
FreeMASTER for Embedded Applications

NXP Semiconductors Document identifier: FMSTERUG
User Guide Rev. 4.4, 03/2022

Contents
Chapter 1 Introduction... 3

Chapter 2 Questions and answers...5

Chapter 3 Installation... 8

Chapter 4 FreeMASTER usage... 9

Chapter 5 Project options.. 45

Chapter 6 HTML and scripting... 55

Chapter 7 FreeMASTER low level... 135

Chapter 8 References..137

Chapter 9 Revision history...138

NXP Semiconductors

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 2 / 139

Chapter 1
Introduction

1.1 Overview
This user guide describes the FreeMASTER application developed by NXP's engineers to control an embedded application
using a graphical environment running on a PC. The application was initially created for developers of real-time motor-control
applications, but many users found it very useful for their specific development.

The FreeMASTER 3.0 application is fully backward compatible with previous 2.x and 1.x versions and even with the oldest “PC
Master” 1.0 version.

1.2 Supported platforms
The FreeMASTER desktop application can be installed on any Windows® OS-based system supported today.

The FreeMASTER 3.0 package also contains the FreeMASTER “Lite” service which may run on other operating systems (like
Linux OS) and may act as a communication interface between various control pages and target microcontrollers.

For the target microcontroller side, communication drivers supporting the latest version V4 of the FreeMASTER communication
protocol are available through the NXP MCUXpresso SDK suite, other SDKs, and also as a standalone downloadable package. An
older driver supporting previous versions of the protocol is available as a standalone package for legacy Freescale microcontroller
platforms like HCS08, S12, S12X, S12Z, ColdFire, and Power Architecture.

1.2.1 Going around UART and SCI
The FreeMASTER installation comes with several plug-in modules, enabling it to access the target hardware over alternative
communication interfaces.

The BDM Communication Plug-in enables basic memory access operations to be performed by FreeMASTER on the HCS08,
S12Z, ColdFire, and Arm® Cortex®-M platforms without any target CPU intervention. In other words, no embedded-side
communication driver is needed, and the FreeMASTER is still able to perform its basic tasks, which are reading and writing
the target memory. This plug-in supports the BDM and JTAG debugging probes like P&E Multilink, SEGGER jLink, and
Arm CMSIS-DAP.

The Packet-driven BDM Communication Plug-in can be used as an additional layer on top of the BDM plug-in to enable high-level
protocol commands like Recorder, TSA, or memory protection. This plug-in uses the JTAG or BDM interface to exchange
communication protocol frames with the target driver, rather than just accessing the data directly. The serial driver is needed to
run on the target in this case, and it should be configured properly for the packet-driven BDM interface.

The FreeMASTER-over-CAN Plug-in enables using FreeMASTER services over a CAN interface. Use this plug-in with the Serial
Driver running on the target, configured for the msCAN, FlexCAN, or other kinds of peripheral modules.

The FreeMASTER TCP/UDP Communication Plug-in enables the FreeMASTER to connect over a network protocol directly to the
targets which support Ethernet or WiFi connection and a TCP/IP stack. The first prototype of this plug-in is part of FreeMASTER
3.1.2. The sample MCU applications named "fmstr_net", utilizing the lwIP stack and wired Ethernet connection, are available for
the i.MX-RT1xxx and Kinetis K64F platforms as a part of the MCUXpresso SDK version 2.10. This support is going to be extended
in future versions to cover more platforms and a WiFi communication.

The network communication enables multiple clients (running instances of the FreeMASTER tool) to connect to a single server
(MCU board) which may cause some access conflicts. The FreeMASTER driver released in the MCUXpresso SDK 2.10 supports
multiple sessions and “feature locking”, which enable all clients to access target resources in a properly synchronized way.

Version 3.1.3 further extends the network plug-in by a communication over SEGGER RTT interface. This interface uses a JTAG
port and is supported by SEGGER J-Link debugger probes. An advantage of RTT communication is that FreeMASTER may be
used along with an active debugger session.

NXP Semiconductors

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 3 / 139

For more details about the communication plug-in modules, see the "readme" documents installed together with the latest
FreeMASTER application.

1.3 Where to find the latest version
The latest installation package of the FreeMASTER package can be found at www.nxp.com/freemaster in the “Downloads”
section. The page also contains older versions of the tool.

The target microcontroller drivers are at the same page for a standalone download. However, it is recommended to use
the driver from the MCUXpresso SDK at www.nxp.com/mcuxpresso/sdk or other kinds of SDKs provided by NXP. Visit
mcuxpresso.nxp.com and use the SDK Builder to generate an SDK package with the FreeMASTER middleware component and
example applications.

1.4 FreeMASTER features
• Graphical environment and easy-to-understand navigation

• Simple serial (UART) native connection and other options possible on selected platforms (BDM, JTAG, CAN, TCP, UDP,
SEGGER RTT, and others)

• Real-time access to C variables in a running target microcontroller application

• Visualization of real-time data in the Oscilloscope window

• Acquisition of fast data changes using the on-target Recorder

• Built-in support for standard variable types (integer, floating point, bit fields) and extended types (fractional)

• Value interpretation using custom-defined text messages

• Several built-in transformations for real-type variables

• Automatic variable address and size extraction from compiler output files

• Support for Target-Side Addressing (TSA) information about variable objects and types to be retrieved from the target
application

• Demo mode with password protection support

• HTML-based control or description pages rendered by Internet Explorer or Chromium engines

• ActiveX interface to enable VBScript or JavaScript control over embedded applications from Internet Explorer pages or
any 3rd party application that supports the ActiveX technology

• JSON-RPC interface to enable control from a Chromium page, a standalone Chrome browser, node.js scripts, Python
scripts, or any 3rd party application that supports the JSON-RPC protocol.

1.5 FreeMASTER online community
FreeMASTER community forum is available online at https://community.nxp.com/community/freemaster. Use it to post questions,
share feedback, or reach out to the development or support teams.

NXP Semiconductors
Introduction

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 4 / 139

https://www.nxp.com/freemaster
https://www.nxp.com/mcuxpresso/sdk
https://mcuxpresso.nxp.com
https://community.nxp.com/community/freemaster

Chapter 2
Questions and answers
While writing this user guide, the following questions were raised. Because the answers to these questions clarify the terms and
topics described further in the document, this section comes before the sections that are more detailed and perhaps more difficult
to understand.

2.1 Why do I need FreeMASTER?
The primary goal of developing FreeMASTER was to deliver a tool for debugging and demonstrating of motor-control algorithms
and applications. The result is a versatile tool that can be used for multi-purpose algorithms and applications. Some of the
real-world uses are:

• Real-time debugging—FreeMASTER enables users to debug applications in a true real-time fashion through its ability to
watch variables. Moreover, it allows debugging at the algorithm level, which helps to shorten the development phase.

• Diagnostic tool—FreeMASTER's remote control capability allows it to be used as a diagnostic tool for debugging customer
applications remotely across a network.

• Demonstrations—FreeMASTER is an outstanding tool to demonstrate the algorithm or application execution and variable
outputs.

• Education—FreeMASTER may be used for educational purposes. Its application-control features enable students to play
with the application in the demonstration mode, learning how to control program execution.

2.2 What does FreeMASTER do?
FreeMASTER communicates with the target system application via serial communication to read and write application internal
variables. FreeMASTER provides the following visualization features for displaying variable information in a user-friendly format:

• Variable Watch—the values of selected variables are presented in a grid in a defined text-based format. Values can be
modified directly in the grid.

• Oscilloscope—provides monitoring/visualization of application variables in the same manner as a standard oscilloscope
with a CRT. In this case, the monitoring rates are limited by the serial communication speed.

• Recorder—provides the monitoring/visualization of application variables that are changing at a rate faster than the sample
rate of the Oscilloscope. While the Oscilloscope periodically reads the FreeMASTER variable values and plots them in
real time, the Recorder runs on the target board. Variable values are sampled into a memory buffer on the board and the
sampled data is downloaded from the board to FreeMASTER. This mechanism allows a much shorter sampling period
and enables sampling and plotting of very quick actions.

2.3 Why is FreeMASTER such a great demonstration tool?
The embedded-side algorithm can be demonstrated in one block or divided into several blocks, depending on which possibility
better reflects the algorithm structure. Each block’s input parameters can be explored to observe how they affect output
parameters. Each block has a description tab to explain algorithm details using a multimedia-capable and scriptable HTML format.

2.4 What can I do with FreeMASTER if I follow the instructions?
Using the demo project included with the embedded-side implementation, it is easy to learn how to use FreeMASTER by toying
with the project’s defined blocks and parameters. The demo project enables you to understand how to control the application as
well. You can go into details of each item, check its properties, change parameters, and determine how they can be used in your
application. For a detailed explanation of the parameters, see FreeMASTER usage.

NXP Semiconductors

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 5 / 139

2.5 How is FreeMASTER connected to a target development board?
FreeMASTER requires a serial communication port on the target development hardware. The connection is made using a
standard RS-232 serial cable. On one side, the cable is plugged to the PC serial port (COM1, COM2, or other), and on the opposite
side, to the target development board's serial connector.

In addition to the RS-232 link, custom communication plug-in modules can be written and used by FreeMASTER. There are
communication plug-ins available for the CAN Calibration Protocol, JTAG Real-time Data Exchange port on 56F800E, BDM
interface on HCS08/12 devices, and so on.

The FreeMASTER version 3.1.2 and MCUXpresso SDK version 2.10 also introduce a new communication option of a direct TCP
or UDP communication with a target board.

2.6 What are all of these dialog boxes for?
In FreeMASTER usage, there are pictures with dialog boxes. These dialog boxes are used as a questionnaire, where you enter
the parameters that describe, for example, one algorithm block or application variable and its visualization.

2.7 How does a project relate to my application?
There can be many FreeMASTER projects related to a single target-board application. For example, three specific FreeMASTER
projects can work with the same board application to provide three different purposes:

• To provide information used during the debug process

• To provide service maintenance capabilities

• To learn about your application during the operator-training phase

2.8 How do I set up remote control and why would I want to?
For remote control, you need at least two computers connected via a network, one running the standalone mini-application
called FreeMASTER Remote Communication Server, and the second running the standard FreeMASTER application. The target
development board is then connected to the computer running the FreeMASTER Server.

Remote control operation is valuable for performing remote debugging or diagnostics. An application may be diagnosed remotely
by connecting the target development board to the remote PC, and then running the FreeMASTER locally with a service project
for the customer application.

2.9 What is the Watch-grid?
The Watch-grid is one of the panes in the FreeMASTER application window. It shows selected application variables and their
content in a user-friendly format. The application variables displayed are selected separately in the block property settings of each
project block.

2.10 What is the Recorder?
The Recorder is created in the software on the target development board, and stores the changes of variables in real time. You
can define the list of variables to record by the embedded-side timer periodic interrupt service routine. After the requested variable
samples are stored within the Recorder buffer on the target board, they are downloaded from the board and displayed in the
FreeMASTER "Recorder" pane as a graph. The main advantage of the Recorder is the ability to sample very fast actions.

2.11 What is the Oscilloscope?
FreeMASTER Oscilloscope is similar to a standard hardware oscilloscope. It shows graphically-selected variables in real time.
The variable values are read from the board application in real time through the serial communication line. The Oscilloscope GUI
looks similar to the Recorder GUI, except that the sampling speed of variables is limited by the communication data link.

NXP Semiconductors
Questions and answers

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 6 / 139

2.12 What is the Control Page?
The Control Page is a page encoded in the HTML tagging language and equipped with a JavaScript code. The page is displayed
inside the FreeMASTER window using a built-in Internet Explorer or Chromium browser component. The control page behaves
just like a common webpage loaded from a local computer file.

FreeMASTER users may create any control page and code a script which may communicate with the “parent” FreeMASTER to
gain access to the target MCU variables. Such a page and script may show variable values using graphical objects in the page
(like gauges or sliders) and it may contain push-buttons and other controls to control the embedded application.

2.13 Has the Control Page changed in FreeMASTER 3.0?
FreeMASTER 3.0 still supports the old Internet Explorer rendering engine and ActiveX interface which enables the JavaScript
code to access the FreeMASTER features. This should assure full backward compatibility with older projects.

However, version 3.0 brings brand new support of the built-in Chromium browser component. The Control Page may now be
also displayed in a standalone Chrome browser running on the same or even remote computer and communicate with the
FreeMASTER tool using the modern JSON-RPC protocol. Because Chromium does not support the old ActiveX technology, the
existing pages and scripts must be rewritten to use the JSON-RPC communication. On the other hand, JSON-RPC brings support
for asynchronous JavaScript programming using a Promise interface and a lot of modern coding techniques used in today’s
progressive web applications.

A standalone Chrome browser may be used as a perfect JavaScript debugger environment when developing the new-style
FreeMASTER Control Pages.

2.14 What is FreeMASTER Lite?
FreeMASTER Lite is a new software service whose first version appears in the FreeMASTER 3.0 package.

The service may be started on a computer which is physically attached to the target microcontroller board and provides a
JSON-RPC interface for remote clients to access the board. The JSON-RPC interface implemented by the service is almost
identical to that provided by the standard FreeMASTER tool, as discussed in the previous question. Unlike the full FreeMASTER
application though, the Lite service does not have a user interface. It is configured by a local configuration file and runs silently
on the user computer.

The control pages and other clients (like script applications written in node.js or Python) may connect to the service from local
or remote computers and access the target microcontroller application. The major difference from the standard FreeMASTER
application is that the Lite service also acts as a standard web server and may provide control pages and their resources to remote
clients like tablets or mobile phones.

2.15 Can I access connect to multiple target boards at once?
One running FreeMASTER instance may only be connected to a single target board. However, you can run multiple instances and
connect each of them to a different board.

When using TCP or UDP network communication, the target board may support multiple sessions and let multiple FreeMASTER
client instances to connect. All connected instances will be able to read and write the target memory, but there is a “feature locking”
mechanism which will protect the use of high-level features, such as the Recorder or Pipe Communication, so that only the first
client will be granted access. The next instance will only be able to use the same feature after it is unlocked and no longer used
by the original one.

More typically, you will need to have data from multiple targets to be collected within a single application running on a host PC.
With FreeMASTER, it is possible to create a Control Page which uses multiple JSON-RPC or ActiveX connections to collect data
from multiple running FreeMASTERs and show all of them on a single page. Each FreeMASTER instance must use a different
JSON-RPC server port to make this scenario possible.

Version 3.1.3 supports automatic JSON-RPC port allocation, so each running instance uses a different server port. A script
running in an HTML application inside FreeMASTER can detect the connection parameters. See FreeMASTER JSON-RPC
interface and the example code in section JavaScript and JSON-RPC embedded in HTML page.

NXP Semiconductors
Questions and answers

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 7 / 139

Chapter 3
Installation

3.1 System requirements
The FreeMASTER application requirements can be easily met by almost any Windows OS-based host PC available today. It was
tested with the latest versions of Windows OS (7, 8, and 10).

Operating system: Microsoft Windows 7 or later

Required software: Internet Explorer 10 or later

Hard drive space: 400 MB (additional 500 MB while installing)

Other hardware requirements: mouse, serial RS-232 or USB port for communication with the target board, network access for
remote operation

3.2 Enabling connection to the target application
To enable the FreeMASTER connection to the target board application, use the driver acquired from MCUXpresso SDK available
at www.nxp.com/mcuxpresso/sdk or downloaded from the www.nxp.com/freemaster homepage.

The recommended and fastest way to start using FreeMASTER is by trying one of the sample applications.

When using a microcontroller driver supporting the FreeMASTER communication protocol, you may see references to the new
version (v4) of the protocol as well as some older versions. The v4 protocol version has been defined in 2019 and is supported
by FreeMASTER version 2.5 and later.

FreeMASTER desktop application version 2.5 and all future versions will support the v4 protocol and will remain backward
compatible with older protocol versions.

3.3 How to install FreeMASTER
The FreeMASTER application is distributed as a standalone, single-file, self-extracting, executable file. Download the installer file
from the FreeMASTER homepage, run it, and proceed according to the instructions on the screen.

The FreeMASTER desktop application is available only for Windows OS. A Linux OS installer is also available, but includes only
FreeMASTER Lite service.

FreeMASTER Lite installation requires an activation code that can be acquired free of charge from www.nxp.com webpage. Direct
link to the FreeMASTER product license page is available on the component selection window during the installation process.
The license key can be also accessed in the FreeMASTER Lite Product Information section of the main Software Licensing and
Support page. In both cases, you should be logged into your NXP account.

3.4 Running FreeMASTER
After the installation is complete, run the FreeMASTER using an icon in the Windows OS Start menu. This runs FreeMASTER
in the default mode with all features enabled and both JSON-RPC and ActiveX servers activated and listening for incoming
connections (see more details in HTML and scripting). The FreeMASTER main executable (pcmaster.exe) may also be started
from a command line or manually created Windows OS shortcut. This enables you to specify one or more command-line options
and optionally also a project filename to open by default. Use the "/help" option to display all possible command-line options.

NXP Semiconductors

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 8 / 139

https://www.nxp.com/mcuxpresso/sdk
https://www.nxp.com/freemaster
http://www.nxp.com/freemaster
http://www.nxp.com
https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=FreeMASTER_Lite_1.1.RTM

Chapter 4
FreeMASTER usage

4.1 Application window description
When the application starts, the main window is displayed on the screen. When there is no project loaded, the welcome page is
displayed in the main pane of the window. The initial look of the main window is shown in this figure:

Figure 1. Initial application window

The welcome page contains links to the documentation and to the application help. There are also several other links
corresponding to the standard menu commands (for example, the Open project command).

In the remaining part of this chapter, the application usage is demonstrated using an example of a simple demo application, which
is a part of the MCUXpresso SDK example application.

NXP Semiconductors

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 9 / 139

Figure 2. Application window

The Project Tree pane contains a logical tree structure of the application being monitored/controlled. Users can add project
sub-blocks, Oscilloscope, Recorder, and Pipe definitions to the project block in a logical structure to form the Project Tree. This
pane provides point-and-click selection of the defined Project Tree elements.

The Detail View pane dynamically changes its content depending on the item selected in the Project Tree element. Depending on
the type of the item selected in the tree, this pane also provides several tabs with sub-pages of additional information associated
to the item.

• Control page = an HTML page created to control the target system. When Control Page is defined, it is instantly available
regardless of what item is selected in the Project Tree items to enable the user to control the board at any time.

• Algorithm block description = an HTML page or another document whose URL is defined in the selected Project Tree
item’s properties. The content of this view changes when the Project Tree item selection changes.

• Current item help = another HTML document whose URL is defined in the Oscilloscope or Recorder properties.

• Oscilloscope = a real-time graph displaying the application variables, as defined in the Oscilloscope properties.

• Recorder = a graph displaying the recorded application variables, as defined in the Recorder properties.

• Pipe = A text-based or graph-based view of FreeMASTER Pipe data.

The Variable Watch pane contains the list of variables assigned to the watch. The pane displays the immediate variable values
and enables the user to change them if it is enabled in the variable definition.

All the information related to an application is stored in a single project file with a *.pmp extension or a newer XML-formatted
*.pmpx extension. Such project file includes the communication settings and options, the Project Tree, HTML pages, real-time
chart definitions, Variable Watch interface settings, variables, commands, stimulators, and all other objects used.

The project file may be open any time to restore all objects and settings in the FreeMASTER application. The new *.pmpx format
also enables the user to save the window layout and the layout of all view panes used in the project. To enable it, select the Store
Layout in Project File item in the View menu.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 10 / 139

Figure 3. Storing window layout to a project file

4.1.1 Project Tree
When a new project is created, the Project Tree window contains an empty structure with just one root project block called “New
Project”. The user can change the properties of this block or add sub-blocks, Oscilloscopes, Recorders, or Pipes to the structure.

The properties can be changed and new Project Tree items can be added in the context menu which appears after right-clicking
the tree item to be modified.

4.1.1.1 Project block and sub-block

A project block typically covers an integral component of the application or algorithm demonstrated with FreeMASTER.
Sub-blocks may be added when you break the algorithm into multiple blocks. Each block has its own algorithm block description
page, watch variables, and commands. All of these can be defined in the Project Block Properties dialog, as shown in this figure:

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 11 / 139

Figure 4. Project Block Properties dialog—Main page

The Main page contains the following user configuration items:

• Name = the name of the project block that is displayed in the Project Tree.

• Description URL = select a description URL or a path to the *.htm or *.html files to be shown in the Detail View pane under
the Algorithm Block Description tab. With the demo application used as an example, the description page is left empty,
causing the Algorithm Block Description tab to be hidden. See Detail View for more details.

• Watch-grid setup = select the columns to display in the watch-grid (Name, Value, Unit, Period), specify the column order
using the Up and Down arrow buttons, check the grid behavior options (column resizing/swapping, row resizing), allow
format changes to the grid cells with the Toolbar (see Formatting Bar), and edit the in-place variable values by checking
the next option boxes.

The Watch page shown in the following figure selects which FreeMASTER project variables are to be watched in the context of
this project block.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 12 / 139

Figure 5. Project Block Properties window—Variable Watch page

The variables in the Watched variables list are the project variables which are currently selected for watching in the Watch-grid.
The Available variables list contains the remaining available project variables not selected for watching with the current block item
selected in the tree. Use the following buttons:

• Add/Remove = moves variables into and out of the Watched variables window.

• New = creates a new variable (see Variables).

• Clone = creates a new variable based on a copy of the selected variable.

• Edit = changes the selected variable properties.

• Delete = deletes the selected variable from the project.

• Up/Down arrows = set the display order of the watched variables in the Watch-grid.

FreeMASTER communicates with the board application by reading/writing variables and/or sending the so-called “application
commands” (see Commands). As the variable appearance in the Watch-grid can be dependent on the block selected in the Project
Tree pane, the availability of application commands can also be dependent on the selected block. The App. commands page
(shown in the following figure) sets which commands are available in the Commands pane in the context of this project block and
also enables the management of application commands.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 13 / 139

Figure 6. Project Block Properties window—App. commands page

The commands are listed in the Available commands window. Use the Add button to move a command into the Displayed
commands window and to make it available in the Commands pane. Use the Remove button for reverse operation. Use the
following buttons:

• New = creates a new command (see Commands).

• Clone = creates a new command based on a copy of the selected command.

• Edit = changes the selected command properties.

• Delete = deletes the selected command.

• Up/Down arrows = set the display order of the commands in the Fast Access pane.

Note: It is often more convenient to show all Application Commands in the Commands pane, regardless of what item is
selected in the Project Tree. There is an All App. Commands Visible item in the View menu, which causes all commands to
be visible always and unconditionally.

4.1.1.2 Oscilloscope

The Oscilloscope item in the Project Tree structure defines a real-time oscilloscope chart to be shown in the Detail View pane.
The properties window (shown in the following figure) enables you to configure the appearance and characteristics of the
oscilloscope chart.

The Main page contains these user configuration items:

• Name = the name of the Oscilloscope item that is displayed in the Project Tree.

• Description URL = specify the URL of the document or a local path to a file to be shown in the Detail View pane under the
current item help tab. This document explains the chart variables and settings to the user.

• Oscilloscope properties = common properties for all oscilloscopes variables.

• Period = Oscilloscope sampling period.

• Buffer = the number of samples kept in the chart’s local buffer. Enlarge this value to be able to scroll back to more recent
points within the chart.

• Legend location = set the visibility and location of the chart legend.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 14 / 139

Figure 7. Oscilloscope Properties window—Main page

• Grid = choose the horizontal and/or vertical grid lines to be displayed in the chart.

• Graph type = select the mode of oscilloscope operation.

• Time graph = a variable (values versus time) is displayed in the chart.

• X-Y graph = inter-variable dependencies (value versus value) are displayed in the chart.

• Graph setup (for Time graph):

— X-axis label = specify the name displayed for the X-axis.

— X-axis units = select the axis units.

— X-axis width = specify the range of the X-axis.

— Auto-scale X-axis until width is reached = scales the axis width after the Oscilloscope starts to operate when the
length of subset is shorter than the X-axis width.

• Graph setup (for X-Y graph):

— X-variable = selects the variable whose values are used for the X-axis values.

— X-axis min = sets the X-axis lower limit value.

— X-axis max = sets the X-axis upper limit value.

The Variables page is used to assign variables to be displayed in the Oscilloscope chart. The number of variables displayed is
limited by FreeMASTER driver settings in the target microcontroller application. Use the Add Variable button to add a new slot in
the chart and use the drop-down list to assign a variable into the slot.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 15 / 139

Figure 8. Oscilloscope Properties window—Variables page

The Y block is a graph element represented by one left Y axis and, optionally, also one right Y axis. The Y blocks can be drawn
separately, or overlapped in the graph. Use the Add Block button to create a new Y block separator and use the mouse to drag and
drop it within the variable list. The separator items separate groups of variables which are put to a common Y block in the graph.

• In the Y-block Left Axis frame, set the axis name and range by specifying the minimum and maximum axis value, or tick
the auto box to enable automatic minimum and/or maximum tracking. Select the Style of drawing the data subsets from
the drop-down list box.

• Tick the Draw using Right-side Axis option for any selected variable to assign the variable to the right axis of the Y-block.
With this option checked, edit the right axis properties in the Y-block Right Axis frame.

