keyword to instruct the linker that memory a starts after memory s,
does not prohibit placing other memory regions in-between memory » and memory =.

* The access flags for the shared memory must be specified according to the type of
data that the memory holds. A section that contains executable code cannot be placed
into the virtual shared memory memory as declared in Listing: Defining the unit
statement for shared memory area because this memory does not specify the x flag.

* Make sure that when you specify the tasks for the shared memory, the target memory
space for placing the shared memory area is accessible to all the tasks.

* Reduce the usage of the arrer keyword and provide precise placement using org and
1en keywords in order to reduce the problem search space and the linking time.

Related Tasks

e How to Map Virtual Memory Areas to Physical Memory Address Space
* How to define stack and heap memory area in LCF

Related Concepts
* Understanding SC3000 LCF syntax

2.1.11 How to Create Virtual Memory for Private Sections

Follow these steps:

1. Define the unit construct. The listing below shows an example.
Listing: Defining the unit statement for virtual memory area

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 35

cinker configuration tasks

unit private (*) {

/* 1.1 A MEMORY statement is needed to define the virtual memory areas.
These virtual memory areas act like containers for the data/code
section. Four memory areas are defined in four typical different

ways:*/
MEMORY {

local _data descriptor_1 ("rw"): org = VirtLocalDataDDR b;

local data descriptor 2 ("rw"): AFTER(local data descriptor 1);

local _data_descriptor_ 3 ("rw"): org = VirtLocalDataM3 b,
LEN=0x1000;

local_data_descriptor_4 ("rw"): AFTER(local_data_descriptor_3),
LEN=0x1000;

}

In the above listing:

the unit scope is private, i.e. all data/code specified by this unit is private to the
specified tasks list (the wildcard indicates all the tasks on the platform; you can
specify a comma separated task list)

the memory construct lets you create virtual memory areas and map them to the virtual
memory space. Except the name, all other information required to create a virtual
memory area is optional.

the rw keyword sets the Read and Write flags for the memory

the org keyword sets the memory start address in the virtual memory space; the start
address specified must adhere to architecture constraints

the 1en keyword specifies the maximum memory size in bytes; if not specified, the
linker uses the minimum size

the arcer keyword instructs the linker to start placing the memory after the end
address of the specified virtual memory area

local_data_descriptor_1 1S a virtual memory that starts at virtrocaipatapor b. The
access rights are set for Read and Write, so it is illegal to place the executable code in
this memory area. The length is not specified. The linker determines the length from
the sections placed into this memory area.

local data_descriptor 2 1s similar to local data_descriptor_ 1, except the memory 18
placed to start after the 1ocal_data_descriptor_1, without fixed origin or length

local data descriptor 3 1s similar to local data descriptor 1, €XC€pt

local data_descriptor 3 has fixed length, in addition to fixed origin

local data_descriptor 4 1s similar to local_data_descriptor_2, €XCept

local data descriptor 4 has a fixed length

Specify the input sections by creating output sections and associate them with the
specified virtual memory areas. The listing below shows an example.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015

36

Freescale Semiconductor, Inc.

g |

Chapter 2 Tasks
Listing: Creating output sections

unit private (*) {

/* 1.1 A MEMORY statement is needed to define the virtual memory areas.
These virtual memory areas act like containers for the data/code
section. Four memory areas are defined in four typical different

ways:*/
MEMORY {

local data descriptor 1 ("rw"): org = VirtLocalDataDDR b;

local_data_descriptor_2 ("rw"): AFTER(local_data_descriptor_1);

local data descriptor 3 ("rw"): org = VirtLocalDataM3 b,
LEN=0x1000;

local data descriptor 4 ("rw"): AFTER(local data descriptor 3),
LEN=0x1000;

}

/* 2. A SECTIONS statement is needed to indicate a mapping between
data/code sections and virtual memories. */

SECTIONS ({

/*2.1. The descriptor_ local data is an output section that
gathers a list of input sections and assigns a virtual
memory to hold them. In this example the
descriptor local data uses the local data descriptor 1
virtual memory for placing the input sections.*/

descriptor local data

.oskernel local data
.data

ramsp_0
.oskernel rom

.rom

.exception index
.ramsp_0

.init table
.rom_init

.bsstab
.rom_init_tables
.staticinit

LNK_ SECTION(att mmu, "rw", 0x200, 4, ".att mmu");

.oskernel local data bss

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 37

cinker configuration tasks

.bss

} > local data descriptor 1;

}

}
 Specify the address translation entries to map the virtual memory to the physical

memory areas. See How to Map Virtual Memory Areas to Physical Memory Address
Space.

Notes

* Using the arter keyword to instruct the linker that memory a starts after memory s,
does not prohibit placing other memory regions in-between memory a and memory s.

* The lesser the information you provide when creating a virtual memory space, the
larger is the search space and the linking time.

Related Tasks

* How to Map Virtual Memory Areas to Physical Memory Address Space
* How to define stack and heap memory area in LCF

Related Concepts
e Understanding SC3000 LCF syntax

2.1.12 How to Define Virtual Memory for Read-Write-Execute
(RWX) Access

You define virtual memory for RWX only on multi-core architectures that have explicit
MMU support, and visible physical memory address space. Note that the linker does not
check whether the memory space, that you want to assign RWX attributes, is cacheable.
In addition, you must be aware of the hardware memory map to prevent tricky errors
when selecting the target physical memory space for the RWX memory.

Follow these steps to define virtual memory for RWX access:

1. Define the virtual memory by using the unit construct. The listing below shows an
example.
Listing: Defining a virtual memory

unit shared (*) {
MEMORY

m3_rwxX memory : org = 0xC0004300;

}

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

38 Freescale Semiconductor, Inc.

Chapter 2 Tasks

Make sure that you do not specify any RWX flags for the virtual memory itself. The
linker prevents you from accidently stamping a virtual memory as RWX without any
code mapped to the respective memory.

. Define an output section. The listing below shows an example.
Listing: Defining an output section

unit shared (*) {
MEMORY {

m3_rwx memory : org = 0xC0004300;
}
SECTIONS ({
m3__non_cacheable wt sys shared text ("rwx") {
tracepoint_handler
tracepoints hash

}> m3_rwx_memory;

}

Make sure that you specify the RWX attributes for the output section. In addition,
note that you can use only one output section to specify the RWX attributes for a
virtual memory.

. Specify the address translation entries for the virtual memory. The listing below
shows an example.
Listing: Specifying address translation entries

address_translation (*) mapll({
m3_rwx_memory (SHARED NON CACHEABLE PROG MMU DEF REGA,
SHARED NON CACHEABLE PROG_MMU DEF REGC) "rx":M3;

m3_rwx_memory (SHARED NON CACHEABLE DATA MMU DEF_REGA,
SHARED NON CACHEABLE DATA MMU DEF REGC) "rw":M3;

}
Make sure that:

* you specify two address translation entries; one for data, and another for
program

* you specify the access attributes for each entry; one must be RW, and another
must be RX

It is the only case when you specify access attributes for address translation
entries.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 39

vy
N
ueneral linker tasks

Related Tasks

* How to Map Virtual Memory Areas to Physical Memory Address Space
* How to Create Virtual Memory for Private Sections
e How to Define Private Data Sections for Multiple Cores

Related Concepts
e Understanding SC3000 LCF syntax

2.2 General linker tasks

This chapter describes the general linker tasks.
In this section:

* How to Reserve Physical Memory Area

e How to Define Private Data Sections for Multiple Cores

* How to troubleshoot linker error messages

* How to build expressions in the SC3000 LCF

e How to Map Virtual Memory Areas to Physical Memory Address Space

* How to specify the content of virtual memory areas

* How to Share Code and Data Partially Among Different Cores

e How to Limit Code and Data Visibility at Core Level

* How to Define Unlikely Block of Code as Private Block of Code in a Multi-core
Application

e How to Run Multiple Tasks on the Same Core

* How to Make Code or Data Sections Visible to a Subset of Cores

* How to place a symbol in an another section in LCF

e How to Handle C++ Templates in Multi-core Applications

* How to Check Local Symbols Addresses

* How to use KEEP Directive

* How to reserve an MMU descriptor ID

2.2.1 How to Reserve Physical Memory Area

Follow these steps:
1. Identify following details of the memory area that you need to reserve.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

40 Freescale Semiconductor, Inc.

Chapter 2 Tasks

* Beginning address
* Size
* Type; can be shared OF private
2. Specify the identified details using the reserve, org, len, and private keywords. The
listing below shows an example.
Listing: Reserving a physical memory area

physical memory private (*) {

reserve: org = DDR start, len = DDR size;

1
Notes

 The linker does not occupy the reserved physical memory area

A reserved physical memory must overlap with a defined physical memory. Since a
reserved area does not have a name, the overlap must occur using the addresses that
the reserved and physical memory areas occupy.

Related Tasks

* How to Define Physical Memory Address Space of Target Architecture
* How to Define Physical Memory Layout for a Multi-core Application

Related References

e Linker Predefinitions

2.2.2 How to Define Private Data Sections for Multiple Cores

This task covers the following Single Instruction Multiple Data (SIMD) scenario:

 Source code is shared among the cores
* Some data is private to the cores, and is initialized differently at the compile time

Follow these steps:

1. Place the private data, which is initialized differently at the compile time, in separate
modules for each core. You must use same symbol in all modules. For example, to
store the data for two tasks running on different cores, define a private_data_c0.c
module and a private_data_c1.c module:

private data cO.c:
int my private channel info[]l={0,1,2,3,4};

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 41

g |

ueneral linker tasks

private data_cl.c:
int my private channel info[]l={10,11,12,13,14};

2. Specity the defined modules in the application configuration file. This step binds the
private data/modules to the associated cores. The listing below shows an example.
Listing: Binding private data to associated cores

section
/* private section cO0~.data for core 0 */

data = [Data0 : ".data" core="cO0", Datal : ".data" core="cl"]
end section

/* place the data section from private data cO into core's cO private
data

*/
module "private data cO" [data = DataO]

/* place the data section from private data cl into core's cl private
data

*/

module "private data cl" [data = Datal]

3. Define a private unit in the LCF to create a private virtual memory area to store the
private data. The listing below shows an example.
Listing: Defining a private unit

unit private (task0 c0, task0 cl) {
memory {

private init ("rw"): org = _VIRTUAL PRIVATE MEM DATA start;
sections{
someoutsec {
c*”.data

} > private init ;

}
4. Map the private virtual memory area to a physical memory area by using the

address_translation construct. For example:

address_translation (*)
private init (SYSTEM DATA MMU DEF REGA, SYSTEM DATA MMU DEF REGC) : DDR ,org =
_DDR_PRIVATE start;

Example

Consider the my_private_channel_info array (defined in step 1) placed at the same
address in the M2 memory for cores c0 and c1.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

42 Freescale Semiconductor, Inc.

Chapter 2 Tasks

The listing below shows an example function that manipulates the data from the
my_private_channel_info dAITAy.

Listing: Example function

int get_avg()

int accumulator=0;
for(int 1=0; i< 5 ; 1i++)
accumulator+= my private channel infol[il];

return (accumulator/5);

}

For core c0, the get_avg() function returns 2, and for core c1, the function returns 12.
Related Tasks
* How to Define Physical Memory Address Space of Target Architecture

2.2.3 How to troubleshoot linker error messages

See appendix Linker Error Messages .

2.2.4 How to build expressions in the SC3000 LCF

An expression in the StarCore linker can consists of:

* symbols, including location counter
« user defined labels and associated integer values
» combination of integers and the linker expression functions

Use the - assignment operator to:

* create symbols
* assign memory addresses

If a symbol is defined in an input file in addition to the LCF, the definition in the LCF
takes precedence. Use the gerinea linker expression function to cancel the precedence
order, and to use the definition from the input file.

The listing below shows examples of various expressions in an LCF.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 43

h o
g |

ueneral linker tasks
Listing: Linker expressions

_DataStart = 0x1000;
_CodeStart = 0x10000;

_ROMStart = 0x7£000;

_StackStart = 0x28000;

_TopOfsStack 0x7eff0;

_ SR Setting = 0xe4000c;
arch (b4860) ;

UNIT private (*){

MEMORY {

meml ("rx"): org = 0, len = DataStart;

mem2 ("rw"): org = DataStart, len = _CodeStart - _DataStart;
mem3 ("rx"): org = CodeStart, len = ROMStart - _CodeStart;
mem4 ("rw"): org = _ROMStart, len = 0x20000;

}

SECTIONS{

INTVEC ("rx") {
.intvec;

} > meml ;

TEXT ("rx")
.text;

+= 100;

.default;

} >mem3;

ROM ("r") {
.init table;
= align(16) ;
.rom_init;
.rom;
} >mem4;

}

_text start = originof (TEXT) ;

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

44 Freescale Semiconductor, Inc.

Chapter 2 Tasks

Related Tasks
e How to create a Linker Command File (LCF)

Related Concepts

* Understanding linker terminology
* Understanding SC3000 LCF syntax

Related References

* LCF Expression Functions
* LCF Expression Operators

2.2.5 How to Map Virtual Memory Areas to Physical Memory
Address Space

Once the virtual memory layout is defined, you must define the mapping of individual
virtual memory areas to the physical memory address space by using the
address_translation CONStruct.

The listing below shows an example of the address_transiation construct.

Listing: Example address_translation construct

address_translation (sys0, sysl, sys2, sys3) mapll

{

m_shared m3_x (SYSTEM PROG_MMU DEF REGA, SYSTEM PROG_MMU DEF_REGC) : M3;
m_shared m3 d (SHARED DATA MMU DEF REGA, SHARED DATA MMU DEF REGC) : M3 descriptor(l);

m_shared ddr d (SHARED DATA MMU DEF REGA, SHARED DATA MMU DEF_REGC) mapll : DDR;
}

It is mandatory to specify the list of tasks that relate to the respective virtual memory
areas. The syso, sys1, sys2, sys3 tasks in the listing above indicate the tasks.

When the virtual memory area is a shared, it will be mapped only once to the shared
physical memory. Still, an entry in the address translation table gets created for each of
the hosting cores. In the process of providing information for the MMU programming
model, the MMU attributes for each descriptor must be captured using the

SYSTEM PROG MMU DEF REGA, SYSTEM PROG MMU DEF REGC aNd SHARED DATA MMU DEF REGA,

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 45

ueneral linker tasks

suarep_paTa_mmu_per_rece Symbols respectively. X_REGA and X_REGC represent the
values used to program registers M_PSDAx / M_DSDAx and M_PSDCx / M_DSDCx
respectively.

If the physical memory address is same as the virtual memory address, the map11 keyword
can be specified either associated to each virtual memory area, or at the
address_translation level for all the enclosed virtual memory areas. In such cases, if the org
and the 1en keywords specified for the virtual memory area do not conform to the target
architecture restrictions, the linking process stops with an error message.

In you want to map a virtual memory to a certain descriptor, the dgescritpro(1p) parameter
can be used.

The listing below shows an example of the address_transiation construct that uses a wild
card.

Listing: Example address_translation construct using wildcard

address_translation (*)

{

data boot c (SYSTEM DATA MMU DEF REGA, SYSTEM DATA MMU DEF REGC): DDR,
org = _PRIVATE DATA BOOT_ start, len = DATA BOOT size;
ddr_private_text c (SYSTEM PROG_MMU DEF REGA, SYSTEM_PROG MMU DEF REGC): DDR;

ddr private data c_wb (SYSTEM DATA MMU DEF REGA, SYSTEM DATA MMU DEF REGC): after
(ddr_private text c);

}

In the listing above, the wildcard * specifies the set of all tasks that are defined in the
LCF for virtual-to-physical address translation. For the tasks that do not have associated
virtual memory, the linker stops with an LCF configuration error message.

It is recommended that the origin of physical placement is defined by the org keyword as
it reduces the search space and the linking time. You can further reduce the search space
and the linking time by specifying the exact length of the mapped region with the 1en
keyword.

Both the org and 1en keywords are optional when you specify the memory mapping, but
provide the highest flexibility in memory specification.

The listing below shows an example of the addaress_transiation construct that defines the
content required to reserve an MMU entry.

Listing: Reserving an MMU entry

address_translation (*)

{

reserve (SYSTEM DATA MMU DEF_REGA, SYSTEM DATA MMU DEF REGC) : paddr, vaddr, size, "rwx";

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

46 Freescale Semiconductor, Inc.

Chapter 2 Tasks

The reservations for the address translation table entries must be fully specified with:
* physical and virtual start addresses
* size
e attributes

Generally, the access rights are rw for data and rx for code.

In the above listing, one address translation table entry is generated on the host core of
each of the tasks in the list (specified with the wild card). The linker evaluates the
reservation parameters (€.g. paddr, _vaddr, size) in the task context.

As a result of the reservation entry specified in Listing:

* for each task, the virtual memory region [_vaddr, vaddr+size-1] is reserved
* the physical memory regions [paddr, paddr+size-1] are reserved

For such a case, it is likely that the virtual address start symbol needs to be referenced at
the C source code level for further content processing. For example:

extern unsigned long int vaddr;
unsigned long int *ptr;
ptr = &vaddr;

Related Tasks

* How to Define Physical Memory Layout for a Multi-core Application
* How to Reserve Physical Memory Area
* How to Define Private Data Sections for Multiple Cores

Related References

e Linker Predefinitions

2.2.6 How to specify the content of virtual memory areas

Use output sections to specify the content of virtual memory areas. Each output section
contains a list of input sections that are placed in the specified order in the respective
virtual memory area. In addition to input sections, the output sections can also contain
assignments and special input sections. The listing below shows an example.

Listing: Example output section

unit shared (*) {
MEMORY

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 47

ueneral linker tasks

m3_shared_ textboot_c ("rx"): AFTER (m3_shared data c_wb) ;

}

SECTIONS ({
my output_ section {
. = align (0x1000) ;
_VBAddr = .;
.intvec
.text boot

} > m3_shared textboot c;

}

The my output_section describes the content of the m3_shared textboot c Virtual memory
area. The output section contains two assignments and two input section specifications.
The use of the location counter (" .") is permitted inside the output sections.

