
CodeWarrior™
Development Studio
IDE 5.6 User’s Guide

Revised: May 30, 2006
 Revised 20030610

Freescale, the Freescale logo, and CodeWarrior are trademarks or registered trademarks of Freescale Corporation in the
United States and/or other countries. All other trade names and trademarks are the property of their respective owners.

Copyright © 2006 by Freescale Semiconductor company. All rights reserved.

No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, without prior written permission from Freescale. Use of this document and related materials is gov-
erned by the license agreement that accompanied the product to which this manual pertains. This document may
be printed for non-commercial personal use only in accordance with the aforementioned license agreement. If
you do not have a copy of the license agreement, contact your Freescale representative or call 1-800-377-5416 (if
outside the U.S., call +1-512-996-5300).

Freescale reserves the right to make changes to any product described or referred to in this document without further
notice. Freescale makes no warranty, representation or guarantee regarding the merchantability or fitness of its products
for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product
described herein and specifically disclaims any and all liability. Freescale software is not authorized for and has not
been designed, tested, manufactured, or intended for use in developing applications where the failure, malfunc-
tion, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage to tangible
property, including, but not limited to, use in factory control systems, medical devices or facilities, nuclear facil-
ities, aircraft navigation or communication, emergency systems, or other applications with a similar degree of
potential hazard.

How to Contact Freescale

Corporate Headquarters Freescale Corporation

7700 West Parmer Lane

Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support
2 IDE 5.6 User’s Guide

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

I Introduction

1 IDE User’s Guide Overview 15
Release Notes 15

Licensing 15

CodeWarriorU.com 16

Documentation Structure 18

Documentation Formats 18

Documentation Types 19

Manual Conventions 19

Figure Conventions 20

Keyboard Conventions 20

Special note for Solaris and Linux users 20

2 CodeWarrior IDE Overview 21
Development Cycle 21

CodeWarrior IDE Advantages 23

IDE Tools Overview 24

II Projects

3 Working with Projects 29
About Projects 29

Project Manager 29

Build Targets 31

Managing Projects 33

Advanced Projects 39

Custom Project Stationery 39
3IDE 5.6 User’s Guide

Table of Contents
Subprojects 40

Strategies 41

4 Project Window 43
About the Project Window 43

Project Window Pages 45

Files Page 46

Link Order Page 49

Targets Page 50

File, Group, Layout, and Target Management 51

Build-Target Management 56

5 Working with Files 59
Managing Files 59

III Editor

6 Dockable Windows 69
About Dockable Windows 69

Working with Dockable Windows 72

Dock Bars 78

7 Workspaces 81
About Workspaces 81

Using Workspaces 81

8 Creating Console Applications 85
About Console Applications 85

Creating Console Applications 86

9 The CodeWarrior Editor 89
Editor Window 89

Editor Toolbar 92
4 IDE 5.6 User’s Guide

Table of Contents
Interfaces Menu 92

Functions Menu 93

Markers Menu 93

Document Settings Menu 93

Version Control System Menu 94

Other Editor Window Components 94

Path Caption 95

File Modification Icon 95

Breakpoints Column 95

Text Editing Area 95

Line and Column Indicator 95

Pane Splitter Controls 95

10 Editing Source Code 97
Text Manipulation 97

Symbol Editing Shortcuts 100

Punctuation Balancing 100

Code Completion 102

Code Completion Configuration 103

Code Completion Window 105

11 Navigating Source Code 113
Finding Interface Files, Functions, and Lines 113

Finding Interface Files 114

Locating Functions 114

Going Back and Forward 116

Using Markers 116

Remove Markers Window 117

Symbol Definitions 119

Reference Templates (Macintosh) 120

12 Finding and Replacing Text 123
Single-File Find 123

Single-File Find and Replace 126

Multiple-File Find and Replace 129
5IDE 5.6 User’s Guide

Table of Contents
In Folders 132

In Projects 134

In Symbolics 136

In Files 138

Search Results Window 141

Text-Selection Find 143

Regular-Expression Find 145

Using the Find String in the Replace String 147

Remembering Sub-expressions 148

Comparing Files and Folders 148

Comparison Setup 149

File Comparison 152

Folder Comparison 155

IV Browser

13 Using the Browser 161
Browser Database 161

Browser Data 162

Browser Symbols 164

Browser Contextual Menu 164

14 Using Class Browser Windows 167
Class Browser window 167

Classes pane 174

Member Functions pane 176

Data Members pane 177

Source pane 177

Status Area 178

15 Using Other Browser Windows 179
Multiple-Class Hierarchy Window 179

Single-Class Hierarchy Window 182
6 IDE 5.6 User’s Guide

Table of Contents
Browser Contents window 183

Symbols window 185

Symbols toolbar 187

Symbols pane 188

Source pane 188

16 Using Browser Wizards 189
The New Class Wizard 189

The New Member Function Wizard 194

The New Data Member Wizard 197

V Debugger

17 Working with the Debugger 203
About the CodeWarrior Debugger 203

About Symbolics Files 204

Thread Window 204

Common Debugging Actions 208

Symbol Hint 211

Contextual Menus 212

Multi-core Debugging 214

Data Viewer Plug-ins 214

External Builds Support 215

External Build Wizard 218

18 Manipulating Program Execution 221
Breakpoints 222

Breakpoints Window 222

Working with Breakpoints 226

Working with Breakpoint Templates 231

Eventpoints 233

Log Point 235

Pause Point 237
7IDE 5.6 User’s Guide

Table of Contents
Script Point 237

Skip Point 239

Sound Point (Windows OS) 239

Trace Collection Off 241

Trace Collection On 241

Working with Eventpoints 242

Watchpoints 244

Special Breakpoints 248

19 Working with Variables 251
Global Variables Window 251

Variable Window 253

Expressions Window 256

20 Working with Memory 261
Memory Window 261

Array Window 266

Registers Window 269

General Registers 269

FPU Registers 270

Host-specific Registers 270

Register Details Window (Windows OS) 272

Description File 275

Register Display 276

Text View 276

21 Working with Debugger Data 279
Symbolics Window 279

System Browser Window 282

Log Window 285

22 Working with Hardware Tools 289
Flash Programmer Window 289

Target Configuration 291

Flash Configuration 294
8 IDE 5.6 User’s Guide

Table of Contents
Program / Verify 295

Erase / Blank Check 298

Checksum 299

Hardware Diagnostics Window 301

Configuration 303

Memory Read / Write 304

Scope Loop 305

Memory Tests 307

Working with a Logic Analyzer 313

Configuring the Project 313

Using the Logic Analyzer 316

Trace Window 318

Cache Window 319

Profile Window 320

Command Window 321

VI Compilers and Linkers

23 Compilers 325
Choosing a Compiler 325

Compiling Projects 326

24 Linkers 331
Choosing Linkers 331

Linking Projects 332

VII Preferences and Target Settings

25 Customizing the IDE 335
Customizing IDE Commands 335

Commands Tab 337
9IDE 5.6 User’s Guide

Table of Contents
Pre-defined Variables in Command Definitions 340

Customize Toolbars 345

Kinds of Toolbars 346

Toolbar Elements 347

Modify a Toolbar 347

Customize Key Bindings 351

26 Working with IDE Preferences 359
IDE Preferences Window 359

General Panels 361

Build Settings 361

Concurrent Compiles 363

IDE Extras 364

Help Preferences 368

Plugin Settings 368

Shielded Folders 369

Source Trees 371

Editor Panels 375

Code Completion 375

Code Formatting 376

Editor Settings 378

Font & Tabs 381

Text Colors 383

Debugger Panels 387

Display Settings 387

Window Settings 389

Global Settings 391

Remote Connections 393

27 Working with Target Settings 397
Target Settings Window 397

Target Panels 400

Target Settings 400

Access Paths 401

Build Extras 404
10 IDE 5.6 User’s Guide

Table of Contents
Runtime Settings 406

File Mappings 408

Source Trees 411

Code Generation Panels 411

Global Optimizations 411

Editor Panels 414

Custom Keywords 415

Debugger Panels 416

Other Executables 417

Debugger Settings 419

Remote Debugging 421

28 Preference and Target Settings Options 423

VIII Menus

29 IDE Menus 465
Windows Menu Layout 465

File Menu 465

Edit Menu 467

View Menu 469

Search Menu 470

Project Menu 472

Debug Menu 474

Data Menu 476

Window Menu 478

Help Menu 479

Macintosh Menu Layout 480

Apple Menu 480

CodeWarrior Menu 480

File Menu 481

Edit Menu 483

Search Menu 484
11IDE 5.6 User’s Guide

Table of Contents
Project Menu 486

Debug Menu 489

Data Menu 491

Window Menu 492

VCS Menu 495

Tools Menu 495

Scripts Menu 495

Help Menu 495

30 Menu Commands 497

Index 537
12 IDE 5.6 User’s Guide

I

Introduction
This section contains these chapters:

• IDE User’s Guide Overview on page 15

• CodeWarrior IDE Overview on page 21
13IDE 5.6 User’s Guide

14 IDE 5.6 User’s Guide

1
IDE User’s Guide
Overview

This chapter of the CodeWarrior™ IDE User’s Guide is a high-level description
of documentation and training resources for learning to use the IDE.