The resulting oscilloscope chart is displayed in the following figure. Note that the var8inc, var16inc, and var32inc variables were
assigned to the right axis.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 16 / 139

Figure 9. Basic oscilloscope chart

The subsequent Y-blocks may overlap in the graph, causing multiple Y axes to be displayed. Use the Overlap Y-block with
previous one option:

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 17 / 139

Figure 10. Joining two Y blocks

The resulting chart is shown in the following figure.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 18 / 139

Figure 11. Joining two Y blocks in the graph

4.1.1.3 Recorder

The Recorder item in the Project Tree structure defines a real-time recorder chart to be shown in the Detail View pane. While
the Oscilloscope periodically reads variable values and plots them in real time, the Recorder runs on the target board, reads
application variables, and sends them to the FreeMASTER tool in a burst mode. The recorder variables are continually sampled
and stored into a circular buffer in the target board application. When the trigger event is detected by the target, data samples
are counted until the number of Recorder samples is reached. At this point, data is sent to the FreeMASTER application. This
mechanism enables the use of a much shorter sampling period and enables sampling and plotting of very fast actions.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 19 / 139

Figure 12. Recorder Properties window—Main page

The Main page contains the following user configuration items:

• Name = the name of the Recorder item that is displayed in the Project Tree.

• Description URL = specify the document’s URL or local path to a file to be shown in the Detail View pane under the
current item help tab.

• Hardware Instance = identifier of the Recorder instance defined in the target microcontroller application. The application
may define multiple recorders and let each of them be sampled in different functions. The application also assigns a name
to each recorder instance, for example: Periodic-Timer Recorder, PWM-Interrupt Recorder, ADC Sampler Recorder, and
so on. Multiple recorders of different hardware instances may run simultaneously in FreeMASTER.

• Recorder properties = common properties for all Recorder variables

— Board timebase = a sampling period preset by the board application. Use the FMSTR_REC_TIMEBASE
configuration option in the target microcontroller application to define the recording period. Leave this option at 0
when the recording base changes or cannot be specified.

— timebase multiple = sets an integer multiple of the timebase to extend the sampling period used for the Recorder
operation.

— Recorded samples = the number of samples buffered for one recorded subset.

— onboard recorder memory = displays the amount of onboard application memory allocated for the Recorder
operation. Based on the memory size, recorded variables format, and the number of recorded variables, the
maximum number of points which fit in the Recorder memory is calculated and displayed. The Recorded samples'
value set should be lower than this result.

• Legend location = sets the visibility and location of the chart legend.

• Grid = chooses the horizontal and/or vertical grid lines to be displayed in the chart.

• Graph type = selects the mode of Recorder operation.

— Time graph = a variable (values versus time) is displayed in the chart.

— X-Y graph = inter-variable dependencies (value versus value) are displayed in the chart.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 20 / 139

• Graph setup (for the Time graph):

— X-axis label = specify the name displayed for the X-axis.

— X-axis units = selects the axis units.

• Graph setup (for the X-Y graph):

— X-variable = selects the variable whose values are used for the X-axis values.

— X-axis min = sets the lower limit value of the X-axis.

— X-axis max = sets the upper limit value of the X-axis.

The Variables page of the Recorder properties dialog (shown in the following figure) looks exactly the same as the appropriate
page of the Oscilloscope properties dialog. For more information about how to add variables to the Recorder chart and how to set
up the chart itself, see Oscilloscope.

Figure 13. Recorder Properties window—Variables page

In addition to the general variable list configuration, the Recorder setup is extended by the Variable Trigger Properties options.
One or more variables in the list may be configured to act as so-called “trigger” variables. When such a trigger variable value
exceeds a defined threshold, the Recorder is set to stop recording after a defined period of time elapses. During this “stopping”
period, the Recorder records the remaining data points which follow the trigger event. It also preserves the defined number of
points sampled before the trigger event – so-called “pre-trigger” samples.

The triggering is configured in the Recorder Trigger tab.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 21 / 139

Figure 14. Recorder Properties window—Trigger page

• Number of Pre-trigger Samples = specify the number of samples to save and display before the trigger event.

• Show trigger point as 0 on X axis = when checked, the X-axis origin is put to the time of the trigger event.

• Automatic Trigger Operation = specify the conditions to reactivate the trigger for repeated recording.

— Auto run mode = enables repeated recording. After detecting the trigger event, filling the buffer, and downloading the
buffer data to FreeMASTER, the trigger is automatically reactivated and new data is downloaded immediately after
the next trigger event occurs.

— Hold triggered signal = tick this box and specify how long to wait after a signal is displayed in the chart before
reactivating the trigger.

— Automatic Stop = tick this box and specify the maximum time period for detecting the trigger event. If there is no
trigger event detected within the specified time, the sampling is unconditionally stopped and the actual buffer data is
downloaded.

4.1.1.4 Array Viewer

As noted in the previous section, the Recorder requires quite sophisticated protocol logic and it must be supported by a driver
running as a part of the target application. This rules out using the Recorder when FreeMASTER connects “passively” over JTAG
or BDM interfaces, which only support direct memory read and write operations.

The Array Viewers may be viewed as a simpler and lighter replacement for the Recorder. The Array Viewer can read one or more
arrays from the target memory and display the values in a graph. Another scalar variable is used as a trigger, causing the graph
to refresh any time it changes the value. FreeMASTER can optionally clear the trigger variable automatically after displaying the
graph, providing an acknowledge to the target that it may prepare new data.

The primary benefit of the Array Viewer is that it only needs the Read Memory feature (Write in case of the trigger acknowledge).
This is the reason why it can operate over any communication interface, including the direct-access JTAG or BDM interfaces. In
many situations, displaying the whole arrays of values present in the target memory is more natural than using the Recorder which
is oriented more toward capturing scalar variables’ transitions in time.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 22 / 139

Figure 15. Array Viewer Properties

The “Main Settings” tab defines the general Array Viewer parameters:

• Name = the name of the Recorder item that is displayed in the Project Tree.

• Description URL = specify the document’s URL or local path to a file to be shown in the Detail View pane under the
current item help tab.

• Array Length = specify the number of elements that are going to be fetched from each array (viewed arrays are listed in
the Variables tab).

• Graph Legend, Grid, Type, and Setup = define the graph style in the same way as described for the Recorder in the
previous section.

The Variables tab of the Array Viewer properties dialog is the same as the one used with the Recorder and Oscilloscope. It is
used to define a list of arrays which are to be visualized. FreeMASTER does not use any special flag or option to identify a target
variable as an array base. The Array Viewer will simply offer all variables which look like array elements (whose name ends with
square brackets) to become elements that represent the whole array. For example, a variable named arr16[0] will be available to
be used as a representing base element of the arr16 array. The Array Viewer will use an address of such a representing element
as a memory base to read the whole array. The length of the array is taken from the Array Length option specified in the Main
Settings tab. The size, type, format, bit-mask, and post-processing real-time transformation formula defined in the representing
variable definition will be also applied to all elements read from the array before putting the values into the resulting graph.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 23 / 139

Figure 16. Array Viewer Properties

The Array Viewer Trigger tab defines the viewer’s trigger variable and other options, again quite similar to the Recorder object:

• Trigger mode = select the trigger condition which will cause the Array Viewer to activate, read all arrays, and display the
resulting graph. This may be one of the following:

— Off = no trigger is used. Only the manual button press or the Automatic stop time period expiration will trigger the
viewer to show data.

— Variable change = monitor the variable selected below and activate the viewer any time the variable value changes.

— Variable change with acknowledge = monitor the variable for any changes. When the viewer finishes the graph
update, the variable is set to 0 by FreeMASTER.

• Trigger variable = the variable used as a trigger, depending on the Trigger mode selected.

• Download recorded data automatically = this is enabled in most cases. It causes the graph data to be downloaded and
displayed automatically after a trigger is detected. When unchecked, the operation will wait for a button press.

• Auto run mode = when enabled, the trigger condition will be automatically re-activated after the graph is updated. This will
cause the graph to update every time when a trigger variable changes again.

• Hold triggered signal = the minimum time the graph remains on the screen before the trigger is re-activated in the Auto-run
mode.

• Automatic stop = thetimeperiod after which the viewer activates and updates the graph even without any trigger
occurrences.

The Data Capture tab enables you to store the array data to be saved in a file or a sequence of files, again in an almost identical
way to what the Recorder does.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 24 / 139

4.1.2 Detail View
The Detail View is a multi-page pane. The availability of various pages in the Detail View depends on the type of item selected in
the Project Tree.

When the control page is defined in the project Options (HTML pages), all Project Tree items enable you to control the board at any
time. The content of the algorithm block description page changes with the Project Tree item selected. When the Oscilloscope or
Recorder items are selected in the Project Tree, the current item help and oscilloscope/recorder chart pages are also available.

4.1.2.1 Control Page

The Control Page is an HTML page created for board application control. It typically contains the scripts-enhanced form or forms
which provide a user-friendly control of the embedded application. The URL of the page or the path to the HTML file with a page
source code can be specified in the project Options dialog, described in HTML pages.

The control page for the demo application used as an example is shown in the below figure. Despite its name, there are very few
“control” features utilized in this simple application. Just three buttons setting a value of the var16inc variable which controls how
much the var16 variable increments. The page also demonstrates the JavaScript scripting technique to display variable values
directly in the HTML-coded page and a more advanced gauge object. For more details about the HTML coding and scripting, see
FreeMASTER ActiveX interface.

Figure 17. Demo application Control Page

By default, the demonstration control page uses a backward-compatible option with Internet Explorer and ActiveX interfaces, so
the project works in all FreeMASTER versions (2.x and 3.x). Version 3.0 enables modern JavaScript techniques to be used with
the asynchronous JSON-RPC interface in pages rendered by the Chromium web browser engine. The same pages can be used
also in a standalone Chrome browser with an extra benefit of printing, editing, and debugging of the script code.

Using the Chromium rendering with the JSON-RPC interface is the recommended option when designing new FreeMASTER
control pages. Such pages also operate well in a standalone Chrome browser connected to the FreeMASTER Lite service.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 25 / 139

A few more sophisticated Control Page screenshots are shown below. The applications shown here use some third-party
instrumentation components, inserted into the HTML code as embedded ActiveX objects.

Figure 18. HTML control page examples

4.1.2.2 Algorithm Block Description

The Algorithm Block Description page in the Detail View pane contains an HTML page that describes the selected block
functionality. The URL or local path to the source file is specified in the block item properties dialog, described in Project block and

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 26 / 139

sub-block. This page is displayed when it is defined and when you select the appropriate block item or any of its child Oscilloscope
or Recorder items.

As the standard HTML page, this page can also contain the scripts and other controls, but it is not a common practice. All
control-specific features should be concentrated in the Control Page.

4.1.2.3 Current item help

The Current item help tab contains an HTML page which describes the Oscilloscope or Recorder selected. This page should
contain such information as definitions or use instructions. It is specified as the description URL. The use of scripting or other
control features is also not recommended on this page.

4.1.2.4 Oscilloscope/Recorder

The Oscilloscope page in the Detail View pane contains the real-time chart-representing tracked variables, as shown in
Oscilloscope. Similarly, the Recorder page contains the chart created from the recorded data, as described in Recorder.

4.1.3 Watch-Grid
The Watch-Grid pane at the bottom of the application window contains the list of watch variables. The selection of watch variables
and their graphical properties are defined separately for each project block. As a result, the Watch-Grid pane changes its contents
each time a different project block is selected.

During the definition of a variable, the variable name, units, and number format are specified. Moreover, the Formatting bar can
be used to change the graphical look of a variable, including font type and size, foreground and background color, and alignment.
See Formatting Bar for details.

The read-only variables can only be monitored. Variables with changes allowed can be altered from the Watch-Grid pane. For
details about variables, see Variables.

4.2 Variables
FreeMASTER communicates with the board application via a well-defined communication protocol. This protocol supports
sending commands from the PC application to the target board application and reading or writing its variables. All commands and
variables used in the FreeMASTER project must be specified within the project.

The Variables List dialog box, shown in the following figure, can be opened by selecting the Variables item from the Project menu. It
can also be opened from other project-development points, where it can be used to manage variables (for example, from Variables
tab in the Oscilloscope Properties dialog).

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 27 / 139

Figure 19. Variables list dialog box

To define a new variable, use the New button. This opens the Variable dialog box, where you can set the variable properties. When
you want to create a copy of an existing variable, select the original variable and press the Clone button.

The Edit button opens the same Variable dialog box for changing the selected variable properties. After pressing the Delete button,
you are asked for a confirmation of deletion and the selected variable is deleted.

The Generate button opens the interface for mass creation of variable objects based on the symbols loaded from an embedded
application executable file. It is described in Generating variables. The loading of symbol files is described in Symbol files.

Variable Settings

The Variable definition dialog has two tabs: Definition, shown in Figure 20, and Modifying, shown in Figure 21.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 28 / 139

Figure 20. Variable dialog box—Definition tab

In the Definition tab, specify the general variable properties.

• Variable name = specify the variable name as the variable identifier in the project.

• Sampling period = the time period of reading the variable value from the board when the variable is displayed in the
variable watch.

• Shows as = a format in which the variable value is printed in the watch window. Select the proper format from the
drop-down list (DEC, HEX, BIN, ASCII, or REAL).

• Variable panel = information about the variable, as it is defined in the embedded application.

— Address = the physical address of the variable in the target application memory. Although you can type the direct
hexadecimal value, it is recommended that you select a symbol name of the application variable from the drop-down
list. A symbol table can be loaded directly from the target application if a TSA feature is enabled or from embedded
application executable file in the ELF format. You can also specify expressions in the address field which involve
mathematical operations, sizeof() operator, and array-dereferencing operator [].

— Type = select the variable type, as it is defined in the target application (unsigned fixed point, signed fixed point,
floating point IEEE, fractional, unsigned fractional, or string).

— Size = specify the size of the variable, as it is defined in the target application.

— Format = extended binary format parameters must be provided to properly decode fractional types.

• Bit fields = the parameters for extracting a single bit or bit groups from a given variable.

— Shift = specify the number of bits by which the received value is right-shifted before it is masked.

— Mask = select or specify the mask value which is AND-ed with the shifted value.

— Using the Shift and Mask fields, you can extract any bit field from the received variable. For example, to extract the
most significant bit from the 16-bit integer value, you would specify 15-bit shifting and one-bit mask (0x1).

• Show = according to the value display format selected in the Show as field, this set of parameters controls how the
variable value is actually printed.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 29 / 139

— val, min, max = tick these boxes if you want the variable watch to display the immediate variable value and/or the
detected peak values. The peak values can be reset by right-clicking the variable entry in the watch window and
selecting the menu command Reset MIN/MAX.

— Fixed digits (for Show as set to DEC, HEX, or BIN) = prints numeric values left-padded by zeroes or spaces to a
given number of digits.

— Fixed digits (for Show as set to REAL) = prints floating-point numeric values with a constant number of digits after
the decimal point.

— Zero terminated (for Show as set to string) = the string values are printed only to the first occurrence of a zero
character. For string values, you can also select whether to display unprintable characters as HEX numbers (or
question marks) and a few other string-specific settings.

• Real type transformation = when the Show as format is set to REAL, you can define further post-processing numeric
transformation, which is applied to the variable value.

— Transformation type

linear: ax + b: specify the 'a' and 'b' constants of the linear transformation y = ax + b. The ‘a’ and ‘b’ parameters can be
specified as numeric values or by the name of the project variables whose immediate value (last valid value) is then used
as the parameter.

linear two points: if it is more convenient for you to specify the linear transformation by two points, rather than by
parameters 'a' and 'b', fill in the two coordinate points: (x1, y1) and (x2, y2). You can again specify the numeric values
or variable names as the parameter values.

hyp: d/(ax+b) + c: specify the parameters 'a', 'b', 'c', and 'd' of a hyperbolic transformation function.

— Unit = the name of the unit displayed in the variable watch.

— Use “Moving Averages” filter = when monitoring a noisy action, you may want to display the average value instead of
the immediate one.

— History time = the time interval from which the average value is computed.

• Text enumeration = this enables you to describe the meaning of certain variable values and assign the text label to each
of them, which is then displayed in the variable watch together with or instead of the numeric value. Use the Edit, Add, and
Del buttons to manage the look-up table with the value to text label assignment.

— Default = specify the default text label which is displayed when no matching text is found in the look-up table.

The Modifying page, shown in the following figure, contains the settings and restrictions for variable value modifications.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 30 / 139

Figure 21. Variable box—Modifying tab

• Modifying mode

— Don’t allow any modifications = the variable is read-only; all other settings on this page are disabled.

— Any value within proper limits = you can specify the Min and/or Max values. The value you enter into the watch
window is then validated with the specified limits.

— One of listed values only = when you specify a list of values, only those values are accepted in the watch window to
be written. The acceptable values can be specified in the Pre-defined values group.

All numbers from min to max = all the numbers from 'min' to 'max' by 'step' are treated as predefined values.

Text enumeration = treat all values from the text enumeration look-up table as predefined.

Other = specify any other predefined values (separated by a comma or a semicolon).

• Edit style = select the look of the edit interface for a given variable, which is displayed in the appropriate cell in the watch
window grid.

— Edit box with spin control = the variable value edit interface is displayed in the form of an edit box with two spin
arrows to increment and decrement the value.

— Combo box with pre-defined values = the variable value edit interface is displayed in the form of a drop-down list
box. The predefined values are available in the list.

— Hide edit interface at inactive cells = the variable edit interface is hidden when the appropriate cell in the watch grid
looses the keyboard focus.

• Write style = specify exactly when the new variable value is actually sent to the board application.

— Write immediately after each value changes = the modified variable value is sent to the embedded application each
time you press the spin arrow button or select a new value from the drop-down list box.

— Write after ENTER or kill focus only = the modified variable value is not sent to the embedded application until you
press the Enter key.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 31 / 139

4.2.1 Generating variables
The Generate button in the variable list dialog (Figure 19) opens the Generate variables dialog box shown in the following figure.

In this dialog, you can automatically generate the variable objects for the variable objects for one or more symbols loaded from a
connected embedded application (TSA), from its executable file (ELF), or a linker MAP file (see Symbol files for more information
about symbol tables).

Figure 22. Generating variables

The list in the dialog shows all the symbols available in the project as they are read from the current symbol file. The symbols,
for which the variables are already defined, are marked with a checkmark. Typically, you will want to create variables for symbols
without the checkmark.

• Edit symbol variable = click this button to edit a variable bound to the selected symbol (if there is one).

• Delete symbol variable = click this button to delete a variable bound to the selected symbol(s).

• Create a single variable = for all selected symbols, this option generates (creates) a new variable with the same name as
the symbol and with proper address, type, and size settings. After creation, you can use the Edit symbol variable to see
and change parameters of newly created variable objects.

• Generate array-element variables… = enables you to generate a set of variables encapsulating individual elements of an
array.

4.2.1.1 Generating array-element variables

There are two symbols representing arrays in the FreeMASTER symbol list. One symbol represents the whole array while the
other represents the first (or any other) array element.

The demo microcontroller application declares an array of short integers as follows:

short int arr16[10];

In FreeMASTER, the arr16 symbol represents the 20 bytes of memory area used by the array as a whole. In addition to that, a
symbol named arr16[0] represents the first 2-byte element of the array.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 32 / 139

Figure 23. Generating array-element variables

When defining a single variable, arr16[0] and any other indexed element (like arr16[1], arr16[2], and so on) can be used
as a variable address. Mass-creating several array element variables may be automated in the Generate Variables dialog
described in the previous section. Select an array element symbol (for example, arr16[0]) and click the Create array-element
variables… button.

A simple dialog opens and enables to specify a range of array indexes for which the variables are to be generated.

Figure 24. Generating array of variables for symbol

4.3 Commands
The list of Application Commands defined in the project can be opened by selecting the Project / Commands menu and it
is shown in the following figure. Use the New, Clone, Edit, and Delete buttons to manage the list. It is very similar to the
variables' management:

• New button = creates a new application command.

• Edit button = edits the properties of the selected application command.

• Clone button = creates a new command as a copy of the selected command.

• Delete button = deletes the selected command.

• Send button = opens the interface which enables the command to be sent to the embedded application.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 33 / 139

Figure 25. Project application commands

In the Sending application command dialog box (which shows up after pressing the Send button), specify the command
parameters (if any) and you can send the command to the embedded application. The dialog is shown in Figure 26. For each
argument, you can define the help message, which is displayed in this dialog when typing the argument value, as shown in
Figure 27.

Figure 26. Sending application command

If you want to wait for data to be returned from the board (a command result) without closing the dialog, tick the Wait for result box.
Before sending the command, you can review or edit the command definition.

When defining or editing the command, the Application Command dialog box opens. The first of the three pages of the dialog is
shown in the following figure.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 34 / 139

Figure 27. Application Command window—Definition tab

In the Definition tab, enter the Command name used in the project and specify the Code one-byte command which identifies the
command in the target board application. The command codes and their purposes, as well as the command return codes and their
purposes, come from the board application developer.

The Response time-out is the maximum time interval (in milliseconds) that FreeMASTER waits for a response from the board
application. If the embedded application does not acknowledge the command and neither responds to it before this timeout occurs,
the text entered into the Timeout error message field appears in the alert window.

Figure 28. Application Command window—Arguments tab (page 1)

The Arguments tab, shown in the above figure, is used for the definition of command arguments. The commands that do not have
any arguments have an empty argument list. The commands can have arguments to pass a value to the target board application
together with the command code.

Use the New button to create a new argument, the Delete button to delete an argument selected in the list, and the up and down
arrows to change the arguments’ order.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 35 / 139

In the Argument setup sub-page, define the selected argument parameters:

• Name = specify the argument name as it shall appear in the list and in the Send application command dialog when you
are prompted for argument values. You can also select the existing argument name from the drop-down list box.

• Type = specify the argument numeric value (integer or floating-point).

• Size = specify the argument value size (in bytes).

• Unit = specify any text to be displayed as argument units. This text is not sent to the target application.

• Dflt = enter the default value of the argument. This value is set in the argument list of the Send application command
dialog. If it is empty, type the value every time you send the command.

• Modifiable = unless this box is ticked, you are not allowed to change the default argument value in the argument list of the
Send application command dialog.

• Visible = if this box is not ticked, the argument is not displayed in the argument list and its default value is always sent to
the target application.

• Help = write any text information to be shown in the Send application command dialog when you are prompted for an
argument value.

Figure 29. Application Command window—Arguments tab (page 2)

In the Enter validation sub-page shown in the above figure, define the validation criteria for the argument value:

• Specify which values are allowed for the argument:

— Any value = any numeric value is allowed as the argument value. The value must be between the Min and Max
limits, if they are set.

— One of predefined values = only one of the values defined in the Pre-defined values fields can be supplied as an
argument value.

• Pre-defined values:

— All numbers from min to max = when this box is ticked, all numbers between the Min and Max limits (incremented by
Step) are considered to be valid for the argument value.

— Other = tick this box and specify the list of other values (separated by a comma) that are valid as the argument
value.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 36 / 139

The Return codes page, shown in the following figure, is used to specify the command return code messages. To create a return
code, enter the return code value in a hexadecimal (0x00) or decimal form in the code field at the lower left-hand side of the page,
enter the return code message in the next field, and click the New button. The return code item appears in the list. Repeat this
procedure to create all desired return codes. The Message icon may be assigned to each return code message from the panel
at the lower right-hand side of the page. Then it appears in the message dialog, together with the text of the message.

Figure 30. Application Command window—Return codes tab

Return codes can be local or global. The local return codes apply to a single command, while the global commands' return
codes are valid for all commands of the project. To switch between the local and global validity, use the Make local and Make
global buttons.

Check the Show default messages for unknown return codes box at the top of the page to pop up a standard message box with
the return code when an unlisted code returns from the board application.

4.4 Importing project files
When preparing your project, you may want to reuse the variables, commands, oscilloscope, and recorder definitions or watch
the definitions you created in previous projects. Selecting the File / Import menu command opens a dialog in which you can select
objects defined in different projects and import them to the current project.

The first dialog of the Import procedure is shown in Figure 31. After specifying the name of the original project file, select and check
the project tree items you wish to have in your current project. You can also select the target block item under which you want the
imported items to be created.

Together with the imported tree items, all referenced objects, such as variables or application commands, are also automatically
imported. Using the switch radio-buttons below the lists, specify how the referenced objects are created:

• Overwrite existing = when there is an object (such as a variable) imported with a tree item (for example, an oscilloscope),
the current project is searched for an object of the same type (variable) and with the same name. If found, it is overwritten
with the imported one.

• Bind to existing = if an object with the same name is found, it is not overwritten, but the imported tree item binds to it.

• Always create new = all referenced objects are created, even if they already exist in the current document (in such case,
the name is duplicated).

• Merge imported root item = when importing the root item, it is possible to merge its variable watch definition with the
watch of the root item in the current project. When this option is not checked, the root item is imported and inserted as a
standard block item.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 37 / 139

Figure 31. Import Project Tree Items window

Pressing the Next button opens the second part of the Import procedure, where you can select additional objects to be imported.
The second dialog is shown in Figure 32. The three check-box lists contain the objects found in the source project file:

• Variables = tick each variable you want to import. You don’t have to import variables that are referenced from the tree
items selected in the previous dialog from Figure 31; such variables are always unconditionally imported.

• App. commands = tick each application command definitions you want to import. As with the variable objects, you do not
have to tick the commands that are referenced from the block tree items selected in the previous dialog.

— Global return messages = if this box is ticked, the application commands' return codes and messages are imported
from the source document.

— Overwrite existing = the existing return codes are overwritten with those being imported.