The input section names, such as .text_boot are user-defined at the compiler level. You
can instruct the compiler to place some code or data in the specific user defined sections

by using the:

* application configuration file; the application file gives flexibility without changing
the C/C++ source files, or

¢ pragma OptiOHS, such as pragma sgm_seg_name, data_seg_name, and bss_seg_name that
redefine the default section names as they are used by the compiler, or

e _aceribute_ qualifier for specific variable/function only. For example:

__attribute ((section ("mydata"))) int data;
__attribute ((section ("mytext"))) void func () {}
Related Tasks

* How to Define Private Data Sections for Multiple Cores

Related References

e Linker Predefinitions

2.2.7 How to Share Code and Data Partially Among Different
Cores

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

48 Freescale Semiconductor, Inc.

Chapter 2 Tasks

Follow the steps described in this task when you need to partially share the code or the
data among different cores. For example, lets assume that you need to share some data in
the M3 memory between core 0 and core 3, and at the same time you need to share some
other data in the M3 memory among cores 1, 2, 4 and core 5. In addition, lets assume that
you are using the default tasks. Note that specifying a list of all tasks that run on two or
more cores implies that the unit is shared by the respective two or more cores.

NOTE

In the StarCore linker, core numbering starts with 0.

NOTE
If an application has a shared code between core 0 and 3, then,
for the application to build successfully, the shared sections
must be excluded from private tasks and other shared tasks of
cores 2, 1,4, and 5.

A few more points that complete the example scenario cited above:

* The data that core 0 and core 3 share is placed in the M3 memory in array_coc3

» Another segment of data that core 1, core 2, core 4 and core 5 share is placed in the
M3 memory n array clc2c4cs

* A private function, foo (), that is partially shared by core 0 and core 3, and another
private function, foo (), that is partially shared by core 1, core 2, core 4 and core 5

* A single main function shared by all cores

The steps to implement the example scenario are:
a. Split the data and code into separate files

This step is required because the compiler application configuration file and the
LCF deal with the linker sections differently. Table 2-2 lists more details.

Table 2-2. List of Files That Store Partially Shared Data

and Code
File Name Code Listing Description
shared c0Oc3.c Listing: Contents of Definition of
shared_c0c3.c array_ cOc3
shared_clc2c4c5.c Listing: Contents of Definition of
shared_c1c2c4ch.c array clc2c4cs
shared text c0c3.c Listing: Contents of Implementation of foo
shared_text_c0c3.c function for core 0 and
core 3
shared text clc2c4 Listing: Contents of Implementation of foo
c5.c shared_text_c1c2c4c5.c function for core 1, core
2, core 4 and core 5

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 49

g |

ueneral linker tasks
Listing: Contents of shared_c0c3.c

//
int array c0c3[]={10,20,30,40,50,60,70,80,90,100};

//

Listing: Contents of shared_c1c2c4c5.c

//
int
array_clc2c4c5[]:{1000,2000,3000,4000,5000,6000,7000,8000,9000,10000};

//

Listing: Contents of shared_text_c0c3.c

extern int array cO0c3[];
int foo()

{
if (array c0c3[0] || array c0c3[1])
return (array cOc3[0]+array cO0c3[1]);

return O;

Listing: Contents of shared_text_c1c2c4cS.c

extern int array clc2c4c5[];
int fool()

{

if (array clc2c4c5[0] || array clc2c4c5[1])
return (array_clc2c4c5[0]+array clc2c4c5[1]);

return 0O;
}
b. Modify the application configuration file

Each file listed in Table 2-2 must be described in the application configuration
file in order to define the section name mappings as the listing below shows.

Listing: Modified application configuration file

program = [
M3 shared prog c0c3 : ".m3 shared text c0c3",
M3 shared prog clc2c4c5 : ".m3 shared text clc2c4c5",

DDR__cacheable sys private text clc2c4ch :
".ddr private clc2c4c5",

DDR__cacheable sys private text cOc3: ".ddr private cO0c3"

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

50 Freescale Semiconductor, Inc.

g |

Chapter 2 Tasks
1

data = [

M3 shared data_cOc3 : ".m3_shared data cO_c3",

M3 shared data clc2c4c5 : ".m3 shared data cl c2 c4 c5"
]
rom = [

M3_shared rom cOc3 : ".m3_shared rom cO_c3",

M3 shared rom clc2c4c5 : ".m3 shared rom cl c2 c4 c5"
]
bss = [

M3_shared bss cOc3 : ".m3_shared bss c0_c3",

M3 shared bss clc2c4c5 : ".m3 shared bss cl c2 c4 c5"

module "shared c0c3" [

data = M3_shared data cOc3

rom = M3 shared rom c0c3
bss = M3 shared bss c0c3
program = M3 shared prog c0c3

]
module "shared clc2c4c5" [

data = M3_shared data clc2c4c5

rom = M3 shared rom clc2c4c5
bss = M3 shared bss clc2c4c5
program = M3 shared prog clc2c4c5

]
module "shared text cOc3" [
program = DDR_cacheable sys private text cOc3
1
module "shared text clc2c4c5" [
program = DDR__cacheable sys private text clc2c4cs
]
c. Append the shared data or code definition in the LCF

1. Append the definition of data shared by core 0 and core 3 as the listing
below shows

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 51

g |

ueneral linker tasks
Listing: Adding the definition of data shared by core 0 and core 3

unit shared(task0 c0, task0 c3) {
RENAME "*shared clc2c4c5.eln","*", K "cl™.excluded"

MEMORY {
m3_shared c0 c¢3 ("rw") : org = M3 SHARED start+0x200;
m3_shared text c0c3 ("rx") : AFTER(m3_shared c0_c3);

}

SECTIONS ({

m3_part shared os 03 ({
.m3_shared data cO_c3
.m3_shared rom c0 c3
.m3_shared bss c0_c3

} > m3_shared c0_c3;

m3_part_shared text {
.m3_shared text cO0c3

} > m3_shared text c0c3;

}

address_translation(task0 c0, task0 c3) {

m3_shared c0 c3 (SHARED DATA MMU DEF REGA,
SHARED DATA MMU DEF_REGC) :M3;

m3_shared_text cOc3 (SYSTEM PROG_MMU_DEF_REGA,
SYSTEM PROG_MMU DEF REGC) :M3;

}

NOTE
Using the renave directive is mandatory because
same function name, oo, 1s used for the two shared
spaces. The excrupe directive can not be used as it
excludes the foo name itself, and generates a
linking error.

2. Append the definition of data shared by core 1, core 2, core 4 and core 5 as
the listing below shows
Listing: Adding the definition of data shared by core 1, core 2, core 4
and core 5

unit shared (taskO cl, task0 c2, task0 c4, task0 c5) {
RENAME "*shared cOc3.eln","*","cO0" .excluded"

MEMORY {

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

52 Freescale Semiconductor, Inc.

g |

Chapter 2 Tasks
m3 shared cl c2 c4 c5 ("rw") : org = M3 SHARED start+0x400;
m3_shared text clc2c4c5 ("rx") : AFTER(m3 shared cl c2 c4 c5);

SECTIONS {

m3_part shared os 1245 {
.m3_shared data cl c2 c4 c5
.m3_shared rom cl c2 c4 c5
.m3_shared bss cl c2 c4 c5
} > m3 shared cl c2 c4 c5;
m3 part shared text 1245
.m3_shared_text clc2c4c5

} > m3_shared text clc2c4cs;

}
}

address_translation(task0 cl, task0 c2, task0 c4, task0 c5) {

m3_shared cl c2 c4 c5 (SHARED DATA MMU DEF REGA,
SHARED DATA MMU DEF_REGC) :M3;

m3_shared text clc2c4c5 (SYSTEM PROG MMU DEF REGA,
SYSTEM PROG_MMU DEF REGC) :M3;

}

3. Make sure that the section .derau1t 1s defined private in the LCF. The listing
below shows an example.
Listing: Example of private .default section

unit private (*){
MEMORY {

ddr private text c ("rx"): org = VIRTUAL DDR_PRIVATE text start;
}
SECTIONS ({
descriptor ddr cacheable sys private text ({
.ddr cacheable sys private text
.default

} > ddr private text c;

}
}

address_translation (*) {

ddr_private_ text_c (SYSTEM_PROG_MMU_ DEF_REGA,
SYSTEM PROG_MMU DEF REGC): DDR, org =

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 53

ueneral linker tasks

_DDR_PRIVATE start;

}

NOTE
The .aefauit section is created for each file and
contains references to data or code defined in the
file. Because of partial sharing, and in order to
avoid exclusions, the .gefauit section must be
private.

Related Tasks

* How to Define Private Data Sections for Multiple Cores
e How to Limit Code and Data Visibility at Core Level

Related References

e Linker Predefinitions

2.2.8 How to Limit Code and Data Visibility at Core Level

Follow the steps described in this task when you need to limit the visibility of the code
and/or data sections to specific set of cores. For example, lets assume that for a symbol,
you need one definition on core 0, 1 and 2, and another definition on core 3, 4 and 5.

Follow these steps to implement the example scenario:
1. Create two source files

This step is required because the compiler application configuration file and the LCF
deal with the linker sections differently. Table 2-3 lists more details.

Table 2-3. List of Files That Store Data Visible to Specific Set of

Cores
File Name Code Listing Description
shared_cOclc2.c Listing: Contents of Data visible to cores ¢c0, c1 and
shared_cOc1c2.c c2
shared_c3c4c5.c Listing: Contents of Data visible to cores ¢3, ¢4 and
shared_c3c4c5.c c5

Listing: Contents of shared_c0Oclc2.c

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

54 Freescale Semiconductor, Inc.

g |

//

extern char buffer[]= "shared cO0,cl,c2";

//

Listing: Contents of shared_c3c4cS.c

//

extern char buffer[]= "shared c3,c4,c5";

//

2. Modity the application configuration file

Chapter 2 Tasks

Each file listed in Table 2-3 must be described in the application configuration file in

order to define the section name and visibility as the below listing shows.

Listing: Modified application configuration file

section
program = [

shared text cOclc2 :

shared text c3c4c5 :

]

data = [

shared data cOclc2 :

shared data c3c4c5 :

1
rom = [

shared rom cOclc2

shared_rom c3c4c5 :

1
bss = [

shared bss cOclc2

shared bss c3c4c5 :

1
end section

module "shared cOclc2" [

.text" core

.text" core

.data" core

.data" core

.rom"

.rom"

.bss"

.bss"

program = shared text cOclc2

data = shared data cOclc2

rom = shared rom_ cOclc2

bss = shared bss cOclc2

]

module "shared c3c4c5" [

core =

core =

core =

core =

= "cO0 ¢l c2",

"c3Tc4 5"

= "cO0 cl c2",

"c3Tc4 5"

"c0~clte2",

"c3Tc4 5"

"cO0~clTe2",

"c3Tc4 5"

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

55

g |

ueneral linker tasks

program = shared text c3c4ch
data = shared data c3c4c5
rom = shared rom c3c4c5

bss

shared bss c3c4ch

]

You can obtain the same result by using pragmas or attribute directly in source files.
See Listing: Contents of shared_cOclc2.c using attributes and Listing: Contents of
shared_c3c4c5.c using pragmas.

Listing: Contents of shared_c0Oclc2.c using attributes

//

__attribute ((section("c0 cl c2”.data"))) extern char buffer([]=
"shared cO,cl,c2";

//

Listing: Contents of shared_c3c4c5.c using pragmas

//

#pragma data seg name "cO0 cl c2” .data"
extern char buffer[]= "shared cO,cl,c2";
//

. Append the shared data or code definition in the LCF as the listing below shows
Listing: Definition of shared data or code in the LCF

/**
* Shared cO0,cl,c2

*/

unit shared (taskO_cO0,task0 cl, task0 c2) {

MEMORY {
mem_shared data cOclc2 ("rw"): org = VIRT SHARED cores_ start;
mem_shared text cOclc2 ("rx"): AFTER(mem shared data cOclc2);
}
SECTIONS ({

descriptor shared data cOclc2 {
"cO“cl c2” .data"
"c0“cl c2™ .rom"
"cO0“cl c2” .bss"

} > mem shared data cOclc2;

descriptor shared text cOclc2 {
"cO0 clTc2T . text"

} > mem shared text cOclc2;

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

g |

4
Chapter 2 Tasks

}

address_translation (task0 cO,task0 cl, task0 c2)({
mem shared data cOclc2(SYSTEM DATA MMU DEF REGA, SYSTEM DATA MMU DEF REGC): M3;
mem_shared text cOclc2 (SYSTEM PROG MMU DEF REGA, SYSTEM PROG MMU DEF REGC): M3;
}
/ * %

* Shared c¢3,c4,c5

*/
unit shared (taskO_c3,task0 c4, task0 _c5) {
MEMORY {
mem_shared data c3c4c5 ("rw"): org = VIRT SHARED cores_ start;
mem_shared text c3c4c5 ("rx"): AFTER(mem shared data c3c4c5);
}
SECTIONS ({

descriptor shared data c3c4c5 {
"c3 c4 c5” .data"
"c37c4 c5T . rom"
"c37c4 c5 .bss"
} > mem shared data c3c4cs;
descriptor shared text c3c4c5 {
"c37c4 ch5T . text"

} > mem shared text c3c4c5;

}

address_translation (task0_c3,task0_c4, task0_c5){
mem_shared data_c3c4c5 (SYSTEM DATA MMU DEF REGA, SYSTEM DATA MMU DEF REGC): M3;

mem shared text c3c4c5(SYSTEM PROG_MMU DEF REGA, SYSTEM PROG MMU DEF_REGC) : M3;

}
Related Tasks

* How to Define Private Data Sections for Multiple Cores
* How to Share Code and Data Partially Among Different Cores

Related References

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 57

ueneral linker tasks

e Linker Predefinitions

2.2.9 How to Define Unlikely Block of Code as Private Block of
Code in a Multi-core Application

When you specify the un1ike1y keyword for a block of code in your application, the
compiler moves that block of code to the .un1ixe1y section in the LCF.

In a multi-core application, however, specifying the uniike1y keyword for private block of
code on multiple cores leads to linking errors because, by default, un1ike1y blocks of code
are not considered as private blocks of code.

In order to avoid such linking errors, follow these steps to explicitly define un1ike1y
blocks of code as private blocks of code in a multi-core application.

2.2.9.1 Scenario 1: True Private Code Model

1. Rename the relevant .un1ike1y section to make it specific to each of the cores either
by using core-="co" in the application configuration file, or by using the renauz
directive in the LCF.

For example, for co private functions defined in the module comzfunction.c, use the
following linker directive:

RENAME "*COM2function.eln", ".unlikely", "cO0~.unlikely COM2function"
2. Place the renamed section under output section definition that belongs to the private

memory areas specific to the hosting core. For example, under the unit er1vaTe
(task0_co) construct.

2.2.9.2 Scenario 2: Code Partially Shared Among Different Cores

If a subset of cores share the code, or the code is partially shared among different cores
(function code is shared only between core 0 and core 1), then rename the uniike1ly section
on the non-sharing cores set.

The section so renamed becomes hidden for the non-sharing cores set.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

58 Freescale Semiconductor, Inc.

Chapter 2 Tasks

For example, lets consider a scenario where partial code is shared between core co and
core c1, and the functions are defined in module coci_pprfunction.c. You use the following
linker directive for renaming the .un1ikely section on the non-sharing cores set:

UNIT PRIVATE (taskO_c2, taskO0_c3, task0_c4, task0 _c5){

RENAME "*C0Cl DDRfunction.eln", ".unlikely", "cO .remove"

}
Related Tasks

* How to Define Private Data Sections for Multiple Cores
* How to Share Code and Data Partially Among Different Cores

Related References

¢ Linker Predefinitions

2.2.10 How to Run Multiple Tasks on the Same Core

Follow the steps given below in order to run multiple tasks on the same core.

1. Specify only user-defined tasks. For example, the listing below shows two tasks,
task1 and taskz2, both running on core co.
Listing: Specifying only user-defined tasks

TASKS {

// core name : task name task_id prog id data_id
cO : taskl, 1, 1, 1;
c0 : task2, 3, 3, 3;

}
2. Make sure that the tasks sharing the same core must also share the .att_mmu section.

The listing below shows an example.
Listing: Multiple tasks sharing the .att_mmu section

unit shared(*) {
MEMORY {

local data_descriptor ("rw"): org = _VirtLocalDataDDR _b;
}
SECTIONS ({

descriptor local data

LNK_SECTION(att mmu, "rw", 0x200, 4, ".att mmu");

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 59

g |

ueneral linker tasks
} > local data_descriptor;
}
address_translation (*) {
local data descriptor (SYSTEM DATA MMU DEF REGA, SYSTEM DATA MMU DEF_REGC) :LOCAL DDR,

org =
_PhysLocalDataDDR_b;

}
3. Place the task-specific private data/code, if any, under task-specific units.

NOTE
It is not supported to have private units that refer to
multiple tasks running on the same core.

The listing below shows an example where the linker does not duplicate the task-specific
private code/data sections because the tasks are hosted on the same core.

Listing: Incorrect approach to specify task-specific private code/data

// bt
////////// Incorrect approach to have private code in two tasks

////////// running on the same core

// 1
unit private(*) {
MEMORY
Task pgm ("rx"): org = 0x20000000;
Swi data ("rw"): org = 0x20000000;
}
SECTIONS {

task pgm output section {
.task pgm

} > Task_pgm;

swi_data output section {
.swi data

} > sSwi data;

}
The listing below shows the right approach.

Listing: Correct approach to specify task-specific private code/data

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

60 Freescale Semiconductor, Inc.

h o
g |

unit private (taskl) {
MEMORY {

Taskl pgm ("rx"):

Swil data ("rw"):

}

SECTIONS ({

org

org

0x20000000;

0x20000000;

taskl pgm output section {

.taskl pgm

} > Taskl pgm;

swil data_output_ section ({

.swil data

} > swil data;

}

unit private (task2) ({

MEMORY

Task2 pgm ("rx"):

Swi2 data ("rw"):

}

SECTIONS ({

org

org

0x20000000;

0x20000000;

task2 pgm output section

.task2 pgm

} > Task2 pgm;

swi2 data output section

.swi2 data

} > swi2 data;

address_translation (taskl) ({

Taskl pgm (SYSTEM PROG_MMU DEF REGA, SYSTEM PROG MMU DEF_REGC): LOCAL M2;

Swil data (SYSTEM DATA MMU DEF_REGA, SYSTEM DATA MMU DEF_REGC): LOCAIL, M2;

}

address_translation (task2) ({

Chapter 2 Tasks

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

61

ueneral linker tasks

Task2 pgm (SYSTEM_ PROG_MMU DEF REGA, SYSTEM PROG_MMU DEF_REGC): LOCAIL, M2;

Swi2 data (SYSTEM DATA MMU DEF_REGA, SYSTEM DATA MMU DEF_REGC): LOCAL M2;

2.2.11 How to Make Code or Data Sections Visible to a Subset of
Cores

In order to make specific code or data sections visible to a subset of cores, it is
recommended that you use the rename directive, and follow the naming convention to
restrict the section visibility per core.