• “CodeWarriorU.com” on page 16—free, Internet-based instruction for
CodeWarrior products. Use this resource to learn more about the
CodeWarrior Integrated Development Environment (IDE) and computer
programming.

• “Documentation Structure” on page 18—a guide to the various
CodeWarrior manuals available. This guide notes the location of generic and
specific product documentation.

• “Manual Conventions” on page 19—some common typographical
conventions used in this manual and other Freescale documentation.

Release Notes
Please read the release notes. They contain important last-minute additions to the
documentation. The Release Notes folder is located on the CodeWarrior CD.

Licensing
Web-based licensing is available. It is a server licensing solution that generates
FlexLM v8 or later based license keys automatically over the world wide web
through a registration/activation process. You can register and activate
permanent, node-locked license keys.

Freescale products are shipped to customers with registration cards that contain a
unique registration number. Products that ship with a one year annual support
certificate will also have a unique registration number.
15IDE 5.6 User’s Guide

IDE User’s Guide Overview
CodeWarriorU.com
During product installation you will be instructed to register at http://
www.Freescale.com/mw/register. You can also reach the registration
website by selecting the Help > Register Product menu command from the
IDE’s main menu. Registration from the website collects the registration code
and verifies it against the correct product and gathers contact information.

An email will be sent to you with the License Authorization Code and
instructions. In the IDE you can select Help > License Authorization... to
display the License Authorization dialog box. Figure 1.1 on page 16 shows the
License Authorization dialog box.

Figure 1.1 License Authorization

Enter the License Authorization Code and select an ethernet address from the
Node lock ID for license dropdown list, if one exists. After entering the
authorization code, the CodeWarrior IDE will make an HTTP call to the
Freescale licensing server with the activation code and generate the permanent
license keys. The resulting license keys are automatically updated into the
license.dat text file of the CodeWarrior product executing the authorization. You
can also manually edit the license.dat file per instructions provided in the
License_Install.txt file in the root folder of your CodeWarrior installation path. If
the IDE evaluation period expires prior to activation, you will have to manually
edit the license.dat file.

CodeWarriorU.com
CodeWarriorU.com offers a wide range of free, Internet-based courses in a wide
variety of computer programming topics. Use this supplement to the
16 IDE 5.6 User’s Guide

http://www.freescale.com/mw/register
http://www.freescale.com/mw/register

IDE User’s Guide Overview
CodeWarriorU.com
CodeWarrior documentation to acquire more experience using CodeWarrior
products.
17IDE 5.6 User’s Guide

IDE User’s Guide Overview
Documentation Structure
CodeWarriorU.com courses include:

• Text-based instruction

• Expert instructors

• A variety of self-assessment and study materials

• Interactive message boards for communicating with instructors and students

CodeWarriorU offers many courses, such as:

• Learn Programming in C

For beginning programmers.

• Introduction to Java

For beginning and experienced programmers. Take this course to learn
how to create Java software.

• Introduction to C++

For beginning and experienced programmers. Take this course to learn
how to create C++ software.

• Intermediate C++

For programmers who completed the Introduction to C++ course and have
basic C++ programming knowledge. Take this course to learn the
foundation needed to create more sophisticated C++ software.

To find out more, visit this web site:

http://www.CodeWarriorU.com/

Documentation Structure
CodeWarrior products include an extensive documentation library of user guides,
targeting manuals, and reference manuals. Take advantage of this library to learn
how to efficiently develop software using the CodeWarrior programming
environment.

Documentation Formats
CodeWarrior documentation presents information in various formats:

• Print—Printed versions of CodeWarrior manuals, including the IDE User’s
Guide, MSL C Reference, C/C++ Reference, and product-focused
Targeting manuals.
18 IDE 5.6 User’s Guide

http://www.codewarrioru.com/

IDE User’s Guide Overview
Manual Conventions
• PDF (Portable Document Format)—Electronic versions of CodeWarrior
manuals. The CodeWarrior CD Documentation folder contains the
electronic PDF manuals.

• HTML (Hypertext Markup Language)—HTML or Compressed HTML
(.CHM) versions of CodeWarrior manuals.

Documentation Types
Each CodeWarrior manual focuses on a particular information type:

• User guides—User guides provide basic information about the
CodeWarrior user interface. User guides include information that supports
all host platforms on which the software operates, but do not include in-
depth platform-specific information.

• Targeting manuals—Targeting manuals provide specific information
required to create software that operates on a particular platform or
microprocessor. Examples include the Targeting Windows, Targeting Java,
and Targeting DSP56800 manuals.

• Reference manuals—Reference manuals provide specialized information
that supports coding libraries, programming languages, and the IDE.
Examples include the C Compiler Reference, MSL C Reference, and
Extending the CodeWarrior IDE manuals.

• Core manuals—Core manuals explain the core technologies available in
the CodeWarrior IDE. Examples include:

– IDE User’s Guide

– C/C++ Compilers Reference

– MSL C Reference and MSL C++ Reference

– Extending the CodeWarrior IDE

– Command-Line Tools Reference

Manual Conventions
This section explains conventions in the IDE User’s Guide.
19IDE 5.6 User’s Guide

IDE User’s Guide Overview
Manual Conventions
Figure Conventions
The CodeWarrior IDE employs a virtually identical user interface across multiple
hosts. For this reason, illustrations of common interface elements use images
from any host. However, some interface elements are unique to a particular host.
In such cases, clearly labelled images identify the specific host.

Keyboard Conventions
The CodeWarrior IDE accepts keyboard shortcuts, or key bindings, for frequently
used operations. For each operation, this manual lists corresponding key bindings
by platform. Hyphens separate multiple keystrokes in each key binding.

Special note for Solaris and Linux users
The Solaris and Linux IDE use Macintosh symbols to represent modifier keys in
key bindings. Table 1.1 on page 20 shows the relationship between the
Macintosh symbols and the equivalent modifier keys on Solaris and Linux
computers. Solaris and Linux computers can map a modifier key to any key on
the keyboard. The preceding table reflects the default modifier key configuration
for these computers. Remember that custom mappings supersede the default
configuration noted in the table.

Table 1.1 Macintosh modifier-key equivalents for Solaris and Linux

Symbol Macintosh
Name

Solaris
Equivalent

Linux
Equivalent

Control Control Ctrl

Option Alt Alt

Command Meta Alt

Shift Shift Shift
20 IDE 5.6 User’s Guide

2
CodeWarrior IDE
Overview

The CodeWarrior™ Integrated Development Environment (IDE) provides an
efficient and flexible software-development tool suite. This chapter explains the
advantages of using the CodeWarrior IDE and provides brief descriptions of the
major tools that make up the IDE.

This chapter contains these sections:

• “Development Cycle” on page 21

• “CodeWarrior IDE Advantages” on page 23

• “IDE Tools Overview” on page 24

Development Cycle
A software developer follows a general development process:

• Begin with an idea for new software

• Implement new idea in source code

• Have the IDE compile source code into machine code

• Have the IDE link machine code and form an executable file

• Correct errors (debug)

• Compile, link, and release a final executable file.

The stages of the development cycle correspond to one or more chapters in this
manual.

Figure 2.1 on page 22 depicts the development cycle as a flowchart. Table 2.1 on
page 23 details the different stages and their corresponding sections in this
manual.
21IDE 5.6 User’s Guide

CodeWarrior IDE Overview
Development Cycle
Figure 2.1 The Development Cycle diagram

Start

Create

Edit

Compile Compile
Errors?

Yes

Link Link Errors?

YesNo

Debug Debug
Errors?

YesNo

Release

No

End

Start or End of
the process

Legend

Development
Cycle stage

Decision stage

Process flow
22 IDE 5.6 User’s Guide

CodeWarrior IDE Overview
CodeWarrior IDE Advantages
CodeWarrior IDE Advantages
• Cross-platform development

Develop software to run on multiple operating systems, or use multiple
hosts to develop the same software project. The IDE runs on popular
operating systems, including Windows, Macintosh, Solaris, and Linux. The
IDE uses virtually the same graphical user interface (GUI) across all hosts.

• Multiple-language support

Choose from multiple programming languages when developing software.
The IDE supports high-level languages, such as C, C++, and Java, as well
as in-line assemblers for most processors.

Table 2.1 Stage descriptions and related sections in the IDE User’s Guide

Stage Description Related Sections

Create Create the initial project, source
files, and build targets.

• “Projects” on page 27
• “Preferences and Target

Settings” on page 333
• “Menus” on page 463

Edit Transform your project into
working source code, organize
interface elements, and correct
errors.

• “Editor” on page 67
• “Browser” on page 159

Compile Compile the source code into
machine format that operates on
the target host.

“Compilers and Linkers” on page 323

Link Link the separate compiled
modules into a single binary
executable file.