• Stimulators = put a checkmark next to each variable stimulator you want to import.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 38 / 139

Figure 32. Import project objects

4.5 Menu description
The following sections describe the commands available in the FreeMASTER main application menu. Note that each menu
command with an icon assigned is also available in one of the toolbars for faster and more convenient access.

4.5.1 File menu

Figure 33. File menu

Selecting New Project creates a new empty project, while Open Project opens an existing project file, which has the
*.pmp extension.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 39 / 139

Save Project saves the open project into the current file, while Save As enables you to specify a new filename for the
current project.

Start or Stop Communication starts or pauses the communication. When started, the TSA symbol table and symbol file are
automatically checked for changes. If a difference is found, the user can choose to apply new address variables.

Print prints the content of a current window, when possible. Currently, printing is supported only for the Internet Explorer HTML
description and control pages. Print Setup opens the standard Print Setup dialog.

Import... enables you to import selected objects (Project Tree items, variables, commands, stimulators) from an existing project
file (*.pmp or *.pmpx file) into the current project. Importing is also possible from the FreeMASTER Lite configuration file with an
*.fmcfg extension.

Export enables to save current project settings and definition of variable objects into a FreeMASTER Lite Service configuration
file. Note that when exporting to a file which already exists, the export only modifies the relevant entries in the JSON output file,
while the other entries are preserved.

Demo Mode is a switch to enter or leave the application demonstration mode. While in the Demo Mode, you cannot modify any
important project settings.

Exit exits the application.

4.5.2 Edit menu
The Edit menu contains standard clipboard manipulation commands (Cut, Copy, and Paste).

Copy Special is enabled when the Oscilloscope or Recorder graph is active. The command enables saving the graph image to
the clipboard or to a file in a different format or size. The setup dialog is shown in the following figure.

Figure 34. Export graph image dialog

4.5.3 View menu
In the View menu, you can select whether to show or hide the Toolbar, the Formatting Bar, or the Status Line.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 40 / 139

Figure 35. View menu

• Show Control Page as a Bar enables to undock the Control Page view from the main tabbed area in the application
window and makes it a floating window, which may be optionally docked just like the Project Tree, Variable Watch, and
other views.

• All App. Commands Visible makes all Application Commands defined in the project to be always displayed in the
Commands view. When not ticked, only the Commands selected in the Project Block Properties is visible whenever a
given block item is selected in the Project Tree.

• Application Layout enables the user to save immediate layout of bars and view panes or to restore them again.

— Store Layout in Project File may be used to get the window layout saved to a project file whenever it is saved the
next time. When such a project file with layout is loaded, the stored window layout is applied.

— Undo Project File Layout Change is available to users who load the project with the window layout stored. This
option gives users a chance to revert the restored layout back to the recently used one.

When creating FreeMASTER projects targeted to other users, you should never assume that a certain window layout
that you store to a project is going to be actually applied.

4.5.4 Explorer menu
The Explorer sub-menu is available when an HTML page (Control page or other) is displayed in the Detail View. The menu is the
same for Internet Explorer and Chromium rendering modes.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 41 / 139

Figure 36. Explorer menu

The Back, Forward, and Refresh items represent the commands for the embedded web browser window. They are used to move
through previously-visited pages and refresh the page contents.

Fonts sets the font size for the current window.

4.5.5 Oscilloscope menu

Figure 37. Oscilloscope menu

• The Stop Scrolling and Stop Data commands cause FreeMASTER to stop moving (rolling) the oscilloscope chart and to
enter a mode in which the chart can be zoomed and the data series can be examined with the data cursor.

• The difference between these two commands is that Stop Scrolling stops the picture, but allows the incoming data to be
appended to the end of the chart, while Stop Data also stops the incoming data.

• Export Picture opens the Export graph image dialog, where you can specify the picture format and export the picture to
the clipboard or to a file.

• Data cursor enables you to select the style of data cursor to examine the chart values. The Next Subset sub-item selects
the next chart line to be examined. Note that the data cursor is controlled using the arrow keys on the keyboard. Use the
mouse to click any graph data point (when the cursor changes to a “hand” shape) to position the cursor.

• The Zoom sub-menu consists of zooming modes and commands. The Horizontal Zoom Only mode allows x-axis-only
zooming. The Horzizontal and Vertical Zoom allows free rectangle zooming.

4.5.6 Project menu
The Project menu items are used to access project settings, define the Variable and Command objects, and manage other
project resources.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 42 / 139

Figure 38. Project menu

• Variables opens the Variables List dialog box, where you can manage all project variables, create new variables, or
mass-generate variables from loaded symbols.

• Commands opens the Application Commands dialog box, where you can manage project commands.

• The Reload Map File command updates the physical addresses of the board application variables from the currently selected
ELF or MAP files. Note that the TSA-loaded symbols are updated automatically whenever a board is connected.

• Select Symbol File… is available when multiple ELF or MAP files are specified in Project Options. It lets you select what file
to load the symbols from.

• Resource Files... enables to review what HTML, ELF, or MAP files are referenced by the project. This may be useful before
distributing the project file to other users to verify if the resources are only accessed using relative paths. Always avoid using
absolute paths, because they become invalid when a project is opened on a different host computer.

• Options… opens the main dialog box with all project options and settings.

4.6 Toolbars

4.6.1 Main Toolbar
Main Toolbar allows quick access to the most commonly used menu commands.

Figure 39. Main Toolbar

4.6.2 Formatting Bar
Formatting Bar is available when the Watch-Grid pane, Pipe pane, or some other view that enables to format fonts and colors has
the input focus.

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 43 / 139

Figure 40. Formatting Bar

NXP Semiconductors
FreeMASTER usage

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 44 / 139

Chapter 5
Project options
To set application and project options, use the Options dialog, which can be activated by selecting Options from the Project menu.
The dialog consists of several pages, each dedicated to a different group of settings.

5.1 Communication
To set up the parameters related to the communication between the FreeMASTER application and the target board, select the
first tab, as shown in Figure 41.

• Communication

— RS-232 = the standard serial interface (3-wire RS-232 cable) is used to connect to the target application.

— Port selects the serial port on which the board is accessed. Either specify the port system name (like "COM1")
or use any word from the associated description text, as displayed next the the selection drop-down list. Some
USB-to-serial cables tend to be mapped to different COM ports each time they are connected. Using the name from
their description may help to simplify the connection process.

— Speed = select or specify the communication baud rate. This speed must correspond to the embedded application
settings.

— Press the Timeouts button to set the time-out values related to the serial communication on the host PC.

— Plug-in Module Interface = the communication with an embedded device is handled by a separate (custom) plug-in
module. The module must conform to the Microsoft COM+ specification and it must be registered in the system
registry database. See the protocol and communication library documentation for more information. A set of plugins
is installed along with the FreeMASTER application, which enables the communication over the DCOM (or other
network protocol), CAN, or a BDM/JTAG debugger module.

The drop-down list contains all plugin modules registered in the local system.

— Connect string = the plug-in module configuration is saved in a string form, internally called a “connect string”. You
can directly specify this string, or click the Build button to open the module-specific configuration dialog.

— Save settings to project file = if ticked, the communication parameters are stored within the project file during the
next Save Project operation. When the project is loaded the next time, the communication settings are restored and
used instead of the defaults.

Be aware that the communication port and options valid on your computer are not necessarily valid on other computers.
Use this option with care.

— Save settings to registry = if ticked, the settings are stored in the local computer registry database. These settings
are used by default when the application is started the next time.

NXP Semiconductors

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 45 / 139

Figure 41. Communication options

There are two communication plug-in modules distributed within the FreeMASTER installation pack that handle the
communication with the FreeMASTER Remote Server application. The difference between the two is the protocol
used to connect to the server. One uses the Microsoft DCOM remote procedure call interface, while the other uses
a standard HTTP text-based protocol. When using the DCOM-based communication with the remote server, the
security issues must be considered when connecting over the network. Both sides of the communication must have
the DCOM properly set up on the system level by running the DCOMCNFG utility. The remote server must be
properly installed also on the remote side. If you have problems connecting to the remote computer, contact your
local network administrator.

 NOTE

• Communication state = by selecting one of three options, you can set whether the communication port is opened when the
application is started or not.

— Open port at start up.

— Do not open port at start up.

— Store port status on exit, apply it on start up.

— Store status to a project file, apply it on its load = if ticked, the state of the communication port is saved to a project
file during the next Save Project operation. The state is then restored the next time the project is loaded.

• Press the Advanced button to open the dialog with communication thread priority settings. However, these settings
typically do not need to be changed.

5.2 Symbol files
When defining the project variables, it is often useful to specify the physical address of the target memory location as the symbol
name instead of the direct hexadecimal value. The symbol table can be loaded directly from the embedded application executable,
if it is the standard ELF debugging format. For other cases, the text MAP file generated by the linker may be loaded and parsed
for symbol information.

In the project, you can specify multiple files that contain the symbol table. Later, you can switch between different symbol tables
from different files by selecting the menu command Project / Select Symbol File. For example, with an embedded application

NXP Semiconductors
Project options

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 46 / 139

tested on an evaluation board, you can have two symbol files specified in the project—one for the code running from the RAM
memory and the other one for the code running from the flash.

In addition to loading the application executable or a symbol file, the feature called Target-Side Addressing (TSA)
may be enabled in the target MCU driver. The TSA enables the application programmer to define the so-called
TSA tables which describe the data types and variables to be displayed in FreeMASTER. FreeMASTER reads the
TSA tables and uses the information automatically when an MCU board is connected. The TSA information takes
a precedence if both the TSA application and the symbol file are used. A great benefit of using the TSA are safety
and security reasons. The variables described by TSA tables may be read-only, so even if FreeMASTER attempts
to write the variable, the value is actively denied by the target MCU side. The variables not described by any TSA
tables may also become invisible and protected even for read-only access.

 NOTE

The following figure shows the MAP Files tab in the project Options dialog.

Figure 42. Symbol files options

• Default symbol file = specify the name of the symbol file to be loaded by default. Press the browse button (...) to locate the
file in the standard open file dialog.

• File format = select the file format.

— Standard binary ELF = choose this option for an ELF file.

— Hiware MAP File 509 = choose this option for the HiWare Smart Linker v5.0.9.

— Define new Regular Expression-based parser = choose this option to define a new text file parser based on the
regular expression pattern matching; see Regular expression-based MAP file parser.

• List of valid symbol files = the list of symbol files defined in the project. Use the New and Del buttons to manage the list.

• View = view the symbol table parsed from the selected file.

The paths to symbol files may be specified in several forms. It can be the absolute path on the local disk, the path
relative to the directory where the project file is stored, or the path relative to the current “pack” directory. The
latter is most suitable for project deployment to other computers; see Packing resource files into a project file for
more information.

 NOTE

NXP Semiconductors
Project options

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 47 / 139

• The On Load panel options control the actions performed with the symbol files after the project is loaded:

— Let the user select the symbol file = when ticked, you are prompted to select the initial symbol file when the project is
loaded.

— Synchronize variables each time the map file loads = when ticked, the variables are automatically updated by new
symbol addresses after the project is loaded.

— List errors = when this box is checked, all the variables using the symbols missing in the loaded symbol table are
listed in a special dialog box. You can edit the corrupted variables or select another symbol file.

5.2.1 Regular expression-based MAP file parser
When your compiler or linker does not support the ELF output format and the MAP file cannot be parsed by the built-in HiWare
parser, describe the internal MAP file structure using the regular expression pattern.

It is out of the scope of this document to describe the theory of regular expression pattern matching. However, a simple example
may help to understand the strength of this technology. In the example, we define the parser of the xMap files generated by the
Compiler and Linker for the NXP DSC56F800E processor family.

The example of the xMap line, which describes the global symbol length, may look like this:

00002320 00000001 .bss Flength (bsp.lib pcmasterdrv.o)

00002321 00000001 .bss Fpos (bsp.lib pcmasterdrv.o)

Firstly, describe the line format by the regular expression pattern. The pattern

[0-9a-fA-F]+\s+[0-9a-fA-F]+\s+\S+\s+F\w+

can be read as follows:

• There are one or more hexadecimal digits: [0-9a-fA-F]+

— followed by one or more spaces (or another white characters): \s+

— followed again by one or more hexadecimal digits: [0-9a-fA-F]+

— followed again by one or more white characters: \s+

— followed by a set of any non-white characters: \S+

— followed by one or more white characters again: \s+

— followed by the character F

— followed by one or more alphanumeric (word) characters: \w+

To identify the sub-patterns that describe the symbol parameters, put them in round parentheses:

([0-9a-fA-F]+)\s+([0-9a-fA-F]+)\s+\S+\s+F(\w+)

Now identify the sub-pattern indexes for individual symbol values:

• The first sub-pattern corresponds to the symbol address (index 1).

• The next sub-pattern corresponds to the symbol size (index 2).

• The next sub-pattern corresponds to the symbol name (index 3).

Supply all the parameters prepared above in the regular expression dialog, as shown in the following figure.

NXP Semiconductors
Project options

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 48 / 139

Figure 43. Regular expression-based xMap file parser

By pressing the Test your regular expression button, the dialog expands vertically and the test panel is displayed, as shown in the
following figure. Cut and paste a single line from the xMap file to the Input line field and press the Execute reg. expression button:

Figure 44. Testing your regular expression

The Symbol name, Symbol address, and Symbol size output fields shall be displayed, as shown in the above figure. If you get
errors, make sure that you have Internet Explorer 5.5 (or higher) installed on your machine for the regular expression functionality.

To finish the example, set the One-bit shifting of the Size value in the Symbol post-processing parameters. This is done because
the symbol size is printed in word units (16-bit) in the xMap file, but this value is needed in bytes.

All created regular-expression parsers are automatically saved to the project file and to the local computer registry
database for future use.

 NOTE

5.3 Packing resource files into a project file
The project often uses data from many different files. For example, each HTML page displayed for a project tree item or each
image used on such page is stored in a separate file. This may cause problems when you want to deploy or distribute a project
to different computers. Using the Pack Dir options shown in the below figure, you can choose to pack the resource files into the
project file when it is saved.

NXP Semiconductors
Project options

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 49 / 139

Figure 45. Pack directory options

To pack the resource files into the project file, put all these files into one directory or a directory structure and specify the path to that
directory in both fields of the Pack Dir page. By pressing the browse button (...), you can find and select the directory in the standard
open directory dialog. The path to the directory should be specified by a path relative to the directory where the project file is saved.

When the project with the packed files is loaded by the application the next time, the original path, entered in the second entry
of the Pack Dir page, is checked. If it is missing, or if one of the files in it differs from the files originally packed in the project, a
temporary directory is created in the system temporary space and the packed files are extracted into that directory. The temporary
directory is then set as the default one for the rest of resource files. It is very important to specify the FreeMASTER paths to the
HTML files or to the symbol file relative to the directory specified in the Pack Dir dialog.

The Pack Dir page displays the path to the temporary directory if it is currently in use, but it still remembers the path to the original
resource directory and checks its existence any time the project opens in the future.

NXP Semiconductors
Project options

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 50 / 139

Figure 46. Pack directory options in use

5.3.1 Resource files manager
Before deploying a complex project that uses many external resources or symbol files, it is worth verifying that all file paths are
correct and in the proper relative format. The path-relative format must in turn be properly evaluated when the files are extracted
to a temporary directory on different hosts.

The resource files manager can be activated in the Project / Resource Files menu. The typical look of the window is shown in the
following figure.

NXP Semiconductors
Project options

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 51 / 139

Figure 47. Resource files manager

The dialog displays all external files directly referenced by the project. Note that there can also be other files (for example, images)
referenced indirectly from the HTML pages. You should verify whether the files lie in the pack directory and whether the HTML
pages point to them using a relative path.

• The first list in the dialog contains the files located in the current pack directory. These files are properly stored in the
project file when it is saved. On other hosts, the files are extracted to a temporary space (if needed).

• The second list in the dialog contains the files that are successfully used by the project but located outside the pack
directory. Their file names are specified either by the absolute path or by a path relative to the directory where the project
is stored. However, the files are not automatically stored in the project file and you must deploy them manually.

• The third list contains references to non-existing files.

• "Pack” directory setup = pressing this button opens the project Options dialog, where you can redefine the pack directory
location and other settings.

• Go to reference = opens the dialog in which the selected file is referenced. This can be either the Properties dialog for a
project tree item or the project Options dialog for the shared HTML or symbol files.

5.4 HTML pages
The project uses HTML pages to display the description and controls related to the selected item in the project tree. The paths or
URLs of the pages are specified in the property dialog for each tree item. In the HTML Pages options tab (shown in the following
figure), you can specify the paths to common HTML files, displayed in the application main window.

NXP Semiconductors
Project options

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 52 / 139

Figure 48. HTML pages options

Set the Control page URL to the name of the HTML file used as a general control page in the FreeMASTER project. The control
page is accessible all the time from the main FreeMASTER window. It is typically used to host a custom user interface related to
the target microcontroller application.

The control page typically contains graphical control elements (like push-buttons or gauges) and also embeds the JavaScript code
that implements the elements' logic and behavior. There are two HTML rendering engines supported by FreeMASTER:

• Internet Explorer = this option is backward compatible with older FreeMASTER releases. Scripts should use the ActiveX
technology to communicate with the FreeMASTER application object and get access to the target microcontroller resources.

• Chromium Embedded Framework = this option is available since FreeMASTER 3.0 and uses an embedded Chromium view
to render the HTML pages and run the JavaScript code. Use the JSON-RPC protocol to communicate with the FreeMASTER
application object.

See the related information in Control Page and HTML and scripting.

5.5 Demo mode
An important part of the FreeMASTER capabilities is the demonstration and description of the target board application. It is
essential that the demonstration project, when prepared, is not accidentally modified. To prevent modification, the project’s author
can prevent the project from changes by switching it to the Demo Mode. See the following figure for details of the Demo Mode tab.

NXP Semiconductors
Project options

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 53 / 139

Figure 49. Demo mode options

When the Enter the Demo Mode... box is checked, the demo mode is activated automatically after the project is loaded. The demo
mode can be started manually by selecting Demo Mode from the File menu. The exit from the demo mode can be protected by
a password.

In the demo mode, you cannot change the Project Tree item properties, add or remove the tree items, nor change any project
options, except for those in the communication page.

When you want to leave the demo mode, the warning message shown in the following figure appears and you are prompted for
the password if the demo mode is password-protected.

Figure 50. Exit demo mode confirmation dialog

NXP Semiconductors
Project options

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 54 / 139

Chapter 6
HTML and scripting
FreeMASTER version 2.x renders all HTML pages using the standard Microsoft Internet Explorer component. FreeMASTER 3.0
adds an option to switch from Internet Explorer to the Chromium rendering engine.

Both ways enable the user to create HTML pages extended by JavaScript code which may access the FreeMASTER features.
Using this approach, a powerful user interface with custom logic, data processing, and graphical controls can be created. This
user interface may be hosted directly inside the FreeMASTER main window, so it appears as an integral part of the FreeMASTER
application to the end users.

Choose Internet Explorer based the following criteria:

• It is backward compatible, so it works with older FreeMASTER versions (2.x) as well.

• It supports ActiveX objects, so it is the only option to use when your graphical design relies on third-party objects.

• The communication with the FreeMASTER ActiveX interface is synchronous, which simplifies the script design. On the
other hand, synchronous waiting for the ActiveX method completion may cause the user interface to be less responsive.

Benefits of the Chromium engine:

• Supports asynchronous JavaScript programming and other modern scripting technologies.

• Communicates with both FreeMASTER 3.0 and FreeMASTER “Lite” using the JSON-RPC protocol and a fully
asynchronous promise-like interface.

• Pages can be developed and tested in a standalone Chrome browser, supported by a powerful JavaScript debugger.

The following text is recommended primarily for Control Page authors experienced with the HTML page design and scripting.

6.1 Special HTML hyperlinks
When creating HTML pages that are to be displayed in the FreeMASTER environment, you can use special hyperlinks to let the
users navigate in the project tree or to invoke selected application commands.

• "HREF=pcmaster:selitem:itemname:tabname" selects a project tree item named "itemname", displays the selected tab in
the detail view, and sets the other view content exactly as if you had selected the item manually.

• The valid "tabname" identifiers are:

— ctl = Control Page tab

— blk = Algorithm Block Description tab

— info = Current Item Help tab

— osc= Oscilloscope tab

— rec = Recorder tab

The application command invocation hyperlinks include:

• "HREF=pcmaster:cmdw:cmdname(arguments)" sends the "cmdname" application command and waits until the target
application processes it.

• "HREF=pcmaster:cmddlg:cmdname(arguments)" displays the “Send Application Command” dialog for the "cmdname"
application command. Any specified argument values are filled into the appropriate fields in the dialog.

• "HREF=pcmaster:cmd:cmdname(arguments)" sends the "cmdname" application command. The command argument
values can be specified in round brackets. An argument with a defined default value may be omitted.

NXP Semiconductors

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 55 / 139

6.2 FreeMASTER ActiveX interface
The FreeMASTER object is registered in the system registry during each start of the FreeMASTER application. Its class ID
(CLSID) is:

{48A185F1-FFDB-11D3-80E3-00C04F176153}

The registry name is " MCB.PCM.1 "; the version-independent name is " MCB.PCM ".

The FreeMASTER functions can be called from any HTML code via the FreeMASTER ActiveX control. Insert the FreeMASTER
ActiveX control into your HTML code by the Class ID number (see the example below) and set the dimensions (height and width)
to zero to make the object invisible.

<object name="freemaster" width="0" height="0" classid="clsid:48A185F1-FFDB-11D3-80E3-00C04F176153">

The FreeMASTER ActiveX control provides these functions:

• GetAppVersion retrieves the application version.

• OpenProject opens a specified project file.

• SaveProject saves the current project or opens a “Save As” dialog.

• StartStopComm, StartComm, and StopComm open or close the communication port.

• IsCommPortOpen and IsBoardDetected can be used to determine the connection status.

• GetHtmlDocument retrieves the HTML DOM object from the FreeMASTER window.

• SendCommand sends a FreeMASTER-defined command.

• SendCommandDlg opens a command dialog and sends a FreeMASTER-defined command.

• ReadVariable and ReadMultipleVariables read a value from FreeMASTER-defined variables.

• WriteVariable and WriteMultipleVariables write a value to FreeMASTER-defined variables.

• ReadMemory and "ReadMemoryHex" read a block of memory from a specified location.

• "ReadIntArray", "ReadUIntArray", "ReadFloatArray", and "ReadDoubleArray" read numeric arrays from a specified
location.

• "WriteIntArray", "WriteUIntArray", "WriteFloatArray", and "WriteDoubleArray" write numeric arrays to a specified location.

• "ReadIntVariable", "ReadUIntVariable", "ReadFloatVariable", and "ReadDoubleVariable" read a single value from a
specified location.

• "WriteIntVariable", "WriteUIntVariable", "WriteFloatVariable", and "WriteDoubleVariable" write a single value to a specified
location.

• GetCurrentRecorderData retrieves the data currently displayed in the recorder chart.

• GetCurrentRecorderSeries retrieves one data series from the currently displayed recorder chart.

• StartCurrentRecorder starts the currently displayed recorder.

• StopCurrentRecorder stops the currently displayed recorder.

• GetCurrentRecorderState retrieves the current recorder status code and text.

• LocalFileOpen and LocalFileClose enable you to open and close a local file for temporary text-based storage.

• LocalFileWriteString writes text-based data to a file.

• LocalFileReadString reads text-based data from a file.

• GetSymbolInfo, GetStructMemberInfo, and GetAddressInfo retrieve information about symbols in the target application.

• DefineSymbol and DeleteAllScriptSymbols manipulate the symbolic information on top of the ones provided by the target
application.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 56 / 139

• SubscribeVariable and UnSubscribeVariable enable the script to be notified when a variable value changes.

• SelectItem selects the project item in the FreeMASTER project tree view.

• DefineVariable, DefineOscilloscope, DefineRecorder, DefinePipe, DefineArrayViewer, and DefineWatchBlock are complex
functions which can be used to dynamically create or modify FreeMASTER variable objects or Oscilloscope/Recorder
graphs.

• "GetVariableInfo", "GetRecorderDefinition", "GetOscilloscopeDefinition", "GetPipeDefinition", "GetArrayViewerDefinition",
"GetWatchBlockDefinition" can be used to retrieve complete information about the project items.

• IsBoardWithActiveContent, EnumHrefLinks, and EnumProjectFiles can be used to enumerate the TSA Active Content
items. Refer to the FreeMASTER Serial Driver documentation for more information about the TSA and Active Content.

• PipeOpen, PipeClose, "PipeWrite", and many other "Pipe" functions are used for lossless communication with the target
board.

• EnumVariables and EnumSymbols enumerate the variables and symbols loaded in the current project.

• GetDetectedBoardInfo retrieves information about the connected board.

• GetCommPortInfo retrieves information about the current communication port settings.

• FireCustomEvent sends a notification event to all connected ActiveX and JSON-RPC clients.

These callback events are implemented:

• OnRecorderDone is called when the currently-selected recorder finishes downloading the new recorder data.

• OnCommPortStateChanged is called when the communication port status changes.

• OnBoardDetected is called when a valid connection to a target board is established.

• OnVariableChanged is called when a subscribed variable changes.