For example, sections with name prefixed by <o are visible only to core 0, sections with
name prefixed by c1- are visible only to core 1, and so on.

If you need to make a compiler generated data section, for example, the .4ata section,
visible only to core <4, then specify the following command in the LCF file. Note that this
setting is applicable at the global level.

rename "*testfile.eln", ".data", "c4 .local data";

In order to set the visibility to a subset of cores, for example, core <2, core c4, and core cs,
you must rename the section for exclusion in the cores that do not need that section. For
example:

unit private (task0 _cO, task0 cl, task0 c3) {

rename "*testfile.eln", ".data", "c2 .exclude";

}

However, note that the same section is placed with its original name in the cores where it
1s visible.

Related Tasks

* How to Define Private Data Sections for Multiple Cores
e How to Share Code and Data Partially Among Different Cores

Related References

e Linker Predefinitions

2.2.12 How to place a symbol in an another section in LCF

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

62 Freescale Semiconductor, Inc.

wr
4\

4
Chapter 2 Tasks

Follow these steps:

1. Make sure that you build your application or library with the -x11t --one_symb_per sect
option. Note that -x11¢ in the preceding command represents compiler's low-level
optimizer.

2. Place a symeor, command in the appropriate unit using following syntax. Table 2-4
provides description of the syntax.
<descName> {

SYMBOL "<moduleName>" ("<sectionName>") ("<symbolName>")
} > <outputSections>
Table 2-4. Syntax
description
Option Description

<descName> Name of the descriptor where you want to allocate
the <outputSection> section

<outputSections> Name of the section where you want to place the
object

<moduleName> Name of the module where the symbol is defined.
Specify the full path to the . eln file name. Note that
you can use wildcard characters if you want to.

<sectionName> Name of the section where the object is allocated in
the <moduleName> file

<symbolname> Name of the symbol you want to allocate in the
<outputSection> section. Specify the mangled
name.

Example

The listing below shows an example of how a function, say myrunc that is implemented in
the myrile.c module and placed in the .text section, is allocated in the mysection section in
shared DDR memory. The code in the listing below, belongs to the LCF, the .1sx file.

Listing: Example - How to place a function in another section in the LCF

unit shared (*) {

MEMORY {
ddr shared data nc_wt ("rw"): org = DDR SHARED start;
ddr shared data c wb ("rw"): AFTER(ddr shared data nc wt);
ddr shared text ¢ ("rx"): AFTER(ddr shared data c wb) ;
mySection ("rx"): AFTER(ddr_shared text c);

}

SECTIONS ({

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 63

g |

ueneral linker tasks

mySectionDesc{
SYMBOL "*myFile.eln" (".text") (" myFunc")

} smySection

}

address_translation (*) mapll{

mySection (SYSTEM PROG MMU DEF REGA, SYSTEM PROG MMU DEF_REGC) :DDR;
1
Related Tasks

* How to specify the content of virtual memory areas
* How to Make Code or Data Sections Visible to a Subset of Cores

Related References

¢ Linker Predefinitions

2.2.13 How to Handle C++ Templates in Multi-core Applications

This task explains how to workaround the problems that might occur when compiling and
linking the multi-core applications that contain the C++ templates.

When you use C++ templates in a multi-core application, the StarCore compiler
generates specific functions in each of the modules/source code files where the template
is used.

Consider the following C++ template in a header file:

template <class T> class mycontainer (
T element;
public:
mycontainer (T arg) {element=arg;}

T increase () {return ++element;}
i

Further, consider that two source code files, rile1.cpp and filez.cpp, define objects for this
class as:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

64 Freescale Semiconductor, Inc.

Chapter 2 Tasks

mycontainer<int> myint (7);

NOW, the ObjCCt files for filel.cpp and file2 .cpp will have the ___ZNllmycontainerIiEC1Ei
constructor function. Note that the _ zniimycontainertirciei function is actually a C++
mangled name fOI' mycontainer<ints>::mycontainer (int).

The symbols, such as _ zniimycontainertieciri, are attributed by compiler as being
murrper, Which means that the linker does not exit with an error message about multiple
definitions of same symbol. Instead, the linker picks one of the symbol definitions and
continue the processing.

However, the linker might not select an appropriate symbol when linking a multi-core
application because of various types of symbol sharing, such as, private, fully shared,
partially shared etc.

For example, consider that:

* there are references to template instance code from private space of each core
* there are references to template instance code from shared space of all cores (for
example, from library code, which is generally shared)

In this case, the current StarCore linker tries to resolve the references by keeping the
definitions in private space. If the definitions are not placed at the same virtual address,
the references from shared space are not correctly resolved and the linker exits with the
following error message:

[LNK,2,6999,-1]1: Error (E2005): in core c0: Symbol resolution: found
inconsistent address for symbol ' ZNllmycontainerIiECI1Ei' which is
defined in section 'cl®.text entry'.

As a workaround, place the full library or at least the modules using the C++ templates in
each private space.

Related Tasks

* How to Define the Shared Memory
* How to troubleshoot linker error messages

Related References

e Linker Predefinitions

2.2.14 How to Check Local Symbols Addresses

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 65

ueneral linker tasks

Linker can check if the private local symbols accessed from the shared space have same
address on all cores. In order for the linker to check local symbol address, use the --check-
locals SWitch.

NOTE

Local symbols checking is time consuming and is not enabled
by default.

If the linker finds private local symbols that are accessed from the shared space and have
different addresses on different cores, the linker throws an error message and terminates
the process.

2.2.15 How to use KEEP Directive

The KEEP directive is used to prevent from stripping the selected symbols, a section or
the entire contents of an object file.
1. The syntax for using the KEEP directive to avoid stripping a selected symbol is as
follows:

KEEP (SYMBOL “object file name pattern” (section name) (symbol name)) ;

Example

To avoid stripping of the unused foo function defined in the file my xeep file.c part of
the .text section, use the following construct:

unit shared (*)
KEEP (SYMBOL “*my keep file.eln” (.text) (_foo));

2. The syntax for using the KEEP directive to avoid stripping the symbols from a
section 1s as follows:

KEEP (“object file name pattern” (section name)) ;

In this case all symbols containing in the section section_name are prevented from
stripping.

3. The syntax for using the KEEP directive to avoid stripping the symbols from an
entire object file is as follows:

KEEP (“object file name pattern”) ;

In this case all symbols defined in the cbject_file name regardless of the containing
section are prevented from stripping.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

66 Freescale Semiconductor, Inc.

g |

4
Chapter 2 Tasks

2.2.16 How to reserve an MMU descriptor ID

In order to reserve a certain descriptor ID, the following directive can be used:

reserve descriptor id(TYPE, 1ID);

The directive has the following two parameters:
* TYPE: represents the type of the descriptor, with two possible values: “data” or “code’;

* ID: the id of the descriptor to be reserved. The ID can be then used in the application
code.

The directive can be used at UNIT level. For example,

unit shared(*)

{

reserve descriptor id("data", 1);

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 67

}{ |

ueneral linker tasks

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

68 Freescale Semiconductor, Inc.

g |

Chapter 3
Concepts

This chapter consists of linker concepts that you might need to comprehend to
accomplish linker tasks.

In this chapter:

 Linker configuration concepts
* General linker concepts

3.1 Linker configuration concepts

This chapter describes the linker configuration concepts.
In this section:

e Understanding linker terminology

* Understanding SC3000 LCF syntax
* Understanding Cache Optimization in SC3000 Linker
e Understanding Flexible Startup Configuration

3.1.1 Understanding linker terminology

Table 3-1 describes the linker terminology.
Table 3-1. Linker terminology

Term Meaning

Core A core is a hardware processing unit. The linker defines code,
data, sections etc. for the core.

Table continues on the next page...

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 69

A
4

4
A

Linker configuration concepts

Table 3-1. Linker terminology (continued)

Term

Meaning

Task

A task is a static software unit. Each task has a unique ID that
the OS and/or the hardware recognize. One or more tasks
can be mapped to a single core.

Input Section

An input section is a fragment of a user or data code in object
files.

Output Section

An output section is a collection of input sections. The output
section is a part of the final executable file.

Unit

A unit is an LCF language construct that is used to enclose
memory and section definitions for an explicit or implicit set of
tasks.

Private Virtual Memory

Private virtual memory is a memory area that is accessible to
a single task.

Private Physical Memory

Private physical memory is a memory area that is accessible
to a single core.

Shared Virtual Memory

Shared virtual memory is a memory area that is accessible by
a set of tasks.

Shared Physical Memory

Shared physical memory is a memory area that is accessible
to a set of cores.

Address Translation

Address translation specifies the mapping from a virtual
memory range to the physical address or a physical memory
range.

Related Concepts

e Understanding SC3000 LCF syntax

Related References

* LCF Expression Functions
* LCF Expression Operators

3.1.2 Understanding SC3000 LCF syntax

This section helps you understand SC3000 LCF syntax.

3.1.2.1 Using naming conventions

* Non-terminal entity is represented in lower-case
e Terminal entity is represented in UPPER-CASE
* String enclosed in quotes is interpreted as is

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015

70

Freescale Semiconductor, Inc.

Chapter 3 Concepts

3.1.2.2 Specifying integers

The SC3000 parser supports following types of integers:

* an octal integer, which is a zero followed by zero or more octal digits. An octal
integer uses one or more of these digits: 0,1,2,3,4,5,6,7.

* a decimal integer, which starts with a non-zero digit followed by zero or more digits.
A decimal integer uses one or more of these digits: 0,1,2,3,4,5,6,7,8.9.

* a hexadecimal integer, which starts with a '0x' or '0X' followed by one ore more
hexadecimal digits. A hexadecimal integer uses one or more of these digits:
0,1,2,3,4,5,6,7,8,9,A,.B,C,.D,E,F.

3.1.2.3 Specifying symbol nhames

Symbol names in SC3000 LCF can be:

* defined without quotes - use when the symbol name does not conflict with any linker
keyword. A symbol name defined without double quotes must start with:
* aletter
* an underscore
* a point
* defined with double quotes ("") - use when the symbol name matches one of the
linker keywords. A symbol name defined with double quotes can include odd
characters.

nn

A symbol name can include any letters, underscores, digits and points.

3.1.2.4 Specifying global directives

At the global level, you specify only global settings, self-contained directives, and top
level containers, such as:

arch

unit

physical memory
address_translation

® task definition

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 71

g |

Linker configuration concepts

statement_anywhere

input statement

® self contained directive
rename

exclude

3.1.2.5 Specifying target architecture

A predefined variable, number_of_cores, specifies the number of cores available during the
linking operation. Cores are referred by predefined names, such as co, c1, <2, etc.

NOTE
You cannot change the predefined core names.

You specify the target architecture using the arcn directive. For example:
arch = ARCH ' (' arch name ')';
arch name = STRING;
end = ';' | ', ';

The arch_name parameter accepts these values:

* B4860

3.1.2.6 Defining tasks

Tasks are defined for each core.

NOTE

If you do not define a task explicitly, a core runs one task by
default.

The syntax for defining a task is:

task_definition = TASKS '{'

(core name ':' task name ',' task id ',
prog id ',' data id ';')*
A
where,

® core name 1sa STRING, and can be co, c1, c2 etC.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

72 Freescale Semiconductor, Inc.

Chapter 3 Concepts

® task_name 1S a STRING
® task id 1S an INTEGER
® prog id 1S an INTEGER
® data id 1S an INTEGER

3.1.2.7 Defining virtual memory and output sections

The unit directive defines the virtual memory and the output sections for a task or a list of
tasks. The syntax for defining a unit directive is:

unit = UNIT (PRIVATE | SHARED) task list
1 { 1
unit_statements;
1 } '
The rrrvare attribute specifies private content for multiple tasks. The output sections or
the virtual memory blocks that the unit directive defines, are private to these tasks.

The suarep attribute specifies a shared memory or an output configuration for multiple
tasks. The symbols defined are shared among tasks.

You specify a task in the task list using:

* itS name, or
* using a task name pattern

The listing below shows the syntax for specifying a task in the task list.
Listing: Specifying a Task in the Task List

task_list = '(' task_list b ')';

task list b = task sp [',' task list b];
| task_name

|pattern

In addition to the virtual memory blocks and the output sections, a unit directive also
includes assignments and statements, such as entry, assert, keep, rename, and exciude. The
listing below shows the syntax.

Listing: The unit directive syntax

unit statements = (unit statement) *
unit statement = sectiomns

|memory specifications

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 73

3
4

4
A

Linker configuration concepts

|assignment ' ;'
|entry ';!
|assert ';!
|keep ;!
| rename end
| exclude
|init table section
assignment = NAME '=' exp
| LOCATION COUNTER '=' exp
|NAME assign op exp
| LOCATION COUNTER assign op exp
assign op = '+=' | '*='| '/='|'-=";
init table section: INIT TABLE SECTION section_pattern

(',' section pattern)*

3.1.2.8 Configuring the virtual memory

You configure the memory with virtual memory blocks. For embedded systems, the

linker generates several non-consecutive virtual memory blocks. The blocks are non-
consecutives because there are multiple physical memory peripherals, and the linker
generates physical to virtual mapping schemes, such as 1:1 mapping.

You configure the memory using the uevory function. The listing below shows the syntax.

Listing: Configuring the memory using the MEMORY function

MEMORY '{' mem_specs '}';

7

memory specifications
mem_specs = (mem_spec)

* 1l

mem_spec = memory name
[RESERVE]
[attributes]
[page]
['":'" org and len]

[:1

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

74 Freescale Semiconductor, Inc.

g |

Chapter 3 Concepts

memory name = STRING;

org and len = org | len | (org, len);
org = ORG '=' exp
|AFTER ' (' memory ')';
len = LEN '=' exp;
attributes = '(' STRING ')';

page = DATA | PROGRAM;
entry = ENTRY ' (' symbol name ')';
symbol name = STRING;
keep = KEEP ' (' input_section spec_no keep ')';
assert = ASSERT '(' exp ',' message string ')';
message string = STRING;
NOTE
If you do not specify the 1en parameter, the linker calculates the
virtual memory size by default. If the size that the linker

calculates is larger than what the 1en parameter specifies, a fatal
link error occurs.

The reserve qualifier specifies that the virtual memory block is reserved for the dynamic
sections.

You can optionally specify attributes, which can be used for automatic memory layout
and verification. You may also specify attributes that are not built-in in the hardware.

Table 3-2 lists the currently supported attributes.
Table 3-2. Memory attributes

Attribute Description
'R! Read-only
"W Read/Write
X! Sections that contain executable code
A’ Allocated
"I Initialized
r Inverts the meaning of the corresponding attribute

3.1.2.9 Creating an output section

To create an output section, you use the linker directives to specify:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 75

Linker configuration concepts

* the memory (and file) layout of the output section

* how an input section is placed in the output section

* how to interpret the symbols related to the section placement
» other definitions, such as ENTRY

The listing below shows the syntax for creating an output section.

Listing: Creating an output section

sections: SECTIONS '{' sec_or group pl '}';

sec_or_group pl = sec_or group pl section
|sec_or group pl statement anywhere;

section: STRING | 'NONAME'

[g_accessibilityl]

[g_attribute]

[g align]

l{l

statement list opt

"}' 's' memory name ';'

[£i11l opt];
g accessibility = '(' ['r' | 'w' | 'x'" 1 ')
g_attribute = ATTRIBUTE '(' '+' 'z' '")';
fill opt = FILL ' (' STRING ')';

* The g accessibility parameter specifies the accessibility of the output section. The
accessibility defines the default placement of:
* the corresponding input sections
* the output section in the memory
* The statement_list_opt parameter contains a list of statements. A statement can be an
assignment, an assertion, or generally an input_section_spec. The input_section_spec
parameter is a wildcard to match the input sections.
e The ri11_opt parameter specifies the fill pattern for the output section.

The listing below shows the syntax for creating an output section.

Listing: Statement Definition

statement list opt = (statement)*;
statement = assignment ';'
|assert ';!

| special sections [end]
| input_section spec

| lnk_section_ spec
|unmatch spec [end]
|LEN ' (' exp ')'

|FILL ' (' STRING ')'

pattern = STRING;
input section spec:
input section spec no_ keep

|KEEP ' (' input_ section spec no keep ')'

input section spec no keep = file or sec name [section name] [ATTR attributes] [end]
| SYMBOL file name [section name] symbol [end]

file or_ sec_name = STRING | '*';

section name = ' ('symbol name ')';

symbol = '(' symbol name ')';

Ink section spec =

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

76 Freescale Semiconductor, Inc.

Chapter 3 Concepts

LNK_SECTION ' ('

sec_type ',

flags ',

length ',

alignment

[',' name]

unmatch spec: UNMATCH PGM ' (' pattern ')'

| UNMATCH DATA ' (' pattern ')’
| UNMATCH BSS ' (' pattern ')'
| UNMATCH ROM ' (' pattern ')';

")

* The 1engcn parameter fills the raw material, such as, BYTE(0X33).

* The input_section_spec parameter places the input sections. The parameter consists of
a number of wildcard specifications to match input contents by the file, section, and
symbol name. You can specify the filename as * to includes all the files. When you
do not use the wildcards to specify the input section name, the linker places the
section per section's attributes.

* The file or_sec_name parameter indicates:

* a file name, if section name also exists, e.g. "my_file (.text)" indicates all sections
named ".text" from a file named ny file

* a section name, if nO section_name €Xists, €.g. ".data" indicates all sections named
".data" from all input modules

e The LNK_SECTION parameter defines the bss, heap, stack, and att_mmu sections.

* The unmatch_spec parameter lets you include the unmatched sections in an output
section by using one of the following values:

® UNMATCH_PGM

Includes all the program sections that are not defined in any other directive, and
which match the specified pattern

® UNMATCH_DATA

Includes all the data sections that are not defined in any other directive, and
which match the specified pattern

® UNMATCH_BSS

Includes all the uninitialized data sections that are not defined in any other
directive, and which match the specified pattern

® UNMATCH_ROM

Includes all the read-only data sections that are not defined in any other
directive, and which match the specified pattern

3.1.2.10 Configuring the Physical Memory

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 77

Linker configuration concepts
You define the physical memory as:
* private to a core, or

* symmetric to several cores, or
e shared with other cores

You may also define some reserved area in the physical memory. The listing below
shows the syntax for configuring physical memory.
Listing: Configuring Physical Memory

physical memory = PHYSICAL MEMORY
(private [core list]

| shared [core listl])

l{l

(NAME ':' [attributes] d org and len ';' |
RESERVE ':' d_org and len ';')*
|}|
core list = '(' core name (',' core name)* ')';
d_org and len = ORG '=' exp ',' LEN '=' exp;

The core name parameter is obtained by prefixing the core id with the letter 'c'. Therefore,
the valid values are co, c1, c2, etc. The linker also supports wildcards for specifying the
core names.