“Compilers and Linkers” on page 323

Debug Find and resolve all coding and
logic errors that prevent the
program from operating as
designed.

“Debugger” on page 201

Release Release for public use. Beyond the scope of this manual.
23IDE 5.6 User’s Guide

CodeWarrior IDE Overview
IDE Tools Overview
• Consistent development environment

Port software to new processors without having to learn new tools or lose
an existing code base. The IDE supports many common desktop and
embedded processor families, including x86, PowerPC, MIPS, and many
others.

• Plug-in tool support

Extend the capabilities of the IDE by adding a plug-in tool that supports
new services. The IDE currently supports plug-ins for compilers, linkers,
pre-linkers, post-linkers, preference panels, version controls, and other
tools. Plug-ins make it possible for the CodeWarrior IDE to process
different languages and support different processor families.

IDE Tools Overview
The CodeWarrior IDE is a tool suite that provides sophisticated tools for
software development. This section explains the standard tools available in the
IDE:

• a project manager

• an editor

• a search engine

• a source browser

• a build system

• a debugger

Table 2.2 on page 25 explains the purpose of these tools and lists corresponding
CodeWarrior IDE features.
24 IDE 5.6 User’s Guide

CodeWarrior IDE Overview
IDE Tools Overview
Table 2.2 IDE tools and features

Tool Purpose CodeWarrior IDE Features

Project
Manager

Manipulate items
associated with
a project

• Handles top-level file management for the
software developer

• Organizes project items by major group, such
as files and targets

• Tracks state information (such as file-
modification dates)

• Determines build order and files to be
included in each build

• Coordinates with plug-ins to provide version-
control services

Editor Create and
modify source
code

• Uses color to differentiate programming-
language keywords

• Allows definition of custom keywords for
additional color schemes

• Automatically verifies parenthesis, brace, and
bracket balance

• Allows use of menus for navigation to any
function or into the header files used by the
program

Search
Engine

Find and
replace text

• Finds a specific text string
• Replaces found text with substitute text
• Allows use of regular expressions
• Provides file-comparison and differencing

functionality

Source
Browser

Manage and
view program
symbols

• Maintains a symbolics database for the
program. Sample symbols include names
and values of variables and functions.

• Uses the symbolics database to assist code
navigation

• Links every symbol to other locations in the
code related to that symbol

• Processes both object-oriented and
procedural languages

Build
System

Convert source
code into an
executable file

• Uses compiler to generate object code from
source code

• Uses linker to generate final executable file
from object code

Debugger Resolve errors • Uses symbolics database to provide source-
level debugging

• Supports symbol formats such as CodeView,
DWARF (Debug With Arbitrary Records
Format), and SYM (SYMbolic information
format)
25IDE 5.6 User’s Guide

CodeWarrior IDE Overview
IDE Tools Overview
26 IDE 5.6 User’s Guide

II

Projects
This section contains these chapters:

• Working with Projects on page 29

• Project Window on page 43

• Working with Files on page 59

• Dockable Windows on page 69

• Workspaces on page 81

• Creating Console Applications on page 85
27IDE 5.6 User’s Guide

28 IDE 5.6 User’s Guide

3
Working with Projects

This chapter explains how to work with projects in the CodeWarrior™ IDE.
Projects organize several file types associated with a computer program:

• Text files—files that contain any kind of text. Sample text files include Read
Me files and source files.

• Source files—files that contain source code only. Sample source files
include C++ files and Java files.

• Library files—files that contain special code designed to work together with
a particular programming language or operating environment.

• Generated files—files created by the IDE while building or debugging the
project.

This chapter contains these sections:

• “About Projects” on page 29

• “Managing Projects” on page 33

• “Advanced Projects” on page 39

About Projects
The IDE uses build targets and a Project Manager to organize source code and
support files. This section explains both components.

Project Manager
The IDE gathers source, library, resource, and other files into a project. The
Project Manager manipulates the information stored in the project.

Figure 3.1 on page 30 diagrams Project Manager interactions with IDE tools.
Table 3.1 on page 30 explains the interactions.
29IDE 5.6 User’s Guide

Working with Projects
About Projects
Figure 3.1 Project Manager

Table 3.1 Project Manager interactions

IDE Tool Project Manager Interactions

Editor • Coordinates internal data flow among editor windows, search
engine, and source browser

• Matches find-and-replace results between related header files
and source files

• Associates functions and variables with corresponding source
code

Compiler • Synchronizes a symbolics database of program functions,
variables, and values with source code

• Coordinates internal data flow between symbolics database
and source browser

• Determines files to include in build process

The build system generates
symbolics information for a
program. The debugger
generates a database from
the symbolics information.

Build System

Search
Engine

Editor

Source
Browser

Compiler

Symbolics
Information

Linker Debugger

Main IDE

Support tool

Information that
the IDE generates

Development

Legend

IDE internal data

Additional information
30 IDE 5.6 User’s Guide

Working with Projects
About Projects
Build Targets
For any given build, the project manager tracks:

• files and libraries

• link order

• dependencies

• compiler, linker, and other settings

The IDE stores this information in a build target. As the project changes, the
project manager automatically updates the build target. The project manager also
coordinates program builds, using the build-target information to call the
appropriate tools in the correct order with the specified settings.

For example, the project manager directs the build system to compile only those
source files that rely on information in a modified file.

Note that all of this operation happens automatically. The software developer
does not need to remember makefile syntax or semantics, and never has to debug
makefile syntax errors. The IDE simplifies the process, making it easier to
develop software.

The project manager also supports multiple build targets within the same project
file. Each build target can have its own unique settings, and even use different
source and library files. For example, it is common to have both debug and
release build targets in a project.

Figure 3.2 on page 32 shows a sample project with debug and release build
targets.

Linker • Sends compiled object code to linker for conversion to
executable code

• Sets the link order for processing compiled object code

Debugger • Matches debugging data to source code
• Updates symbolics database to reflect changing values during

a debug session

Table 3.1 Project Manager interactions (continued)

IDE Tool Project Manager Interactions
31IDE 5.6 User’s Guide

Working with Projects
About Projects
Figure 3.2 Project with multiple build targets

Project

Build Target - Debug

File #1 File #2

File #3 Object Code

Settings Browser Data

Build Target - Release

File #1 File #2

File #4 Object Code

Settings Browser Data

..
.

Note that both build targets share
File #1 and File #2.
32 IDE 5.6 User’s Guide

Working with Projects
Managing Projects
Managing Projects
Use these tasks to manage projects:

• Create a new project

• Open existing project

• Save project

• Close project

• Inspect an open project

• Print an open project

Creating New Projects using Project Stationery

Use the project stationery provided with the IDE to quickly create new projects.
The stationery contains everything needed for a minimal, ready-to-run project.
Use project stationery as a foundation upon which to add features for each new
project.

1. Choose File > New.

2. Click the Project tab and select a project type.

3. Enter a project name (include the .mcp extension) in the Project Name field
and set the Location for the new project.

4. Click OK in the New window.

5. Select the appropriate project stationery from the New Project window.

6. Click OK in the New Project window.

The IDE uses the selected stationery as a template to create a new project.
33IDE 5.6 User’s Guide

Working with Projects
Managing Projects
Creating New Projects from Makefiles

Use the Makefile Importer wizard to convert most Visual C nmake or GNU
make files into projects. The wizard performs these tasks:

• Parses the makefile to determine source files and build targets

• Creates a project

• Adds the source files and build targets determined during parsing

• Matches makefile information, such as output name, output directory, and
access paths, with the newly created build targets.

• Selects a project linker

1. Choose File > New.

2. Click the Project tab.

3. Select Makefile Importer Wizard.

4. Enter a project name (include the .mcp extension) in the Project Name field
and set the Location for the new project.

5. Click OK in the New window.

6. Enter the path to the makefile in the Makefile location field or click Browse
to navigate to the makefile.

7. Choose the tool set used for makefile conversion and linker selection.

• Tool Set Used In Makefile—Choose the tool set whose build rules form
the basis of the makefile.

• Freescale Tool Set—Choose the linker tool set to use with the generated
project.

8. Select the desired diagnostic settings.

• Log Targets Bypassed—Select to log information about makefile build
targets that the IDE fails to convert to project build targets.

• Log Build Rules Discarded—Select to log information about makefile
rules that the IDE discards during conversion.

• Log All Statements Bypassed—Select to log targets bypassed, build
rules discarded, and other makefile items that the IDE fails to convert.

9. Click Finish, then Generate.
34 IDE 5.6 User’s Guide

Working with Projects
Managing Projects
The Makefile Importer wizard performs the conversion process and displays
additional information.

Creating Empty Projects

Unlike project stationery, empty projects do not contain a pre-configured
collection of template source files, library files, or build targets. Empty projects
allow advanced software engineers to custom-build new projects from scratch.

NOTE Avoid creating empty projects. Instead, modify a project created with
project stationery. Project stationery pre-configures complicated
settings to quickly get started.