6.3 FreeMASTER JSON-RPC interface
When the FreeMASTER application starts, it initializes the JSON-RPC server listening on port number 41000. The server accepts
plain TCP or WebSocket connections from the clients. If more FreeMASTER instances are started simultaneously, ports 41001
to 41016 are automatically used unless you specify the port manually using the "/rpcs" command-line option when running
the executable.

There are many ways how the client script connects and how it calls the JSON-RPC methods remotely. The way recommended
and demonstrated in the default FreeMASTER examples uses a JavaScript object wrapping the functionality of a popular
"simple-jsonrpc-js" implementation available on GitHub. The wrapper object is named PCM (for sentimental and legacy reasons)
and it is implemented in the "freemaster-client.js" file available in the FreeMASTER installation folder. This file is also instantly
available to all clients of the FreeMASTER Lite web server.

With the PCM wrapper object, calling the remote JSON-RPC methods is as simple as calling general asynchronous JavaScript
methods locally with standard arguments. All the methods available in the legacy ActiveX interface are also available in the PCM
objects with the same order of parameters.

Establish the JSON-RPC connection by calling:

rpcs_addr = "localhost:41000";
pcm = new PCM(rpcs_addr, on_connected, on_error, on_error);

Pass the "on_connected" and "on_error" callback methods, which handle successful connection or errors. The "rpcs_addr"
parameter should be set to "localhost:41000" unless the server port is overridden by the "/rpcs" command-line option.
FreeMASTER version 3.1.3 adds a new possibility to retrieve the valid address from a JScript object named "FreeMASTER",
which is defined by including a special script file:

<!-- Get the information object named "FreeMASTER" -->
<script type="text/javascript" src="fmstr://localapp/info.js"></script>

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 57 / 139

The statement fetches a virtual "info.js" file from the current "hosting" FreeMASTER instance of the Chromium HTML rendering
engine. Be aware that this file is only available inside a running FreeMASTER application. When an HTML/JScript code runs
standalone in a web browser and for backward compatibility, always use the default value of "localhost:41000".

By default, the PCM object only wraps the methods that are common to both FreeMASTER and FreeMASTER Lite servers. To
access the “extra” methods, which only apply to a full FreeMASTER application (for example, ActivateWindow, SelectItem, Exit,
and so on), call the EnableExtraFeatures() method first. Note that using any extra methods usually breaks the functionality when
used with the FreeMASTER Lite service.

Any result data returned by the JSON-RPC methods are accessible in the "data" member of the response object. The format of
the data member depends on the method called. See ActiveX and JSON-RPC methods for more details. The response object
returned by the FreeMASTER desktop application may also contain the "xtra" object member with additional information that is
not part of the FreeMASTER Lite responses.

For example, there is a basic JSON-RPC method to retrieve the variable value:

promise = pcm.ReadVariable("variable_name");

When the read is successful, both the FreeMASTER and FreeMASTER Lite servers return a response object (a so-called
"Promise" object), which resolves to the "data" member with the returned variable value. The FreeMASTER desktop application
also returns the "xtra.formatted" value with the same value, formatted according to the variable object settings. See the code
example in JavaScript and JSON-RPC embedded in HTML page for more information about using the JSON-RPC interface.

6.4 FreeMASTER Lite
FreeMASTER Lite was first introduced with FreeMASTER 3.0. It is a service-like application that can be started on the host
computer to enable the remote access from various clients to the target microcontroller board. Clients access the service using
the JSON-RPC protocol with an API that is almost the same as the one provided by the desktop FreeMASTER application. The
major difference from the desktop application is that FreeMASTER Lite does not have any user interface. It is configured using
a local JSON configuration file which specifies the physical connection parameters, describes the ELF file to load symbols from,
and also defines the Variable objects that are accessible to clients. When the service starts, it runs silently on the host computer
and listens for incoming client connections.

FreeMASTER Lite also runs a classic web server which supplies HTML pages and other local files to remote clients. This radically
simplifies the deployment of graphical control pages to mobile devices like phones or tablets. The mobile device simply starts a
web browser and opens the internet address of the computer that runs the FreeMASTER Lite service.

Here are typical FreeMASTER Lite use cases:

• A back-end engine of the FreeMASTER Control Page applications running solely in a web browser; either on a remote mobile
device (like a tablet) or on the same computer using a localhost connection.

• A service that enables standalone, custom, third-party applications to connect to the target microcontroller application. Any
application that supports scripting and network communication can connect to FreeMASTER Lite. For example, Matlab,
LabView, and others.

• A service that enables custom JavaScript or Python scripts to connect to a microcontroller board. This may be useful for
testing scripts and other automated environments.

• It provides FreeMASTER connectivity on Windows and Linux operating systems.

6.4.1 FreeMASTER vs. FreeMASTER Lite
The following list highlights the major differences between FreeMASTER Lite and the desktop FreeMASTER application.

FreeMASTER Lite is cross-platform.

• The desktop FreeMASTER only runs on the Windows operating system.

• FreeMASTER Lite runs on Windows and Linux operating systems.

The JSON-RPC API is similar, but not identical.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 58 / 139

• Both APIs can be accessed using the JavaScript PCM wrapper object which encapsulates the JSON-RPC remote calls.
See the "freemaster-client.js" file in the FreeMASTER installation for the implementation details. This file is also served by
FreeMASTER Lite's built-in web server.

• The desktop FreeMASTER has additional methods which only make sense in this application. For example, SelectItem,
OpenProject, or Exit enable the manipulation with the user interface and are not available in FreeMASTER Lite.

• The desktop FreeMASTER has also more information about the "visual" aspect of variables as defined by the user (like
print formatting, value transformation, or value-to-text enumeration). Therefore, reading a variable by FreeMASTER Lite only
returns the variable value. The desktop FreeMASTER also returns an 'xtra' object with additional information that may be the
formatted text-based value.

• Unlike the Lite service, the desktop FreeMASTER runs its own background processing and may provide its own timing. This
enables the variable Stimulator to be started using a JSON-RPC call after which the stimulator keeps running independently.
With FreeMASTER Lite, the client application handles the whole periodic or time-based processing.

• Similarly, the desktop FreeMASTER monitors the connection to the target board and generates the so-called events. The
events are asynchronous JSON-RPC notification messages generated by the server and handled on the client side. The
events are: OnBoardDetected, OnRecorderDone, OnVariableChanged (for subscribed variables), and so on.

• The PCM wrapper object exports the FreeMASTER Lite-compatible API by default. The extra desktop functions must be
explicitly enabled by calling the EnableExtraFeatures() method of the PCM wrapper object.

6.5 ActiveX and JSON-RPC methods
The following sections may be used as a reference of the FreeMASTER ActiveX methods and their counterparts from the
JSON-RPC API.

The full reference of the JSON-RPC methods supported by the FreeMASTER Lite server is available separately in a form of
hypertext document generated automatically from the script source code. See the html/index.html file in the FreeMASTER Lite
installation folder for more details. You can also launch the service executable either from the installation folder or created shortcut
to automatically open the mentioned page in the system default web browser.

Note that the method declarations described below use the input and output parameters as well as the return value. Such
a full declaration is only usable in the VB script, Visual Basic for Applications, and other languages that support returning
by-reference "output" parameters. Other languages (like JavaScript) only get the general return value, but they cannot get the
output parameter values.

There are two ways to access the output values:

• When using the ActiveX interface, the output parameters are accessible after the call returns by using the LastResult,
LastRetMsg, and other LastXXX properties of the main interface object.

• When using the JSON-RPC interface, the response object contains the "data" return value and also the "xtra" object with
additional members containing the remaining output values. Note that the "xtra" object is not returned by the FreeMASTER
Lite server.

The true value returned by the methods of the PCM object, which wraps the JSON-RPC calls, is a standard
Promise object representing a remote call. If a remote call is successful, the Promise object resolves the response
object with the "data" and "xtra" members. To signal a successful execution, the response object also contains the
"succeeded" member set to the "true" value. When the remote call fails due to communication issues or when the
response object contains "succeeded" set to "false", the Promise object is rejected.

It is strongly recommended to study rich Internet sources to become familiar with the Promise interface and
asynchronous JavaScript programming concepts before starting to code scripts using the JSON-RPC interface.

 NOTE

The following API reference pages contain these markings in the method prototype specification:

• [in] - denotes the required input parameter.

• [in, optional] - denotes an optional input parameter; the value may be omitted when calling a method.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 59 / 139

• [out] - denotes the by-reference output parameter. See the "Outputs" tables in the below text to determine how to access the
output value. All output parameters are also optional.

Each method is also marked with these compatibility signs:

• ActiveX - when checked ✔, the method is available in the ActiveX interface.

• JSON-RPC - when checked ✔, the method is available in the JSON-RPC interface implemented by the desktop
FreeMASTER application. Use the PCM object which wraps the JSON-RPC remote calls using the freemaster-client.js file.

• Lite - when checked ✔, the method is available in the JSON-RPC interface implemented by FreeMASTER Lite. When not
checked, or marked with ✘, the function is not supported by FreeMASTER Lite. Also, when using the desktop application, you
must call the EnableExtraFeatures method to enable access to this function.

6.5.1 GetAppVersion
Prototype:

GetAppVersion([out] retMsg)

Description:

Gets the FreeMASTER application version.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite - APIs not fully compatible

Inputs:

None

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value (ActiveX
only)

LastResult response.xtra.retval Version number as a scalar numeric value.

retMsg LastRetMsg response.data Version number formatted as a text. This value
is returned by the JSON-RPC method.

6.5.2 OpenProject
Prototype:

OpenProject ([in] project)

Description:

Opens the specified project file.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

project String containing the project file path.

Outputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 60 / 139

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Boolean return value, true if project open
was successful.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.3 SaveProject
Prototype:

SaveProject([in] saveAs);

Description:

Saves the current project or opens a “Save As” dialog.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

saveAs When false, the project is silently saved to the last known path. When true or when the project is
new, a SaveAs dialog opens.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned when the
project is saved.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.4 StartStopComm
Prototype:

StartStopComm ([in] start)

Description:

Opens or closes the FreeMASTER communication port selected in the currently loaded project.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 61 / 139

Argument Description

start Boolean value

• true - start communication

• false - stop communication

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Boolean return value if port operation
was successful.

Remarks:

The FreeMASTER Lite interface contains distinct StartComm and StopComm methods which are also recommended to use with
the desktop FreeMASTER application in new designs.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.5 StartComm
Prototype:

StartComm ([in] name)

Description:

Opens the FreeMASTER communication port identified by the name or by the full connection string. This function should be used
instead of StartStopComm. It is useful when working with FreeMASTER desktop application when a calling script must specify all
parameters of the new connection instead of using the settings configured within the FreeMASTER project.

The connect string should be in a form of “RS232” or {CLSID} in curly brackets followed by a semicolon-delimited
optional arguments.

The following short names can be used instead of full plug-in CLSID identifiers:

 "DAP" {1BB3C904-F1F4-4652-92EE-368716FE1D10}
 "EONCE" {5A129680-897E-4014-916D-9B1FE13DE156}
 "PEMICRO" {225E034C-1AA6-4EC5-9A6C-A9FA9E890373}
 "JLINK" {8C575DB3-9769-4B66-AB60-C83CEA683E01}
 "ISYSTEM" {80F17965-EDBD-41F1-9182-3C44E04E5794}
 "PDBDM" {30AB7AA1-493A-4DD7-9509-C9C91EFFF0FD}
 "CAN" {C10A92C3-7D47-4FDC-94B6-64B8E5C85E01}
 "LIN" {C10A92C4-7D47-4FDC-94B6-64B8E5C85E01}
 "NET" {6D13CD9D-9F2D-4066-B655-45B54CA7494B}

Examples of connection strings:

 RS232;port=COM1;speed=115200
 CAN;drv=kvaser;port=1;bitrate=500000;cmdid=0x7aa;rspid=0x7aa;tmo=500
 DAP;devid=0;dapid=0;DAP_Port=SW;DAP_SWJ=Y;DAP_Clock=1000000
 PEMICRO;drv=6;ptype=3;pnum=1;devid=;devlock=0;jtagspd=500;target=NXP_K6x_K64FN1M0M12

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 62 / 139

Inputs:

Argument Description

name String identifying the connection name in the FreeMASTER Lite configuration file. Use a special
name "preset" to identify the default connection built in the FreeMASTER desktop application. In both
FreeMASTER and FreeMASTER Lite cases, the name can also be specified as a full connection
string, so it allows to open serial or plug-in connections with all configuration parameters.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Boolean return value if port operation
was successful.

retMsg LastRetMsg response.xtra.message When an error occurs, this value contains an
error message.

6.5.6 StopComm
Prototype:

StopComm ()

Description:

Closes the currently open FreeMASTER communication port.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

None

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Boolean return value if port operation
was successful.

6.5.7 IsCommPortOpen
Prototype:

IsCommPortOpen ()

Description:

Returns the current state of the communication port.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 63 / 139

None

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data Boolean value representing the current
communication port open state.

6.5.8 IsBoardDetected
Prototype:

IsBoardDetected ()

Description

Returns the state of a connection to the target board.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

None

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data Boolean "true" value if the board is
currently detected.

6.5.9 IsBoardWithActiveContent
Prototype:

IsBoardWithActiveContent ()

Description:

This function can be used to determine if Active Content is present in the currently connected target MCU application. Active
Content is enabled using the Target-Side Addressing (TSA) tables in the MCU application and includes HTML pages, project files,
hyperlinks, and other file-like resources. See the FreeMASTER Serial Driver documentation for more details about TSA.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

None

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data Boolean "true" value if the board is currently
detected and has TSA Active Content available.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 64 / 139

Remarks:

See the JavaScript example of using this function in the source code of the FreeMASTER Welcome page which is displayed as
soon as FreeMASTER starts. The Welcome page detects and displays the hyperlinks and project files embedded in the target
MCU application code.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.10 GetHtmlDocument
Prototype:

GetHtmlDocument ([in] winId, [in] activate)

Description:

Get a handle to the Document Object Model (DOM) object representing the HTML document in the Internet Explorer
rendering engine.

Compatibility:

✔ ActiveX, ✘ JSON-RPC, ✘ Lite

Inputs:

Argument Description

winId A number identifying the HTML pane to access. Use one of these values:

• 0 - Control page

• 1 - Block description page

• 2 - Detailed description page (for Oscilloscope and Recorder items)

activate Boolean value which selects whether to activate the selected HTML view.

Outputs:

Parameter ActiveX access JSON-RPC access Description

Object dispatch handle LastResult N/A The returned handle can be used in the script to
access the HTML Document object.

6.5.11 SendCommand
Prototype:

SendCommand ([in] cmd, [out] retMsg)

Description:

Sends the FreeMASTER Application Command.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 65 / 139

Argument Description

cmd String value with the command name and arguments that should be sent. The command must be
defined in the currently-open FreeMASTER project. Use the function call-like syntax when sending
a command. For example, if a command has three parameters, use “command_name(1, 2, 3)”.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the command
was sent without errors. "False" is returned
if the command could not be found in the
FreeMASTER project.

retMsg LastRetMsg response.xtra.message Text returned after the command invocation.
When an error occurs, this value contains an
error message.

LastAppCommand
_retCode

response.xtra.retCode Command return code.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.12 SendCommandDlg
Prototype:

SendCommandDlg ([in] cmd, [out] retMsg)

Description:

Invokes the FreeMASTER Send Application Command dialog.

Compatibility:

✔ ActiveX, ✘ JSON-RPC, ✘ Lite

Inputs:

Argument Description

cmd String value with the command name and arguments that should be displayed in the dialog. The
command must be defined in the currently open FreeMASTER project.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult N/A A boolean "true" value is returned if the command
was sent without errors. "False" is returned
if the command could not be found in the
FreeMASTER project.

Table continues on the next page...

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 66 / 139

Table continued from the previous page...

Parameter ActiveX access JSON-RPC access Description

retMsg LastRetMsg N/A Text returned after the command invocation.
When an error occurs, this value contains an
error message.

6.5.13 ReadVariable
Prototype:

ReadVariable ([in] var, [out] numValue, [out] textValue, [out] retMsg)

Description:

Read a value of a FreeMASTER variable. The variable must be defined in the current FreeMASTER project or in the FreeMASTER
Lite configuration file.

For the desktop FreeMASTER application only: This method may return the "cached" value of the variable if it is newer than the
sampling time defined. For example, if the variable sampling time is set to one second, a script calling the ReadVariable function
more often does not retrieve the live value from the target. To disable this caching mechanism, use an exclamation mark ("!")
before the variable name in the var parameter.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

var String value with the name of the variable to be read. The variable must be defined in the
FreeMASTER project that is currently open or in the FreeMASTER Lite configuration file.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A Boolean "true" value is returned if the variable
was read without errors. "False" is returned
if the specified variable was not found in the
FreeMASTER project or if a communication
error occurred.

numValue LastVariable_vValue response.data Returns a numeric representation of the
variable var.

textValue LastVariable_tValue response.xtra.formatte
d

Returns a string value which represents the
variable format and units necessary for displaying
the variable value.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message; otherwise, it is empty.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 67 / 139

6.5.14 WriteVariable
Prototype:

WriteVariable ([in] var, [in] value, [out] retMsg)

Description:

Write a value to a FreeMASTER variable. The variable must be defined in the current FreeMASTER project or in the FreeMASTER
Lite configuration file.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

var A string value with the name of the variable to be written. The variable must be defined in the
FreeMASTER project that is currently open or in the FreeMASTER Lite configuration file.

value The value to write to the variable.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the variable
was written without errors. "False" is returned
if the specified variable was not found in the
FreeMASTER project, if the value passed was
invalid, or if a communication error occurred.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

6.5.15 ReadMemory
Prototypes:

ReadMemory ([in] addr, [in] size, [out] data, [out] retMsg)
ReadMemoryHex ([in] addr, [in] size, [out] textData, [out] retMsg)

Description:

Reads a block of memory from the target application.

• ReadMemory returns data compatible with any scripting environment.

— ActiveX: data are returned as a safe array of variants, which can be used in scripting languages, such as VBScript,
and in compiled languages, such as Visual Basic. For JavaScript, the safe array must be converted to JavaScript
array using the toArray() method.

— JSON-RPC: data are returned as a native JSON array.

For ActiveX only, there are also other optional functions that can be used in different scripting environments:

• ReadMemory_t returns data in the safe array of strictly typed values, which can be used in compiled languages, such as
Visual Basic. Using typed arrays is significantly faster than using arrays of variants.

• ReadMemoryHex returns data in the string value. Each byte is represented by two characters in a hexadecimal format.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 68 / 139

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

addr The address of the memory block to be read. This can be either an absolute numeric address, a
symbol name valid in the current FreeMASTER project, or a complex expression which involves the
symbol name, offset value additions, multiplication, or using an array de-referencing operator.

size The size of the memory block to be read.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the memory
block was read without errors. "False" is returned
if the specified address was invalid or if a
communication error occurred.

data LastMemory_data response.data The return array of values.

textData
(ReadMemoryHex
only)

LastMemory_hexstr response.xtra.hex The return data in the string format.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message; otherwise, it is empty.

Remarks:

This function is provided for backward compatibility only. Use ReadUIntArray with the element size set to 1 byte instead.

6.5.16 WriteMemory
Prototype:

WriteMemory ([in] addr, [in] size, [in] data, [out] retMsg)

Description:

Write a block of bytes to the target application’s memory.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

addr The address of the memory area to be written. This can be either an absolute numeric address, a
symbol name valid in the current FreeMASTER project, or a complex expression which involves the
symbol name, offset value additions, multiplication, or using an array de-referencing operator.

Table continues on the next page...

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 69 / 139

Table continued from the previous page...

Argument Description

size The size of the memory block to be written.

data The safe array of bytes to be written. It must contain at least the size elements.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" is returned if the memory block
was read without errors. "False" is returned
if the specified address was invalid or if a
communication error occurred.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Remarks:

This function is provided for backward compatibility only. Use WriteUIntArray with the element size set to 1 byte instead.

6.5.17 ReadXxxArray
Prototypes:

To access an array of 1, 2, or 4-byte signed integers:

ReadIntArray ([in] addr, [in] size, [in] elemSize, [out] data, [out] retMsg)

To access an array of 1, 2, or 4-byte unsigned integers:

ReadUIntArray ([in] addr, [in] size, [in] elemSize, [out] data, [out] retMsg)

To access an array of 4-byte floating-point numbers:

ReadFloatArray ([in] addr, [in] size, [out] data, [out] retMsg)

To access an array of 8-byte floating-point numbers:

ReadDoubleArray ([in] addr, [in] size, [out] data, [out] retMsg)

Description:

Reads a block of memory from the target application and returns it to the caller as an array of integer or floating-point numbers.

• ReadXxxArray returns data compatible with any scripting environment.

— ActiveX: data are returned as a safe array of variants, which can be used in scripting languages, such as VB
script, and in compiled languages, such as Visual Basic. Because the VB script engine does not handle variants
encapsulating 2 and 4-byte unsigned integer types, this method converts such values to a floating-point format
before returning. For JavaScript: the safe array must be converted to the JavaScript array using the toArray()
method.

— JSON-RPC: data are returned as a native JSON array.

For ActiveX only, there are also other optional functions that can be used in different scripting environments:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 70 / 139

• ReadXxxArray_v is the same as ReadXxxArray, except that it does not perform the VB script translation for 2 and 4-byte
unsigned integer types.

• ReadXxxArray_t returns data in the safe array of strictly typed values, which can be used in compiled languages, such as
Visual Basic. Using typed arrays is significantly faster than using arrays of variants.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

addr The address of the memory block to be read. This can be either an absolute numeric address, a
symbol name valid in the current FreeMASTER project, or a complex expression which involves the
symbol name, offset value additions, multiplication, or using an array de-referencing operator.

size The number of elements to be read from the array.

elemSize The size of an array element in bytes. The total number of bytes read from the target can be
calculated as size * elemSize.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the memory
block was read without errors. "False" is returned
if the specified address was invalid or if a
communication error occurred.

data LastMemory_data response.data The return array of the values.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

6.5.18 WriteXxxArray
ActiveX Prototypes:

To access an array of 1, 2, or 4-byte signed integers:

WriteIntArray ([in] addr, [in] size, [in] elemSize, [in] data, [out] retMsg)

To access an array of 1, 2, or 4-byte unsigned integers:

WriteUIntArray ([in] addr, [in] size, [in] elemSize, [in] data, [out] retMsg)

To access an array of 4-byte floating-point numbers:

WriteFloatArray ([in] addr, [in] size, [in] data, [out] retMsg)

To access an array of 8-byte floating-point numbers:

WriteDoubleArray ([in] addr, [in] size, [in] data, [out] retMsg)

JSON-RPC Prototypes:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 71 / 139

JSON-RPC functions do not have the "size" argument; array size is inferred from data automatically.

WriteIntArray ([in] addr, [in] elemSize, [in] data, [out] retMsg)
WriteUIntArray ([in] addr, [in] elemSize, [in] data, [out] retMsg)
WriteFloatArray ([in] addr, [in] data, [out] retMsg)
WriteDoubleArray ([in] addr, [in] data, [out] retMsg)

Description:

Translate an array of numbers passed by the caller into a block of bytes suitable for the target CPU and write it into the
target memory.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite - APIs not fully compatible

Inputs:

Argument Description

addr The address of the memory block to be written. This can be either an absolute numeric address, a
symbol name valid in the current FreeMASTER project, or a complex expression which involves the
symbol name, offset value additions, multiplication, or using an array de-referencing operator.

size (ActiveX only) The number of elements to be written to the target memory. Set it to 0 to write all array elements as
passed in the data parameter.

elemSize The size of an array element in bytes. The total number of bytes to be written to the target can be
calculated as size * elemSize.

data The array of the values to be written.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the memory
block was written without errors. "False" is
returned if the specified address was invalid or
if a communication error occurred.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

6.5.19 ReadXxxVariable
Prototypes:

To access 1, 2, or 4-byte signed integers:

ReadIntVariable ([in] addr, [in] size, [out] value, [out] retMsg)

To access 1, 2, or 4-byte unsigned variable:

ReadUIntVariable ([in] addr, [in] size, [out] value, [out] retMsg)

To access 4-byte floating-point variable:

ReadFloatVariable ([in] addr, [out] value, [out] retMsg)

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 72 / 139

To access 8-byte floating-point variable:

ReadDoubleVariable ([in] addr, [out] value, [out] retMsg)

Description:

Reads a memory from the target application and returns it to the caller in the form of an integer or floating-point number. Unlike
the ReadVariable function, these functions access the memory directly, without a FreeMASTER variable object defined. For each
call, there is an optional function that can be used in different scripting environments:

• ReadXxxVariable returns data compatible with any scripting environment.

— ActiveX: a value is returned as a variant which can be used in scripting languages, such as VB script, and in
compiled languages, such as Visual Basic. Because the VB script engine does not handle variants encapsulating 2
and 4-byte unsigned integer types, this method converts such values to a floating-point format before returning.

— JSON-RPC: a value is returned as a native JSON value.