3.1.2.11 Specifying Address Translation Construct

The address_transiation construct is an array of address translation entries. Every entry
specifies how a virtual memory block is mapped to a physical memory fragment.

The listing below shows the syntax for creating an address translation entry.

Listing: The address_translation Directive Syntax

address_translation = ADDRESS TRANSLATION task list [MAP11]

|{|
(address_translation entries | reserve entries)*
|}|.
’

address_translation_entry = VIRTUAL_ MEMORY NAME [mmu_attributes]
[MAP11] physical memory range [descriptor(ID)]';';

mmu_attributes = ' (' STRING, STRING ')';

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

78 Freescale Semiconductor, Inc.

Chapter 3 Concepts

reserve_entry = RESERVE mmu_attributes ':' physical_ address_exp
', 'virtual address exp ',' size exp, flags([descriptor(ID)];

physical memory range = NOTHING |

':' PHYSICAL_MEMORY NAME [',' org and len];

In the above listing, flags is a set of memory attributes such as rw, rx.

3.1.2.12 Linking self-contained libraries

If you enable the self-contained library linking, you cannot use any other directives
except a few, which are related to the self contained library linking.

The listing below shows the syntax for creating self-contained library linking.

Listing: Creating Self-contained library linking

.library entry "entry symbol" (',' "entry symbol")*
.undefined function "function" (',' "function")*

.library prefix "prefix name"

.library public_symbols "public_ symbol"
(",'" "public_ symbol")*

.library concatenate_sections "name" ', '
"section name pattern"

(','" "section name pattern")*

Related Tasks
e How to create a Linker Command File (LCF)

Related References

e Command-Line Options
* Sections in LCF

3.1.3 Understanding Cache Optimization in SC3000 Linker

The goal of cache optimization is to place routines near their callers in the virtual
memory in order to reduce paging traffic, and to place frequently used and related
routines in a way such that they are less likely to collide with each other in the I/D-cache.

To enable cache optimization in the linker, use -set-cachel option. For example:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 79

Linker configuration concepts

sc3000-1d -set-cachel ... objec file list

You must use PROFILE_INFO construct in the LCF to instruct the linker to perform the
cache optimization. The listing below shows the syntax:

Listing: PROFILE_INFO Syntax

PROFILE_INFO (core name list)

FUNCTIONS {
flname TIME (timel) [MODULE (module name) [IS MANGLED (+/-)11]{
CALLS (f2name, times_x);

CALLS (f3name, times_y);

}

f2name TIME (time2) [...] {

CALLS (f3name, times_z);

}

In the above listing:

* the attributes MODULE and IS_MANGLED are optional; however, when defined,
the value of MODULE must be the definition file name

* flname, f2name, and f3name represent the name of the functions. The function name
i1s mangled or un-mangled, based on the value of the IS_MANGLED attribute; a +
sign indicates a mangled name while a - sign represents an un-mangled name. By
default, the function name is considered as mangled.

* timel and time2 represent the average cycle count spent in the function

» the CALLS intrinsic specifies which the children functions are, and how often they
are called during a parent-function call

The listing below shows an example.

Listing: PROFILE_INFO Example

profile info (c0) {
functions {

_main TIME(3/2) IS_MANGLED (+) {
CALLS (_printf,2);

}

_printf TIME (1123) IS_MANGLED (+) {

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

80 Freescale Semiconductor, Inc.

Chapter 3 Concepts

}

In case the frequency information is not provided in the LCF, the linker generates the
required frequency information automatically by counting the call number; excluding the
loops.

The linker lets you optimize only specific output sections. To do this, you must add the
cache_optimized attribute for the relevant section by adding ATTRIBUTE (+c) when
defining the output section. The listing below shows an example.

Listing: Optimizing Only Specific Output Sections

unit private (*){
MEMORY {

memory_ code ("rwx"):org = _CodeStart;

}

SECTIONS ({

.text attribute (+c) {
.text
.default

} > memory code;

3.1.4 Understanding Flexible Startup Configuration

The Flexible Startup configuration lets you place the following sections independent of
any core:

* _att mmu S€ction
e Stack
* Heap

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 81

ueneral linker concepts

* .staticinit section, which is required for the C++ based applications
* _exception_index section, which is required for the C++ based applications

3.1.4.1 Changes Made to Support Flexible Startup Configuration

The startup code is modified so that it behaves as SIMD configuration code for stack,
heap, .att_mmu, C++ exceptions etc. The linker is modified to support this behavior and
to automatically define the following symbols relevant to each core.

CAUTION

The following symbols must not be redefined, either by LCF or
by the C/C++ source.

_ LNK_Local_StackStart_cX
__LNK_Local_TopOfStack_cX
__LNK_TopOfHeap_cX
__LNK_BottomOfHeap_cX

Following are the C++ specific symbols:

__LNK_cpp_Static_init_start_cX
__LNK_cpp_Static_init_end_cX

__LNK_ExceptionTable_start_cX
__LNK_ExceptionTable_end_cX

The X in the symbols name represents the core number that can be any number between 0
and 5.

Related Tasks
* How to Make LCF Compatible for Flexible Startup

3.2 General linker concepts

This chapter describes the general linker concepts.
In this section:

e Understanding startup environment
* Understanding Flexible Segment Programming Model
* Understanding L1 Defense

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

82 Freescale Semiconductor, Inc.

Chapter 3 Concepts

3.2.1 Understanding startup environment

The linker startup code consists of these steps:

. Initialize the temp stack pointer

. Initialize the exception registers to the exception handlers

. Disable translation and protection (for MMU enabled architectures)
. Initialize C variables (zero .bss sections)

. First HOOK (function __target_asm_start)

Initialize SR with the default settings

This hook will program the MMU exception handlers (M_DESRAO, M_DESRALI,
M_PESRAOQO, M_PESRALI1 registers). For more information about the way the
descriptor is defined, refer to the topic How to Make LCF Compatible for Flexible
Startup.

Table 3-3 shows the First HOOK code in LCF.

Table 3-3. First HOOK code in
LCF

Code in LCF Description

_ENABLE_MMU_TRANSLATION=1; Enables the MMU translation. If the value is 1, the
Address Translation Enable (ATE) bit in the MMU

Control Register will be set by the __target_c_start
function.

SYSTEM_DATA_MMU_DEF Specifies different attributes of MMU

The ATE bit enables or disables the address translation mechanism. If disabled,
addresses are not translated (for example, from a virtual address to a physical
address). The reset value is configured according to external DSP subsystem plug.

Initialize the stack pointer
The code in LCF for initializing the stack pointer is:

_StackStart
Second HOOK (function ___target c_ start ())

The default implementation of this hook is an empty function.
Third HOOK (function target setting())

The default implementation of this function is an empty function.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

83

ueneral linker concepts

10. Set the argv and arge arguments
11. Enable the interrupts
12. Jump t0 main() function

3.2.2 Understanding Flexible Segment Programming Model

The flexible segment programming model supports the segment sizes of 4 Kbytes up to
16MB - 256 Kbytes, and enables the definition of more flexible data and program
segments as compared to Aligned Segment Programming Model.

The b4860 architectures support the flexible segment programming model.

For applications that target b4860 architecture, the linker by default attempts to use the
flexible segment model when constructing the MMU descriptors. If all the values of
virtual address, physical address, size and boundary of the MMU descriptor conform to
the hardware constraints, the flexible segment model is set for that particular descriptor.

See SC3900 Flexible Vector Processor (FVP) Core Reference Manual for the hardware
constraints that the MMU descriptor must conform to.

If the MMU descriptor does not conform to the hardware constraints, the linker uses the
Aligned Segment Programming Model.

You can change the default linker behavior, and explicitly specify the Aligned Segment
Programming Model by USiIlg the -disable-flexible-segment-model command-line OptiOl’l.

3.2.3 Understanding L1 Defense

The linker specifies each segment the sharing space:

* If the segment is private, the linker encodes the core id using the cluster id (0,1 or 2)
and the core id in cluster (O or 1).

or
* If the segment is shared, in what cluster (0,1 or 2) the segment is visible.

This is performed using processor specific flags in the p_r1ags member of the segment
header. The flags are masked by the er_maskeroc.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

84 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Concepts

#define PF_X 0x1
#define PF W 0x2
#define PF R 0x4
#define PF_MASKOS UINT32 C(0x0££00000)

#define PF_MASKPROC UINT32 C(0xf0000000)

#define PF_PRIVATEUINT32 C(0x10000000)

#define PF_PRIVATE CLID MASKUINT32_ C(0x60000000) // cluster ID mask
#define PF_PRIVATE CID MASKUINT32 C(0x80000000) // core in cluster ID mask
#define PF_SHARED CLOUINT32 C(0x20000000) // segment shared on cluster 0
#define PF_SHARED_ CL1UINT32_ C(0x40000000) // segment shared on cluster 1
#define PF_SHARED CL2UINT32_C(0x80000000) // segment shared on cluster 2

In case one segment is shared between 2 cores of different clusters, the linker considers
the segment to be shared between the 2 clusters.

There are two different encodings for each case, as listed below:

1. Segment is private:

Bit 28 = 1 (segment is private)
Bits 29 and 30 = cluster id
Bit31 = core ID in cluster

2. Segment is shared:

Bit 28 = 0 (segment is shared)

Bit 29 = if segment is visible in cluster 0

Bit 30 = if segment is visible in cluster 1

Bit 31 = if segment is visible in cluster 2
Sharing \ Bit 31 30 29 28
Shared Cluster 2 Cluster 1 Cluster 0 0
Private Core id in cluster (0 or |Cluster ID (0,1 or 2) 1

1)

You can disable this linker behavior using the following command line option:

-disable-flag-segment-sharing

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

85

}{ |

ueneral linker concepts

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

86 Freescale Semiconductor, Inc.

Chapter 4
Linker Error Messages

This chapter describes the error messages that the StarCore linker may display at various
stages of linking operation.

In this appendix:

 Configuration error messages
e Parser error messages
e Setup error messages

4.1 Configuration error messages

The linker may display configuration error messages if the LCF is not configured
properly.

4.1.1 EID_ARCH_INCOMPATIBLE_WITH_DIRECTIVE

This error indicates that the linker found a directive incompatible with the selected
architecture. For example, for the architectures without MMU, such as sc140e, sc3400,
sc3850, only the virtual space related directives are supported. In case an
address_translation directive is detected in a project for sc3400, this error is displayed.

(E1079)

To resolve EID_ARCH_INCOMPATIBLE_WITH_DIRECTIVE error

Make sure that the directives you specify in your project are supported for the target
architecture.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 87

vurniiguration error messages

4.1.2 EID_EXPR_SECNAME_CANNOT_EVAL

Indicates the intrinsic function specified in the error message cannot evaluate the intrinsic
expression.

[LNK,1,6999,-1]: Warning(W1062): LCF configuration: in core c0, task
task0 cO0: Intrinsic 'originof' parameter error: Section

'data boot c¢' missing or empty. Intrinsic expression evaluates to
0x0

To resolve EID EXPR_SECNAME_CANNOT_EVAL error

Verify that the intrinsic parameter does not depend upon memory layout, or is not an
undefined symbol.

4.1.3 EID_FAIL_LAYOUT

Indicates the linker has failed in building a memory layout; all allowed number of trials
expired without converging to a stable memory layout.

[LNK, 3,6999,-1]1: Fatal (F2007): cannot layout all the sections, possibly
it is a LCF issue.

To resolve EID FAIL LAYOUT error

Provide origin and length for memory and address translation constructs to reduce/
eliminate the search for establishing a memory layout.

4.1.4 EID_FAIL_VIRTUAL_LAYOUT

Indicates that the virtual layout algorithm is not able to find a valid layout for the output
sections of the specified virtual memory area.

Fatal (F2009)
To resolve EID FAILL VIRTUAL LAYOUT error

Consider adding the ORG directive for the specified memory area, or reducing the
content of the associated output sections.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

88 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

4.1.5 EID_FORCE_VALUE_TO_1

This warning indicates that one of the linker-defined sections (defined using the
LNK_SECTION directive) receives as parameter an alignment value that is less than Ox1.
Linker by default sets the alignment to Ox1 in such cases.

[LNK,1,6999,173,../b4860.13k] : Warning (W1l077): LCF configuration: the
alignment expression of LNK SECTION (heap) is forced to value 0x1.

To resolve EID FORCE_VALUE_TO _1 error

Specify a valid alignment value, bigger than or equal to Ox1, in the specified linker-
defined section.

4.1.6 EID_INCONSISTENT_SYMADDR

Indicates a symbol has different virtual address in private memory areas and is referenced
from a shared memory area.

[LNK,2,6999,-1]: Error (E2005): Symbol resolution: found inconsistent
address for symbol ' my private channel info' which is defined in
section 'c*".data'.
Value 0x70004000 from unit cO0 in ./Source/private data cO0.eln
Value 0x70004100 from unit cl in ./Source/private data cl.eln

To resolve EID INCONSISTENT SYMADDR error

Symbol must be placed at the same fixed location for all cores private memory.

4.1.7 EID_LAYOUT_UNRESOLVED

Indicates the linker was unable to generate a virtual memory layout.

[cf/b4860.13k] : Fatal (F2007): in core cO, task task0 cO: order of section placement in
virtual memory m3_shared_data_nc_wt' can not be determined. The following sections can not
be placed: ddr_data_shared

To resolve EID LAYOUT UNRESOLVED error

Provide the origin and length for memory and address translation statements to reduce/
eliminate the search for establishing a memory layout.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 89

vuniiguration error messages

4.1.8 EID_LNK_SECTION_TYPE_UNKNOWN

Indicates an unknown type of section that the linker does not recognize.

[LNK,2,6003,133,D: /DevTech/Linker/workspace/Demo_prj/DifferentCode/
sc3000_1d 1cf/b4860.13k]: Error(E2018): LNK SECTION type unknown.

To resolve EID LNK_SECTION_TYPE_ UNKNOWN error

Make sure that the specified section type is valid.

4.1.9 EID_MORE_AUTO_LAYOUT

Indicates a number of situations, such as:

» exceeded number of trials for reaching a virtual layout

* unspecified virtual memory for an output section

* one virtual memory corresponds more than one physical memory and automatic
memory map is disabled (caused by EID_PL_MULTI_MAPPING)

* address translation missing or address translation does not mention org keyword, and
automating original address translation is disabled (caused by EID_PL_PORG)

* one virtual memory needs more than one MATT entry, and automatic splitting of
virtual memory areas across more than 1 MATT entry is disabled (caused by
EID_PL_MMATT)

* one output section is placed into more than one virtual memory, which is currently
not supported

[LNK,3,6999,-1]1: Error (E2008) : higher memory layout automation level
needed, not enabled by command line option or not supported yet.

To resolve EID_MORE_AUTO_LAYOUT error
* If the error message is not caused by e1p_pL_MULTI_MAPPING, EID PL_PORG, O EID_PL_MMATT,
verify that:
* there is no output section that has more than one target virtual memory
* there is no output section without a target virtual memory
e If the error message is caused by EID PL MULTI_MAPPING, EID PL_ PORG, O EID_PL MMATT, S€C
the respective descriptions.

4.1.10 EID_MEM_CANNOT_FINAL

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

90 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages
Indicates a problem with the virtual memory definition.

Error (1037)

To resolve EID MEM_CANNOT_FINAL error

Verify the definition for virtual memory, and make sure that org or len expressions could
be evaluated, if specified.

4.1.11 EID_MEM_INCONSISTENT

Indicates that a shared section is placed in multiple virtual memory locations. Such a
placement is invalid.

Error (E1036)
To resolve EID MEM_INCONSISTENT error

Place the shared section in only one virtual memory.

4.1.12 EID_MEM_MULTI_AT

Indicates that one virtual memory has multiple entries in the address translation.

[LNK,3,6999,228,../b4860/LCF/b4860.13k] : Fatal (F1034): LCF configuration: multiple address
translation entries found for virtual memory 'data boot c'.

To resolve EID MEM_MULTI AT error

Verify the address translation entries so that each virtual memory has only one associated
entry. For more information, see How to Define Virtual Memory for Read-Write-Execute
(RWX) Access.

4.1.13 EID_MEM_NOT_FULLY_SPEC_RESERVE

Indicates that a reserved area in virtual memory space is not fully specified. In other
words, either reserved area's origin or its length information is missing or cannot be
determined prior to start of the memory layout algorithm.

[LNK,3,6999,-1]: Fatal (F1038): LCF configuration: memory local reserve

is reserved and not fully specified with original address and
length.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 91

vuniiguration error messages

To resolve EID MEM_NOT FULLY_SPEC_RESERVE error

Make sure that you specify origin and length of the reserved virtual area as values that do
not depend on the outcome of the memory layout algorithm.

4.1.14 EID_MEM_SMALL_MB

Indicates that the specified virtual memory cannot be placed.

[LNK,3,6003,2,../b4860/LCF/b4860.13k] : Fatal (F1030): LCF

configuration: there is not enough space to place virtual memory 'viml' (org=0xC0000000,
size=0x10000) . Memory 'vm2'

(org=0xC0001000, size=0x400) should be placed further to allow

enough space for 'vml'.

To resolve EID MEM_INCONSISTENT error

Use the ORG or the AFTER directive to place 'vm2' at a higher address in the virtual
space to allow successful placement of vm1 in a lower address range.

4.1.15 EID_MEM_UNDEF

Indicates that the virtual memory specified in the error message is referenced in the LCF
but is not defined.

[LNK,2,6999,229,newbad.lcf]: Error (E1033): LCF configuration: virtual
memory 'm shared ddr x' is not defined.

To resolve EID MEM_UNDEF error

Define the virtual memory specified in the error message, or remove the reference in the
LCF.

4.1.16 EID_MEM_UNDEF_ADDR

This error occurs when the following conditions are true:

1. a virtual memory is defined

2. a section is allocated to the defined virtual memory

3. an address reference in the section allocated in step 2, is out-of-range of the virtual
memory defined in step 1

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

92 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

Error (E1035)
To resolve EID MEM_UNDEF_ ADDR error

Extend the virtual memory definition to include the out-of-range address reference, or
change the address reference.

4.1.17 EID_MEM_VIR_NO_PHY

Indicates that linker cannot find a physical memory for the mapped virtual memory from
the LCF configuration.

[LNK,2,6999,-1]: Error (E1040): LCF configuration: cannot find physical
memory for virtual memory 'vm data'

To resolve EID MEM_VIR _NO_PHY error

Map the virtual memory to a physical memory explicitly in the LCF making use of the
ORG directive.