1. Choose File > New.

2. Click the Project tab and select Empty Project.

3. Enter a project name (include the .mcp extension) in the Project Name field
and set the Location for the new project.

4. Click OK in the New window.

The IDE creates an empty project. Add files and libraries, create build targets,
and choose the appropriate target settings to complete the new project.

Opening Projects

Use the IDE to open previously saved projects. CodeWarrior projects normally
end in the Freescale CodeWarrior Project extension of .mcp. Open projects to
add, remove, or modify files to enhance the capabilities of the final executable
file.

1. Choose File > Open.

2. Find and select the project to open.

3. Click Open.

The IDE opens the project and displays its Project window.

NOTE The IDE prompts you for confirmation to update projects created in
older CodeWarrior versions.
35IDE 5.6 User’s Guide

Working with Projects
Managing Projects
Opening Projects Created on Other Hosts

CodeWarrior projects whose names end in .mcp are cross-platform. However,
the object code stored inside each project folder is not cross-platform. Use these
procedures to properly open the project on a different host computer.

1. If not present, add the .mcp filename extension to the project name.

2. Copy the project folder from the original host to the new host.

3. Delete the Data folder inside the newly copied project folder.

4. Open the newly copied project on the new host IDE.

5. Recompile the project to generate new object code.

Saving Projects

The IDE automatically saves projects and updates project information after
performing these actions:

• Closing the project

• Applying or saving a preference or target-setting option

• Adding, deleting, or compiling a file

• Editing group information

• Removing or compacting object code

• Quitting the IDE

Inspecting Project Files

Use the Project Inspector command to review and configure source-file
attributes and target information in the Project Inspector window.

1. Select a file in the Project window.

2. Open the Project Inspector window, as explained in Table 3.2 on page 37.
36 IDE 5.6 User’s Guide

Working with Projects
Managing Projects
3. Examine the source-file attributes and target settings.

• Click the Attributes tab to view the file attributes.

• Click the Targets tab to view the build targets that use the file.

Printing Projects

The Project Manager can print a complete listing of the Files, Designs, Link
Order, or Targets tab currently displayed in the Project window.

1. Select the Project window.

2. Click the Files, Designs, Link Order, or Targets tab.

3. Choose File > Print.

4. Set the print options in the print dialog.

5. Print the Project window contents.

The IDE prints the contents of the selected tab.

Choosing a Default Project

The IDE allows multiple open projects at the same time. However, a given
source file can belong to more than one open project, making it ambiguous as to
which project a source-file operation applies.

To resolve ambiguity, choose the default project to which the IDE applies
operations.

Table 3.2 Opening the Project Inspector window

On this host… Do this…

Windows Select View > Project Inspector.

Macintosh Select Window > Project Inspector.

Solaris Select Window > Project Inspector.

Linux Select Window > Project Inspector.
37IDE 5.6 User’s Guide

Working with Projects
Managing Projects
1. If only one project is open, it automatically becomes the default project.

2. If more than one project is open, choose Project > Set Default Project to
select the desired default project.

In ambiguous situations, the IDE applies operations to the selected default
project.

Exporting Projects to XML Files

The IDE can export a project to an Extensible Markup Language (XML) file. Use
this capability to store projects in text-oriented environments, such as a version
control system.

1. Bring the project to export forward (in focus).

2. Choose File > Export Project.

3. Name the exported XML file and save it in the desired location.

The IDE converts the project to an XML file.

Importing Projects Saved as XML Files

The IDE can import a project previously saved in Extensible Markup Language
(XML) format. Use this capability to recreate projects stored in text-oriented
environments, such as a version control system.

1. Choose File > Import Project.

2. Create a new folder in which to save the converted project and all of its
generated files.

3. Find the XML file that you want to import.

4. Save the XML file in the newly created folder.

The IDE converts the XML file to a project.

Closing Projects

Use the Close command to close a CodeWarrior project file at the end of a
programming session. The IDE automatically saves changes to a closed project.

1. Select the Project window to close.
38 IDE 5.6 User’s Guide

Working with Projects
Advanced Projects
2. Close the project.

• Choose File > Close.

• Click the close box in the Project window.

Advanced Projects
Advanced projects deal with these topics:

• Custom project stationery—modified project stationery tailored to advanced
programming needs.

• Subprojects—projects within projects.

• Strategies—obtaining the maximum benefit from advanced projects.

Custom Project Stationery
Use custom project stationery to develop streamlined templates to meet advanced
programming needs.

• Pre-configure new project stationery to include often-used files, libraries,
and source code

• Configure build targets and options to any desired state

• Set up a reusable template to use for creating projects

NOTE Custom project stationery requires in-depth knowledge about project
structure and operation. Before creating custom stationery, be sure to
fully understand existing project stationery included with the
CodeWarrior product.

Creating Custom Project Stationery

Use custom project stationery to develop a convenient template for creating new
projects. An efficient way to develop custom stationery is to modify existing
project stationery and save it under a new name in the Stationery or Project
Stationery folder.
39IDE 5.6 User’s Guide

Working with Projects
Advanced Projects
1. Follow the usual process for creating a project from project stationery.

See “Creating New Projects using Project Stationery” on page 33 for more
information.

2. Choose File > Save A Copy As.

3. Find the Project Stationery folder in the CodeWarrior installation.

4. Create a folder inside the Project Stationery folder to store the newly created
project.

5. Save the project to its new folder. Use a descriptive project name with the
.mcp extension.

6. Customize the newly saved project so that it becomes a template for creating
other projects:

• Add source files to the project. Save these files in the same folder as the
project itself.

• Add build targets for building the project with frequently used settings.

• Configure other project preferences as desired.

7. Close the customized project to save it.

8. Open the customized project folder inside the Project Stationery folder.

9. Find and delete the _Data folder.

The IDE now treats the customized project as project stationery. The
descriptive name appears in the Project tab of the New window.

Subprojects
A subproject is a project nested inside a parent project. Subprojects organize
source code for the IDE to build prior to building the parent project. For example,
the IDE builds subprojects for an application’s plug-ins before building the
parent project for the application itself.

Adding Subprojects to a Project

Use a subproject to organize a separate set of source files and build targets inside
a parent project.

1. Open the parent project in which to add a subproject.
40 IDE 5.6 User’s Guide

Working with Projects
Advanced Projects
2. Click the Files tab in the Project window.

3. If the parent project has more than one build target, use the build-target list
box in the Project window toolbar to choose the desired build target.

4. Add a separate project to the Project window:

• Drag and drop the .mcp file of the separate project into the Project
window, or

• Choose Project > Add Files to add the .mcp file of the separate
project.

The IDE treats the added project as a subproject. The subproject appears in
the Files view of the parent Project window.

Opening Subprojects

The IDE can open a subproject from the parent Project window. Use this feature
to more conveniently open the subproject.

1. Double-click the subproject in the Files view of the parent Project window.

2. The IDE opens the subproject in its own Project window.

Strategies
Projects can organize files into build targets or subprojects. Each of these
structures has its own advantages. Choose the structure best suited to the
programming need.

Build Targets
Build targets organize collections of files inside a project. Build targets have
these advantages:

• Using multiple build targets inside a single project allows access to all
source code for that project.

• Build targets organize different collections of build settings for a single
project.

• Each project accommodates up to 255 build targets.
41IDE 5.6 User’s Guide

Working with Projects
Advanced Projects
Subprojects
Subprojects incorporate separate, standalone projects into parent projects.
Subprojects have these advantages:

• Subprojects separate distinct parts of a complex program, such as an
application and its various plug-ins.

• Using subprojects streamlines a complicated build. For example, create a
project that builds all plug-ins for an application. Add this project as a
subproject of the main application. The IDE then builds all plug-ins before
building the main application.

• Use subprojects to break down a complicated project that approaches the
255 build-target limit. Organize related build targets into different
subprojects to improve build speed.
42 IDE 5.6 User’s Guide

4
Project Window

This chapter explains how to work with the Project window in the
CodeWarrior™ IDE. The Project window provides these features:

• view and modify all files created for use with a computer program.

• manipulate files arranged by type.

• control the way the IDE handles files.

This chapter contains these sections:

• “About the Project Window” on page 43

• “Project Window Pages” on page 45

• “File, Group, Layout, and Target Management” on page 51

• “Build-Target Management” on page 56

About the Project Window
The Project window organizes files in a computer program. Use this window to
control various aspects of each file. The window includes these items:

• Project window toolbar

• Tabs

• Columns

Figure 4.1 on page 44 shows a sample Project window. Table 4.1 on page 44
explains the items in the Project window.

NOTE The number and names of the tabs in the Project window depend on
the current build target and on the installed IDE plug-ins.
43IDE 5.6 User’s Guide

Project Window
About the Project Window
Figure 4.1 Project window

Table 4.1 Project window—items

Item Icon Explanation

Current Target Use to specify the build target that you
want to modify.

Target
Settings

Click to view and edit the settings for the
current build target. You can also display
settings for a target selected in Targets
tab.

Synchronize
Modification
Dates

Click to check the modification dates of
each project file and mark those files that
need compilation.