For ActiveX only, there is also another optional function that can be used in different scripting environments:

• ReadXxxVariable_v is the same as ReadXxxVariable, except that it does not perform the VB script translation for 2 and
4-byte unsigned integer types.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

addr The address of the memory block to be read. This can be either an absolute numeric address, a
symbol name valid in the current FreeMASTER project, or a complex expression which involves the
symbol name, offset value additions, multiplication, or using an array de-referencing operator.

size The size of the variable to read.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the memory
was read without errors. "False" is returned
if the specified address was invalid or if a
communication error occurred.

value LastVariable_vValue response.data The return value.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

6.5.20 WriteXxxVariable
Prototypes:

To write 1, 2, or 4-byte signed integer:

WriteIntVariable ([in] addr, [in] size, [in] value, [out] retMsg)

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 73 / 139

To write 1, 2, or 4-byte unsigned integer:

WriteUIntVariable ([in] addr, [in] size, [in] value, [out] retMsg)

To write 4-byte floating-point number:

WriteFloatVariable ([in] addr, [in] size, [in] value, [out] retMsg)

To write 8-byte floating-point number:

WriteDoubleVariable ([in] addr, [in] size, [in] value, [out] retMsg)

Description:

Writes a single variable to the target memory. Unlike the WriteVariable function, these functions access the memory directly,
without a FreeMASTER variable object defined.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

addr The address of the memory block to be written. This can be either an absolute numeric address, a
symbol name valid in the current FreeMASTER project, or a complex expression which involves the
symbol name, offset value additions, multiplication, or using an array de-referencing operator.

size The size of the target variable.

value The value to be written.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the memory
block was written without errors. “False” is
returned if the specified address was invalid or
if a communication error occurred.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

6.5.21 ReadMultipleVariables
Prototype:

ReadMultipleVariables ([in] arrNames, [out] outputJSON)

Description

Use this function to read multiple FreeMASTER-defined variables in a single call. This call is functionally equal to a sequential
execution of several ReadVariable calls. Use it to minimize the overhead time consumed by ActiveX or JSON-RPC communication
and other framework-related processing, which may take up to several milliseconds in some cases.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 74 / 139

Inputs:

Argument Description

arrNames Array of variable names to read.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Number of variables which
were successfully read during
the call.

outputJSON LastMultipleVariables_json response.data ActiveX: string with a
JSON-formatted array of
result objects.

JSON-RPC: the array of
result objects.

There is one array element for
each variable name passed
as an input when calling
the function.

Each array element is
an object with the
following properties:

• name - variable name

• status - boolean result of
the read operation

• value - numeric variable
value

• formatted - string
formatted value

• retMsg - error message

6.5.22 WriteMultipleVariables
Prototype:

WriteMultipleVariables ([in] arrValues, [out] outputJSON)

Description

Use this function to write multiple FreeMASTER-defined variables in a single call. This call is functionally equal to a sequential
execution of several WriteVariable calls. Use it to minimize the overhead time consumed by ActiveX or JSON-RPC communication
and other framework-related processing, which may take up to several milliseconds in some cases.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 75 / 139

Argument Description

arrValues Array of variable names and values to be written. Each array
element should be an object with the following properties:

• name - variable name

• value - variable value to be written

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Number of variables which
were successfully written
during the call.

outputJSON LastMultipleVariables_json response.data ActiveX: string with a
JSON-formatted array of
result objects.

JSON-RPC: array of
result objects.

There is one array element
for each variable value passed
as an input when calling
the function.

Each array element is
an object with the
following properties:

• name - variable name

• status - boolean result of
write operation

• retMsg - error message

6.5.23 GetCurrentRecorderData
Prototype:

GetCurrentRecorderData ([out] data, [out] serieNames, [out] timeBaseSec, [out] retMsg)

Description:

Retrieves the data currently displayed in the recorder chart.

• GetCurrentRecorderData returns two-dimensional array data compatible with any scripting environment. The first
dimension is the series index, the second dimension is the value index.

— ActiveX: data are returned as two-dimensional safe array of variants, which can be used in scripting languages,
such as VB script, and in compiled languages, such as Visual Basic. Because the VB script engine does not handle
variants encapsulating 2 and 4-byte unsigned integer types, this method converts such values to a floating-point
format before returning. For JavaScript: the safearray must be converted to a JavaScript array using the toArray()
method.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 76 / 139

— JSON-RPC: data are returned as a native JSON array of arrays, one for each recorder data series.

For ActiveX only, there are also other optional functions that can be used in different scripting environments:

• GetCurrentRecorderData_t returns data in the safe array of the “double floating-point” type, which can be used in compiled
languages, such as Visual Basic. Using typed arrays is faster than using arrays of variants.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

None.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the data
was retrieved successfully from the recorder item.
"False" is returned if there is no valid data in the
recorder or if there is no currently active recorder.

data LastRecorder_data response.xtra.data Returns two-dimensional array of values; the
first dimension is the series index, the second
dimension is the value index.

serieNames LastRecorder
_serieNames

response.xtra.names Returns an array with the names of series on
appropriate indexes.

timeBaseSec LastRecorder
_timeBaseSec

response.xtra.
baseRateSec

Returns the time between individual recorded
samples in seconds; this value can be 0 if the
target does not supply such value.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Remarks:

FreeMASTER Lite does not support this method as there is no concept of a "currently selected" recorder item as is common for
the desktop application. FreeMASTER Lite provides methods to control and read the recorder directly.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.24 GetCurrentRecorderSeries
Prototype:

GetCurrentRecorderSeries ([in] serieName, [out] data, [out] timeBaseSec, [out] retMsg)

Description:

Retrieve one data series from the currently displayed recorder chart.

• GetCurrentRecorderSeries returns one-dimensional array data compatible with any scripting environment.

— ActiveX: data are returned as a safe array of variants, which can be used in scripting languages, such as VB
script, and in compiled languages, such as Visual Basic. Because the VB script engine does not handle variants
encapsulating 2 and 4-byte unsigned integer types, this method converts such values to a floating-point format
before returning. For JavaScript: the safearray must be converted to a JavaScript array using the toArray()
method.

— JSON-RPC: data are returned as a native JSON array

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 77 / 139

For ActiveX only, there are also other optional functions that can be used in different scripting environments:

• GetCurrentRecorderSeries_t returns data in the safe array of “double floating-point” type, which can be used in compiled
languages, such as Visual Basic. Using typed arrays is faster than using arrays of variants.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

serieName String with the name of the data series (which is a recorded variable name) whose data is to be
retrieved.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" is returned if the data was
retrieved successfully from the recorder item.
"False" is returned if there is no valid data in the
recorder or if there is no recorder currently active.

data LastRecorder_data response.xtra.data Return array of the values.

timeBaseSec LastRecorder
_timeBaseSec

response.xtra.
baseRateSec

Returned time between individual recorded
samples in seconds; this value can be 0 if the
target does not supply such value.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Remarks:

FreeMASTER Lite does not support this method as there is no concept of a "currently selected" recorder item as it is common for
the desktop application. FreeMASTER Lite provides methods to control and read the recorder directly.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.25 StartCurrentRecorder
Prototype:

StartCurrentRecorder ([out] retMsg)

Description:

Starts the recorder which is currently displayed in the FreeMASTER window.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

None

Outputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 78 / 139

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the recorder
was started successfully. "False" is returned if
there is no recorder currently active.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Remarks:

FreeMASTER Lite does not support this method as there is no concept of a "currently selected" recorder item as is common for
the desktop application. FreeMASTER Lite provides methods to control and read the recorder directly.

6.5.26 StopCurrentRecorder
Prototype:

StopCurrentRecorder ([out] retMsg)

Description:

Manually stops the Recorder which is currently displayed in the FreeMASTER window.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

None

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the recorder
was successfully stopped. "False" is returned if
there is no recorder currently active.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Remarks:

FreeMASTER Lite does not support this method as there is no concept of a "currently selected" recorder item as is common for
the desktop application. FreeMASTER Lite provides methods to control and read the recorder directly.

6.5.27 GetCurrentRecorderState
Prototype:

GetCurrentRecorderState ([out] state, [out] retMsg)

Description:

Retrieve the current recorder status code and the assigned status text.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 79 / 139

Inputs:

None

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the recorder
state was read successfully. "False" is returned if
there is no recorder currently active.

state LastRecorder_state response.xtra.state Returns a numeric value identifying the current
recorder state. The valid state codes are:

• 0 - idle

• 1 - starting

• 2 - running

• 3 - downloading results

• 4 - holding received signal

• 5 - error

• 6 - manually stopping

• 7 - not initialized

• 8 - holding in error

• 9 - ready to download

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it contains a text description
of the current recorder state.

Remarks:

FreeMASTER Lite does not support this method as there is no concept of a "currently selected" recorder item as is common for
the desktop application. FreeMASTER Lite provides methods to control and read the recorder directly.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.28 RunStimulators
Prototype:

RunStimulators ([in] stimNames)

Description:

Starts one (or more) FreeMASTER variable stimulators.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 80 / 139

Argument Description

stimNames A semicolon-delimited list of stimulators to be started.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval The number of stimulators actually started. This
number may be equal or lesser than the number of
semicolon-delimited stimulator names passed in
the stimNames parameter. The return count does
not include the stimulators not found by name and
the stimulators that are already running.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.29 StopStimulators
Prototype:

StopStimulators ([in] stimNames)

Description:

Halt one (or more) FreeMASTER variable stimulators.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

stimNames A semicolon-delimited list of stimulators to be stopped.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval The number of stimulators actually stopped. This
number may be equal or lesser than the number of
semicolon-delimited stimulator names passed in
the stimNames parameter. The return count does
not include stimulators not found by name and
stimulators that are not running.

Important: The EnableExtraFeatures method must be called before using this function.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 81 / 139

6.5.30 LocalFileOpen
Prototype:

LocalFileOpen ([in] fileName, [in] openMode)

Description:

Open a file stored locally in the project area and return a handle to the file for subsequent operations.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

fileName Name of the file to be opened, optionally with a relative path. Due to security reasons, this function
denies to open files on absolute path or files with unsafe extensions. The permitted extensions are:

.txt, .xml, .htm, .html, .c, .cpp, .asm, .h, .hpp

The relative path can start with one of the virtual folder names:

• FMSTR_PROJECT_PATH - location of the current project file.

• FMSTR_PACKDIR_PATH - location of the current resource module folder.

openMode Specifies the access mode of the open file:

• 'r' – open file for reading (default).

• 'w' – create or open file for writing, original file gets truncated to zero length if it already exists.

• 'a' – create or open file for writing in append mode, original file is not truncated if it already
exists.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data Numeric handle to file or a "false" boolean value in
case the file could not be opened.

6.5.31 LocalFileClose
Prototype:

LocalFileClose ([in] handle)

Description:

Close the file identified by the handle parameter as returned by a previous LocalFileOpen call.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 82 / 139

Argument Description

handle Handle to the file to be closed.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the file was
successfully closed. "False" is returned in case
the file handle is not valid.

6.5.32 LocalFileWriteString
ActiveX prototype:

LocalFileWriteString ([in] handle, [in] data, [in, optional] charsToWrite, [in, optional] unicode)

JSON-RPC prototype:

JSON-RPC function does not have the charsToWrite argument, the string size is inferred from data automatically.

LocalFileWriteString ([in] handle, [in] data, [in, optional] unicode)

Description:

Write data to a file identified by the handle parameter as returned by a previous LocalFileOpen call.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite - APIs not fully compatible

Inputs:

Argument Description

handle Handle to open the file.

data Text to be written to the file.

charsToWrite (ActiveX
only)

The number of characters to be actually written. If this parameter is omitted or set to 0, the whole
text passed in the data parameter is written.

unicode "True" - write the data in unicode format.

"False" - write data in the ASCII format.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data Returns the number of characters written to
the file.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 83 / 139

6.5.33 LocalFileReadString
Prototype:

LocalFileReadString ([in] handle, [in] charsToRead, [in, optional] unicode, [out] retString)

Description:

Reads data from a file identified by the handle parameter as returned by a previous LocalFileOpen call.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

handle Handle to open the file.

charsToRead The number of characters to read.

unicode "True" - read data in unicode format.

"False" - read data in ASCII format.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Returns the number of characters actually read
from the file.

retString LastLocalFile_string response.data The return data containing the characters read
from the file.

6.5.34 GetSymbolInfo
ActiveX prototype:

GetSymbolInfo ([in] symbol, [out] symAddr, [out] symSize, [out] retMsg, [in] useVBScriptTypes)

JSON-RPC prototype:

GetSymbolInfo ([in] symbol)

Description:

Returns the information about the symbol as parsed from the application's ELF or MAP files or obtained in the runtime using the
TSA feature.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 84 / 139

Argument Description

symbol Name of the symbol.

useVBScriptTypes
(ActiveX only)

Use "true" to return the address and size as floating-point numbers compatible with the VB script
scripting language.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the symbol
exists and the information was retrieved. "False" is
returned when the symbol was not found.

symAddr LastSymbolInfo_addr response.xtra.addr Address of the symbol.

symSize LastSymbolInfo_size response.xtra.size Size of the symbol.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.35 GetStructMemberInfo
ActiveX prototype:

GetStructMemberInfo ([in] typeName, [in] member, [out] membOff, [out] membSize, [out] retMsg,
[in] useVBScriptTypes)

JSON-RPC prototype:

GetStructMemberInfo ([in] typeName, [in] member)

Description:

Returns the information about the structure data type member as parsed from the application's ELF file or obtained in the runtime
using the TSA feature.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

typeName Name of the structure or union data type.

member Name of the structure or union member.

useVBScriptTypes
(ActiveX only)

Use "true" to return the address and size as floating-point numbers compatible with the VB script
scripting language.

Outputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 85 / 139

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the type exists
and information was retrieved. "False" is returned
when the structure type was not found.

membOff LastMemberInfo_offset response.xtra.offset Returns the offset of the structure member.

membSize LastMemberInfo_size response.xtra.size Returns the size of the structure member.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.36 GetAddressInfo
Prototype:

GetAddressInfo ([in] addr, [in] size, [out] isExactMatch, [out] symbolName)

Description:

Returns the information about the memory location as parsed from the application's ELF file or obtained in the runtime using the
TSA feature. All global and static target symbols are evaluated to see if they overlap at least partly with the memory area specified.
The algorithm tries to find the best matching name of the memory area, also including the structure members and array elements.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

addr Memory address.

size Size of the memory area to look up.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the memory
area was mapped to any global or static symbol.
A "false" value is returned when the memory area
was not mapped to any symbols.

isExactMatch LastAddressInfo_exact response.xtra.
isExactMatch

Returns the "true" value if the returned symbol
exactly matches the memory address and size.

symbolName LastAddressInfo_name response.xtra.
symbolName

Returns the best-matching name of the
memory area.

Important: The EnableExtraFeatures method must be called before using this function.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 86 / 139

6.5.37 GetXxxDefinition
Prototypes:

GetOscilloscopeDefinition([in] name, [out] defString, [out] retMsg)
GetRecorderDefinition([in] name, [out] defString, [out] retMsg)
GetArrayViewerDefinition([in] name, [out] defString, [out] retMsg)
GetPipeDefinition([in] name, [out] defString, [out] retMsg)
GetWatchBlockDefinition([in] name, [out] defString, [out] retMsg)

Description:

These functions may be used to obtain the JSON definition record of each respective kind of item. The JSON record can later
be used in the DefineOscilloscope, DefineRecorder, DefineArrayViewer, DefinePipe, and DefineWatchBlock methods described
above to create a new project item with modified properties and settings.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

name Name of the item to get definition object of.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned when the object
was found and a definition record is provided.

defString LastDefinition_string response.xtra.def ActiveX: string with a JSON-formatted definition.

JSON-RPC: definition object itself.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.38 DefineSymbol
Prototype:

DefineSymbol ([in] symbol, [in] addr, [in] typeName, [in] size, [out] retMsg)

Description:

This function can be used to extend the symbol information normally obtained by parsing the target application executable file (ELF
or MAP files) or obtained in the runtime using the TSA feature. This may be useful to define the symbols for dynamically allocated
variables or other non-global objects for which you know the address and type. When the symbol is defined, a FreeMASTER
variable can be defined for the symbol in the desktop application interface or using the DefineVariable function.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 87 / 139

Argument Description

symbol Symbol name. It can also contain special characters, such as dot ., ->, or brackets [], when
defining complex symbols mapping structure members.

addr Symbol address.

typeName Name of the type behind the symbol. Typically, this is the name of an existing structure type loaded
from the debugging information of the application ELF file. When not specified or if an empty string
is passed, no type is assigned to the symbol.

size Symbol size. You may also use special expressions, such as sizeof(TYPE) or mathematical
expressions.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the symbol
was defined with the type information as specified.
"False" is returned when the type name was
specified, but no such type was found in the
type information loaded from the application
executable file.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.39 DeleteAllScriptSymbols
Prototype:

DeleteAllScriptSymbols()

Description:

This function deletes all symbols defined previously with the DefineSymbol call.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

None.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval This method returns the "true" value.

Important: The EnableExtraFeatures method must be called before using this function.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 88 / 139

6.5.40 SubscribeVariable
Prototype:

SubscribeVariable ([in] varName, [in] interval, [out] retMsg)

Description:

Enables event-driven processing of variable value changes. When a variable is "subscribed", the script receives the
OnVariableChanged notification event whenever FreeMASTER detects that the variable value changed. All subscribed variables
are periodically sampled by FreeMASTER at a specified time interval.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

varName Variable name; this must be a valid FreeMASTER variable name not just a symbol name.

interval An interval in which the variable is tested for changes. The OnVariableChanged event is only called
once per this interval value, even if the variable changes more frequently.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.subscript
ionId

A value other than zero is the Subscription
ID which can be used to unsubscribe the
variable. This ID also identifies the variable in
the OnVariableChanged event callback.

Zero value when the variable could not
be subscribed.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Remarks:

For the JSON-RPC interface, call the EnableEvents function to activate notification sending.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.41 UnSubscribeVariable
Prototype:

UnSubscribeVariable ([in] nameOrId, [out] retMsg)

Description:

Cancels the variable subscription and stops the OnVariableChanged event calls for the variable identified by the first parameter.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 89 / 139

Argument Description

nameOrId Variable name used to subscribe the variable (or subscription ID) which was returned from the
SubscribeVariable call.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned if the variable
was unsubscribed. "False" is returned if an
error occurred.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.42 SelectItem
Prototype:

SelectItem ([in] name, [in] tabPage)

Description:

Selects the project tree item in the FreeMASTER window and activates one of the view tabs assigned to the item.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

name Name of the item, as it appears in the FreeMASTER "Project Tree" view. This can be the name itself
or a fully qualified path of all parent block names and the item name, separated by a slash character.

tabPage Name of the FreeMASTER view tab which is to be activated after the tree item is selected.

Use one of these values:

• control - Control Page tab

• blkinfo - Parent Block description page

• iteminfo - Item description page

• scope - Oscilloscope graph tab

• recorder - Recorder graph tab

Outputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 90 / 139

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned when
the item was found and selected. “False” is
returned otherwise.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.43 DeleteItem
Prototypes:

DeleteItem([in] name, [out] retMsg)

Description

Deletes the item in the project tree.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

name Name of the item, as it appears in the FreeMASTER "Project
Tree" view.

This can be the name itself or a fully qualified path of all
parent block names and the item name, separated by a
slash character.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Boolean "true" value is
returned when the item was
found and deleted.

retMsg LastRetMsg response.error.msg When an error occurs, this
value contains an error
message. Otherwise, it is
empty.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.44 FireCustomEvent
Prototype:

FireCustomEvent([in] arg)

Description

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 91 / 139

Use this function to fire a notification event (OnCustomEvent) in all clients attached to this server instance. The event is
fired in all clients of both the ActiveX and JSON-RPC types. The JSON-RPC clients must subscribe to events by calling
EnableExtraFeatures and EnableEvents.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

arg A variant-type (any script type) event argument which is
passed to the OnCustomEvent handler.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Boolean "true" value is
returned when the event was
fired.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.45 DefineVariable
ActiveX prototype:

DefineVariable ([in] name, [in] defString, [out] retMsg)

JSON-RPC prototype:

DefineVariable ([in] defString)

Description:

Define the FreeMASTER Variable object with all its properties. The script must use a JSON notation to describe all properties of
the object. The variable object is created or modified if it already exists. All properties that are not defined in JSON are assigned
a default value when creating a new object.

The following JSON example gives a brief reference of the definition record. It can also be retrieved by calling GetVariableInfo().
Note that the same record is used as a as “var_def” object within the clipboard text format when copying a variable in the "Variable
Watch" view.

{
 // general information
 "name": "var16", // variable name
 "period": 200, // sampling period in milliseconds
 "comment": "", // comment visible in Watch view
 "description": "", // internal description
 "unit": "unit", // physical units of REAL mode

 // variable type
 "treat_as": 0, // 0=uint, 1=int, 2=float, 3=fract, 4=ufract, 5=string
 "type_fmt": "", // fract/ufract type description (e.g. UQ1.15)

 // physical location and type in embedded application

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 92 / 139

 "address": "var16", // C symbol name or an address expression
 "byte_size": 2, // size of the variable
 "bit_shift": 0, // bit-field shift
 "bit_mask": "-1", // bit-field mask

 // virtual variable special settings
 "virtual": 0, // non-zero to set as virtual
 "virtual_default": "0", // default virtual variable value

 // enumeration type
 "enum_enabled": 0, // non-zero to enable enumerations
 "enum": "", // name of the enum type
 "enum_num_always": 0, // display numeric value always
 "enum_default_val": "unk", // default text label
 "enum_num_with_default": 1, // numeric value visible at default text

 // visualization in the Watch view
 "show_as": 0, // 0=DEC,1=HEX,2=BIN,3=ASCII,4=REAL,
 "show_val": 1, // value visible
 "show_max": 0, // maximum visible
 "show_min": 0, // minimum visible
 "show_num_fixed_digs": 0, // fixed number of digits
 "show_num_lzero_fill": 0, // use 0 to fill fixed number of digits
 "show_num_afp_digs": 0, // number of digits after decimal point
 "show_num_exp": 0, // non-zero to show in exponential format
 "show_ascii_zterm": 0, // display as zero-terminated string (ASCII)
 "show_ascii_hex": 1, // display non-printable chars as HEX
 "show_ascii_chwdt": 1, // character width in bytes

 // numeric filter
 "filt_enabled": 0, // non-zero to enable averaging filter
 "filt_reset_onmod": 1, // reset filter when value is modified
 "filt_time": 5000, // filter period in milliseconds

 // variable modification properties
 "modif_mode": 1, // 0=disabled, 1=any value, 2=pre-defined values
 "modif_edit_mode": 2, // 1=edit box, 2=drop-down list
 "modif_set_mode": 0, // 0=write after any change, 1=wait for Enter key
 "modif_auto_fin": 1, // finish edit mode after Enter key
 "modif_auto_hide": 1, // hide edit interface if cell is not focused
 "modif_predefs_modes": 1, // predefined values: 0x1=range, 0x2=enum, 0x4=other
 "modif_predefs_other": "", // "other" pre-defined values (when 0x4 flag is used)
 "modif_set_min": "", // minimum value for range-based predef. values
 "modif_set_max": "", // maximum value for range-based predef. values
 "modif_set_step": "", // iteration step for range-based predef. values

 // advanced parameters
 "modif_address": "", // shadow write address
}

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite - APIs not fully compatible

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 93 / 139

Argument Description

name (ActiveX only) Name of the FreeMASTER variable to be created or modified.

defString ActiveX: String with a JSON-formatted definition.

JSON-RPC: definition object itself. The new variable name may also be specified in this definition
object as the "name" value.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned when the object
was created or modified. “False” is returned if an
error occurred.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

JavaScript example:

function define_variable(name, symbol, size, period)
{
 var def = {
 "address" : symbol,
 "byte_size" : size,
 “period" : period,
 };
 ok = pcm.DefineVariable(name, JSON.stringify(def));
}

6.5.46 DefineOscilloscope
JSON-RPC prototype:

DefineOscilloscope ([in] name, [in] defString, [out] retMsg)

Description:

Defines the FreeMASTER Oscilloscope object with all its properties. The script must use a JSON notation to describe all properties
of the object. The Oscilloscope object is created or modified if it already exists. All properties that are not defined in JSON are
assigned a default value when creating a new object.

The following JSON example gives a brief reference of the definition record. It can also be retrieved by calling GetXxxDefinition.
Note that the same record is used as a “tree_item” object within the clipboard text format when copying an oscilloscope item in
the "Project Tree" view.