4.1.18 EID_ASSERT_FAIL

Indicates that the ASSERT directive in the LCF evaluates to FALSE.
Error (E1019)

To resolve EID ASSERT FAIL error

Adjust the condition expression of the assert directive or other related definitions in the
LCF.

4.1.19 EID_ATTMMU_SIZE_UNSPECIFIED

Indicates that size for the .att_mmu section is not specified in the LCF. The linker may
also display this error message when no command-line option is specified for the linker
to automatically allocate size for the .att_mmu section.

[LNK,3,6999,-1]: Fatal (F1017): LCF configuration: att mmu size

specification not found in LCF and automatic att_mmu size is not
enabled by command line or supported.

To resolve EID ATTMMU_SIZE UNSPECIFIED error

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 93

vuniiguration error messages

Specity size for the .att_mmu section in the LCF. For example: 1nk_section (att_mmu, "rwr,
0x130, 256);

4.1.20 EID_MATT_MAP11_ORG

Indicates that the starting address of the virtual memory, which is mapped to a physical
memory fragment in mapl1 style, is not consistent with the starting address of the
physical memory fragment.

Error (E1059)

To resolve EID MATT MAP11 ORG error

Adjust the address translation in the LCF, so that the virtual memory and the physical
memory have the same address spaces.

4.1.21 EID_MATT_SPEC

Indicates an error in the address translation.

Error (E1046)
To resolve EID MATT SPEC error

Specify correct address translation.

4.1.22 EID_MATT_Vi1ToPn

Indicates that the virtual memory is mapped to more than one physical memory device in
the LCF.

[LNK,3,6999,19,linker control files\newlcflaal.cmd]: Fatal (F1043): LCF
configuration: in core c0, task task 1 0: map virtual memory
'm3_share data' to multiple physical memory.

To resolve EID MATT V1ToPn error

Specify 1:1 virtual memory to physical memory mapping.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

94 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

4.1.23 EID_MATT_VP_UNMATCH

Indicates that the virtual memory does not properly map to a physical memory fragment.
Error (E1044)

To resolve EID MATT VP _UNMATCH error

Specify 1:1 virtual memory to physical memory mapping.

4.1.24 EID_MATT_WX

Indicates that an address_translation entry is set for both data and program sections. An
address_translation entry must be set for either data or program sections, but not both.

Error (E1042)

To resolve EID MATT WX error

Specify the address_transiation entry separately for data and program sections.

4.1.25 EID_MATTS_OVERNUMBER

Indicates that the number of address_translation entries specified for the MMU has
crossed the maximum limit.

Error (E1018)

To resolve EID_MATTS_OVERNUMBER error
e Combine multiple address_translation entries into a single entry
* For more information on maximum number of data and program descriptors, refer to
the DSP Core Reference Manual of the respective core

4.1.26 EID_MEM_ADDR_SIZE_UNALIGN

Indicates that the starting address of the mapped virtual memory does not align with its
size.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 95

vuniiguration error messages

[LNK,1,6999,23,D:\CodeWarrior\Stationery\StarCore\ISS\linker control f
iles\newlcflaa.cmd] : Error (E1031): LCF configuration: in core coO,
task task 1 0: virtual memory 'm3_ share text' (org=0xd0000201,
size=0x00000100) is not aligned to MATT/MMU constraints on address
and size.

To resolve EID MEM_ADDR_SIZE _UNALIGN error

Make sure that the original address % size of the virtual memory must be equal to zero.

4.1.27 EID_MEM_EMPTY

Indicates an empty section placed in the virtual memory specified in the warning
message.

NOTE
The EID_MEM_EMPTY message is a warning message.

[LNK,1,6999,16,linker control files\newlcflaa3.cmd]: Warning(W1026) :
LCF configuration: in core cO0, task task 1 0: virtual memory
'm2_share data nc' is empty.

To resolve EID_MEM_EMPTY warning

Remove the respective empty section, virtual memory and address translation entries.

4.1.28 EID_MEM_OVERLAP

Indicates an overlap of virtual memory with other virtual memory or reserved memory
fragments.

Error (E1027)
To resolve EID MEM_OVERLAP error

Verify the memory allocations and make sure that no virtual memory or reserved
memory fragments are overlapped.

4.1.29 EID_MEM_PLACE_INTO_RESERVE

Indicates an attempt to place an output section into a reserved virtual memory.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

96 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

[LNK,3,6999,-1]1: Fatal (F1039): LCF configuration: cannot place section
descriptor m3_non_cacheable wt_ sys shared data into reserved
memory m3_ shared data nc_wt.

To resolve EID MEM_PLACE INTO RESERVE error

Use non-reserved virtual memory for placing the output sections.

4.1.30 EID_MEM_REAL_OVERLAP

Indicates overlapped virtual memory space.

[LNK,3,6999,19,X:\..\linker control files\newlcf\foo.cmd] :

Fatal (F1028) : LCF configuration: in core c0, task task 1 0: virtual
memory 'm3_share text' (org=0xd0000100, size=0x00000100) and
'm3_share data' (org=0xd0000000, size=0x00000200) is overlapped at
address 0xd0000100.

To resolve EID MEM_REAL OVERLAP error

Modify the org address or size of the virtual memory.

4.1.31 EID_MEM_REAL_OVERLAP_1

Same as EID_MEM_REAL_OVERLAP.

4.1.32 EID_MULTI_ATTMMU_SIZE

Indicates more than one size declaration for the .att_mmu section in the LCF.

[LNK, 3,6999,-1]1: Fatal (F1015): LCF configuration: in core c0: multiple
conflict specification of att mmu size.

To resolve EID MULTI ATTMMU_SIZE error

Specify only one size declaration for the .att_mmu section in the LCF.

4.1.33 EID_PHY_CANNOT_LAYOUT

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 97

vuniiguration error messages

Indicates that linker was not able to find a valid memory layout for both the virtual and
the physical spaces.

Error (E1049)

To resolve EID PHY CANNOT LAYOUT error

Revisit the recent project changes or the changes you have made in the LCF after the
previous successful linking process. It could be that one or more virtual memory areas
need explicit specification of their mapping in physical memory space. If that is the case,
use the ORG directive in the address_translation construct.

4.1.34 EID_PHY_MEM_ADDR_SIZE

Indicates that a physical memory fragment, which is mapped to the MMU, violates the
alignment rule: org/len=0.

Error (E1043)
To resolve EID PHY MEM_ADDR_SIZE error
Make sure that original address / length of the physical memory = 0.

4.1.35 EID_PHY_MEM_INVALID_RESERVE_PM

Indicates that a reservation of physical memory region is invalid. For example, whole or
part of the reserved area does not exist, or some shared reservation is defined, but not at
the identical address for all cores.

Error (E1047)
To resolve EID PHY MEM INVALID RESERVE_PM error

Verify the reservations in the physical_memory constructs, and the corresponding
specifications for the memory sharing, start address and the size definitions.

4.1.36 EID_PHY_MEM_MULTI

Indicates more than one physical memory definition in the LCF with the same name.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

98 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

Error (E1046)
To resolve EID PHY MEM_MULTI error

Make sure that all physical memory definition in the LCF have unique names.

4.1.37 EID_PHY_MEM_OVERLAP

Indicates overlapped physical memory fragments.
Error (E1037)

To resolve EID PHY MEM_OVERLAP error
Modify the physical memory fragments.

4.1.38 EID_PHY_MEM_OVERLAPPED

Indicates that the physical memory description contains memory fragments that are
overlapping as address ranges.

Error (E1045)

To resolve EID PHY MEM_OVERLAPPED error

Check the physical_memory constructs in the LCF and the corresponding specifications
for the memory size and the start address.

4.1.39 EID_PHY_MEM_PRIVATE

Indicates that a physical memory private area is defined in the address range
corresponding to a shared memory on the selected architecture.

[LNK,1,6999,62,../common.13k]: Warning(W1081): LCF configuration:
Physical memory DDR1 is considered as shared physical memory.

To resolve EID_PHY_MEM_PRIVATE warning

Verify that all physical memoryprivate (co, c1,...) directives are defined only in the address
ranges of private memories on the target architecture.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 99

vuniiguration error messages

4.1.40 EID_PHY_MEM_RESERVE_OVERLAP_RESERVE

Indicates that a couple of physical memory reservations have overlapping ranges.

Warning (E1054)

To resolve EID_PHY_MEM_RESERVE_OVERLAP_RESERVE error

Verify the expressions for start and size of the reserved memory areas in physical
memory space. In the LCF, begin with looking for the reserves in the physical_memory
constructs.

4.1.41 EID_PHY_MEM_UNDEF

Indicates that the referenced physical memory fragment is not defined.

[LNK,2,6999,305,foo.1cf]: Error(E1041): LCF configuration: physical
memory 'M2' is not defined.

To resolve EID PHY MEM_UNDEF error

Define the physical memory fragment specified in the error message.

4.1.42 EID_PHY_MEM_UNDEF_ADDR

Indicates that the address used in the virtual memory is not defined in the physical
memory. This error generally occurs when the virtual memory is mapped to physical
memory in mapl1 style.

[LNK,3,6999,260,newUninitResultReturn.lcf]: Fatal (F1042): LCF

configuration: undefined physical memory is used: address
0xc0040000.

To resolve EID_PHY_MEM_UNDEF_ADDR error

Extend definition of the physical memory specified in the error message, or map the
respective virtual memory to another physical memory fragment.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

100 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

4.1.43 EID_PHY_NO_RESULT

Indicates an error with the physical memory configuration. This error can occur when one
or more of the following conditions are true.

» The starting address and size of the physical memory do not meet the restrictions
specified for the MMU hardware. For instance, for the b4860 target, the origin
address should be multiple of size of the memory area.

* The physical memory map contains overlapping physical memory regions. One
common case when this happen is when:

* address_translation specification is specified for multiple tasks in the same
language construct

* private virtual memory areas are mapped to a shared physical memory

* the physical start address is a fixed value that does not depend on the core_id ()
intrinsic function

e The physical memory device is not sufficient to hold the specified virtual memory
entities.

[LNK,3,6999,-1]: Fatal (F1050): LCF configuration: no physical layout
result for physical memory M3.

Tentative memory map for physical memory 'M3' (org=0xd0000000,
len=0x00a00000) :

c0: |porg=0xd0000000, plen= AUTOMATIC| m3_share data (org=0xd0000000,
len= AUTOMATIC)

c0: |porg=0xd08da000, plen= AUTOMATIC |
m3_share text boot (org=0xd08da000, len= AUTOMATIC)

c0: |porg=0xd09dc000, plen= AUTOMATIC |
Data heap private mmu(org=0x30000000, len=0x00001000)

cl: |porg=0xd09dd000, plen= AUTOMATIC|
Data heap private mmu(org=0x30000000, len=0x00001000)

c2: |porg=0xd09de000, plen= AUTOMATIC |
Data_heap private_mmu(org=0x30000000, 1len=0x00001000)

c3: |porg=0xd09df000, plen= AUTOMATIC |
Data_heap private mmu(org=0x30000000, 1len=0x00001000)

c0: |porg=0xd09e0000, plen= AUTOMATIC |
private data boot (org=0x20000000, len=0x00008000)

cl: |porg=0xd09e0100, plen= AUTOMATIC|
private data boot (org=0x20000000, len=0x00008000)

c2: |porg=0xd09e0200, plen= AUTOMATIC |
private_data_boot (org=0x20000000, 1len=0x00008000)

c3: |porg=0xd09e0300, plen= AUTOMATIC |
private_data_boot (org=0x20000000, 1len=0x00008000)

To resolve EID PHY NO_ RESULT error

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 101

vuniiguration error messages

Modify the physical memory configuration and make sure that:

» The starting address and size of the physical memory meet the restrictions specified
for the MMU hardware.

* The physical memory map does not contain overlapping physical memory addresses.

* The physical memory device is sufficient to hold the specified virtual memory
entities.

4.1.44 EID_PHY_PROBLEM_OVERSIZE

Indicates that the linker requires more information to automatically configure the
address_translation entries.

Error (E1052)

To resolve EID PHY PROBLEM_ OVERSIZE error

Refer to the information specified in the .amp file, and provide more starting addresses
and size information for the address_translation entries.

4.1.45 EID_PHY_SIZE_OVERFLOW

Indicates that the linker was not able to find a valid physical memory layout because the
content size placed in physical memory is larger than its actual storage capacity.

Error (E1051)

To resolve EID PHY SIZE OVERFLOW error

Consider splitting the large data/code sections content over more physical memories.
Another solution could be to specify higher size-optimization levels during compilation,
or to share more of the data and/or code.

4.1.46 EID_PL_AFTER_CYCLE

Indicates a cycle of virtual memory areas. It is not possible to place virtual memory a
after s, and = after a at the same time.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

102 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages
[LNK,3,6999,-1]1: Fatal (F2013): there is one or more cycle of "after" in

address-translation specification, part of the cycle are virtual
memories data boot ¢ and ddr private data c wb.

To resolve EID_PL._AFTER_CYCLE error
Break the cycle by using one of the following options:

* choosing a fixed AFTER target virtual memory
* choosing a virtual memory area for AFTER specification, which has independent
placement of the memory that was part of the cycle

4.1.47 EID_PL_MULTI_MAPPING

Indicates the mapped physical memory of the virtual memory is not defined, and the
automatic mapping is not enabled by the command-line interface, or not supported.

[LNK,2,6999,-1]: Error (E2010): in core c0, task task0 c0: the mapped
physical memory of virtual memory data default init tbl is not
defined and automatic mapping is not enabled by command line or
supported.

To resolve EID PL. MULTI_MAPPING error

Provide a physical memory map for the respective virtual memory.

4.1.48 EID_PL_MMATT

Indicates that the size of the virtual memory is impossible to be described by a single
MATT, and multiple MATT for single memory is not enabled by the command-line
interface.

[LNK,2,6999,-1]: Error(E2012): in core c0, task task0 cO: the size
(0x00006200) of virtual memory data_default_init_tbl is impossible
to be described by single MATT and multiple MATT for single memory
is not enabled by command line.

To resolve EID PL. MMATT error

Enable the multiple MATT for single memory, or reduce the virtual memory size.

4.1.49 EID_PL_PORG

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 103

vuniiguration error messages

Indicates the original physical address of the virtual memory is not specified, and
automatic original address is not enabled by command-line interface.

[LNK,2,6999,-1]: Error (E2011): in core c0, task task0 cO: the original
physical address of virtual memory data default init tbl is not
specified and automatic original address is not enabled by command
line.

To resolve EID PL. PORG error

Provide the address translation construct for the respective virtual memory, and specify
the origin in physical memory address space.

4.1.50 EID_PROGBIT_AFTER_NOBITS

Indicates that a bss section is placed before a data section. The bss section will be
transformed into a data section that contains zeros.

NOTE

The EID_PROGBIT_ AFTER_NOBITS INESSAgc isa Warning message.

[LNK,1,6999,127,W: /bcu3_modem phy/prod/build lte/linker command/
local map link.13k]: Warning(W1078): LCF configuration: The file
image of the section will be increased. SHT PROGBITS section (non-
BSS section) is placed after SHT NOBITS section (BSS section).

To resolve EID_PROGBIT_AFTER_NOBITS warning
Place the bss section at the end of the output section in the LCF.

To suppress this warning message, use the -aisable-warn-progbits-after-nobits command-
line option.

To convert this warning message to an error message, use the -enable-error-progbits-
after-nobits OptiOIl.

4.1.51 EID_SCL_DIRECTIVE

Indicates that the linker found at least one directive specific to the self-contained library
operation mode, but could not find the related option.

Warning (W2023)

To resolve EID_SCL_DIRECTIVE warning

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

104 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

Add the -se1f-contained-1ibrary linker option and make sure that the linker command files
contain only directives specific to the self-contained library output operation mode.

4.1.52 EID_SEC_BAD_ATTR

Indicates incompatible input sections in an output section. For example,
sec ("rxm){
.exception index;
.text;
}o>mx;

The .exception_index is a read-only input section and the .text section is an input section
with attribute "rx".

[LNK,2,6999,23,alignl.cmd] : Error (E1000): LCF configuration: in core
c0: section '.exception index' (attr='r') is not compatible with
other inputs(attr='rx').

To resolve EID SEC BAD ATTR error

Move the incompatible input section to a compatible output section.

4.1.53 EID_SEC_MEM_ATTR

Indicates that an output section is placed into an incompatible virtual memory block. The
attributes of the output section do not match with that of the virtual memory.

[LNK,3,6999,22,align2_EID_SEC_MEM_ATTR.Cmd]: Fatal (F1002) : LCF
configuration: SECTION 'INTVEC' (attr='rx') is not compatible with
virtual memory 'meml' (attr='rw').

To resolve EID SEC_MEM_ATTR error

Place the output section in a compatible virtual memory block. Alternatively, modify the
attributes of the corresponding virtual memory block so that it is compatible with the
output section.

4.1.54 EID_SEC_MEM_SIZE

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 105

vuniiguration error messages

Indicates that an output section is placed into an incompatible virtual memory block. The
size of the virtual memory block is smaller than that of the output section.

[LNK,3,6999,23,align2 EID SEC MEM SIZE.cmd]: Fatal (F1003): LCF
configuration: SECTION 'INTVEC' (size=0x00001000) is too large to
fit into remaining space of virtual memory 'meml'.

Memory map for virtual memory 'meml':

| org=0x00000000, len=0x00000064| free

To resolve EID_SEC_MEM_SIZE error

Extended the size of the corresponding virtual memory block. Alternatively, move the
output section to a larger virtual memory block.

4.1.55 EID_SEC_MULTI_DEF

Indicates that the LNK_SECTION directive defines a linker section with a name that is
already in use by other input sections placed for the same task.

[LNK,3,6999,148,../b4860/LCF/b4860.13k] : Fatal (F1009): LCF configuration: in core c¢5, task
task0 c5: redefine input section 'stack' by LNK SECTION(...).

To resolve EID_SEC_MULTI_DEF error

Make sure that the custom name of the linker-defined section does not match the name of
other input sections placed for a particular task.

4.1.56 EID_SEC_NO_MEM

Indicates that the output section specified in the warning message is defined in the LCF,
but is not placed in a virtual memory block.

NOTE

The e1p_sec_no mem message is a warning message.

[LNK,1,6999,22,align SEC NO MEM.cmd] : Warning(W1005): LCF
configuration: SECTION 'INTVEC' is not placed into any virtual
memory .

To resolve EID SEC_NO_MEM error

If this warning message is followed by the error message "higher memory layout
automation level needed, ...", place the corresponding section in a virtual memory block
in the LCF.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

106 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

4.1.57 EID_SEC_NOT_PLACED

Indicates that a section is loaded from the input modules, but is not placed in any memory
block.