Make Click to compile and link all modified and
manually selected (touched) project files.
44 IDE 5.6 User’s Guide

Project Window
Project Window Pages
Project Window Pages
The Project window uses pages to organize items:

• Files

• Link Order

• Targets

• Frameworks (for projects supporting code frameworks - Mac OS only)

Debug Click to debug the current build target.

Run Click to compile and link the current build
target, then run the program.

Project
Inspector

Click to view project information and edit
file-specific information.

Files Click to display the Files page. This page
shows a list of files in the project and their
associated properties.

Link Order Click to display the Link Order page. This
page shows the link order of files in the
current build target.

Frameworks
(Mac OS only)

Click to display the Frameworks page.
This page shows available programming
frameworks to link against. The
Frameworks tab appears only for projects
that support frameworks.

Targets Click to display the Targets page. This
page shows a list of all build targets, sub-
projects, and target-linking information.

Table 4.1 Project window—items (continued)

Item Icon Explanation
45IDE 5.6 User’s Guide

Project Window
Project Window Pages
Files Page
The Files page shows information about individual files in a project. The Files
page shows information about these file types:

• Text files—files that contain any type of text. Sample text files include Read
Me files and source files.

• Source files—files that contain source code only. Sample source files
include C++ files and Java files.

• Library files—files that contain special code designed to work together with
a particular programming language or operating environment.

Table 4.2 on page 46 explains the items in the Files page.

Table 4.2 Files page—items

Item Icon Explanation

Touch Indicates the touch status of each file. Click in this column to
toggle touching a file. Touching a file manually selects it for
compilation during the next build. Click the Touch icon to sort
files by touch status.

File Displays a hierarchical view of the file and group names used
by the project. Click the column title to sort files by name.
Double-click a file to open it. Use the hierarchical controls to
display and hide group contents.

Code Displays the size, in bytes or kilobytes, of the compiled
executable object code for files and groups. Click the column
title to sort files by code size.

Data Displays the size, in bytes or kilobytes, of non-executable data
in the object code for files in the project. Click the column title
to sort files by data size.

Target Indicates whether each file belongs to the current build target.
Click in this column to toggle inclusion status. A black dot
indicates that a file is included with current build target. Click
the Target icon to sort files by inclusion status. The Target
column appears only when the project has more than one build
target.

Debug Displays debugging status. Click in this column to toggle
generation of debugging information for a file or group. Click
the Debug icon to sort files by debugging status.
46 IDE 5.6 User’s Guide

Project Window
Project Window Pages
Viewing a File Path

To distinguish between two files that have identical names but reside in different
folders, examine the file path.

To view the complete path of a file, perform the task explained in Table 4.3 on
page 47.

The File Path submenu shows the path to the file.

Checkou
t Status

Displays icons representing the current file status in a version-
control system. The Checkout Status column appears only
when the project uses a version-control system to manage
files.

Interface
s

Click to display a list of files inside a group or a list of

#include files inside a source file. Choose a file to
open it.

Sort
Order

Click to toggle sorting between ascending and descending
order for the active column. The icon indicates the current sort
order.

Table 4.3 Viewing a file path

On this host… Do this…

Windows Right-click the filename and select

Open in Windows Explorer

Macintosh Control-click the filename and select File Path.

Solaris Click and hold on the filename, then select File Path.

Linux Click and hold on the filename, then select File Path.

Table 4.2 Files page—items (continued)

Item Icon Explanation
47IDE 5.6 User’s Guide

Project Window
Project Window Pages
File Management
The project window lists all files found for all targets. If access paths are
different for each target and a file with the same name exists in each path, the
project window will list the occurrence of each file.

For example, if two header files named example.h are used with two targets
(TargetA and TargetB) and exist in separate locations for each target, you will
see two entries of example.h in the project window. If both targets use the
same file in one location, then a single entry will appear in the project window.

Select a file in the Files tab of the project window and view the Project Inspector
window to reveal the path for the selected file, and which targets use the file. You
can also select a file and click the right mouse button to display a context menu.
Select Open in Windows Explorer (Windows) or File Path (Linux/Solaris/Mac)
to display the path.

If a black dot is present in the target column for a listed file, then it is in the
current target. You can select this dot to toggle whether or not to include this file
with the current target. Double-click a source file to open it in the editor.

If you enable the Save project entries using relative paths option in the Target
Settings panel, file locations will be stored using a relative path from the access
paths defined in the Access Paths panel. If disabled, the IDE remembers project
entries only by name. This can cause unexpected results if two or more files share
the same name. In this case, re-searching for files by selecting the Project > Re-
search for Files menu command could cause the IDE to find the file in a different
access path.

NOTE If you use source files with the same name in different locations, you
should enable the Save project entries using relative paths option.

Duplicate file names can also appear in the Files tab of the project window if a
file is not found on one of the access paths. This can happen if an access path has
been removed from the User Paths group in the Access Paths target settings
panel. When the access path is removed, a duplicate appears in the project
window. The duplicate entry remains displayed until the access path is restored.

If a project with several targets (for example Debug and Release target) uses the
same file, that file is shown as a single entry. If you remove the access path for
that file, then a duplicate entry will appear in the file list. This duplicate
represents a missing file for the current target. The second file entry is still
48 IDE 5.6 User’s Guide

Project Window
Project Window Pages
avaiable for the other target. Restore the access path and choose Project > Re-
search for Files to remove the duplicate entry in the list.

The Project > Re-search for Files command speeds up builds and other project
operations. The IDE caches the location of project files after finding them in the
access paths. Re-search for Files forces the IDE to forget the cached locations
and re-search for them in the access paths. This command is useful if you moved
several files and you want the IDE to find the files in their new locations.

If the Save project entries using relative paths option is enabled, the IDE does
not reset the relative-path information stored with each project entry, so re-
searching for files looks for source files in the same location. If the files are not
there, the IDE only re-searches for header files. To force the IDE to also re-
search for source files, choose the Project > Reset Project Entry Paths menu
command. If the Save project entries using relative paths option is disabled,
the IDE re-searches for both header files and source files.

The Reset Project Entry Paths command resets the location information stored
with each project entry and forces the IDE to re-search for project entries in the
access paths. This command does nothing if the Save project entries using
relative paths option is disabled.

NOTE If the IDE is unable to locate or resolve the location of project files, a
Rescued items folder will appear. The IDE trys to locate the missing
files and creates new references. This can happen when project data
information, access paths. or other location settings in target settings
panels are missing or have been compromised, for example, if the
location of a project and related data directory have changed. One way
this can happen is if a project has been committed to a source
repository by one person and checked out to a different location by
another person and a new project data folder is created.

Link Order Page
The Link Order page shows information about the order in which the IDE links
project files. Manipulate the files in this page to change the link order. For
example,
if file B depends on file A in order to function, move file B below file A in the
Link Order page.

Table 4.4 on page 50 explains the items in the Link Order page.
49IDE 5.6 User’s Guide

Project Window
Project Window Pages
Targets Page
The Targets page presents information about the build targets in a project. Use
this page to create, manage, or remove build targets. Different build targets can
store different IDE settings. For example, two build targets can handle the same
project. One build target handles debugging the software, while the other build
target handles building the software for final release.

Table 4.5 on page 50 explains items in the Targets page.

Table 4.4 Link Order page—items

Item Explanation

Synchronize
Modification
Dates

To update the modification dates of files stored in a project, click the
checkmark icon.

Use the Synchronize Modification Dates command to update files
modified outside of the CodeWarrior IDE, perhaps by a third-party
editor that cannot notify the CodeWarrior IDE of changes.

Synchronize
Status

To update version-control status information, click the Pencil icon.

Table 4.5 Targets page—items

Item Explanation

Targets Displays all build targets and subprojects that the IDE processes to create
a binary file. These icons denote build-target status:

• active build target

• inactive build target

Link Indicates the dependencies between build targets
and subprojects.
50 IDE 5.6 User’s Guide

Project Window
File, Group, Layout, and Target Management
File, Group, Layout, and Target
Management

Use these tasks to manage files, groups, layouts, and targets:

• Create an item.

• Delete an item.

• Move an item.

• Rename an item.

• Touch an item.

• Manage items.

• Set default items.

• Configure item settings.

Removing Files/Groups/Layouts/Targets

The Remove command deletes files, groups, layouts, and build targets from the
Project window. Removing files from the Files tab removes them from the
project itself and from all build targets that use the files. Removing a file from the
Link Order, Segments, or Overlays tab only removes the file from the current
build target.

Removing files/groups/layouts/targets from a
project
1. Click the Files, Designs, or Targets tab in the Project window.

2. Select the item to remove.

3. Remove the selected item from the project, as explained in Table 4.6 on
page 52.
51IDE 5.6 User’s Guide

Project Window
File, Group, Layout, and Target Management
The IDE removes the selected item from the project. For deleted files, the IDE
updates all build targets that formerly used the file. For deleted build targets, the
IDE deletes build-target information and leaves files intact.

Removing files from a build target
1. Click the Link Order, Segments, or Overlays tab in the Project window.