{
 "name": "var16 scope", // oscilloscope item name
 "href": "", // description page URL

 // oscilloscope settings
 "scope_period": 2.5e-002, // sampling period in seconds
 "scope_ignore_duplicity": 0, // ignore samples which are identical to previous
 "scope_x_width": 5, // x-axis total width
 "scope_x_autoscale": 0, // autoscale x-axis until width is reached

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 94 / 139

 // graph settings
 "graph_buffer": 2000, // graph buffer size in points
 "graph_type": 0, // graph type: 0=Time, 1=XY
 "graph_legend_loc": 0, // nonzero if legend is visible
 "graph_legend_vis": 1, // nonzero to put legend to graph interior
 "graph_legend_inside": 1, // exterior legend location: 0=top, 1=bottom, 2=left, 3=right
 "graph_grid_horz": 1, // show graph horizontal grid
 "graph_grid_vert": 1, // show graph vertical grid
 "graph_x_units": 2, // X-axis time units: 0=us, 1=ms, 2=sec, 3=min (Time graph only)
 "graph_x_label": "Time", // X-axis label (Time graph only)
 "graph_x_addunits": 1, // non-zero to add time unit name to axis label (Time graph only)
 "graph_x_min": 0, // nonzero to enable automatic X axis minimum value (XY graph only)
 "graph_x_max": 100, // nonzero to enable automatic X axis maximum value (XY graph only)
 "graph_x_min_auto": 1, // manual X axis minimum value (XY graph only)
 "graph_x_max_auto": 1, // manual X axis maximum value (XY graph only)
 "auto_delete": 0, // nonzero to set the Oscilloscope item to auto-delete mode

 // oscilloscope variables
 "var_info": [// array of graph variables
 {
 "var_def": { // variable definition record
 "name": "var16", // specifying 'name' is enough to locate existing variable
 },
 "visible": 1, // variable visible in graph
 "y_block": 0, // assign to y-block 0..4
 "color": 3026413 // subset color
 },
 {
 "var_def": {
 "name": "var16inc",
 },
 "variable": "var16inc",
 "visible": 1,
 "y_block": 1,
 "color": 4688896
 }
],

 // graphs details for each Y-axis block
 "yblock_info": [// array of Y-block definitions
 {
 "join_class": 0, // blocks with equal value will be joined

 // left-axis settings
 "laxis_label": "16 bits", // label
 "laxis_style": 0, // style
 "laxis_min_auto": 0, // use automatic minimum scaling
 "laxis_max_auto": 1, // use automatic maximum scaling
 "laxis_min": 0, // minimum value (when auto=0)
 "laxis_max": 10, // maximum value (when auto=0)

 // right-axis settings
 "raxis_label": "Increment", // label
 "raxis_style": 0, // style
 "raxis_min": 0, // use automatic minimum scaling
 "raxis_max": 10, // use automatic maximum scaling
 "raxis_min_auto": 0, // minimum value (when auto=0)
 "raxis_max_auto": 1, // maximum value (when auto=0)
 "raxis_subsets": 1 // number of subsets to assign to right axis

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 95 / 139

 }, // (counted from the last subset)
 {
 "join_class": 1, // a different class means to separate this block

 "laxis_label": "lAxis",
 "laxis_style": 0,
 "laxis_min": -10,
 "laxis_max": 10,
 "laxis_min_auto": 1,
 "laxis_max_auto": 1,

 "raxis_label": "rAxis",
 "raxis_style": 0,
 "raxis_min": -10,
 "raxis_max": 10,
 "raxis_min_auto": 1,
 "raxis_max_auto": 1,
 "raxis_subsets": 0
 },
],
}

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

name Name of the FreeMASTER oscilloscope item to be created or modified in the project tree.

defString ActiveX: string with a JSON-formatted definition

JSON-RPC: definition object itself

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned when the object
was created or modified. "False" is returned if an
error occurred.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Remarks:

This function is also available as DefineScope in the ActiveX interface for backward compatibility.

JavaScript example:

function define_my_scope()
{
 // array of oscilloscope variables, my_variable_x should already be valid FreeMASTER
 // variable objects, first two variables will share the Y graph block
 var vars = [
 { "variable":”my_variable_1”, "visible":true, "y_block":0 },

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 96 / 139

 { "variable":”my_variable_2”, "visible":true, "y_block":0 },
 { "variable":”my_variable_3”, "visible":true, "y_block":1 },
];
 // array of scope Y-blocks, we have two, not joined
 var yblocks = [
 { "laxis_label":"raw signal", "join_class":0,
 "laxis_min_auto":true, "laxis_max_auto":true },
 { "laxis_label":"touch status", "join_class":1,
 "laxis_min_auto":true, "laxis_max_auto":true },
];
 // scope definition
 var def = {};
 def["var_info"] = vars;
 def["yblock_info"] = yblocks;
 def["scope_period"] = 0.025; // 25ms
 def["href"] = "my_description_page.htm";

 pcm.DefineScope(“my oscilloscope”, JSON.strinigy(def));
}

Important: The EnableExtraFeatures method must be called before using this function.

6.5.47 DefinePipe
Prototype:

DefineRecorder ([in] name, [in] defString, [out] retMsg)

Description:

Defines the FreeMASTER Pipe object with all its properties. The script must use a JSON notation to describe all properties of the
object. The Pipe object is created or modified if it already exists. All properties that are not defined in JSON are assigned a default
value when creating a new object.

The following JSON example gives a brief reference of the definition record. It can be also retrieved by calling
GetXxxDefinition. Note that the same record is used as a “tree_item” object within the clipboard text format when copying
a pipe item in the "Project Tree" view.

{
 "name": "Terminal Pipe", // array viewer item name
 "href": "", // description page URL

 "pipe_port": 1, // target pipe port number
 "pipe_refresh_period": 100, // pipe update period
 "pipe_element_size": 1, // character or pipe element size
 "pipe_wrap_lines": 1, // wrap console lines

 "font_name": "Courier New", // font used in view
 "font_size": 8, // font size
}

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Important: The EnableExtraFeatures method must be called before using this function.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 97 / 139

6.5.48 DefineRecorder
Prototype:

DefineRecorder ([in] name, [in] defString, [out] retMsg)

Description:

Defines the FreeMASTER Recorder object with all its properties. The script must use a JSON notation to describe all properties of
the object. The Recorder object is created or modified if it already exists. All properties that are not defined in JSON are assigned
a default value when creating a new object.

The following JSON example gives a brief reference of the definition record. It can also be retrieved by calling GetXxxDefinition.
Note that the same record is used as a “tree_item” object within the clipboard text format when copying a recorder item in the
"Project Tree" view.

{
 "name": "var16 recorder", // recorder item name
 "href": "", // description page URL

 // recorder settings
 "rec_id": 0 // target recorder instance to use
 "rec_time_base": 0, // recorder time base multiplier (one less)
 "rec_total_samples": 70, // total number of recorded samples
 "trig_pretrigger": 20, // number of pre-trigger samples
 "trig_astop_ena": 0, // stop automatically when timeout expires
 "trig_astop_delay": 10, // automatic stop timeout
 "trig_aload": 1, // load data automatically when stopped
 "trig_hold_ena": 1, // hold loaded data in graph
 "trig_hold_delay": 1, // minimum hold time
 "trig_arun": 1, // run automatically after hold time
 "trig_zero_x": 1, // show trigger point as 0 on X axis

 // graph settings
 "graph_buffer": 2000, // graph buffer size in points
 "graph_type": 0, // graph type: 0=Time, 1=XY
 "graph_legend_loc": 0, // nonzero if legend is visible
 "graph_legend_vis": 1, // nonzero to put legend to graph interior
 "graph_legend_inside": 1, // exterior legend location: 0=top, 1=bottom, 2=left, 3=right
 "graph_grid_horz": 1, // show graph horizontal grid
 "graph_grid_vert": 1, // show graph vertical grid
 "graph_x_units": 2, // X-axis time units: 0=us, 1=ms, 2=sec, 3=min (Time graph only)
 "graph_x_label": "Time", // X-axis label (Time graph only)
 "graph_x_addunits": 1, // non-zero to add time unit name to axis label (Time graph only)
 "graph_x_min": 0, // nonzero to enable automatic X axis minimum value (XY graph only)
 "graph_x_max": 100, // nonzero to enable automatic X axis maximum value (XY graph only)
 "graph_x_min_auto": 1, // manual X axis minimum value (XY graph only)
 "graph_x_max_auto": 1, // manual X axis maximum value (XY graph only)
 "auto_delete": 0, // nonzero to set the Oscilloscope item to auto-delete mode

 // recorder variables
 "var_info": [// array of graph variables
 {
 "var_def": { // variable definition record
 "name": "var16", // specifying 'name' is enough to locate existing variable
 },
 "visible": 1, // variable visible in graph
 "y_block": 0, // assign to y-block 0..4
 "color": 3026413 // subset color
 "trg_mode": 1, // trigger mode 0=off, 1=edge, 2=level

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 98 / 139

 "trg_rising": 1, // trigger on rising edge or level high
 "trg_falling": 0, // trigger on falling edge or level low
 "trg_threshold": 100 // trigger threshold value
 },
 {
 "var_def": {
 "name": "var16inc",
 },
 "variable": "var16inc",
 "visible": 1,
 "y_block": 1,
 "color": 4688896
 "trg_mode": 0,
 }
],

 // graphs details for each Y-axis block
 "yblock_info": [// array of Y-block definitions
 {
 "join_class": 0, // blocks with equal value will be joined

 // left-axis settings
 "laxis_label": "16 bits", // label
 "laxis_style": 0, // style
 "laxis_min_auto": 0, // use automatic minimum scaling
 "laxis_max_auto": 1, // use automatic maximum scaling
 "laxis_min": 0, // minimum value (when auto=0)
 "laxis_max": 10, // maximum value (when auto=0)

 // right-axis settings
 "raxis_label": "Increment", // label
 "raxis_style": 0, // style
 "raxis_min": 0, // use automatic minimum scaling
 "raxis_max": 10, // use automatic maximum scaling
 "raxis_min_auto": 0, // minimum value (when auto=0)
 "raxis_max_auto": 1, // maximum value (when auto=0)
 "raxis_subsets": 1 // number of subsets to assign to right axis
 }, // (counted from the last subset)
 {
 "join_class": 1, // a different class means to separate this block

 "laxis_label": "lAxis",
 "laxis_style": 0,
 "laxis_min": -10,
 "laxis_max": 10,
 "laxis_min_auto": 1,
 "laxis_max_auto": 1,

 "raxis_label": "rAxis",
 "raxis_style": 0,
 "raxis_min": -10,
 "raxis_max": 10,
 "raxis_min_auto": 1,
 "raxis_max_auto": 1,
 "raxis_subsets": 0
 },
],
}

Compatibility:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 99 / 139

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Important: The EnableExtraFeatures method must be called before using this function.

6.5.49 DefineWatchBlock
JSON-RPC prototype:

DefineWatchBlock ([in] name, [in] defString, [out] retMsg)

Description:

Defines the FreeMASTER Block object in the project tree with its own definition of the "Variable Watch" view. The script must use
a JSON notation to describe all properties of the object. The Block object is created or modified if it already exists. All properties
that are not defined in JSON are assigned a default value when creating a new object.

The following JSON example gives a brief reference of the definition record. It can be also retrieved by calling GetXxxDefinition.
Note that the same record is used as a “tree_item” object within the clipboard text format when copying a block in the "Project
Tree" view.

{
 "name": "New Block", // block item name
 "href": "", // description page URL

 // Variable Watch settings
 "show_grid": 1, // show grid
 "ena_row_sizing": 1, // enable row sizing
 "ena_col_sizing": 1, // enable column sizing
 "ena_col_swapping": 1, // enable column swapping
 "ena_inplace_values": 1 // enable variable modifications

 // watched variables
 "watch_variables": [
 {
 "var_def": { // variable definition record
 "name": "var16", // specifying 'name' is enough to locate existing variable
 },
 "format": { // format of the watched variable
 "row_height": 20 // grid row size
 "cells": [// array of up to 5 cells of the row
 { //
 "font_name": "Tahoma", // font name
 "font_size": 12, // font size
 "font_bold": 0, // bold font
 "font_italic": 0, // italic font
 "font_underline": 0, // underlined font
 "alignment": 33, // cell alignment 33=left,34=right,36=center
 "backcolor": 16777215, // cell background color as hex BBGGRR
 "forecolor": 255 // cell foreground color
 }, //
], //
 } //
 }, //
 { // next watched variable
 "var_def": { //
 "name": "var16inc", //
 }, //
 "format": { //
 "row_height": 20 //
 "cells": [] //

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 100 / 139

 } //
 }, //
 { // next watched variable
 "var_def": { //
 "name": "var16rw", //
 }, //
 "format": { //
 "row_height": 20 //
 "cells": [], //
 }
 }
],

 "column_info": [// array of variable watch columns
 { // [0] = 'name' column
 "column_visible": 1, // column visible
 "column_width": 120, // column size
 "column_ix": 0 // column placement (may be swapped)
 }, //
 { // [1] = 'value' column
 "column_visible": 1, //
 "column_width": 120, //
 "column_ix": 1 //
 }, //
 { // [2] = 'unit' column
 "column_visible": 1, //
 "column_width": 120, //
 "column_ix": 2 //
 }, //
 { // [3] = 'period' column
 "column_visible": 1, //
 "column_width": 50, //
 "column_ix": 3 //
 }, //
 { // [4] = 'comment' column
 "column_visible": 0, //
 "column_width": 200, //
 "column_ix": 4 //
 }
],
 }
}

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

name Name of the FreeMASTER oscilloscope item to be created or modified in the project tree.

defString ActiveX: string with a JSON-formatted definition

JSON-RPC: definition object itself

Outputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 101 / 139

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned when the object
was created or modified. "False" is returned if an
error occurred.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.50 DefineArrayViewer
JSON-RPC prototype:

DefineOscilloscope ([in] name, [in] defString, [out] retMsg)

Description:

Defines the FreeMASTER Array Viewer object with all its properties. The script must use a JSON notation to describe all properties
of the object. The Array Viewer object is created or modified if it already exists. All properties that are not defined in JSON are
assigned a default value when creating a new object.

The following JSON example gives a brief reference of the definition record. It can be also retrieved by calling GetXxxDefinition.
Note that the same record is used as a “tree_item” object within the clipboard text format when copying an array viewer item in
the "Project Tree" view.

{
 "name": "New Array Viewer", // array viewer item name
 "href": "", // description page URL

 // array viewer settings
 "array_count": 10, // number of elements read from each array
 "trig_astop_ena": 0, // stop automatically when timeout expires
 "trig_astop_delay": 10, // automatic stop timeout
 "trig_aload": 1, // load data automatically when stopped
 "trig_hold_ena": 1, // hold loaded data in graph
 "trig_hold_delay": 1, // minimum hold time
 "trig_arun": 1, // run automatically after hold time
 "trig_mode": 2, // 0=off,1=variable change,2=change&auto-clear

 "trig_var_def": { // trigger variable definition record
 "name": "var16trig", // specifying 'name' is enough to locate existing variable
 },

 // graph settings
 "graph_buffer": 2000, // graph buffer size in points
 "graph_type": 0, // graph type: 0=Time, 1=XY
 "graph_legend_loc": 0, // nonzero if legend is visible
 "graph_legend_vis": 1, // nonzero to put legend to graph interior
 "graph_legend_inside": 1, // exterior legend location: 0=top, 1=bottom, 2=left, 3=right
 "graph_grid_horz": 1, // show graph horizontal grid
 "graph_grid_vert": 1, // show graph vertical grid
 "graph_x_units": 2, // X-axis time units: 0=us, 1=ms, 2=sec, 3=min (Time graph only)
 "graph_x_label": "Time", // X-axis label (Time graph only)
 "graph_x_addunits": 1, // non-zero to add time unit name to axis label (Time graph only)
 "graph_x_min": 0, // nonzero to enable automatic X axis minimum value (XY graph only)
 "graph_x_max": 100, // nonzero to enable automatic X axis maximum value (XY graph only)

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 102 / 139

 "graph_x_min_auto": 1, // manual X axis minimum value (XY graph only)
 "graph_x_max_auto": 1, // manual X axis maximum value (XY graph only)
 "auto_delete": 0, // nonzero to set the Oscilloscope item to auto-delete mode

 // viewed arrays
 "var_info": [//
 {
 "var_def": { // variable definition record
 "name": "arr16[0]", // specifying 'name' is enough to locate existing variable
 },
 "visible": 1, // variable visible in graph
 "y_block": 0, // assign to y-block 0..4
 "color": 3026413 // subset color
 }
],

 // graph details for each Y-axis block
 "yblock_info": [
 {
 "join_class": 0, // blocks with equal value will be joined

 // left-axis settings
 "laxis_label": "lAxis", // label
 "laxis_style": 0, // style
 "laxis_min": -10, // use automatic minimum scaling
 "laxis_max": 10, // use automatic maximum scaling
 "laxis_min_auto": 1, // minimum value (when auto=0)
 "laxis_max_auto": 1, // maximum value (when auto=0)

 // right-axis settings
 "raxis_label": "rAxis", // label
 "raxis_style": 0, // style
 "raxis_min": -10, // use automatic minimum scaling
 "raxis_max": 10, // use automatic maximum scaling
 "raxis_min_auto": 1, // minimum value (when auto=0)
 "raxis_max_auto": 1, // maximum value (when auto=0)
 "raxis_subsets": 0 // number of subsets to assign to right axis
 } // (counted from the last subset)
],
 }
}

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

name Name of the FreeMASTER oscilloscope item to be created or modified in the project tree.

defString ActiveX: string with a JSON-formatted definition

JSON-RPC: definition object itself

Outputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 103 / 139

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned when the object
was created or modified. "False" is returned if an
error occurred.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.51 EnumHrefLinks
Prototype:

EnumHrefLinks ([in] index, [out] hrefName)

Description:

Enumerates the hyperlinks referenced by the target MCU application’s Active Content. The caller script is expected to call this
function with an increasing "index" value until an invalid "false" value is returned.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

index Index of hyperlink to be retrieved.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Hyperlink URL value in a string form when a
hyperlink at a given "index" exists. Otherwise, a
"false" boolean value is returned.

hrefName LastLinkName response.xtra.name Hyperlink text name - the string to be displayed for
the user.

JavaScript example:

See the JavaScript example of using this function in the source code of the FreeMASTER Welcome page, which is displayed when
FreeMASTER starts. The Welcome page detects and displays the hyperlinks contained by the target MCU Active Content feature.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.52 EnumProjectFiles
Prototype:

EnumProjectFiles ([in] index, [out] prjName)

Description:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 104 / 139

Enumerates the project files referenced by the target MCU application’s Active Content. The caller script is expected to call this
function with an increasing "index" value until an invalid "false" value is returned.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

index Index of the embedded project file to be retrieved.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval Project file URL in a string form when a project at
a given "index" exists. Otherwise, a "false" value
is returned.

prjName LastLinkName response.xtra.name Project name - the string to be displayed to
the user.

JavaScript example:

See the JavaScript example of using this function in the source code of the FreeMASTER Welcome page which is displayed when
FreeMASTER starts. The Welcome page detects and displays the hyperlinks contained by the target MCU Active Content feature.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.53 PipeOpen
Prototype:

PipeOpen ([in] port, [in, optional] txBufferSize, [in, optional] rxBufferSize, [out] retMsg)

Description:

Initializes the FreeMASTER Pipe object used to communicate with the target MCU using a lossless stream I/O channel. Each Pipe
is fully identified by a port number. The Pipe with the same port must also be initialized and periodically processed on the target
MCU side for the communication to run correctly. See the FreeMASTER Serial Driver documentation for more details.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

port The port number that identifies the Pipe channel. Only the lower 16 bits of the value are used.

txBufferSize Local transmit buffer size. This buffer is used to accumulate the data being transmitted to the target
MCU by calling a PipeWrite function until the MCU is ready to accept it.

Optional, defaults to 0x1000.

Table continues on the next page...

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 105 / 139

Table continued from the previous page...

Argument Description

rxBufferSize Local receive buffer size. This buffer is used to accumulate the data being received from the target
MCU until the script reads them by calling a PipeRead function.

Optional, defaults to 0x1000.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned when the
Pipe was successfully initialized. “False” is
returned otherwise.

retMsg LastRetMsg response.error.msg When an error occurs, this value contains an error
message. Otherwise, it is empty.

6.5.54 PipeClose
Prototype:

PipeClose ([in] port)

Description:

De-initializes the Pipe object.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

port The port number that identifies the Pipe channel. Only the lower 16 bits of the value are used.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value is returned when
the Pipe was successfully closed. "False” is
returned otherwise.

6.5.55 PipeFlush
Prototype:

PipeFlush ([in] port, [in] timeout_ms)

Description:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 106 / 139

Attempts to deliver pending data to the target MCU. It also receives any new data waiting to be transmitted at the MCU side.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

port The port number that identifies the Pipe channel. Only the lower 16 bits of the value are used.

timeout_ms The maximum time (in milliseconds) to spend trying to deliver the pending data.

When zero, only a single attempt to deliver the data is performed.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data This function returns the number of bytes that
remain in the local transmit buffer after this
flush attempt.

6.5.56 PipeSetDefaultTxMode
Prototype:

PipeSetDefaultTxMode ([in] txAllOrNothing)

Description:

Sets the default transmission mode for the subsequent calls to any PipeWrite functions.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Inputs:

Argument Description

txAllOrNothing Boolean value to be used as a default in the next call to any PipeWrite functions.

Outputs:

None.

Important: The EnableExtraFeatures method must be called before using this function.

6.5.57 PipeSetDefaultRxMode
Prototype:

PipeSetDefaultRxMode ([in] rxAllOrNothing, [in] rxTimeout_ms)

Description:

Sets the default receiving mode for the subsequent calls to any PipeRead functions.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 107 / 139

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

rxAllOrNothing Boolean value to be used as a default in the next call to any PipeRead functions.

rxTimeout_ms Default timeout (in milliseconds) to be used by the subsequent PipeRead calls.

Outputs:

None.

6.5.58 PipeSetDefaultStringMode
Prototype:

PipeSetDefaultStringMode ([in] unicode)

Description:

Sets the default string encoding used with the PipeWriteString and PipeReadString functions.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

unicode Boolean value to be used as a default in the next call to the PipeWriteString and PipeReadString
functions.

Outputs:

None.

6.5.59 PipeGetRxBytes
Prototype:

PipeGetRxBytes ([in] port)

Description:

Returns the number of bytes available in the local receive buffer to be read by any PipeRead function.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

port The port number which identifies the Pipe channel. Only the lower 16 bits of the value are used.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 108 / 139

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data Number of bytes that are ready in the local
receive buffer.

6.5.60 PipeGetTxBytes
Prototype:

PipeGetTxBytes ([in] port)

Description:

Returns the number of bytes pending in the local transmit buffer.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

port The port number which identifies the Pipe channel. Only the lower 16 bits of the value are used.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data The number of bytes that are pending in the local
transmit buffer to be delivered to the target MCU.

6.5.61 PipeGetTxFree
Prototype:

PipeGetTxFree ([in] port)

Description:

Returns free space in the local transmit buffer. Use this function before calling any PipeWrite functions to determine if the write
would succeed.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

port The port number which identifies the Pipe channel. Only the lower 16 bits of the value are used.

Outputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 109 / 139

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data Free space in the local transmit buffer.

6.5.62 PipeGetRxBufferSize
Prototype:

PipeGetRxBufferSize ([in] port)

Description:

Returns the local receive buffer size. This is the size specified when initializing the Pipe object with the PipeOpen call.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

port The port number that identifies the pipe channel. Only the lower 16 bits of the value are used.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data Local receive buffer size.

6.5.63 PipeGetTxBufferSize
Prototype:

PipeGetTxBufferSize ([in] port)

Description:

Returns the local transmit buffer size. This is the size specified when initializing the Pipe object with a PipeOpen call.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

port The port number that identifies the Pipe channel. Only the lower 16 bits of the value are used.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data Local transmit buffer size.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 110 / 139

6.5.64 PipeWriteString
ActiveX prototype:

PipeWriteString ([in] port, [in] string, [in] charsToWrite, [in] allOrNothing, [in] unicode)

JSON-RPC prototype:

PipeWriteString ([in] port, [in] string, [in] allOrNothing, [in] unicode)

Description:

Writes the characters from an input string into the selected Pipe.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite - APIs not fully compatible

Inputs:

Argument Description

port The port number that identifies the pipe channel. Only the lower 16 bits of the value are used.

string The string to be written.

charsToWrite (ActiveX
only)

The number of characters to be written to a pipe. This is an optional parameter. When omitted, the
whole string is written.

allOrNothing When non-zero, the PipeWrite function attempts to write all data to the local transmit buffer at once.
When the data do not fit into the buffer, no data are transmitted.

This is an optional parameter, the default value is determined by the PipeSetDefaultTxMode function.

unicode When non-zero, the individual characters are written in Unicode encoding, two bytes per character.
The Unicode characters are always written atomically, there is no risk of sending a partial value.

This is an optional parameter; the default value is determined by the
PipeSetDefaultStringMode function.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data This function returns the number of
characters written.

6.5.65 PipeWriteXxxArray
ActiveX prototypes:

To write an array of 1, 2, or 4-byte signed integers:

PipeWriteIntArray ([in] port, [in] elemSize, [in] data, [in, optional] count, [in, optional]
allOrNothing)

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 111 / 139

To write an array of 1, 2, or 4-byte unsigned integers:

PipeWriteUIntArray ([in] port, [in] elemSize, [in] data, [in, optional] count, [in, optional]
allOrNothing)

To write an array of 4-byte floating-point numbers:

PipeWriteFloatArray ([in] port, [in] data, [in, optional] count, [in, optional] allOrNothing)

To write an array of 8-byte floating-point numbers:

PipeWriteDoubleArray ([in] port, [in] data, [in, optional] count, [in, optional] allOrNothing)

JSON-RPC prototypes:

JSON-RPC functions do not have the "count" argument, the array size is inferred from the data automatically.

PipeWriteIntArray ([in] port, [in] elemSize, [in] data, [in, optional] allOrNothing)
PipeWriteUIntArray ([in] port, [in] elemSize, [in] data, [in, optional] allOrNothing)
PipeWriteFloatArray ([in] port, [in] data, [in, optional] allOrNothing)
PipeWriteDoubleArray ([in] port, [in] data, [in, optional] allOrNothing)

Description:

Translates an array of numbers passed by the caller to a block of bytes and writes the data into the selected pipe. The individual
array members are always written atomically to the transmit buffer, so there is no risk of having any values transmitted partially.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite - APIs not fully compatible

Inputs:

Argument Description

port The port number which identifies the pipe channel. Only the lower 16 bits of the value are used.

elemSize The size of an array element in bytes. The total number of bytes to be written to the target can be
calculated as count * elemSize.

data The array of values to be written.

count (ActiveX only) The number of elements to be written to the pipe. This is an optional parameter. When omitted, the
whole array is written.

allOrNothing When non-zero, the PipeWrite function attempts to write all data to the local transmit buffer at once.
When the data do not fit to the buffer, no data are transmitted.