[LNK,3,6999,-1]: Fatal (F1008): LCF configuration: SECTION '.text' is
not placed into any memory.

To resolve EID_SEC_NOT_PLACED error
Place the section specified in the error message in a virtual memory block.

NOTE
It is recommended that you explicitly exclude the sections
(using the excrupe directive) that are not intended to be linked to
a specific task. Alternatively, you can rename such sections in
the LCF to enforce limited core visibility. For
example, .text_sec, when renamed to c1-.text_sec, limits
text_sec's visibility to core 1 (cl).

4.1.58 EID_SEC_OSEC_ATTR

Indicates that the attributes specified for an output section are not consistent with the
compiler/assembler generated input section attributes.

[LNK,3,6999,22,align2 EID SEC BAD ATTR.cmd]: Fatal (F1001): LCF
configuration: SECTION 'INTVEC' (attr='rw') is not compatible with
inputs (attr="'rwx') .

To resolve EID_ SEC_OSEC_ATTR error

Modify the attributes for the output section so that they are consistent with the input
section attributes.

4.1.59 EID_SEC_PC_BACK

Indicates a wrong assignment to the PC value. The value assigned can only be
incremented. Decrementing the value results in an error. For example,

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 107

vuniiguration error messages

Sec{
. = 0x100;
.text
. = 0x0;
}
The second assignment, . - oxo, results in an error.

[LNK,3,6999,27,align SEC_PC BACK.cmd] : Fatal (F1010): LCF
configuration: set location counter value backward.

To resolve EID SEC PC _BACK error

Do not decrement the PC value.

4.1.60 EID_SEC_SIZE_OVERFLOW

Indicates that the memory of a section has crossed the maximum limit.

Error (E1011)
To resolve EID_SEC_SIZE OVERFLOW error

Split the corresponding section. The maximum memory limit for a section, in the current
linker, is unsigned Oxffffffff.

4.1.61 EID_SEC_UNDEF_MEM

Indicates that no definition exists in the LCF for the virtual memory specified in the error
message.

[LNK,3,6999,18,linker control files\newlcflaal.cmd]: Fatal (F1004): LCF
configuration: in core cO, task task 1 0: SECTION 'm2 share text'
is placed into unavailable virtual memory 'm2 share-data’'.

To resolve EID_ SEC_UNDEF_MEM error

Verify that the virtual memory specified in the error message is defined in the LCF.

4.1.62 EID_SEC_UNMATCH_ATTR

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

108 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

Indicates that section components with the same name, belonging to different modules,
differ in attributes.

NOTE
The section components with the same name, belonging to
different modules, are merged into one input section.

Error (E1007)

To resolve EID SEC_ UNMATCH_ATTR error

Use RENAME directive to change the corresponding section names so that they are not
merged together.

4.1.63 EID_SMALL_ATTMMU_SIZE

Indicates that the memory size specified in the LCF for the .att_mmu section cannot
include all the required address_transiation entries.

[LNK,3,6999,-1]: Fatal (F1016): LCF configuration: att mmu size
specification is too small, actual=16, expect=248.

To resolve EID SMALL _ATTMMU_SIZE error

You use the 1nk_section directive to specify the memory size:
Ink section(att mmu,"rw", 0xl6, 256);

Modify the size parameter in the 1nk_section directive to specify a larger memory size.

4.1.64 EID_SOME_CORES_WITHOUT_TASKS

This error message occurs in case the tasks directive is used to define tasks for each
active core, where the number of active cores is specified by the number of_cores directive,
and not each of these receives description of at least one hosted task.

[LNK,3,6999,-1]1: Fatal (F1080): LCF configuration: There is no task
specified for core cl.

To resolve EID SOME_CORES WITHOUT TASKS error

Make sure that each active core, c0, cl,..., cn-1, where n is used in the number of cores(n)
directive, hosts at least one task.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 109

vuniiguration error messages

4.1.65 EID_START_ADDR_EXPR

Indicates an invalid value for the start_address parameter.

[LNK,3,6999,36,new3.1cf]: Fatal (F1012): LCF configuration: only symbol
or constant is allowed for START ADDRESS.

To resolve EID START ADDR_EXPR error

Specify only symbol or constant for the start_address parameter.

4.1.66 EID_START_ADDR_MULTI

Indicates conflicting definitions for the start_address parameter among multiple cores.

Error (E1014)

To resolve EID START ADDR_ MULTI error

Define the start_addaress parameter in a shared memory area.

4.1.67 EID_START_ADDR_REDEF

Indicates more than one definition for the start_address parameter in a single core.

Error (E1013)

To resolve EID START ADDR_REDEF error

Specify only one definition for the start_addaress parameter in a single core.

4.1.68 EID_TASK_OVERFLOW

Indicates that the task PID or DID was set beyond 255.

[LNK,2,6999,-1]: Error (E1024): LCF configuration: TASK (name=syso0,
coreid=1, taskid=256) is overflow, taskid cannot be greater than
255.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

110 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

To resolve EID_TASK_OVERFLOW error
Make sure that no PID or DID is greater than 255.

4.1.69 EID_TASK REDEF_VM

Indicates more than one definition for a single virtual memory.

[LNK,3,6999,70,linker control files\newlcflaa4.cmd]: Fatal (F1025): LCF
configuration in core cO, task task 1 0: redefine virtual memory 'private_data boot'.

linker control files\newlcflaa4.cmd(65): private data boot ("rw"): org
= VIRTUAL DATA BOOT start;

linker control files\newlcflaa4.cmd(70): private data boot ("rw"): org
= VIRTUAL DATA BOOT start+0x600;

To resolve EID TASK REDEF VM error

Specify only one definition for the corresponding virtual memory.

4.1.70 EID_TASK_UNDEF

Indicates that the task specified in the error message is referenced (e.g. in the unit or the
address_translation directive), but is not defined.

Error (E1020)

To resolve EID_TASK_UNDEF error

Add the definition for the task specified in the error message, or remove its reference.

4.1.71 EID_UNRESOLVE_REF

Indicates the symbol specified in the error message was not found either in the input files
or in the LCF file.

[LNK,1,6999,-1]: Warning(W2003): in core c0: Symbol resolution: found
undefined input symbol ' DataInR', referenced from:

./Source/msc8156_main.eln

To resolve EID UNRESOLVE_REF error

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 111

rarser error messages

Check source files for the missing declaration of the symbol specified in the error
message, or according to the case, if the symbol is meant for the LCF statements, provide
a value for it.

4.1.72 EID_WRONG_AT_ORG

Indicates that the origin address in the address translation construct for the virtual
memory specified in the error message is an undefined symbol, or is a symbol depended
of the memory layout.

[LNK, 3,6999,-1]1: Fatal (F1070): LCF configuration: org for address
translation entry for virtual memory 'data boot c' was specified
using unknown symbols or layout dependent intrinsics.

To resolve EID_ WRONG_AT_ORG error

Choose an origin for the address translation construct of the specified virtual memory that
1s depended on defined symbols, or is using intrinsics that don't require completion of the
memory layout phase.

4.1.73 EID_WRONG_VM_ORG

Indicates that the origin of the virtual memory specified in the error message is an
undefined symbol or is a symbol depended of the memory layout.

[LNK,3,6999,-1]: Fatal (F1069): LCF configuration: org for virtual
memory 'ddr private text c' was specified using unknown symbols or
layout dependent intrinsics.

To resolve EID WRONG_VM_ORG error

Choose an origin for the specified virtual memory that is depended on defined symbols,
or is using intrinsics that don't require completion of memory layout phase.

4.2 Parser error messages

The linker may display parser error messages while parsing the LCF.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

112 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

4.2.1 EID_BAD_CORENAME

Indicates a syntax issue with one of the core names used in a syntax context, such as a
physical_memory or tasks construct.

[LNK,3,6999,-1]: Fatal (F0016): LCF syntax: bad core name 'corel',K expect 'c%d', like 'cO'.

To resolve EID COMMENT error

Make sure that the cores are referred by names with the string pattern "c%d". For
example, the cores for b4860 architecture are named c0,c1,c2,c3,c4,c5.

4.2.2 EID_COMMENT

Indicates that a multiline comment is not closed properly.

[LNK,2,6003,-1]: Error (E0002): LCF syntax: comment error - unclosed
multiline comment.

To resolve EID COMMENT error

Close all the multiline comments.

4.2.3 EID_DEFINE

Indicates an incorrect syntax for the define directive.

[LNK,2,6003,-1]: Error (E0004): LCF syntax: define - illegal symbol name '#'.

[LNK,2,6003,-1]: Error (E0004): LCF syntax: define - illegal expression '#'.
To resolve EID_DEFINE error

Specify correct syntax for the define directive.

4.2.4 EID_EMPTY_EXP

Indicates that an #if construct does not have an expression to evaluate.
[LNK,3,6003,14,8156_ lcf.cmd] : Fatal (F0012): LCF syntax: empty #if expression.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 113

rarser error messages

To resolve EID EMPTY_ EXP error

Specify an expression for the #if construct.

4.2.5 EID_INCLUDE

Indicates an issue with linker command file inclusion; be it inclusion recursion, high
nesting or a file reading error.

[LNK,3,6003,2,../b4860/LCF/b4860.13k] : Fatal (F0003): LCF syntax: include error -
includes nested too deep.

[LNK,3,6003,4,../b4860/LCF/b4860.13k] : Error (F0003): LCF syntax: include error -
unclosed quote. Correct syntax: #include "file name".

To resolve EID INCLUDE error

Verify the linker command file inclusion structure, file names, and paths.

4.2.6 EID_INCOMPLETE_EXP

Indicates that an #if construct has an incomplete expression.

[LNK,3,6003,13,8156_lcf.cmd]: Fatal (FO009): LCF syntax: incomplete #if
expression.

To resolve EID INCOMPLETE_ EXP error

Specify complete expression for the #if construct.

4.2.7 EID_MISSING_PAREN_EXP

Indicates that the parenthesis in an #if construct are not properly closed.

[LNK,3,6003,13,8156_ lcf.cmd]: Fatal (F0010): LCF syntax: missing paren
in #if expression.

To resolve EID MISSING PAREN EXP error

Make sure that the number of opening parenthesis equals the number of closing
parenthesis.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

114 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

4.2.8 EID_MATT_WX

Indicates that one entry in MATT received both WRITE and EXECUTE accessibility
attributes, which is not valid given the architectural separation of the data and program
spaces.

Error (E1055)
To resolve EID MATT WX error

Verify the address translation entries and verify that there is no forcing of both the
WRITE and EXEC attributes on the same virtual memory entry. If the intention is to
create RWX areas, see How to Define Virtual Memory for Read-Write-Execute (RWX)
Access.

4.2.9 EID_OLD_LCF_FORMAT

Indicates a syntax issue that is likely to occur if you use an older unsupported linker
(sc100-14d) Icf file as an input to the sc3000-1d linker.

[LNK,2,6003,5,../b4860/LCF/b4860.cmd] : Error (E0006) : LCF syntax: directive '.provide'
found. You may be using the old lcf format.

To resolve EID OLD LCF FORMAT error

Make sure that you use sc3000-1d directives and syntax.

4.2.10 EID_PREPROCESS

Indicates an issue with the preprocessing directives.

[LNK,2,6003,6,../b4860/LCF/b4860.13k] : Error (E0005) : LCF syntax: too many ENDIFs.
[LNK,3,6003,7,../b4860/LCF/b4860.13k] : Fatal (F0005): LCF syntax: illegal symbol name.

[LNK,3,6003,10,../b4860/LCF/b4860.13k] : Fatal (F0005): LCF syntax: missing #if, #ifdef or
#ifndef directive.

[LNK,3,6003,5,../b4860/LCF/b4860.13k] : Fatal (FO005): LCF syntax: IFDEF expression must end
with newline.

To resolve EID PREPROCESS error

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 115

rarser error messages

Use the information given in the message description to correct the preprocessing
directive description/definition.

4.2.11 EID_UNDEF_OPER_IN_EXP

Indicates a syntax issue with one of the operators used in the #if expression.

[LNK,3,6003,8,0b4860.13k] : Fatal (F0014): LCF syntax: undefined operator '= ' in #if
expression.

To resolve EID UNDEF_OPER_IN_EXP error

Verify the #if expression in the specified linker command file, and make sure that all the
operators are amongst the supported ones for the #if expression, such as <=, >=, >, <, !=,
==, I, &&.

4.2.12 EID_UNEXPECTED_TOKEN

Indicates that a token is found at an invalid position.

[LNK,2,6003,-1]: Error(E0001): LCF syntax: unexpected token in top level<s.
To resolve EID_UNEXPECTED_TOKEN error

Specify correct syntax for the LCF directives.

4.2.13 EID_UNKNOWN_INTRINSIC

Indicates a syntax issue with one of the intrinsics used in an expression.

[LNK,2,6003,6,../b4860/LCF/b4860.13k] : Error (E0015): LCF syntax: unknown intrinsic
' _originof'.

To resolve EID UNKNOWN INTRINSIC error
Verify the expression in the specified linker command file, and make sure all the intrinsic

names are amongst the supported ones. The supported intrinsics are documented in LCF
Expression Functions.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

116 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

4.2.14 EID_UNKNOWN_PERM_FLAG

Indicates an invalid flag.
[LNK,2,6003,25,b4860_1lcf.cmd] : Error (E0007): LCF syntax: unknown permission flag 'Z'.

To resolve EID UNKNOWN_PERM_FLAG error

Remove the invalid flag specified in the error message.

4.2.15 EID_UNSUPPORTED_ATTR

Indicates an invalid attribute for a section. The supported attribute is only '+z'".
[LNK,2,6003,39,b4860_1lcf.cmd] : Error (E0008): LCF syntax: unsupported attribute '+Y'.

To resolve EID UNSUPPORTED_ATTR error

Replace the invalid attribute specified in the error message with '+z', or remove the
invalid attribute.

4.3 Setup error messages

The linker may display setup error messages if the linker is not setup properly.

4.3.1 EID_ARCH_NOT_SPECIFIED

Indicates that the target architecture is not specified.

[LNK,3,6999,-1]1: Error (E1068): LCF configuration: the architecture was
not specified.

To resolve EID ARCH_NOT SPECIFIED error

Use the arch directive to specify the target architecture.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 117

Sewp error messages

4.3.2 EID_EXPR_CANNOT_EVAL

Indicates that the linker cannot evaluate the specified expression.

Error (E1061)
To resolve EID_EXPR_CANNOT _EVAL error

Make sure that all the symbols in the expression are defined.

4.3.3 EID_LCF_INCOMPLETE

This message occurs when the linker detects that insufficient information is passed
through the command files.

[LNK,2,6999,-1]: Error (E2020): linker command file is not complete: no
virtual memory specified.

To remove EID_LCF_INCOMPLETE message

Add the descriptions for the specified missing entities, such as sections, virtual memories,
physical memories, as specified in the message description.

4.3.4 EID_LCF_INCORRECT

Indicates a syntax or a setup phase error in the LCF.

[LNK,3,6999,-1]: Fatal (F2021): linker command file is not correct,
linker stops.

To resolve EID LCF_INCORRECT error

Make sure that all syntax and setup phase errors are resolved. Check other error messages
that accompany this error message for more information on syntax and setup phase
errors.

4.3.5 EID_NUM_CORES_GT_ARCH

Indicates that the number of cores specified is greater than the number of cores target
architecture supports.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

118 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

[LNK,3,6999,-1]1: Error (E1064): LCF configuration: 7 cores were
specified; the architecture only supports 6.

To resolve EID NUM_CORES_GT _ARCH error

Make sure that the number of cores specified is less than or equal to the number of cores
target architecture supports.

4.3.6 EID_NUM_CORES_LT_ONE

Indicates that the number of cores specified is less than one.

[LNK,3,6999,3,D:/Profiles/bl12260/workspace/test/LCF/new 1lcf/
8156 _lcf.cmd] : Error

(E1065) : LCF configuration: 0 cores were specified; the number of cores
cannot be less than 1.

To resolve EID NUM_CORES LT ONE error

Make sure that you specify at least one core in the LCF.

4.3.7 EID_NUM_CORES_NAN

Indicates that an expression is used to define the number of cores.

[LNK,3,6999,3,8156 lcf.cmd]: Error (E1066): LCF configuration:
number of cores must be a number.

To resolve EID NUM_CORES _NAN error

Use only a positive integer to specify the number of cores.

4.3.8 EID_REDEF_LCF_SYM

Indicates that a user symbol is defined multiple times in the LCF file.

[LNK,2,6999,65,../b4860/LCF/common.13k] : Error (E1075): LCF
configuration: In core c3: LCF Redefinition of symbol
'OneLcfSymbol' found. First definition found in ../b4860/LCF/common.l3k line 64.

To resolve EID REDEF LCF_SYM error

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 119

Sewp error messages

Keep only one of the user symbol definitions, and delete or temporarily comment out the
other ones.

4.3.9 EID_REDEF_MM_SYM

Indicates that one of the linker predefined symbols, based on architecture selection was
redefined in the LCF file.
[LNK,1,6999,62,../b4860/LCF/common.13k]: Warning(W1076): LCF

configuration: In core c3: Redefinition of linker predefined symbol ' M3 Setting' found.
User's definition will be used.

To resolve EID_REDEF_MM_SYM warning
Use one of the following options:

» Use the symbol value as it is provided by default by the machine model for the
selected architecture.

* Disable the usage of predefined definitions from the machine model, using the linker
Option -disable-emit-machine-model-1cf. Using this option means that the set of memory
definitions and symbols are fully in user's control.

* Continue with the machine model predefinitions, the symbol definition as set by the
user in the LCF, and making use of the linker OptiOl’l -disable-warn-redef-linker-sym
that just inhibits this type of warning message.

4.3.10 EID_REPEATED_SECTION_DIFF_OS

Indicates that one input section was placed more than one times in a couple of output
sections.

[LNK,2,6999,-1]: Error (E1071): LCF configuration: section '.intvec' was
placed more than once on task 'task0 c5' in output section
'descriptor m3 cacheable sys shared text boot'.

To resolve EID REPEATED SECTION_DIFF_ OS error

Decide which of the occurrences of the input section should remain in which output
section, and then delete the other occurence.

4.3.11 EID_REPEATED_SECTION_SAME_OS

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

120 Freescale Semiconductor, Inc.

Chapter 4 Linker Error Messages

Indicates that one input section was placed more than one times in the same output
section.