2. Select the item to remove.

3. Remove the selected item from the active build target, as explained in Table
4.7 on page 52.

The IDE removes the file from the build target, but leaves the file itself intact.
The file can be re-assigned to other build targets in the project.

Table 4.6 Removing a selected item from a project

On this host… Do this…

Windows Select Edit > Delete

Macintosh Select Edit > Clear

Solaris Select Edit > Remove

Linux Select Edit > Remove

Table 4.7 Removing a selected item from the active build target

On this host… Do this…

Windows Select Edit > Delete

Macintosh Select Edit > Clear

Solaris Select Edit > Remove

Linux Select Edit > Remove
52 IDE 5.6 User’s Guide

Project Window
File, Group, Layout, and Target Management
Moving Files/Groups/Layouts/Targets

Reposition files, groups, layouts, or build targets in the Files, Design, Link
Order, or Targets pages with the cursor.

1. Select one or more files, groups, layouts, or build targets to move with the
pointer.

2. Drag the selected items to a new position in the current page, using the focus
bar as a guide.

3. Release the mouse button.

The IDE repositions the selected files, groups, layouts, or build targets to the new
location.

NOTE In the Link Order page, repositioning files changes the link order that
the Make command uses to build the final executable file.

Renaming Files/Groups/Targets

The Rename command renames files, groups, or build targets in the project.

Rename files
1. Open the file to rename.

2. Choose File > Save As.

3. Type a new filename in the Name text box.

4. Click Save.

The IDE saves the file under the new name. The new filename appears in the
Project window. Subsequent modifications affect the renamed file, leaving the
original file intact.

Rename one or more groups
1. Click the Files tab in the Project window.

2. Select the group(s) to rename.

3. Press the Enter key.
53IDE 5.6 User’s Guide

Project Window
File, Group, Layout, and Target Management
4. Type a new name into the Enter Group Name text box of the Rename
Group window.

5. Click OK.

The IDE renames the group. For selections of more than one group, the
Rename Group window appears for each group.

Rename build targets
1. Click the Targets tab in the Project window.

2. Choose Edit > targetname Settings.

3. Select Target Settings in the Target Settings Panels list.

4. Type a new name in the Target Name text box.

5. Click Save.

The Project window displays the new build target name.

Touching Files and Groups

The Touch command manually selects source files or groups for compilation
during the next Bring Up To Date, Make, Run, or Debug operation. A red
check mark in the Touch column of the Project window indicates a touched file.

1. Click the Files tab in the Project window.

2. Touch a source file or group for compilation.

Click the Touch column next to the file or group name.

OR

Choose Touch from the Interface menu for the file or group.

A red check mark appears in the Touch column next to the file or group name.

Touch all project files for recompiling
1. Perform the task explained in Table 4.8 on page 55.
54 IDE 5.6 User’s Guide

Project Window
File, Group, Layout, and Target Management
2. Red check marks appear next to all files and groups.

Untouching Files and Groups

The Untouch command manually excludes source files or groups from
compilation during the next Bring Up To Date, Make, Run, or Debug
operation.

1. Click the Files tab in the Project window.

2. Untouch a source file or group to remove it from the compilation list.

Click the red check mark in the Touch column next to the file or group name.

OR

Choose Untouch from the Interface menu for the file or group.

The red check mark disappears from the Touch column next to the file or group
name.

Untouch all project files
1. Perform the task explained in Table 4.9 on page 55.

Table 4.8 Touching all project files for recompiling

On this host… Do this…

Windows Alt-click the Touch column.

Macintosh Option-click the Touch column.

Solaris Alt-click the Touch column.

Linux Alt-click the Touch column.

Table 4.9 Untouching all project files

On this host… Do this…

Windows Alt-click a red checkmark in the Touch column.

Macintosh Option-click a red checkmark in the Touch column.
55IDE 5.6 User’s Guide

Project Window
Build-Target Management
2. The red checkmarks next to all files and groups disappear.

Build-Target Management
These tasks help you manage build targets:

• Create a build target.

• Remove a build target.

• Set the default build target.

• Rename a build target.

• Configure build-target settings.

Creating Build Targets

The Create Target command adds new build targets to a project.

1. Open the Project window.

2. Click the Targets tab in the Project window.

3. Choose Project > Create Target.

4. Type a name in the Name text box of the New Target window.

5. Select the Empty target or Clone Existing Target radio button as desired.

• Empty Target—create a new build target from scratch.

• Clone Existing Target—duplicate an existing build target in the New
Target window.

6. Click OK.

The IDE adds the new build target to the project.

Solaris Alt-click a red checkmark in the Touch column.

Linux Alt-click a red checkmark in the Touch column.

Table 4.9 Untouching all project files (continued)

On this host… Do this…
56 IDE 5.6 User’s Guide

Project Window
Build-Target Management
Removing Build Targets from a Project

You can remove unneeded build targets from the Project window.

1. Click the Targets tab in the Project window.

2. Select the item to remove.

3. Remove the selected build target, as explained in Table 4.10 on page 57.

The IDE removes the build target.

Setting the Default Build Target

The CodeWarrior Project Manager can handle up to 255 build targets in a single
project. One build target must be defined as the default target when more than
one project is open. The default target is the target affected by project commands,
such as Make and Run.

The Project menu
1. Choose Project > Set Default Target > buildtarget.

2. A checkmark indicates the default target.

Using the Project window toolbar
1. Enable the Project window.

2. Choose the build-target name from the Current Target pop-up menu.

Table 4.10 Removing the selected build target

On this host… Do this…

Windows Select Edit > Delete

Macintosh Select Edit > Clear

Solaris Select Edit > Delete

Linux Select Edit > Delete
57IDE 5.6 User’s Guide

Project Window
Build-Target Management
The Targets page
1. Enable the Project window.

2. Click the Targets tab.

3. Click the desired build-target icon.

The icon changes to indicate that the build target is now the default.

Renaming Build Targets

The Rename command renames build targets in a project.

1. Click the Targets tab in the Project window.

2. Choose Edit > targetname Settings.

3. Select Target Settings in the Target Settings Panels list.

4. Type a new name in the Target Name text box.

5. Save the new name.

The new build-target name appears in the Project window.

Configuring Build Target Settings

The Target Settings panel options determine:

• The compiler used to process the project and produce object code

• The linker used to combine object code and produce a binary file

• The pre-linker and post-linker options that further process the object code

• The name assigned to a build target

Follow these steps to configure build-target settings.

1. Choose Edit > targetname Settings.

2. Select Target Settings from the Target Setting Panels list.

3. Specify target options as desired.

4. Save the new options

The panels available in the Target Settings Panels list update to reflect the
choices in the Target Settings panel.
58 IDE 5.6 User’s Guide

5
Working with Files

This chapter explains how to work with files in the CodeWarrior™ IDE. Most
computer programs use these file types:

• Text files—files that contain any type of text. Example text files include
Read Me files and source files.

• Source files—files that contain source code only. Example source files
include C++ files and Java files.

Managing Files
These tasks manage files:

• Create a new file.

• Open an existing file.

• Save a file.

• Close a file.

• Print a file.

• Revert a file to a previously saved state.

Creating Text Files (Windows)

The New command opens a window from which you create new text files. You
can use new text files as source files in a project or as plain-text files.

1. Select File > New.

The New window appears.

2. Click the File tab in the New window.

3. Select Text File in the list.

4. Type a filename in the File name text box.
59IDE 5.6 User’s Guide

Working with Files
Managing Files
5. Click Set to specify the location to save the new file.

6. Click OK.

The IDE creates the new text file and displays its contents in a new editor
window.

TIP Use the Customize IDE Commands window to add the New Text File
menu command to the File menu. Adding this menu command reduces
the process of creating a new text file to one step: select File > New Text
File. See “Customizing the IDE” on page 335 for more information about
using the Customize IDE Commands window.

Creating Text Files (Macintosh, Solaris, Linux)

The New Text File command creates new text files. You can use new text files as
source files in a project or as plain-text files.

Select File > New Text File to create a new text file. The IDE creates the new
text file and displays its contents in a new editor window.

Opening Source Files

The Open command opens one or more editable source files. Each open file
appears in its own editor window.

NOTE The CodeWarrior editor cannot open files that prohibit editing. For
example, the editor cannot open library files.

From the File menu
1. Choose File > Open.

2. Windows: Use the Files of type pop-up menu to select All Files.

3. Select a file.

4. Click Open.

The IDE displays the file in an editor window.
60 IDE 5.6 User’s Guide

Working with Files
Managing Files
From the Project window
1. Perform one of these:

• Double-click a filename in the Files tab of the Project window, or

• Select an interface filename from the Interface menu.

2. The IDE finds, opens, and displays the selected source file in an editor
window.

From an editor window
1. Select an interface filename from the Interface menu.

2. The IDE selects, opens, and displays the source file in an editor window.

NOTE The menu does not show files that do not contain source code or are
not yet compiled.

Using Find and Open Files
1. In an editor window, select the name of an interface file, for example

stdio.h.