This is an optional parameter, the default value is determined by the PipeSetDefaultTxMode function.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.data This function returns the number of array
elements successfully written.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 112 / 139

6.5.66 PipeReadString
Prototype:

PipeReadString ([in] port, [in] rxTimeout_ms, [in] charsToRead, [in, optional] allOrNothing, [in,
optional] unicode, [out] retString)

Description:

Reads the characters from a selected pipe.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

port The port number that identifies the pipe channel. Only the lower 16 bits of the value are used.

rxTimeout_ms Time (in milliseconds) to wait for the requested number of characters to be received.

This is an optional parameter, the default value is determined by PipeSetDefaultRxMode.

charsToRead The number of characters to be read from the pipe. This is an optional parameter. When omitted,
the maximum number of characters available until the timeout expires is read.

allOrNothing When non-zero and "charsToRead" count is not zero, the function attempts to read all required data
at once. When the data are not available until the timeout expires, no data are received.

This is an optional parameter. The default value is determined by the PipeSetDefaultRxMode function.

unicode When non-zero, the individual characters are read in Unicode encoding, two bytes per character. The
Unicode characters are always read atomically and there is no risk of receiving a partial value.

This is an optional parameter and the default value is determined by the
PipeSetDefaultStringMode function.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval This function returns the number of
characters read.

retString LastPipe_data response.data This parameter variable receives the string.

6.5.67 PipeReadXxxArray
Prototypes:

To read 1, 2, or 4-byte signed integers:

PipeReadIntArray ([in] port, [in] elemSize, [in] rxTimeout_ms, [in] count, [in] allOrNothing,
[out] data)

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 113 / 139

To read a 1, 2, or 4-byte unsigned variable:

PipeReadUIntArray ([in] port, [in] elemSize, [in] rxTimeout_ms, [in] count, [in] allOrNothing,
[out] data)

To access a 4-byte floating-point variable:

PipeReadFloatArray ([in] port, [in] rxTimeout_ms, [in] count, [in] allOrNothing, [out] data)

To access an 8-byte floating-point variable:

PipeReadDoubleArray ([in] port, [in] rxTimeout_ms, [in] count, [in] allOrNothing, [out] data)

Description:

Read a requested count of integer or floating-point numbers from a pipe and return it to the caller as an array of integer or
floating-point numbers.

For each call, there is an optional function which can be used in different scripting environments:

• PipeReadXxxArray returns data compatible with any scripting environment.

— ActiveX: data are returned as a safe array of variants, which can be used in scripting languages, such as VB script, and
in compiled languages, such as Visual Basic. Because the VB script engine does not handle variants encapsulating
2 and 4-byte unsigned integer types, this method converts such values to a floating-point format before returning. For
JavaScript: the safearray must be converted to a JavaScript array using the toArray() method.

— JSON-RPC: data are returned as a native JSON array.

For ActiveX only, there are also other optional functions that can be used in different scripting environments:

• PipeReadXxxArray_v is the same as PipeReadXxxArray, except that it does not perform the VB script translation for 2 and
4-byte unsigned integer types.

• PipeReadXxxArray_t returns the data in the VB array of strictly typed values, which can be used in compiled languages,
such as Visual Basic. Using typed arrays is significantly faster than using arrays of variants.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

port The port number which identifies the pipe channel. Only the lower 16 bits of the value are used.

elemSize The size of an array element in bytes. The total number of bytes to be read from a pipe can be
calculated as count * elemSize.

rxTimeout_ms Time (in milliseconds) to wait for the requested number of characters to be received.

This is an optional parameter and the default value is determined by PipeSetDefaultRxMode.

count The number of elements to be written to a pipe. This is an optional parameter. When omitted, the
maximum number of values available until the timeout expires are read.

allOrNothing When true and the "count" is not zero, the function attempts to read all required data at once. When
the data are not available until the timeout expires, no data are received.

This is an optional parameter and the default value is determined by the
PipeSetDefaultRxMode function.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 114 / 139

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval This function returns the number of array
elements read.

data LastPipe_data response.data This parameter variable receives the
resulting array.

6.5.68 EnumVariables
Prototype:

EnumVariables ([in] index, [out] variableName)

Description:

Enumerate the FreeMASTER variables in the current project. The caller script is expected to call this function with an increasing
"index" value until an invalid "false" value is returned.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

index Index of the variable to be retrieved.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value when a valid value is being
returned. "False" when the "index" does not map
to any valid variable object and the enumeration
should be stopped.

variableName LastEnum_name response.data Variable name.

6.5.69 EnumSymbols
Prototype:

EnumSymbols ([in] index, [out] symbolName)

Description:

Enumerate the target application symbols, as loaded in the current project. The caller script is expected to call this function with
an increasing "index" value until an invalid "false" value is returned.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 115 / 139

Argument Description

index Index of the symbol to be retrieved.

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value when a valid value is being
returned. "False" when the "index" does not map
to any valid symbol object and the enumeration
should be stopped.

symbolName LastEnum_name response.data Symbol name.

6.5.70 GetDetectedBoardInfo
Prototype:

GetDetectedBoardInfo ()

Description:

Retrieves the information obtained during the initial FreeMASTER protocol handshake between the Host PC and the target MCU
application. With the introduction of FreeMASTER communication protocol version 4, this function and the returned parameters
got obsolete. Protocol V4 enables to define multiple Oscilloscope, Recorder, and Pipe objects which cannot be described by this
legacy data structure.

Use one of the GetConfigParamXxx functions to retrieve the configuration parameters of protocol V4.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

None

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value when the board information
was retrieved. "False" otherwise.

LastBoardInfo _protVer response.data. protVer Protocol version byte. When value 4 (or higher)
is returned, use GetConfigParamXxx to retrieve
additional configuration values.

LastBoardInfo
_dataBusWidth

response.data.
dataBusWdt

Data bus width, typically 1 on most MCU
platforms. May be 2 on some DSC platforms.

LastBoardInfo
_versionWord

response.data. globVer FreeMASTER driver version word.

LastBoardInfo
_cmdBuffSize

response.data.
cmdBuffSize

Size of the FreeMASTER serial
communication buffer.

Table continues on the next page...

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 116 / 139

Table continued from the previous page...

Parameter ActiveX access JSON-RPC access Description

LastBoardInfo
_recBuffSize

response.data.
recBuffSize

Size of the data buffer for Recorder use (protocol
v4: Recorder #0 information only).

LastBoardInfo
_recTimeBase

response.data.
recTimeBase

Base Recorder sample rate encoded in units
described in the Serial Driver documentation for
protocol v3.

LastBoardInfo
_description

response.data. descr Board or FreeMASTER driver description string.

6.5.71 GetConfigParamXxx
Prototypes:

GetConfigParamU8 ([in] name, [out] paramValue) GetConfigParamULEB ([in] name, [out] paramValue)
GetConfigParamString ([in] name, [out] paramValue)

Description:

Reads the configuration parameter from the target MCU application. With the introduction of FreeMASTER protocol version 4, this
set of functions replaces the GetDetectedBoardInfo function.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite

Inputs:

Argument Description

name String containing configuration parameter name. The list of default parameter names follows, an
application may define custom parameters too.

U8 parameters:

• F1 - Flags

• RC - Number of recorders implemented on target

• SC - Number of oscilloscopes implemented on target

• PC - Number of pipes implemented on target

ULEB parameters (ULEB is a general unsigned numeric value):

• MTU - Size of an internal communication buffer for handling command and response frames

• BA - Base address used by optimized memory read/write commands

String parameters:

• VS - Version string

• NM - Application name string

• DS - Description string

• BD - Build date/time string

Outputs:

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 117 / 139

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval A boolean "true" value if the configuration value
was obtained successfully. "False" otherwise.

paramValue LastConfigParam_valu
e

response.data The actual parameter value in numeric or
string formats.

6.5.72 GetCommPortInfo
Prototype:

GetCommPortInfo ([in, optional] name)

Description

This function can be used to retrieve information about the communication port settings. FreeMASTER Lite clients may use this
method to also determine information about the configured ELF file.

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✔ Lite - APIs not fully compatible

Inputs:

Argument Description

name Name identifying the connection. This parameter is optional for desktop FreeMASTER as there is
only one valid connection configured at the moment. This built-in connection may also be identified
by a special name "preset".

Outputs:

Parameter ActiveX access JSON-RPC access Description

return value LastResult response.xtra.retval True when the board is detected and information
retrieved. False otherwise.

response.data.name Name of the connection.

LastCommPortInfo
_description

response.data.
description

Connection description text.

LastCommPortInfo
_connectString

response.data.
connectString

Full connection string used by FreeMASTER to
open the port.

response.data.elf ELF file name used to load symbolic information.

LastCommPortInfo
_isPlugin

response.xtra.isPlugin True when a communication plug-in is used.

LastCommPortInfo
_isRS232

response.xtra.isRS232 True when the native serial port or the USB-to­
serial port is used.

LastCommPortInfo
_speed

response.xtra.speed Serial baud rate used. Valid only if the isRS232
member is true.

Table continues on the next page...

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 118 / 139

Table continued from the previous page...

Parameter ActiveX access JSON-RPC access Description

LastCommPortInfo
_portNum

response.xtra.portHint COM port number. Valid only if the isRS232
member is true.

LastCommPortInfo
_portHint

response.xtra.portNum Hint word used to look up the serial port. Valid only
if the isRS232 member is true. The hint may be
any word contained in the serial port description
and may be specified by the user instead of the
direct COM port number.

6.5.73 EnableExtraFeatures
Prototype:

EnableExtraFeatures([in] enable)

Description

This function must be called in the JSON-RPC interface of the FreeMASTER desktop application to enable the use of
“extra” JSON-RPC methods, which are only compatible with the desktop application and not with FreeMASTER Lite. By
calling this function, you actually declare that the control page or client script is only intended to work with the FreeMASTER
desktop application.

The most commonly used “extra” methods are EnableEvents, SubscribeVariable, UnSubscribeVariable, DefineSymbol,
RunStimulators, SelectItem, and OpenProject.

Compatibility:

✘ ActiveX, ✔ JSON-RPC, ✘ Lite - APIs not fully compatible

Inputs:

Argument Description

enable True to enable the extra features. It is not allowed to use the False value, because it is only
possible for the extra features to be explicitly enabled.

Outputs:

None

6.5.74 EnableEvents
Prototype:

EnableEvents([in] enable)

Description:

This function must be called in the JSON-RPC interface of the FreeMASTER desktop application to activate the JSON-RPC
events firing. Call this function to enable the handling of OnRecorderDone, OnCommPortStateChanged, OnBoardDetected, and
OnVariableChanged events.

Compatibility:

✘ ActiveX, ✔ JSON-RPC, ✘ Lite

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 119 / 139

Inputs:

Argument Description

enable True to enable the event firing by the JSON-RPC server. False to disable.

Outputs:

Promise object resolves, but carries no value.

Important: The EnableExtraFeatures method must be called before using this function.

6.6 ActiveX properties
The FreeMASTER ActiveX methods contain input and output parameters. Passing the input parameters is straightforward, but
handling the output values may present an issue in languages like JavaScript. Such languages do not support the reception of
output values, so you must omit them when calling the method. After the call is made, all output values can be fetched using
different ActiveX properties, as described in the below table.

For each property in the FreeMASTER ActiveX interface, there is also the “GetLast...” function available and it implements the
same functionality as when reading the property value itself. Such functions can be used in scripting environment where accessing
the ActiveX object properties is not possible. For example, to read the "LastRetMsg" property, use the GetLastRetMsg() function
in languages that are only able to call methods.

These properties are meaningless when using the JSON-RPC interface. The JSON-RPC server returns all output
data in the response object, which makes it very easy for the client to process them.

 NOTE

Table 1. FreeMASTER ActiveX object properties

Property name Description

LastResult The return value of the last ActiveX function called.

LastRetMsg The error message returned by the last ActiveX function called (the value of the "retMsg" output
parameter).

LastVariable_vValue The value of the "numeric value” output parameter returned by the last ReadVariable method
called.

LastVariable_tValue The value of the “text value” output parameter returned by the last ReadVariable method called.

LastMemory_data The array of values returned in the “arrData” output parameter by the last call to one of the
ReadMemory or ReadXxxArray methods.

LastRecorder_data The array of values returned in the “arrData” output parameter by the last call to the
GetCurrentRecorderData or GetCurrentRecorderSeries methods.

LastRecorder_serieNa
mes

The array of values returned in the “arrSerieNames” output parameter by the last call to the
GetCurrentRecorderData method.

LastRecorder_timeBas
eSec

The value of the “timeBaseSec” output parameter returned by the last call to the
GetCurrentRecorderData method.

LastRecorder_state The value of the “state” output parameter returned by the last call to the GetCurrentRecorderState
method.

LastLocalFile_string The “retString” text buffer returned by the last call to the LocalFileReadString method.

LastSymbolInfo_size The “symSize” value returned by the last call to the GetSymbolInfo method.

Table continues on the next page...

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 120 / 139

Table 1. FreeMASTER ActiveX object properties (continued)

Property name Description

LastSymbolInfo_addr The “symAddr” value returned by the last call to the GetSymbolInfo method.

LastMemberInfo_size The “membSize” value returned by the last call to the GetStructMember method.

LastMemberInfo_offset The “membOff” value returned by the last call to the GetStructMember method.

LastAddressInfo_name The “symbolName” value returned by the last call to the GetAddressInfo method.

LastAddressInfo_exact The “isExactMatch” value returned by the last call to the GetAddressInfo method.

LastLinkName The name returned by the last call to the EnumHrefLinks or EnumProjectFiles methods.

LastPipe_data The pipe data returned by the last call to any of the PipeRead methods.

LastEnum_name The enumerated name returned by the last call to the EnumVariables or EnumSymbols methods.

LastBoardInfo_xxx Multiple properties returned by the GetDetectedBoardInfo method.

LastCommPortInfo_xxx Multiple properties returned by the GetCommPortInfo method.

LastMultipleVariables_j
son

JSON string returned by ReadMultipleVariables or WriteMultipleVariables.

6.7 ActiveX and JSON-RPC events
Events are notification messages that FreeMASTER uses to inform the client about asynchronous changes of states or other
events. Handling events is quite straightforward for the ActiveX and JSON-RPC interfaces.

For Internet Explorer and ActiveX, the most robust and simplest way to install an event handler is to use a VBScript subroutine
which forwards the execution further to the VBScript or JavaScript functions. For example, to handle an "OnBoardDetected" event
of a FreeMASTER ActiveX object named "pcm", use this subroutine:

<script language="VBScript">
Sub pcm_OnBoardDetected()
 ' call JavaScript or VBScript handler function
 my_handler_code()
End Sub
</script>

In JSON-RPC, the events are sent as notification messages from the server to the client. Different JSON-RPC client
implementations may differ in event handling. The PCM wrapper object distributed with the FreeMASTER installation uses
the "simple-jsonrpc-js" implementation, which makes it very easy to handle any server events. The PCM code simplifies the event
handler installation even more. The user code assigns the handler function to the PCM object property named after the event itself.
Keep in mind that for JSON-RPC events to be received, the EnableExtraFeatures and EnableEvents methods must be called first.
For the OnBoardDetected event, the code may look like this:

function my_handler_code()
{
 console.log("event received");
}

// enable FreeMASTER desktop application features
pcm.EnableExtraFeatures();

// enable events to be received
pcm.EnableEvents().then(() => {
 // install the handler

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 121 / 139

 pcm.OnBoardDetected = my_handler_code;
});

The following sections describe the events generated by the FreeMASTER desktop application.

6.7.1 OnRecorderDone
Prototype:

OnRecorderDone()

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Description:

This event is called when the active recorder finishes downloading new data. The data may then be retrieved using the
GetCurrentRecorderData or GetCurrentRecorderSeries methods.

Important: The EnableExtraFeatures and EnableEvents methods must be called first to receive the events on the JSON­
RPC interface.

6.7.2 OnCommPortStateChanged
Prototype:

OnCommPortStateChanged(portOpen)

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Description

This event is called when the communication port is open (portOpen is true) or closed (portOpen is false).

Important: The EnableExtraFeatures and EnableEvents methods must be called first to receive the events on the JSON­
RPC interface.

6.7.3 OnBoardDetected
Prototype:

OnBoardDetected()

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Description

This event is called when the FreeMASTER detects a valid target board and gets the first handshake information from it.

Important: The EnableExtraFeatures and EnableEvents methods must be called first to receive the events on the JSON­
RPC interface.

6.7.4 OnVariableChanged
Prototype:

OnVariableChanged(varName, subscriptionId)

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 122 / 139

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Description

This event is called when a subscribed variable value changes. See more details in the SubscribeVariable method description.

Important: The EnableExtraFeatures and EnableEvents methods must be called first to receive the events on the JSON­
RPC interface.

6.7.5 OnCustomEvent
Prototype:

OnCustomEvent(arg)

Compatibility:

✔ ActiveX, ✔ JSON-RPC, ✘ Lite

Description

This event is raised after any client connected to the same FreeMASTER ActiveX or JSON-RPC servers calls the
FireCustomEvent method. The event provides the argument value specified by the caller.

Important: The EnableExtraFeatures and EnableEvents methods must be called first to receive the events on the JSON­
RPC interface.

6.8 Scripting examples
The example applications shown in this section demonstrate how to initialize and use the ActiveX or JSON-RPC functions in
different scripting environments. For all examples, have the target board connected and running the default demo application
distributed within the FreeMASTER Serial Driver package.

Refer to FreeMASTER Lite package for more JS examples on JSON-RPC usage, including Jupyter Notebooks containing NodeJS
and Python examples.

6.8.1 VisualBasic script embedded in HTML page
The VisualBasic (VB) script used to be widely used scripting language used in web pages when Internet Explorer was a standard
browser. This technology is not as popular today, because it is not supported by other web browsers, but it is still used by
many users to provide active code behind locally rendered pages. The VB script is one of few scripting languages that natively
supports by-reference [output] parameters returned from the ActiveX methods. Using a FreeMASTER object with the VB script
is very straightforward.

<html>
<head>
 <script language="VBScript">

 Function onError(err)
 'Erors are reported in the status field.
 document.getElementById("status").innerHTML = err
 End Function

 Function read_variable(name, span_id)
 'ReadVariable uses FreeMASTER variable object from current project. Use
 'ReadUIntVariable to access the memory directly using a symbol name.
 bSucc = pcm.ReadVariable(name, vValue, tValue, bsRetMsg)

 If bSucc then
 document.getElementById(span_id).innerHTML = tValue

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 123 / 139

 else
 onError("Error when reading variable " & name & ". " + bsRetMsg)
 End If
 End Function

 Function read_array(name, elemSize, length, span_id)
 'Arrays are accessed in memory directly, using a symbol name and element size.
 bSucc = pcm.ReadUIntArray(name, length, elemSize, arr, bsRetMsg)

 If bSucc then
 document.getElementById(span_id).innerHTML = ""
 For i = 0 to uBound(arr)
 document.getElementById(span_id).innerHTML =
 document.getElementById(span_id).innerHTML & arr(i) & ", "
 Next
 else
 onError("Error when reading variable " & name & ". " + bsRetMsg)
 End If
 End Function

 Function write_variable(name, input_id)
 val = document.getElementById(input_id).value

 'WriteVariable uses FreeMASTER variable object from current project. Use
 'WriteUIntVariable to access the memory directly using a symbol name.
 bSucc = pcm.WriteVariable(name, val, bsRetMsg)

 If bSucc then
 document.getElementById("status").innerHTML = "Write of the " & name & " succeeded."
 else
 onError("Error when reading variable " & name & ". " + bsRetMsg)
 End If
 End Function

 </script>
</head>
<body>
 <!-- The main FreeMASTER ActiveX communication object -->
 <object id="pcm" height="0" width="0" classid="clsid:48A185F1-FFDB-11D3-80E3-00C04F176153">
 </object>

 <!-- User form -->
 Read var16 = N/A <input type="button" value="Read var16"
 onclick="call read_variable('var16', 'var16_read')" />

 Read var16inc = N/A <input type="button" value="Read var16inc"
 onclick="call read_variable('var16inc', 'var16inc_read')" />

 Read arr16 = N/A <input type="button" value="Read arr16"
 onclick="call read_array('arr16', 2, 10, 'arr16_read')" />

 Write var16inc: <input type="text" id="var16inc_val" value="10" />
 <input type="button" value="Write var16inc"
 onclick="call write_variable('var16inc', 'var16inc_val')" />

 Status: No errors.

</body>
</html>

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 124 / 139

6.8.2 JavaScript and JSON-RPC embedded in HTML page
This example shows the use of the JSON-RPC communication in JavaScript, as introduced in FreeMASTER 3.0. This
example works in the Chromium view embedded in the FreeMASTER main window, as well as in the Chrome web browser
running externally.

<html>
<head>
 <!-- Get the information object named "FreeMASTER" (needs version 3.1.3 and above) -->
 <script type="text/javascript" src="fmstr://localapp/info.js"></script>
 <!-- load JSON-RPC and FreeMASTER wrapper object -->
 <script type="text/javascript" src="./simple-jsonrpc-js.js"></script>
 <script type="text/javascript" src="./freemaster-client.js"></script>

 <script type="text/javascript">
 var pcm; // the main FreeMASTER communication object

 function main()
 {
 /* Desktop FreeMASTER listens on port 41000 by default, unless this is
 * overridden on command line using /rpcs option. FreeMASTER Lite
 is configurable. */
 // default address
 var rpcs_addr = "localhost:41000";

 // freemaster 3.1.3 and above provides the info about itself:
 if(typeof(FreeMASTER) != "undefined")
 rpcs_addr = FreeMASTER.rpcs_addr;

 pcm = new PCM(rpcs_addr, on_connected, on_error, on_error);
 pcm.OnServerError = on_error;
 pcm.OnSocketError = on_error;
 }

 function on_connected()
 {
 /* Typically, you want to enable extra features to make use of the full API
 * provided by desktop application. Leave this disabled and avoid any extra
 * features when creating pages compatible with FreeMASTER Lite. */
 //pcm.EnableExtraFeatures(true);
 }

 function on_error(err)
 {
 /* Erors are reported in the status field. */
 document.getElementById("status").innerHTML = err;
 }

 function read_variable(name, span_id)
 {
 /* ReadVariable uses FreeMASTER variable object from current project. Use
 * ReadUIntVariable to access the memory directly using a symbol name. */
 return pcm.ReadVariable(name)
 .then((value) => {
 document.getElementById(span_id).innerHTML = value.data;
 })
 .catch((err) => {
 on_error(err.msg);
 });
 }

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 125 / 139

 function read_array(name, elemSize, length, span_id)
 {
 /* Arrays are accessed in memory directly, using a symbol name and element size. */
 pcm.ReadUIntArray(name, length, elemSize)
 .then((value) => {
 document.getElementById(span_id).innerHTML = "";
 for(i=0; i<value.data.length; i++)
 document.getElementById(span_id).innerHTML += value.data[i] + ", ";
 })
 .catch((err) => {
 on_error(err.msg);
 });
 }

 function write_variable(name, input_id)
 {
 var val = document.getElementById(input_id).value;

 /* WriteVariable uses FreeMASTER variable object from current project. Use
 * WriteUIntVariable to access the memory directly using a symbol name. */
 pcm.WriteVariable(name, val)
 .then(() => {
 document.getElementById("status").innerHTML = "Write of the " + name + " succeeded.";
 })
 .catch((err) => {
 on_error(err.msg);
 });
 }

 </script>
</head>
<body onload="main()">
 <!-- User form -->
 Read var16 = N/A <input type="button" value="Read"
 onclick="read_variable('var16', 'var16_read')" />

 Read var16inc = N/A <input type="button" value="Read"
 onclick="read_variable('var16inc', 'var16inc_read')" />

 Read arr16 = N/A <input type="button" value="Read"
 onclick="read_array('arr16', 2, 10, 'arr16_read')" />

 Write var16inc: <input type="text" id="var16inc_val" value="10" />
 <input type="button" value="Write"
 onclick="write_variable('var16inc', 'var16inc_val')" />

 Status: No errors.