[LNK,2,6999,-1]1: Error (E1071): LCF configuration: section '.intvec' was
placed more than once on task 'task0 c5' in output section
'descriptor m3 cacheable sys shared text boot'.

To resolve EID REPEATED SECTION_SAME_OS error

Decide which of the occurrences of the input section should remain in the final layout of
the output section, and then delete the other occurence.

4.3.12 EID_TASK_REDEF_VM

Indicates that the specified virtual memory is already defined.
To resolve EID TASK_REDEF_VM error

Remove the already existing definition.

4.3.13 EID_TASKS_NOT_SPECIFIED

Indicates that the set of LCF does not provide a fasks directive that defines all system
tasks each associated with its hosting core. In such cases, the linker implicitly assumes
one task per each active core.

[LNK,0,6999,-1]1: Information(I2019): tasks not specified; default tasks
will be generated.

To remove EID_TASKS_NOT_SPECIFIED message

Define the system tasks by explicitly using the fasks directive in one of the linker
command files.

4.3.14 EID_UNSUPPORTED_ARCH

Indicates that the linker does not support the specified architecture.

[LNK,3,6999,2,1cf.cmd] : Error (E1067): LCF configuration: architecture
'msc8156' is not supported.

To resolve EID UNSUPPORTED_ ARCH error

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 121

Sewp error messages

Specify a supported architecture.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

122 Freescale Semiconductor, Inc.

g |

Chapter 5

LCF Expression Functions

This chapter describes the intrinsic functions that you use to build expressions in the

LCF.
In this appendix:

* Context-dependent intrinsic functions
* Context-independent intrinsic functions

5.1 Context-dependent intrinsic functions

This chapter describes the context-dependent intrinsic functions.

A context-dependent intrinsic function has a specific scope. For example, a context-

dependent intrinsic function is valid only in a specific section.

Table 5-1 lists the context-dependent intrinsic functions that the StarCore linker supports.

Table 5-1. Context-dependent intrinsic functions

Scope Function
SECTIONS
align
UNIT endof
originof
UNIT, ADDRESS TRANSLATION core_id
sizeof
task id

to physical

vmorg

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

123

\
4

4
A

vumext-dependent intrinsic functions

5.1.1 .

Represents a location counter. The LCF considers every occurrence of location counter as
a linker-defined symbol.

5.1.2 align

Aligns the location counter to the value that the a1ign-vaiue parameter specifies.
align(align-value)

Parameter

align-value

Alignment value (without quotes).

5.1.3 endof

Returns the virtual address where the specified output section ends.
endof ("section-name")

Parameter
"section-name"

The name of the output section (with quotes).

5.1.4 originof

Returns the original virtual address of the specified output section.
originof ("section-name")

Parameter

"section-name"

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

124 Freescale Semiconductor, Inc.

g |

The name of the output section (with quotes).

5.1.5 core id

Returns the current core 1D.

core_1id()

5.1.6 sizeof

Returns the size of the specified output section.
sizeof ("section-name")

Parameter
"section-name"

The name of the output section (with quotes).

5.1.7 task_id

Returns the current task ID.

task_1id()

5.1.8 to_physical

Returns the physical mapping to the specified virtual address.

to_physical (virtual-address)

Parameter
virtual-address

The virtual address (without quotes).

Chapter 5 LCF Expression Functions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

125

g |

vumext-independent intrinsic functions

5.1.9 vmorg

Returns the virtual address of the specified virtual memory space.
vmorg ("vm-name")

Parameter

"vm-name"

The virtual memory space (with quotes).

5.2 Context-independent intrinsic functions

A context-independent intrinsic function does not have a specific scope. For example, a
context-independent intrinsic function can be used anywhere in the LCF.

Table 5-2 lists the context-independent intrinsic functions that the StarCore linker
supports.

Table 5-2. Context-independent intrinsic functions

Scope Function

Entire LCF num_task

physical address

num_core

defined

test arch

5.2.1 num_task

Returns the total number of tasks.

num_task ()

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

126 Freescale Semiconductor, Inc.

g |

Chapter 5 LCF Expression Functions

5.2.2 physical_address

Returns the physical address of the specified symbol.
physical address ("symbol-name")

Parameter

"symbol-name"

The symbol name (with quotes).

5.2.3 num_core

Returns the total number of cores.

num_core ()

5.2.4 defined

Instructs the linker to use definition of the symbol from the input file if the same symbol
is defined in the LCF as well.

defined ("symbol-name")

Parameter
"symbol-name"

The symbol name (with quotes).

5.2.5 test arch

Returns 1 if the "arch-name" is the target architecture; returns O otherwise.
test arch("arch-name")

Parameter

"arch-name"

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 127

}{ |

vumext-independent intrinsic functions

The architecture name (with quotes).

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

128 Freescale Semiconductor, Inc.

g |

Chapter 6
LCF Expression Operators

This chapter describes the operators that you use to build expressions in the LCF.
In this appendix:

» LCF expression operators

6.1 LCF expression operators

The StarCore linker supports standard C language arithmetic, unary, binary, relational,
bitwise, and logical operators.

Table 6-1 lists all the supported operators in the descending order of priority.
NOTE

All supported operators are left-associative.

Table 6-1. LCF expression operators (listed in order of the highest to the lowest priority)

Type Operators

Unary ()

-(negation) ~(bit negation) ! (logical negation)
Binary * /5

+ -

>> <<

&

== l= > >= < <=

&&

| |
Assignment = 4= -= *= /=

?:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 129

b -

Lur expression operators

The following assignment operators can only be used with the location counter:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

130 Freescale Semiconductor, Inc.

Chapter 7
LCF Preprocessing

This chapter describes the preprocessing directives available with the StarCore linker.
In this appendix:
* LCF preprocessing

7.1 LCF preprocessing

This chapter lists the LCF preprocessing directives.
The linker supports the following preprocessing directives:

e Comments

e The include directive
e The define directive

e Conditional directives

7.1.1 Comments

Comments in the LCF can be:
* single-line, indicated by the // characters

The LCF parser ignores all tokens/statements following the // characters, until the
newline character is encountered

* multi-line, indicated by the /«... =/ characters

The LCF parser ignores all tokens/statements between the /= and the =/ characters.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 131

Lur preprocessing

NOTE

The multi-line comments cannot span across multiple files,
and must start and end in the same file.

7.1.2 The include directive

Use the inciude directive to split the LCF in multiple files. The inciuge directive lets you
manage a large LCF by splitting it into manageable small files.

Include the multiple files into one file by using this syntax:

#include "file name"

NOTE
The linker does not support recursive inclusion.

NOTE
The included files can be nested, but not more than ten levels.

7.1.3 The define directive

Use the setine directive to declare preprocessing identifiers. The preprocessing identifiers
are used with conditional directives, #if and #ifdef.

Declare a preprocessing identifier by using this syntax, where iacf indicates name of the
preprocessing identifier:

#define idtf [valuel]

The va1ue parameter is optional. However, when specified, the vaiue parameter can only
be an alphanumeric string or an integer.

7.1.4 Conditional directives

The conditional directives instruct the LCF parser to parse the LCF based on the
conditions you specify.

The listing below shows an example of how you use the conditional directives.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

132 Freescale Semiconductor, Inc.

h o
g |

4
Chapter 7 LCF Preprocessing

Listing: Using Conditional Directives

#if expression
//if the expression evaluates to true, the LCF parser parses this code

#ifdef macro

//if the macro is defined using the #define directive, the LCF parser
parses this code

#ifndef macro

//if the macro is not defined using the #define directive, the LCF
parser parses this code

#telse
//1if the expression evaluates to false, the LCF parses this code

#endif

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 133

}{ |

Lur preprocessing

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

134 Freescale Semiconductor, Inc.

Chapter 8
Linker Predefinitions

The SC3000 linker supports a number of predefined symbols and predefined physical
memory regions.

These predefined symbols and memory regions enhance the linker usability.
In this appendix:

* Predefined Symbols for MMU Descriptors
* Predefined Physical Memory Regions

8.1 Predefined Symbols for MMU Descriptors

The linker supports predefined symbols that represent the attributes of the MMU
descriptors.

The predefined symbols for MMU descriptors are divided in two categories:

* Predefined symbols for MMU program descriptors
 Predefined symbols for MMU data descriptors

These categories can further be divided into two sub-categories:

 Predefined symbols for cache policies (cacheable/non-cacheable, write through, write
back, etc), and burst size
* Predefined symbols for write access (Read/ Write permission for user or super user)

The listing below shows predefined symbols for MMU program descriptors.
Listing: Predefined Symbols for MMU Program Descriptors

//used to set M_PSDAx "Program Segment Descriptor Registers A
(M_PSDAx) "
MMU PROG_PREFETCH MISS = 0x00000080 ; // PFP[8,7]

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 135

g |

rreuefined Symbols for MMU Descriptors

MMU_PROG_PREFETCH ANY = 0x00000100 ; // PFP[8,7]
MMU PROG DEF_CACHEABLE = 0x00000020 ; // IC[5]
MMU PROG_DEF_XPERM = 0x00000004 ; // PAPS[2]

//used to set M_PSDCx "Program Segment Descriptor Registers C
(M_PSDCx) "

MMU_PROG_COHERENCY_ MODE 0x00010000 ; // PCM[16]

The listing below shows predefined symbols for MMU data descriptors.
Listing: Predefined Symbols for MMU Data Descriptors

// Data descriptors
//used to set M DSDAx "Data Segment Descriptor Registers A (M _DSDAx)"

MMU_DATA PREFETCH MISS = 0x00000080 ; // PFP[8,7]

= 0x00000100 ; // PFP[8,7]

MMU_DATA_ PREFETCH_ANY

MMU_DATA WRITE_THROUGH = 0x00000040 ; // DWP[6 =7]

MMU DATA CACHEABLE = 0x00000020 ; // SSVDM[5]

MMU DATA DEF RPERM = 0x00000004 ; // DAPS[2 =1]

0x00000002

MMU_DATA DEF_WPERM

//used to set M_DSDCx

; // DAPS[2 =1]

"Data Segment Descriptor Registers C (M _DSDCx)"

MMU_DATA_DEF BANKO_ACCESS = 0x00800000 ; // BO[31]
MMU_DATA_ DEF_STACK = 0x00080000 ; // SD[19]
MMU_DATA_DEF GUARDED = 0x00040000 ; // DG[18]
MMU_DATA_ PERIPHERAL_SPACE = 0x00020000 ; // DP[17]
MMU_DATA_COHERENCY MODE = 0x00010000 ; // PCM[16]

You can use the predefined symbols listed in Listing: Predefined Symbols for MMU
Program Descriptors and Listing: Predefined Symbols for MMU Data Descriptors to
create a set of attributes to set the attribute field in address translation entries. The listing
below shows an example.

Listing: Creating and Using Set of Attributes

SYSTEM_DATA MMU DEF_REGA

MMU_DATA_ CACHEABLE |
MMU_DATA_PREFETCH_ANY |

MMU DATA DEF WPERM|
MMU DATA DEF RPERM;

SYSTEM DATA MMU DEF C

MMU_DATA COHERENCY MODE ;

address_translation (*) {

data boot c (SYSTEM DATA MMU DEF_REGA, SYSTEM DATA MMU DEF REGC): DDR, org
_PRIVATE DATA BOOT start;

}

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

136 Freescale Semiconductor, Inc.

Chapter 8 Linker Predefinitions

Since the predefined symbols represent bit values, you can overwrite the symbols by
redefining them in the LCF.

NOTE

Overwriting the predefined symbols is not recommended.

When you overwrite a predefined symbol, the linker generates a warning message:

Redefinition of linker predefined symbol 'S' found. User's definition
will be used.

8.2 Predefined Physical Memory Regions

The linker supports the M3 and DDR predefined physical memory regions.
The listing below shows an example.

Listing: Predefined Symbols for Physical Memory Regions

physical memory shared (*) {
M3: org = M3 start, len = M3 size;

DDR: org = _DDR_start, len = DDR_size;

As the listing above shows, the linker also supports the symbols for memory size and
length. The listing below shows another example.

Listing: Predefined Symbols for Memory Size and Length

_M3_start = 0x30000000;
M3 size = (M3 Setting == O0x0f) ? 0x80000 :

_M3_Setting == Oxff) ? 0x100000 :
0x0;// M3 size
_M3_end = _M3_start + M3 size - 1;
_DDR_start = 0x40000000;
_DDR_size = 0x40000000; // DDR size (1024M)
_DDR_end = DDR start + DDR size -1;
_M3_Setting= 0x0;
M3 size = (_ M3 _Setting == 0x0f) ? 0x80000 :
M3 Setting == 0xff) ? 0x100000 :

0x0;// M3 size

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 137

A\ 4
N
rreuefined Physical Memory Regions

By default, the _M3_Setting symbol configures the M3 as L3 cache.

The listing below shows an example of how the predefined physical memory regions are
used in an address translation construct.

Listing: Using Predefined Physical Memory Region

address_translation (*) {
m3_private data c_wb (SYSTEM DATA MMU DEF_REGA, SYSTEM DATA MMU DEF REGC): M3, org =
_M3_PRIVATE start;

ddr private data _c_wb (SYSTEM DATA MMU DEF_REGA, SYSTEM DATA MMU DEF_REGC): DDR, org =
_DDR_PRIVATE_start;

}

You can disable the predefined symbols by using the -disable-emit-machine-model-1ct
command-line option.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

138 Freescale Semiconductor, Inc.

Chapter 9

Command-Line Options

This chapter describes the command-line options.

Table 9-1 lists the command-line options that sc3000-1d linker supports.

Table 9-1. Command-line options

Option

Description

disable-allow-multiple-definition

Disables the use of multiple definitions for a symbol. By
default, the sc3000-1d linker allows multiple definitions. To
enable again if disabled, use -allow-multiple-
definition.

-o2-place

Optimizes the intra-section space in case you place each
variable in its own input section using the -x11t --
one_symb_per_ sect option

-bsstable-file <output file.txts>

Lets you skip emitting SREC records for the .bss type
sections, which are not placed at the end of the segment.
When a .bss type section is not placed at the end of the
segment, the section is converted to a data type section
during the linking process. Therefore, no address and size
information for such sections exist inthe __bss_table.
When you use the -bsstable-file <output_file.txt> command to
be able to skip emitting SREC records for such sections, the
linker generates a new output file that contains the required
information. The new output file is a text file that contains a
table with the two columns:
» physical_address; represented by a 32-bit hexadecimal
unsigned integer
* size; in bytes; represented by a 32-bit hexadecimal
unsigned integer

Note that in case of multi-core architectures, such as
msc8156 , the linker generates a single output file for all
cores. The syntax for running the -bsstable-file
command is: sc3000-1d -bsstable-file

bss table file.txt filel.eln file2.eln
file3.eln libl.elb -o file out.eld

-ignore-machine-model-specification

Ignores machine model specifications, and makes it
mandatory for you to specify all information in the LCF using:

Table continues on the next page...

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

139

g |

Table 9-1. Command-line options (continued)

Option Description

» physical memory definitions, including symbols that
define the start, the end, and the sizes of the physical
memories

¢ symbols that define the MMU attributes

By default, this option is disabled because the default
behavior of the linker is to use internal machine model
information to validate physical memory definitions. You can
use this option to link applications for new architectures that
are not supported by StarCore linker. However, the
unsupported architectures must have following characteristics
similar to the original architecture:
* visibility of physical memory space
¢ usage of MMU, include maximum number of MMU
descriptors
¢ supported segment models
e maximum number of cores in case of multi-core
architecture

Note that the only accepted difference between unsupported
and supported architectures is the size of the physical
memory space, including its start and end addresses.

-L Enables the user to provide linker search paths. These paths
are used for searching the libraries provided with -1
command line option and the LCF include files.

-warnings-as-errors Forces the linker to treat all warnings as errors.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

140 Freescale Semiconductor, Inc.

Chapter 10
Sections in LCF

This chapter describes the sections in LCF and lists the sections generated by the
CodeWarrior linker and compiler.

A section is a relocatable block of code or data that is encapsulated by the SECTION and
ENDSEC assembler directives and has an associated section name and type. Although
you can create any name for a section, some section names are reserved by the debugger
and the SmartDSP Operating System. The application must not use these reserved names
(see the assembler user's guide and the corresponding SmartDSP OS documentation).

In addition, the assembler recognizes conventional ELF sections such
as .text, .data, .rodata, and .BSS.

A section can be shared by multiple tasks. For more information, refer to the topic
Understanding linker terminology.

The following rules apply when you access the symbols defined in a shared or private
section:

* symbol defined in a private section can be accessed from:
* other private sections of the same task
* a shared section, only if the accessed symbol is defined at the same virtual
address in all the tasks. In this case, the descriptors of all the cores must have the
same starting virtual address.
* symbol defined in a shared section S can be accessed from:
* any private section of the task sharing list of section S
* any shared section, whose task sharing list is included in the task sharing list of
section S

There are two types of sections:

* Core specific section:

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc. 141

The section is prefixed by the name of core of group of cores and is visible only in
the cores part of the group (For example, cO .private_data, cO".text, cO".private_text
sections are visible only for the "c0" core; cO cl.data is visible only for cores "cO"

and "c1").

* Non-core specific section

The section that is not prefixed by the name of the core (For
example, .data, .data_private, .text, .private_text sections) is visible for all cores.
These sections can be placed in the private or shared space.

The following table lists the sections generated by the CodeWarrior linker and compiler.

Table 10-1.

Sections in LCF

Section name

Usage

.att_mmu

Data section that is used in startup file/ runtime library and
system operation to set the MMU registers. File att_mmu.h
defines the data structures and variables needed for

the .att_mmu section. Placed in a private data descriptor.

.bss

Un-initialized data section that is placed in a private data
descriptor

. bsstab

Read-only data section that is used in the startup file to fill
the .bss sections with zeros. File bsstab.h defines the data
structures and variables needed for the .bsstab section.
Placed in a private data descriptor.

<space> _bss_sections_table

Read-only data section that is used in the startup file to fill
the .bss sections with zeros. Defined only for architectures
with MMU support. They are referred from the .bsstab
sections. <space> is composed out of the cores names that
share the space (e.g. for a section shared between c0 and
c1:.c0c1_bss_sections_table) Must be placed in a descriptor
shared between the cores that define <space> (e.g

secion .cOc1_bss_sections_table must be placed in shared
section between croes c0 and c1).

.data

Data section that is placed in a private data descriptor.

.default

Program section that is created by assembler for code that is
not put between "section <name>" and "endsec" directives. In
Single Instruction Multi Data (SIMD) application model, needs
to be placed in a shared program descriptor. In Multi
Instruction Multi Data (MIMD) application model, needs to be
placed in a private program descriptor.