2. Choose File > Find and Open File.

The IDE finds, opens, and displays the source file in an editor window.

To open a recent file or project
1. Choose File > Open Recent > recentfilename | recentprojectname.

2. The IDE finds and opens the selected source file or project.

Saving Files

Use the Save command to save source files to ensure their continued existence
between development sessions.

1. Choose File > Save.
61IDE 5.6 User’s Guide

Working with Files
Managing Files
NOTE If the file has no title, a save dialog appears. Type a filename and
specify a location for the file, then click Save.

2. The IDE saves the file.

Saving All Modified Files

Use the Save All command to save the contents of all modified files. This
command is useful for saving all files at the same time, rather than saving each
file individually.

1. Save all currently opened and modified files, as explained in Table 5.1 on
page 62.

2. The IDE saves the files.

Saving File Copies

Use the Save a Copy As command to save a back-up copy of a project or file
before modifying the original. Working on a copy of the original file provides a
way to return to the original copy should modifications fail.

1. Choose File > Save A Copy As.

2. Type a new filename in the Name text box.

3. Click Save.

Table 5.1 Saving all currently opened and modified files

On this host… Do this…

Windows Select File > Save All

Macintosh While pressing Option, select File > Save All

Solaris Select File > Save All

Linux Select File > Save All
62 IDE 5.6 User’s Guide

Working with Files
Managing Files
The IDE creates a copy of the file under the new name, leaving the original file
unchanged.

Closing Files

The Close command closes open source files. Close editor windows to close a
file.

1. Select an editor window to close.

2. Close the file window.

• Choose File > Close, or

• Click the close box.

NOTE The IDE displays an alert if the file is modified. The alert asks
whether to save changes to the file.

The IDE closes the file window.

Closing All Files

The Close All command closes all currently open files. This command is useful
for closing all files at the same time, rather than closing each file individually.

1. Close all currently open files, as explained in Table 5.2 on page 63.

Table 5.2 Closing all currently open files

On this host… Do this…

Windows Select Window > Close All or

Window > Close All Editor Windows.

Macintosh While pressing Option, select File > Close All.
63IDE 5.6 User’s Guide

Working with Files
Managing Files
2. The IDE closes the files.

Printing Source Files

The Print command prints the entire contents of a selected file window.

1. Activate the desired editor window to print.

2. Choose File > Print.

3. Set print options in the Print dialog.

4. Click OK or Print to print the file.

The IDE prints the selected file.

NOTE Use the same process to print the contents of a window, such as a
Project window.

Printing Source-File Selections

The Print command prints the currently selected contents in an editor window.

1. Activate the desired editor window to print.

2. Select the portion of text to print.

3. Choose File > Print.

4. Set print options in the Print dialog.

5. Click OK or Print

The IDE prints the selected text in the file.

Solaris Select File > Close All or File > Close All
Editor Windows

Linux Select File > Close All or File > Close All
Editor Windows

Table 5.2 Closing all currently open files (continued)

On this host… Do this…
64 IDE 5.6 User’s Guide

Working with Files
Managing Files
Reverting Files

Use the Revert command to replace the current file with its previously saved
version.

1. Choose File > Revert.

2. Click OK in the Revert changes to file dialog.
65IDE 5.6 User’s Guide

Working with Files
Managing Files
66 IDE 5.6 User’s Guide

III

Editor
This section contains these chapters:

• The CodeWarrior Editor on page 89

• Editing Source Code on page 97

• Navigating Source Code on page 113

• Finding and Replacing Text on page 123
67IDE 5.6 User’s Guide

68 IDE 5.6 User’s Guide

6
Dockable Windows

This chapter explains how to work with dockable windows in the Windows-
hosted CodeWarrior™ IDE.

NOTE Dockable windows is not available on Linux and Solaris platforms.

Use dockable windows to do these tasks:

• Organize—attach, or dock, various windows to the edges of the screen for
quick access.

• Group—dock windows of the same type to create a single window with
multiple tabs, where each tab represents one of the original docked
windows.

NOTE The dockable windows feature is available in Multiple Document
Interface (MDI) mode only. This feature is not available in Floating
Document Interface (FDI) mode. Toggle the Use Multiple Document
Interface on page 457 option in the IDE Extras on page 364
preference panel to change between these two modes.

This chapter contains these sections:

• “About Dockable Windows” on page 69

• “Working with Dockable Windows” on page 72

• “Dock Bars” on page 78

About Dockable Windows
You can dock certain windows to the edges of the main frame window of the
IDE. Table 6.1 on page 70 explains possible states for dockable windows. Figure
6.1 on page 71 shows the different window states.
69IDE 5.6 User’s Guide

Dockable Windows
About Dockable Windows
In MDI mode, the IDE occupies a main window frame, or client area. IDE
windows normally appear within this client area as you work. These windows are
called child windows of the IDE’s client area.

Table 6.1 Window states

State Characteristics

Docked • Attached to the left, right, top, or bottom edge of the client
area

• restricted to the client area
• resizable
• has a dock bar instead of a title bar

Floating • Rests above all docked windows and MDI child windows
• movable outside the client area, like a floating palette
• has a thin title bar
• does not have Minimize or Maximize buttons

MDI Child • Normal child window of the client area, when running in
MDI mode

• restricted to the client area
70 IDE 5.6 User’s Guide

Dockable Windows
About Dockable Windows
Figure 6.1 Window states

Table 6.2 on page 71 explains the difference between dockable windows and
non-dockable windows. In this table, the term non-modal refers to a window that
does not require your attention before allowing the IDE to proceed with other
operations.

Table 6.2 Differences between dockable and non-dockable windows

Window Type Required Criteria Sample Windows

Dockable All of these:

• non-modal
• resizable
• maximizable

• Thread
• Project
• Component Catalog

Non-dockable Any of these:

• modal
• non-resizable
• non-maximizable

• IDE Preferences
• Find
• About Box

MDI child windowDocked window
71IDE 5.6 User’s Guide

Dockable Windows
Working with Dockable Windows
NOTE The default setting for project windows is to dock to an edge of the
client area. You can undock these windows.

Compound windows that have more than one pane dock as a group.
You cannot separately dock individual panes from these windows. For
example, you can dock the Thread Window, but you cannot dock the
Stack Crawl pane separately from the Thread Window.

Working with Dockable Windows
You can dock windows in one of two ways:

• dragging a floating window to a docking position

• using a contextual menu to dock a window

You can resize docked windows and undock them to floating windows or MDI
child windows.

This section explains how to perform tasks with dockable windows.

Docking a Window By Using a Contextual Menu

Use a contextual menu to dock a floating window or MDI child window to one of
the four edges of the client area.

1. Right-click the window title bar.

A contextual menu appears.

2. Choose Docked from the contextual menu.

NOTE The Docked command appears in the contextual menu for dockable
windows only.

The window docks to an edge of the client area. You can resize the docked
window or move it to a different edge of the client area.
72 IDE 5.6 User’s Guide

Dockable Windows
Working with Dockable Windows
Docking a Window By Using Drag and Drop

You can drag a docked window or a floating window to one of the four edges of
the client area to dock it.

1. Drag the window to one edge of the client area.

Drag a floating window by its title bar. Drag a docked window by its dock
bar.

2. A window outline appears near the client-area edge, showing the final
position after you release the window.

Use the outline as a visual cue that the IDE will dock the window. If an
outline does not appear, you cannot dock the window.

3. Release the window to dock it to the edge.

The window appears in the position indicated by the window outline.
73IDE 5.6 User’s Guide

Dockable Windows
Working with Dockable Windows
Docking Windows of the Same Kind

You can dock two or more windows of the same kind inside a single docked
window. In this arrangement, tabs inside the single docked window represent
each of the original docked windows. You can undock each tab individually from
the single docked window.

1. Dock the first of two or more windows of the same kind to an edge of the
client area.

2. Dock the second window to the same edge as the first window.

Use the window outline that appears as a visual cue that the IDE will dock the
second window to the same edge as the first window.

3. Dock subsequent windows to the same edge as the first window.

Each additional docked window appears as a tab inside the first docked
window. Click a tab to view its contents. The frontmost tab appears in bold
font.

Figure 6.2 on page 75 shows two projects represented as tabs in a single docked
window.
74 IDE 5.6 User’s Guide

Dockable Windows
Working with Dockable Windows
Figure 6.2 Two projects in a single docked window

Undocking a Window

Use a contextual menu to undock a window from an edge of the client area to a
floating window or MDI child window.

1. Right-click the tab inside the docked window that represents the window you
want to undock.

A contextual menu appears.
75IDE 5.6 User’s Guide

Dockable Windows
Working with Dockable Windows
Figure 6.3 Contextual menu

2. Choose Floating or MDI Child from the contextual menu.

• Floating—undock the window so that it becomes a floating window

• MDI child—undock the window so that it becomes an MDI child window
of the client area

The window undocks and becomes the chosen window type.

Alternately, double-click the tab to undock the corresponding window to a
floating window.

Floating a Window

Use a contextual menu to float a docked window or MDI child window.