</body>
</html>

6.8.3 JavaScript with ActiveX embedded in HTML page
JavaScript is one of the most popular scripting languages for creating dynamic HTML pages. There are some special techniques
needed to use it with the FreeMASTER ActiveX control:

• JavaScript does not natively support the by-reference [output] parameters. The parameters should be avoided and the
output values should be retrieved from the LastResult and other LastXxx property members. See ActiveX properties for
more details.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 126 / 139

• JavaScript uses a different format of arrays which is not compatible with the “safearray” format used by the ActiveX
interface. Special conversion routines must be used, as demonstrated in the following example code:

<html>
<head>
 <script type="text/javascript">

 function on_error(err)
 {
 /* Erors are reported in the status field. */
 document.getElementById("status").innerHTML = err;
 }

 function read_variable(name, span_id)
 {
 /* ReadVariable uses FreeMASTER variable object from current project. Use
 * ReadUIntVariable to access the memory directly using a symbol name. */
 if(pcm.ReadVariable(name))
 document.getElementById(span_id).innerHTML = pcm.LastVariable_vValue;
 else
 on_error("Error when reading variable " + name + ". " + pcm.LastRetMsg);
 }

 function read_array(name, elemSize, length, span_id)
 {
 /* Arrays are accessed in memory directly, using a symbol name and element size. */
 if(pcm.ReadUIntArray(name, length, elemSize))
 {
 var rarr = pcm.LastResult ? pcm.LastMemory_data.toArray() : new Array();
 document.getElementById(span_id).innerHTML = "";
 for(i=0; i<rarr.length; i++)
 document.getElementById(span_id).innerHTML += rarr[i] + ", ";
 }
 else
 {
 on_error("Error when reading array " + name + ". " + pcm.LastRetMsg);
 }
 }

 function write_variable(name, input_id)
 {
 var val = document.getElementById(input_id).value;

 /* WriteVariable uses FreeMASTER variable object from current project. Use
 * WriteUIntVariable to access the memory directly using a symbol name. */
 if(pcm.WriteVariable(name, val))
 document.getElementById("status").innerHTML = "Write of the " + name + " succeeded.";
 else
 on_error("Error when writting variable " + name + ". " + pcm.LastRetMsg);
 }

 </script>
</head>
<body>
 <!-- The main FreeMASTER ActiveX communication object -->
 <object id="pcm" height="0" width="0" classid="clsid:48A185F1-FFDB-11D3-80E3-00C04F176153">
 </object>

 <!-- User form -->
 Read var16 = N/A <input type="button" value="Read var16"

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 127 / 139

 onclick="read_variable('var16', 'var16_read')" />

 Read var16inc = N/A <input type="button" value="Read var16inc"
 onclick="read_variable('var16inc', 'var16inc_read')" />

 Read arr16 = N/A <input type="button" value="Read arr16"
 onclick="read_array('arr16', 2, 10, 'arr16_read')" />

 Write var16inc: <input type="text" id="var16inc_val" value="10" /> <input type="button"
 value="Write var16inc" onclick="write_variable('var16inc', 'var16inc_val')" />

 Status: No errors.

</body>
</html>

6.8.4 VisualBasic for Applications in Excel
The FreeMASTER object can also be used in the Visual Basic for Applications (VBA) project in Excel. Before writing the code,
register a reference to the "FreeMASTER ActiveX Type Library" in the "Tools / References..." dialog, which is available in the
VisualBasic development environment.

Figure 51. Registering FreeMASTER Type Library in VBA

The name of the FreeMASTER ActiveX object that should be declared in the VB code is McbPcm. If the type library is registered
properly, the editor should automatically detect the FreeMASTER object and enable intelligent object method look-up while typing
the code.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 128 / 139

Figure 52. Editing code in VBA environment

Dim pcm As McbPcm
Dim sht

Private Sub Form_Load()
 'initialize FreeMASTER object
 Set pcm = New McbPcm

 Set sht = Worksheets("sheet1")
End Sub

Sub OnError(err)
 'Show error in status cell
 sht.Range("B7").Value = "ERROR: " & err
End Sub

Sub ShowStatus(text)
 'Show status in status cell
 sht.Range("B7").Value = text
End Sub

Sub ReadVar16()
 'Macro read var16
 Call ReadVariable("var16", "B1")
End Sub

Sub ReadVar16inc()
 'Macro read var16inc
 Call ReadVariable("var16inc", "B2")
End Sub

Sub ReadArr16()
 'Macro read arr16
 Call ReadArray("arr16", 2, 10, "B3:K3")
End Sub

Sub WriteVar16inc()
 'Macro write var16
 Call WriteVariable("var16inc", "B5")
End Sub

Sub ClearArray()
 'Macro clear cells for array

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 129 / 139

 sht.Range("B3:K3").Value = ""
 ShowStatus ("Array was cleared")
End Sub

Sub ReadVariable(name, cell)
 Dim bSucc As Boolean

 If pcm Is Nothing Then
 Call Form_Load
 End If

 'ReadVariable uses FreeMASTER variable object from current project. Use
 'ReadUIntVariable to access the memory directly using a symbol name.
 bSucc = pcm.ReadVariable(name, vValue, tValue, bsRetMsg)
 If bSucc Then
 sht.Range(cell).Value = tValue
 ShowStatus ("Readvariable OK")
 Else ' something failed
 OnError (bsRetMsg)
 End If
End Sub

Sub ReadArray(name, elemSize, length, cell)
 Dim bSucc As Boolean

 If pcm Is Nothing Then
 Call Form_Load
 End If

 'Arrays are accessed in memory directly, using a symbol name and element size.
 bSucc = pcm.ReadUIntArray(name, length, elemSize, arr, bsRetMsg)
 If bSucc Then
 sht.Range(cell).Value = arr
 ShowStatus ("ReadUIntArray OK")
 Else ' something failed
 OnError (bsRetMsg)
 End If
End Sub

Sub WriteVariable(name, cell)
 Dim bSucc As Boolean
 Dim val As String

 If pcm Is Nothing Then
 Call Form_Load
 End If

 val = sht.Range(cell).Value

 'WriteVariable uses FreeMASTER variable object from current project. Use
 'WriteUIntVariable to access the memory directly using a symbol name.
 bSucc = pcm.WriteVariable(name, val, bsRetMsg)
 If bSucc Then
 ShowStatus ("Write of " & name & " was successful.")
 Else ' something failed
 OnError (bsRetMsg)
 End If
End Sub

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 130 / 139

Figure 53. Excel form

6.8.5 VBA and Excel cell functions
It is not always good to invoke Excel macros using active buttons inserted in the spreadsheet, as demonstrated in the previous
section. This section demonstrates the use of Excel functions used inside the cells. The ready-to-use example is available in the
"example_cell_functions.xlsm" file.

The variable names and values to be read or written are put to spreadsheet cells along with custom functions, named PCMVAR
for reading, PCMWR for writing, and PCMFIRE for custom event processing.

Use the spreadsheet with FreeMASTER running the demo project attached to a target application. The "var8", "var16", "var32",
"var16inc", and "var32inc" variables should be defined in the project. Exercise the function by modifying the values in the green
cells. Also, pressing "F9" ("Formulas/Calculate Now" command) refreshes the PCMVAR functions and reads the immediate
variable values from the target.

Figure 54. FreeMASTER cell functions

The code in "ThisWorkbook" section provides a safe access to the FreeMASTER “pcm” object and installs the event handlers
according to VBA standards:

Public WithEvents pcm As McbPcm
Private evCounter As Integer

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 131 / 139

Public Function GetPCM(reset As Boolean)
 If reset Then
 Set ThisWorkbook.pcm = Nothing
 End If

 If pcm Is Nothing Then
 Set ThisWorkbook.pcm = New McbPcm
 End If

 Set GetPCM = ThisWorkbook.pcm

End Function

Private Sub pcm_OnCustomEvent(ByVal vArg As Variant)
 evCounter = evCounter + 1
 Set r = Sheet1.Range("events")
 r.value = r.value & CStr(evCounter) & " OnCustomEvent(" & CStr(vArg) & ")" & vbNewLine
End Sub

Private Sub pcm_OnCommPortStateChanged(ByVal vPortOpen As Variant)
 evCounter = evCounter + 1
 Set r = Sheet1.Range("events")
 r.value = r.value & CStr(evCounter) & " OnCommPortStateChanged(" & CStr(vPortOpen) & ")"
& vbNewLine
End Sub

Private Sub pcm_OnBoardDetected()
 evCounter = evCounter + 1
 Set r = Sheet1.Range("events")
 r.value = r.value & CStr(evCounter) & " OnBoardDetected" & vbNewLine
End Sub

The code in Module1 of the spreadsheet defines the cell functions:

Function PCMRESET()
 ThisWorkbook.GetPCM (True)
End Function

' call ReadVariable
Function PCMVAR(name)
 Dim pcm As McbPcm
 Set pcm = ThisWorkbook.GetPCM(False)

 Application.Volatile

 ok = pcm.ReadVariable(name, vval, tval, msg)

 If (ok) Then
 PCMVAR = tval
 Else
 PCMVAR = msg
 End If

End Function

' call WriteVariable
Function PCMWR(name, value)
 Dim pcm As McbPcm

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 132 / 139

 Set pcm = ThisWorkbook.GetPCM(False)

 ok = pcm.WriteVariable(name, value, msg)

 If (ok) Then
 PCMWR = name + " written " + CStr(value)
 Else
 PCMWR = msg
 End If

End Function

' call FireCustomEvent with an argument
Function PCMFIRE(arg)
 Dim pcm As McbPcm
 Set pcm = ThisWorkbook.GetPCM(False)

 ok = pcm.FireCustomEvent(arg)

 If (ok) Then
 PCMFIRE = " OnCustomEvent(" & CStr(arg) & ") fired"
 Else
 PCMFIRE = "Error when firing OnCustomEvent"
 End If

End Function

6.8.6 Matlab m-script
Test this code in the Matlab console:

% create FreeMASTER ActiveX object
pcm = actxserver ('MCB.PCM');

% write 10 value into "var16" variable
bSucc = pcm.WriteVariable('var16inc', 10);
var16 = 0;

% read the "var16" variable as defined in FreeMASTER project
bSucc = pcm.ReadVariable('var16');
if bSucc
 var16 = pcm.LastVariable_vValue;
end
% show the value
var16

% configure matlab to accept safe array as single dimension
feature('COM_SafeArraySingleDim', 1) ;
% write 4 bytes to 'arr8' array. WriteMemory function expects SafeArray as input data
bSucc = pcm.WriteMemory('arr8', 4, {11;22;33;44})
% reads 4 bytes from memory at address of var32inc variable
bSucc = pcm.ReadMemory('var32inc', 4);
if bSucc
 % reads data of last call the ReadMemory()function.
 readMemResult = pcm.LastMemory_data
end

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 133 / 139

6.9 Script accessing multiple running FreeMASTER instances
Complex scripts or control pages can access multiple running FreeMASTER instances. This may be useful when more target
boards are attached to a computer and a script must collect data from all of them.

For COM+/ActiveX interface:

• A special ActiveX object named “Multi-FreeMASTER Class” (identifier is MCB.MULT) enables you to run, stop, and control
multiple instances of FreeMASTER application.

• The object can be instantiated in an Internet Explorer control page "<OBJECT id=”mult” name=”mult” height=”1” width=”1”
classid=”clsid:A8E26DF5-85A1-4552-AD0E-6C8AA10641EA”></OBJECT>".

• The object has just one method ("GetAppObject(instanceName, runMode, openProject)") which returns a common
FreeMASTER object instance to be controlled using the API described earlier in this section.

• Parameters:

— "instanceName" - a string identifier of the running instance. You can name instances using the "/sharex NAME"
command-line parameter. When a required instance is not found, then a new FreeMASTER instance is started.

— "runMode" - a number: 1 = normal, 2 = minimized, which can be added to: 0x10 = port closed, 0x20 = port open,
0x30 = port open verbose.

— "openProject" - the project to open if an instance is not found and it is being started.

• As a result, a single "MCB.MULT" object can be used to run or attach to multiple named FreeMASTER instances. All
instances can then be controlled from a single script.

• FreeMASTER version 3.1.3 extends the MCB.MULT object support to 64-bit applications, so even if FreeMASTER itself
remains a 32-bit executable, any 64-bit client can fully use its functions.

For JSON-RPC interface:

• Run each FreeMASTER with a different "/rpcs PORT" command-line option to start the JSON-RPC server at a given port.
The default port is 41000.

• When the "/rpcs" option is not used, other FreeMASTER instances pick a server port from a range of 41001..41016. If a script
is running in an HTML code hosted in Chromium view inside FreeMASTER, the port number may be detected from a virtual
JScript code declared as follows:

<script type="text/javascript" src="fmstr://localapp/info.js"></script>

For more information, see FreeMASTER JSON-RPC interface and the example code in JavaScript and JSON-RPC
embedded in HTML page.

• In the script acting as a JSON-RPC client, you can connect to as many server instances as needed at proper ports and
use the connection interface to control each of them.

NXP Semiconductors
HTML and scripting

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 134 / 139

Chapter 7
FreeMASTER low level
FreeMASTER enables users to monitor and control the target microcontroller application. The monitoring is done using a
text-based Variable Watch grid or using the Oscilloscope and Recorder charts graphically. The basic control features are
achieved using the Application Commands or by modifying the variables in the Watch grid. A bidirectional communication using
FreeMASTER pipes is also available.

On top of this basic functionality, custom Control Pages can be written in HTML and JavaScript and use additional graphical
objects (like buttons, gauges, sliders, and so on). Using the ActiveX or JSON-RPC interfaces, the Control Page has access to
the FreeMASTER object and its programming interface. From the software layering perspective, the Control Page implements an
upper layer built on top of the FreeMASTER foundation framework.

The Control Pages are not the only way of using the FreeMASTER technology for custom development. The FreeMASTER
software itself is internally split to several layers which may be interfaced directly. Such a customization is definitely not trivial and
may require some support from NXP. Reach out to the FreeMASTER community forum for more information.

7.1 Communication library
The communication library is a low layer of the FreeMASTER desktop application, which handles the entire communication with
the target MCU application. It has a form of dynamically loaded library which may also be used by custom applications that use
the FreeMASTER communication protocol. In Windows, the library is named mcbcXX.dll.

For FreeMASTER versions between 1.2 and 2.0, mcbc12.dll is used. FreeMASTER 2.5 and 3.0 introduce mcbc30.dll. The
FreeMASTER Lite uses similar communication library updated for cross-platform operation with the same API.

The DLL can be interfaced from almost any programming languages that generate a native code for the Windows operating
system and even several scripting languages. An interface header file and a *.lib file for compile-time linking of the library is
available in the FreeMASTER installation in the userdev directory.

• mcbcom.h - main communication library header file

• mcberr.h - error code definition header file

Obey the NXP licensing terms and conditions when designing custom applications with the FreeMASTER protocol
or FreeMASTER communication library. The license only permits using the FreeMASTER tool with applications
and systems that utilize NXP Semiconductors processors.

 NOTE

7.2 Communication plugins
Communication plugins are dynamically loaded libraries that may be used by FreeMASTER (namely by the FreeMASTER
Communication Library) to implement alternate ways of physical communication with the target. The native serial communication
protocol is implemented by the FreeMASTER communication library directly, using a low-level RS-232 or USB communication
interface available in the operating system. The general routines to send protocol frames and receive response frames are
provided in the library. Any other means of physical communication may be provided in the form of plugins which supply alternate
send-and-receive implementations suitable for the selected physical media.

FreeMASTER comes with several communication plugins installed automatically along with the main application:

• The "CAN communication plug-in" uses CAN messages to send and receive serial protocol frames. The FreeMASTER driver
must be configured for the CAN interface also in the target MCU application.

• The "BDM/JTAG communication plug-in" emulates the serial protocol, catches any variable-access protocol frames, and
emulates the same behavior using a direct memory access over the JTAG interface. With this plugin, no protocol driver needs
to be used in the target MCU application. All memory accesses are made on a background without any MCU CPU intervention.

NXP Semiconductors

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 135 / 139

https://community.nxp.com/community/freemaster

Advanced features (like Recorder or Pipes) do not work with this plugin, because there is no "cooperating" driver code in the
MCU application.

• The "Packet-Driven BDM communication plug-in" uses the JTAG interface as a communication interface instead of a direct
access to the target memory. In this case, the FreeMASTER driver must be again present in the target MCU application and
must be configured for the PD-BDM communication.

• The "Network communication plug-in" supports direct TCP or UDP connectivity to the target embedded application. The
application must use a TCP/IP stack (such as lwIP) and support the FreeMASTER protocol. See the "fmstr_net" and
"fmstr_wifi" demo applications available in MCUXpresso SDK v2.10 (and later).

• The network plug-in also supports a communication over SEGGER J-Link debugger probes using an RTT protocol running
locally or via a remote computer. The RTT communication may be used together with an active debugger session, sharing
the same J-Link device.

The FreeMASTER desktop application and FreeMASTER Lite both support communication plugins, but the technology differs:

• FreeMASTER uses Microsoft COM+ technology to implement plug-ins and invoke their methods. The interface files needed
to design custom communication plugins are available in the FreeMASTER installation in the userdev directory.

— mcbcom_i.idl - the main COM+ interface definition file

— mcbcom_i.c and mcbcom_i.h - defines the interface and related GUID identifiers

• FreeMASTER Lite uses general localhost RPC over a TCP protocol.

The development of custom plug-in modules may be a challenging task. Reach out to the NXP FreeMASTER community forum
to seek support or to discuss your development plans.

Obey the NXP licensing terms and conditions when designing custom applications with the FreeMASTER protocol
or the FreeMASTER communication library. The license only permits using the FreeMASTER tool with applications
and systems that utilize processors from NXP Semiconductors.

 NOTE

NXP Semiconductors
FreeMASTER low level

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 136 / 139

https://community.nxp.com/community/freemaster

Chapter 8
References

• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging Tool With CodeWarrior For Microcontrollers v10.X Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

NXP Semiconductors

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 137 / 139

http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860
https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en

Chapter 9
Revision history
Table 2 summarizes the changes done to this document since the initial release.

Table 2. Revision history

Revision Date Description

1.0 03/2006 Limited initial release

2.0 09/2007 Updated for FreeMASTER version. New Freescale document template used.

2.1 12/2007 Added description of the new Fast Recorder feature and its API.

2.2 04/2010 Added support for MPC56xx platform, Added new API for use CAN interface.

2.3 04/2011 Added support for Kxx Kinetis platform and MQX operating system.

2.4 06/2011 Serial driver update, adds support for USB CDC interface.

2.5 08/2011 Added Packet Driven BDM interface.

2.7 12/2013 Added FLEXCAN32 interface, byte access and isr callback configuration option.

2.8 06/2014 Removed obsolete license text, see the software package content for up-to-date license.

2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMASTER Pipes, TSA Active Content, LIN
Transport Layer support, DEBUG-TX communication troubleshooting, Kinetis SDK support

3.0 08/2016 Update for driver version 2.0: Added support for MPC56xx, MPC57xx, KEAxx and S32Kxx
platforms. New NXP document template as well as new license agreement used. Added
MCAN interface. Folders structure at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0 and MCUXpresso SDK 2.6. Updated
to match new V4 serial communication protocol and new configuration options.

This version of the document removes substantial portion of outdated information related to
S08, S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and information about the MCUXpresso Config
Tools. Fixed the pipe-related API description.

4.3 10/2021 Added information about RTT communication, MCB.MULT object, and CEF "info.js" virtual file.

Accompanying the FreeMASTER 3.1.3 release.

4.4 03/2022 Accompanying the FreeMASTER version 3.1.4. New ActiveX/JSON-RPC API documented in
HTML and scripting.

NXP Semiconductors

FreeMASTER for Embedded Applications, Rev. 4.4, 03/2022
User Guide 138 / 139

How To Reach
Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice
to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document,
including without limitation specifications and product descriptions, at any time and without notice. This document supersedes
and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the
effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open
and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any
vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select
products with security features that best meet rules, regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security
related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP
has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,
reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade
secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture
and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 03/2022
Document identifier: FMSTERUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Overview
	1.2 Supported platforms
	1.2.1 Going around UART and SCI

	1.3 Where to find the latest version
	1.4 FreeMASTER features
	1.5 FreeMASTER online community

	2 Questions and answers
	2.1 Why do I need FreeMASTER?
	2.2 What does FreeMASTER do?
	2.3 Why is FreeMASTER such a great demonstration tool?
	2.4 What can I do with FreeMASTER if I follow the instructions?
	2.5 How is FreeMASTER connected to a target development board?
	2.6 What are all of these dialog boxes for?
	2.7 How does a project relate to my application?
	2.8 How do I set up remote control and why would I want to?
	2.9 What is the Watch-grid?
	2.10 What is the Recorder?
	2.11 What is the Oscilloscope?
	2.12 What is the Control Page?
	2.13 Has the Control Page changed in FreeMASTER 3.0?
	2.14 What is FreeMASTER Lite?
	2.15 Can I access connect to multiple target boards at once?

	3 Installation
	3.1 System requirements
	3.2 Enabling connection to the target application
	3.3 How to install FreeMASTER
	3.4 Running FreeMASTER

	4 FreeMASTER usage
	4.1 Application window description
	4.1.1 Project Tree
	4.1.1.1 Project block and sub-block
	4.1.1.2 Oscilloscope
	4.1.1.3 Recorder
	4.1.1.4 Array Viewer

	4.1.2 Detail View
	4.1.2.1 Control Page
	4.1.2.2 Algorithm Block Description
	4.1.2.3 Current item help
	4.1.2.4 Oscilloscope/Recorder

	4.1.3 Watch-Grid

	4.2 Variables
	4.2.1 Generating variables
	4.2.1.1 Generating array-element variables

	4.3 Commands
	4.4 Importing project files
	4.5 Menu description
	4.5.1 File menu
	4.5.2 Edit menu
	4.5.3 View menu
	4.5.4 Explorer menu
	4.5.5 Oscilloscope menu
	4.5.6 Project menu

	4.6 Toolbars
	4.6.1 Main Toolbar
	4.6.2 Formatting Bar

	5 Project options
	5.1 Communication
	5.2 Symbol files
	5.2.1 Regular expression-based MAP file parser

	5.3 Packing resource files into a project file
	5.3.1 Resource files manager

	5.4 HTML pages
	5.5 Demo mode

	6 HTML and scripting
	6.1 Special HTML hyperlinks
	6.2 FreeMASTER ActiveX interface
	6.3 FreeMASTER JSON-RPC interface
	6.4 FreeMASTER Lite
	6.4.1 FreeMASTER vs. FreeMASTER Lite

	6.5 ActiveX and JSON-RPC methods
	6.5.1 GetAppVersion
	6.5.2 OpenProject
	6.5.3 SaveProject
	6.5.4 StartStopComm
	6.5.5 StartComm
	6.5.6 StopComm
	6.5.7 IsCommPortOpen
	6.5.8 IsBoardDetected
	6.5.9 IsBoardWithActiveContent
	6.5.10 GetHtmlDocument
	6.5.11 SendCommand
	6.5.12 SendCommandDlg
	6.5.13 ReadVariable
	6.5.14 WriteVariable
	6.5.15 ReadMemory
	6.5.16 WriteMemory
	6.5.17 ReadXxxArray
	6.5.18 WriteXxxArray
	6.5.19 ReadXxxVariable
	6.5.20 WriteXxxVariable
	6.5.21 ReadMultipleVariables
	6.5.22 WriteMultipleVariables
	6.5.23 GetCurrentRecorderData
	6.5.24 GetCurrentRecorderSeries
	6.5.25 StartCurrentRecorder
	6.5.26 StopCurrentRecorder
	6.5.27 GetCurrentRecorderState
	6.5.28 RunStimulators
	6.5.29 StopStimulators
	6.5.30 LocalFileOpen
	6.5.31 LocalFileClose
	6.5.32 LocalFileWriteString
	6.5.33 LocalFileReadString
	6.5.34 GetSymbolInfo
	6.5.35 GetStructMemberInfo
	6.5.36 GetAddressInfo
	6.5.37 GetXxxDefinition
	6.5.38 DefineSymbol
	6.5.39 DeleteAllScriptSymbols
	6.5.40 SubscribeVariable
	6.5.41 UnSubscribeVariable
	6.5.42 SelectItem
	6.5.43 DeleteItem
	6.5.44 FireCustomEvent
	6.5.45 DefineVariable
	6.5.46 DefineOscilloscope
	6.5.47 DefinePipe
	6.5.48 DefineRecorder
	6.5.49 DefineWatchBlock
	6.5.50 DefineArrayViewer
	6.5.51 EnumHrefLinks
	6.5.52 EnumProjectFiles
	6.5.53 PipeOpen
	6.5.54 PipeClose
	6.5.55 PipeFlush
	6.5.56 PipeSetDefaultTxMode
	6.5.57 PipeSetDefaultRxMode
	6.5.58 PipeSetDefaultStringMode
	6.5.59 PipeGetRxBytes
	6.5.60 PipeGetTxBytes
	6.5.61 PipeGetTxFree
	6.5.62 PipeGetRxBufferSize
	6.5.63 PipeGetTxBufferSize
	6.5.64 PipeWriteString
	6.5.65 PipeWriteXxxArray
	6.5.66 PipeReadString
	6.5.67 PipeReadXxxArray
	6.5.68 EnumVariables
	6.5.69 EnumSymbols
	6.5.70 GetDetectedBoardInfo
	6.5.71 GetConfigParamXxx
	6.5.72 GetCommPortInfo
	6.5.73 EnableExtraFeatures
	6.5.74 EnableEvents

	6.6 ActiveX properties
	6.7 ActiveX and JSON-RPC events
	6.7.1 OnRecorderDone
	6.7.2 OnCommPortStateChanged
	6.7.3 OnBoardDetected
	6.7.4 OnVariableChanged
	6.7.5 OnCustomEvent

	6.8 Scripting examples
	6.8.1 VisualBasic script embedded in HTML page
	6.8.2 JavaScript and JSON-RPC embedded in HTML page
	6.8.3 JavaScript with ActiveX embedded in HTML page
	6.8.4 VisualBasic for Applications in Excel
	6.8.5 VBA and Excel cell functions
	6.8.6 Matlab m-script

	6.9 Script accessing multiple running FreeMASTER instances

	7 FreeMASTER low level
	7.1 Communication library
	7.2 Communication plugins

	8 References
	9 Revision history