.exception

Read-data section that is used in the startup file/runtime
library to catch the C++ Exception (Exception table). Placed in
a private data descriptor.

.exception_index

Read-only data section that is used to initialize the global
variable ROM to RAM (-mrom option from scc). File
init_table.h defines the data structures and variables needed
for the .init_table section. Placed in a private data descriptor.

Table continues on the next page...

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference

Manual, Rev. 10.9.0, 11/2015

142

Freescale Semiconductor, Inc.

g |

Table 10-1.

Chapter 10 Sections in LCF

Sections in LCF
(continued)

Section name

Usage

.intvec

Program section that is used to define the interrupt vector
code. Recommended to be placed in a shared program
descriptor, if placed in a private program descriptor, need to
set the VBA register again, as the support from runtime library
assumes that the virtual and physical address for VBA share
the same value.

os_*

These sections are the system operation sections. These
sections can be for code, data, read-only data or bss.

reserved_crt_tls

Data section that is used in reentrant runtime library. The
context local data variable is defined in this section. Placed in
a private data descriptor.

reserved_crt_mutex

Data section that is used in reentrant runtime library. The
MUTEX variables are defined in this section. These variables
are used by the critical region. This section needs to be
mentioned in a non-cacheable descriptor from MMU among
all cores. Placed in a shared data descriptor.

.rom

Un-initialized data section that is placed in a private data
descriptor.

.rom_init_tables

Read-only data section that is used to initialize the global
variable from ROM to RAM. File init_table.h defines the data
structures and variables needed for the .rom_init_tables
section. Placed in a private data descriptor.

.staticinit Read-only data section that is used in the startup file/runtime
library to initialize the C++ static objects. Placed in a private
data descriptor

text Program section that is placed in a shared program descriptor

.zdata Data section that is fitted in the fist first 64k of memory.

Placed in a private data descriptor.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

Freescale Semiconductor, Inc.

143

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual, Rev. 10.9.0, 11/2015

144 Freescale Semiconductor, Inc.

g |

Index

. 124

A

About this Document 7/
Accompanying Documentation /2
align 124

Cc

Changes Made to Support Flexible Startup
Configuration 82

Command-Line Options /39

Comments /3]

Concepts 69

Conditional Directives /32

Configuration Error Messages

Configuring the Physical Memory 77
Configuring the Virtual Memory 74
Constraints With Flexible Startup Configuration /7
Context-dependent Intrinsic Functions /23
Context-independent Intrinsic Functions /26
core_id 125

Creating an Output Section 75

D

defined 727
Defining Tasks 72
Defining Virtual Memory and Output Sections 73

E

EID_ARCH_INCOMPATIBLE_WITH_DIRECTI
VE 87

EID_ARCH_NOT_SPECIFIED 117
EID_ASSERT_FAIL 93
EID_ATTMMU_SIZE_UNSPECIFIED 93
EID_BAD_CORENAME //3
EID_COMMENT /13

EID_DEFINE /13

EID_EMPTY_EXP /13
EID_EXPR_CANNOT_EVAL /18
EID_EXPR_SECNAME_CANNOT_EVAL 88
EID_FAIL_LAYOUT 88
EID_FAIL_VIRTUAL_LAYOUT 88
EID_FORCE_VALUE_TO_1 89
EID_INCLUDE /14
EID_INCOMPLETE_EXP /14
EID_INCONSISTENT_SYMADDR 89
EID_LAYOUT_UNRESOLVED &9
EID_LCF_INCOMPLETE /18

Index

EID_LCF_INCORRECT /18
EID_LNK_SECTION_TYPE_UNKNOWN 90
EID_MATT_MAP11_ORG 94
EID_MATT_SPEC 94
EID_MATT_VI1ToPn 94
EID_MATT_VP_UNMATCH 95
EID_MATT_WX 95, 115
EID_MATTS_OVERNUMBER 95
EID_MEM_ADDR_SIZE_UNALIGN 95
EID_MEM_CANNOT_FINAL 90
EID_MEM_EMPTY 96
EID_MEM_INCONSISTENT 9/
EID_MEM_MULTI_AT 91
EID_MEM_NOT_FULLY_SPEC_RESERVE 9/
EID_MEM_OVERLAP 96
EID_MEM_PLACE_INTO_RESERVE 96
EID_MEM_REAL_OVERLAP 97
EID_MEM_REAL_OVERLAP_1 97
EID_MEM_SMALL_MB 92
EID_MEM_UNDEF 92
EID_MEM_UNDEF_ADDR 92
EID_MEM_VIR_NO_PHY 93
EID_MISSING_PAREN_EXP /74
EID_MORE_AUTO_LAYOUT 90
EID_MULTI_ATTMMU_SIZE 97
EID_NUM_CORES_GT_ARCH /18
EID_NUM_CORES_LT_ONE /79
EID_NUM_CORES_NAN /79
EID_OLD_LCF_FORMAT 115
EID_PHY_CANNOT_LAYOUT 97
EID_PHY_MEM_ADDR_SIZE 98
EID_PHY_MEM_INVALID_RESERVE_PM 98
EID_PHY_MEM_MULTI 98
EID_PHY_MEM_OVERLAP 99
EID_PHY_MEM_OVERLAPPED 99
EID_PHY_MEM_PRIVATE 99
EID_PHY_MEM_RESERVE_OVERLAP_RESER
VE 100

EID_PHY_MEM_UNDEF /00
EID_PHY_MEM_UNDEF_ADDR 700
EID_PHY_NO_RESULT 701
EID_PHY_PROBLEM_OVERSIZE 102
EID_PHY_SIZE_OVERFLOW /02
EID_PL_AFTER_CYCLE 102
EID_PL_MMATT 103
EID_PL_MULTI_MAPPING /03
EID_PL_PORG 103

EID_PREPROCESS /15
EID_PROGBIT_AFTER_NOBITS 104
EID_REDEF _LCF_SYM /179
EID_REDEF_MM_SYM /20
EID_REPEATED_SECTION_DIFF_OS /20
EID_REPEATED_SECTION_SAME_OS 720
EID_SCL_DIRECTIVE 104

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual

Freescale Semiconductor, Inc.

145

A
4

4
A

muex

EID_SEC_BAD_ATTR 105
EID_SEC_MEM_ATTR 705
EID_SEC_MEM_SIZE 105
EID_SEC_MULTI_DEF 106
EID_SEC_NO_MEM /06
EID_SEC_NOT_PLACED 707
EID_SEC_OSEC_ATTR 107
EID_SEC_PC_BACK 107
EID_SEC_SIZE_OVERFLOW 708
EID_SEC_UNDEF_MEM /08
EID_SEC_UNMATCH_ATTR 708
EID_SMALL_ATTMMU_SIZE 109
EID_SOME_CORES_WITHOUT_TASKS 109
EID_START_ADDR_EXPR 710
EID_START_ADDR_MULTI 710
EID_START_ADDR_REDEF 770
EID_TASK_OVERFLOW /70
EID_TASK_REDEF_VM /11, 12]
EID_TASK_UNDEF /11
EID_TASKS_NOT_SPECIFIED /21
EID_UNDEF_OPER_IN_EXP 716
EID_UNEXPECTED_TOKEN 716
EID_UNKNOWN_INTRINSIC 7716
EID_UNKNOWN_PERM_FLAG /17
EID_UNRESOLVE_REF /71
EID_UNSUPPORTED_ARCH /27
EID_UNSUPPORTED_ATTR 117
EID_WRONG_AT_ORG /12
EID_WRONG_VM_ORG /12

endof /124

Example for Multi-Core Architectures 24

G

General Linker Concepts 82
General Linker Tasks 40

H

How to Build Expressions in the LCF 43

How to check local symbols addresses 65

How to Create a Linker Command File (LCF) /4
How to Create Virtual Memory for Private Sections
35

How to Define and use a Custom set of Tasks /8
How to Define Physical Memory Address Space of
Target Architecture 22

How to Define Physical Memory Layout for a
Multi-core Application 26

How to Define Private Data Sections for Multiple
Cores 41

How to Define Stack and Heap Memory Area in
LCF 23

How to Define the Shared Memory 33

How to Define Unlikely Block of Code as Private
Block of Code in a Multi-core Application 58

How to Define Virtual Memory for Read-Write-
Execute (RWX) Access 38

How to Handle C++ Templates in Multi-core
Applications 64

How to Limit Code and Data Visibility at Core
Level 54

How to Make Code or Data Sections Visible to a
Subset of Cores 62

How to Make LCF Compatible for Flexible Startup
16

How to Map Virtual Memory Areas to Physical
Memory Address Space 45

How to Modify the LCF When Each Core Runs
Different Code 29

How to Place a Symbol in Another Section in LCF
62

How to Reserve Physical Memory Area 40

How to Run Multiple Tasks on the Same Core 59
How to Setup Cache 2/

How to Setup Virtual Trace Buffer (VTB) Using
LCF 20

How to Share Code and Data Partially Among
Different Cores 48

How to Specify the Content of Virtual Memory
Areas 47

How to Troubleshoot Linker Error Messages 43

Introduction //

L

LCF Expression Functions /23
LCF Expression Operators /29
LCF Preprocessing /31

Linker Configuration Concepts 69
Linker Configuration Tasks /3
Linker Error Messages 87

Linker Predefinitions /35

Linking Self-contained Libraries 79

N

num_core /27
num_task /26

(o)

originof 124

P

Parser Error Messages
physical_address 127
Predefined Physical Memory Regions 137

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual

146

Freescale Semiconductor, Inc.

h o
g |

Index

Predefined Symbols for MMU Descriptors /35

S

Scenario 1: True Private Code Model 58
Scenario 2: Code Partially Shared Among Different
Cores 58

Sections in LCF 141

Setup Error Messages 117

sizeof 125

Specifying Address Translation Construct 78
Specifying Global Directives 71

Specitying Integers 71

Specifying Symbol Names 71

Specifying Target Architecture 72

T

task_id 7125

Tasks 13

test_arch /27

The define Directive 132
The include Directive 132
to_physical 725

U

Understanding Cache Optimization in Linker 79
Understanding Flexible Segment Programming
Model 84

Understanding Flexible Startup Configuration 8§/
Understanding L1 Defense 84

Understanding LCF Syntax 70

Understanding Linker Terminology 69
Understanding Startup Environment 83

Using Naming Conventions 70

\'}

vmorg 126

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual

Freescale Semiconductor, Inc. 147

PR 4

muex

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures SC3000 Linker Reference
Manual

148 Freescale Semiconductor, Inc.

How to Reach Us: Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.

Web Support: Freescale reserves the right to make changes without further notice to
freescale.com/support any products herein.

Home Page:
freescale.com

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, QorlQ, StarCore are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
QorlQ Qonverge is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective
owners. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2009-2015 Freescale Semiconductor, Inc. All rights reserved.

Document Number CWSCLINREF
Revision 10.9.0, 11/2015

2

Z“ freescale

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1​: Introduction
	About this document
	Accompanying documentation

	Chapter 2​: Tasks
	Linker configuration tasks
	How to create a Linker Command File (LCF)
	How to Make LCF Compatible for Flexible Startup
	Constraints With Flexible Startup Configuration

	How to Define and use a Custom set of Tasks
	How to Setup Virtual Trace Buffer (VTB) Using LCF
	How to Setup Cache
	How to Define Physical Memory Address Space of Target Architecture
	How to define stack and heap memory area in LCF
	Example for Multi-Core Architectures

	How to Define Physical Memory Layout for a Multi-core Application
	How to Modify the LCF When Each Core Runs Different Code
	How to Define the Shared Memory
	How to Create Virtual Memory for Private Sections
	How to Define Virtual Memory for Read-Write-Execute (RWX) Access

	General linker tasks
	How to Reserve Physical Memory Area
	How to Define Private Data Sections for Multiple Cores
	How to troubleshoot linker error messages
	How to build expressions in the SC3000 LCF
	How to Map Virtual Memory Areas to Physical Memory Address Space
	How to specify the content of virtual memory areas
	How to Share Code and Data Partially Among Different Cores
	How to Limit Code and Data Visibility at Core Level
	How to Define Unlikely Block of Code as Private Block of Code in a Multi-core Application
	Scenario 1: True Private Code Model
	Scenario 2: Code Partially Shared Among Different Cores

	How to Run Multiple Tasks on the Same Core
	How to Make Code or Data Sections Visible to a Subset of Cores
	How to place a symbol in an another section in LCF
	How to Handle C++ Templates in Multi-core Applications
	How to Check Local Symbols Addresses
	How to use KEEP Directive
	How to reserve an MMU descriptor ID

	Chapter 3​: Concepts
	Linker configuration concepts
	Understanding linker terminology
	Understanding SC3000 LCF syntax
	Using naming conventions
	Specifying integers
	Specifying symbol names
	Specifying global directives
	Specifying target architecture
	Defining tasks
	Defining virtual memory and output sections
	Configuring the virtual memory
	Creating an output section
	Configuring the Physical Memory
	Specifying Address Translation Construct
	Linking self-contained libraries

	Understanding Cache Optimization in SC3000 Linker
	Understanding Flexible Startup Configuration
	Changes Made to Support Flexible Startup Configuration

	General linker concepts
	Understanding startup environment
	Understanding Flexible Segment Programming Model
	Understanding L1 Defense

	Chapter 4​: Linker Error Messages
	Configuration error messages
	EID_ARCH_INCOMPATIBLE_WITH_DIRECTIVE
	EID_EXPR_SECNAME_CANNOT_EVAL
	EID_FAIL_LAYOUT
	EID_FAIL_VIRTUAL_LAYOUT
	EID_FORCE_VALUE_TO_1
	EID_INCONSISTENT_SYMADDR
	EID_LAYOUT_UNRESOLVED
	EID_LNK_SECTION_TYPE_UNKNOWN
	EID_MORE_AUTO_LAYOUT
	EID_MEM_CANNOT_FINAL
	EID_MEM_INCONSISTENT
	EID_MEM_MULTI_AT
	EID_MEM_NOT_FULLY_SPEC_RESERVE
	EID_MEM_SMALL_MB
	EID_MEM_UNDEF
	EID_MEM_UNDEF_ADDR
	EID_MEM_VIR_NO_PHY
	EID_ASSERT_FAIL
	EID_ATTMMU_SIZE_UNSPECIFIED
	EID_MATT_MAP11_ORG
	EID_MATT_SPEC
	EID_MATT_V1ToPn
	EID_MATT_VP_UNMATCH
	EID_MATT_WX
	EID_MATTS_OVERNUMBER
	EID_MEM_ADDR_SIZE_UNALIGN
	EID_MEM_EMPTY
	EID_MEM_OVERLAP
	EID_MEM_PLACE_INTO_RESERVE
	EID_MEM_REAL_OVERLAP
	EID_MEM_REAL_OVERLAP_1
	EID_MULTI_ATTMMU_SIZE
	EID_PHY_CANNOT_LAYOUT
	EID_PHY_MEM_ADDR_SIZE
	EID_PHY_MEM_INVALID_RESERVE_PM
	EID_PHY_MEM_MULTI
	EID_PHY_MEM_OVERLAP
	EID_PHY_MEM_OVERLAPPED
	EID_PHY_MEM_PRIVATE
	EID_PHY_MEM_RESERVE_OVERLAP_RESERVE
	EID_PHY_MEM_UNDEF
	EID_PHY_MEM_UNDEF_ADDR
	EID_PHY_NO_RESULT
	EID_PHY_PROBLEM_OVERSIZE
	EID_PHY_SIZE_OVERFLOW
	EID_PL_AFTER_CYCLE
	EID_PL_MULTI_MAPPING
	EID_PL_MMATT
	EID_PL_PORG
	EID_PROGBIT_AFTER_NOBITS
	EID_SCL_DIRECTIVE
	EID_SEC_BAD_ATTR
	EID_SEC_MEM_ATTR
	EID_SEC_MEM_SIZE
	EID_SEC_MULTI_DEF
	EID_SEC_NO_MEM
	EID_SEC_NOT_PLACED
	EID_SEC_OSEC_ATTR
	EID_SEC_PC_BACK
	EID_SEC_SIZE_OVERFLOW
	EID_SEC_UNDEF_MEM
	EID_SEC_UNMATCH_ATTR
	EID_SMALL_ATTMMU_SIZE
	EID_SOME_CORES_WITHOUT_TASKS
	EID_START_ADDR_EXPR
	EID_START_ADDR_MULTI
	EID_START_ADDR_REDEF
	EID_TASK_OVERFLOW
	EID_TASK_REDEF_VM
	EID_TASK_UNDEF
	EID_UNRESOLVE_REF
	EID_WRONG_AT_ORG
	EID_WRONG_VM_ORG

	Parser error messages
	EID_BAD_CORENAME
	EID_COMMENT
	EID_DEFINE
	EID_EMPTY_EXP
	EID_INCLUDE
	EID_INCOMPLETE_EXP
	EID_MISSING_PAREN_EXP
	EID_MATT_WX
	EID_OLD_LCF_FORMAT
	EID_PREPROCESS
	EID_UNDEF_OPER_IN_EXP
	EID_UNEXPECTED_TOKEN
	EID_UNKNOWN_INTRINSIC
	EID_UNKNOWN_PERM_FLAG
	EID_UNSUPPORTED_ATTR

	Setup error messages
	EID_ARCH_NOT_SPECIFIED
	EID_EXPR_CANNOT_EVAL
	EID_LCF_INCOMPLETE
	EID_LCF_INCORRECT
	EID_NUM_CORES_GT_ARCH
	EID_NUM_CORES_LT_ONE
	EID_NUM_CORES_NAN
	EID_REDEF_LCF_SYM
	EID_REDEF_MM_SYM
	EID_REPEATED_SECTION_DIFF_OS
	EID_REPEATED_SECTION_SAME_OS
	EID_TASK_REDEF_VM
	EID_TASKS_NOT_SPECIFIED
	EID_UNSUPPORTED_ARCH

	Chapter 5​: LCF Expression Functions
	Context-dependent intrinsic functions
	.
	align
	endof
	originof
	core_id
	sizeof
	task_id
	to_physical
	vmorg

	Context-independent intrinsic functions
	num_task
	physical_address
	num_core
	defined
	test_arch

	Chapter 6​: LCF Expression Operators
	LCF expression operators

	Chapter 7​: LCF Preprocessing
	LCF preprocessing
	Comments
	The include directive
	The define directive
	Conditional directives

	Chapter 8​: Linker Predefinitions
	Predefined Symbols for MMU Descriptors
	Predefined Physical Memory Regions

	Chapter 9​: Command-Line Options
	Chapter 10​: Sections in LCF
	Index