1. Right-click the tab in the docked window or the title bar of the MDI child
window.

A contextual menu appears.

2. Choose Floating from the contextual menu.

NOTE The Floating command appears in the contextual menu for floatable
windows only.

The window becomes a floating window (that you can drag outside the client
area).

Alternately, double-click the tab in a docked window to float its corresponding
window.
76 IDE 5.6 User’s Guide

Dockable Windows
Working with Dockable Windows
Unfloating a Window

Use a contextual menu to dock a floating window or make it an MDI child
window.

1. Right-click the title bar of the floating window.

A contextual menu appears.

2. Choose Docked or MDI Child from the contextual menu.

• Docked—dock the floating window

• MDI child—unfloat the window so that it becomes an MDI child window

The window unfloats and becomes the chosen window type.

Alternately, drag the floating window to an edge of the client area to dock it.

Making a Window an MDI Child

Use a contextual menu to make a docked window or floating window an MDI
child window.

1. Right-click the tab in the docked window or the title bar of the floating
window.

A contextual menu appears.

2. Choose MDI Child from the contextual menu.

The docked window or floating window becomes an MDI child window.

Suppressing Dockable Windows

Suppress dockable windows to drag a window to any location onscreen without
docking it to an edge of the client area.

1. Hold down the Ctrl key while dragging or floating an MDI child window.

The thin window outline that normally indicates docked-window placement
becomes a heavy window outline. Use this heavy outline as a visual cue that
the IDE suppresses dockable windows.
77IDE 5.6 User’s Guide

Dockable Windows
Dock Bars
2. Release the window at its final position.

The window appears in the position indicated by the heavy window outline.

3. Release the Ctrl key.

Dock Bars
A docked window has a dock bar instead of a title bar. Use the dock bar to
perform these tasks:

• move the docked window to a different edge of the client area

• collapse or expand view of the docked window

• close the docked window

Figure 6.4 on page 78 shows a dock bar.

Figure 6.4 Dock Bar

Collapsing a Docked Window

If two or more distinct docked windows occupy the same edge of the client area,
you can collapse one docked window to view contents of other docked windows.

1. Dock two or more windows to the same edge of the client area.

The windows’ contents must appear in separate docked windows, not as tabs
in a single docked window.

2. Click the collapse button on the dock bar of the docked window that

you want to collapse.

3. The docked window collapses to hide its contents.

Expanding a Docked Window

If you previously collapsed a docked window, you can expand it and view its
contents.
78 IDE 5.6 User’s Guide

Dockable Windows
Dock Bars
1. Click the expand button on the dock bar:

2. The docked window expands to restore its original view.

Moving a Docked Window

Use the gripper in a docked window’s dock bar to move the docked window to a
different edge of the client area.

1. Drag the docked window by the gripper in its dock bar:

2. Release the docked window at its new position.

Closing a Docked Window

Close a docked window directly from its dock bar.

1. Click the close button on the dock bar:

2. The docked window closes.

Re-opening the window restores its docked position.
79IDE 5.6 User’s Guide

Dockable Windows
Dock Bars
80 IDE 5.6 User’s Guide

7
Workspaces

This chapter explains how to work with workspaces in the CodeWarrior™ IDE.
Use workspaces to do these tasks:

• Organize—save the state of all windows onscreen for later reuse

• Migrate across computers—transfer your workspace from one computer to
another

This chapter contains these sections:

• “About Workspaces” on page 81

• “Using Workspaces” on page 81

About Workspaces
A workspace stores information about the current state of the IDE. This
information consists of the size, location, and the docked state (Windows) of IDE
windows. If you save a workspace during an active debugging session, the
workspace also stores information about the state of debugging windows.

The IDE can use a default workspace, or it can use a workspace that you create.
The IDE works with one workspace at a time. You can save and re-apply a
workspace from one IDE session to the next.

Using Workspaces
Use menu commands to perform these workspace tasks:

• save a new workspace

• open an existing workspace

• close the current workspace
81IDE 5.6 User’s Guide

Workspaces
Using Workspaces
Using the Default Workspace

Use the default workspace to preserve IDE state from one session to the next.
The IDE saves and restores the default workspace automatically.

1. Choose Edit > Preferences.

The IDE Preferences window opens.

2. Select IDE Extras in the IDE Preference Panels list.

The IDE Extras preference panel appears.

3. Enable the Use default workspace on page 456 option.

• Checked—the IDE saves its state at the time you quit, then restores that
state the next time you launch the IDE

• Unchecked—the IDE always launches with the same default state: no
windows visible

Saving a Workspace

Save a workspace to store information about the current state of onscreen
windows, recent items, and debugging.

1. Arrange your workspace.

Move windows to your favorite positions and start or finish a debugging
session.

2. Choose File > Save Workspace.

A Save dialog box appears.

3. Enter a name for the current workspace

NOTE Add the extension .cww to the end of the workspace name, for
example, myworkspace.cww. This extension helps you readily
identify the workspace file. The Windows-hosted IDE requires this
extension to recognize the file as a CodeWarrior workspace.

4. Save the workspace to a location on your hard disk.

The IDE now uses your saved workspace. In subsequent programming sessions,
you can open the workspace.
82 IDE 5.6 User’s Guide

Workspaces
Using Workspaces
Opening a Workspace

Open a workspace to apply its settings to the IDE.

1. Choose File > Open Workspace.

An Open dialog box appears.

2. Open the workspace.

Use this dialog box to navigate your hard disk and select a workspace file.
These files end in the .cww extension.

The IDE opens the selected workspace and applies its settings.

Saving a Copy of a Workspace

Save a copy of a current workspace under a different name.

1. Open an existing workspace.

2. Choose File > Save Workspace As.

A Save As dialog box appears.

3. Enter a name for the copy of the current workspace

NOTE Add the extension .cww to the end of the workspace name, for
example, myworkspace.cww. This extension helps you readily
identify the workspace file. The Windows-hosted IDE requires this
extension to recognize the file as a CodeWarrior workspace.

4. Save the workspace to a location on your hard disk.

The IDE saves a copy of the current workspace under the name you specified.

Closing a Workspace

Close the current workspace after you finish working with it.

1. Choose File > Close Workspace.

2. The IDE closes the current workspace.
83IDE 5.6 User’s Guide

Workspaces
Using Workspaces
NOTE You cannot close the default workspace, however, the IDE Extras
preference panel contains an option that determines whether the IDE
uses the default workspace.

You can now open a different workspace or quit the IDE.

Opening a Recent Workspace

You can list recently used workspaces in the Open Recent submenu. The
IDE Extras preference panel contains an option that determines the number
of recent workspaces that the submenu will list.

1. Choose File > Open Recent.

A submenu appears. This submenu lists recently opened projects, files, and
workspaces. A checkmark appears next to the active workspace.

2. Choose a recent workspace from the Open Recent submenu.

The IDE applies the workspace that you select.
84 IDE 5.6 User’s Guide

8
Creating Console
Applications

This chapter explains how to work with console applications in the
CodeWarrior™ IDE. Console applications provide these benefits to novice
programmers:

• Simplicity—console applications are computer programs that use a simple
text-mode interface. The simplicity of console-mode applications free
novice programmers to learn a programming language without having to
learn graphical user interface programming at the same time.

• Foundation—understanding console applications provides the basis for
more advanced computer programming. Advanced programmers readily
understand console applications.

Read this chapter to learn more about typical tasks for working with console
applications.

This chapter contains these sections:

• About Console Applications on page 85

• Creating Console Applications on page 86

About Console Applications
A console application is a simple, text-based computer program. Console
applications do not usually employ a graphical user interface (GUI). Instead, the
applications rely on plain-text input and output in a terminal window.

Console applications are ideal for novice programmers. The applications are
easier to program because they lack a GUI. If problems arise, the programmer
can use text-based feedback together with the debugger to correct problems.
85IDE 5.6 User’s Guide

Creating Console Applications
Creating Console Applications
Creating Console Applications
Create a console application to begin working with a text-based computer
program. The CodeWarrior IDE provides pre-configured project stationery for
creating console applications. Project stationery simplifies the project-creation
process. This section explains how to create a console application.

Creating a Console Application

Use the New command to create a new project. The project stores information
about the files in the console application.

1. Choose File > New.

The New window appears.

2. Click the Project tab.

3. Select a project stationery file.

4. Enter a project name in the Project name field and add the .mcp extension.

For example, name the project test.mcp.

5. Click Set.

Save the project in the desired location.

6. Click OK.

The New Project window appears.

7. Select a specific stationery file.

8. Click OK.

The IDE creates a console application from the selected stationery. The
Project window for the console application appears.

9. Expand the Sources group.

This group contains placeholder source files.

10.Remove placeholder source files.

For example, select main.c and choose Edit > Remove.

11.Create a new source file, as explained in Table 8.1 on page 87.
86 IDE 5.6 User’s Guide

Creating Console Applications
Creating Console Applications
12.Enter source code.

For example, enter this source code shown in Listing 8.1 on page 87.

Listing 8.1 Sample source code

#include <stdio.h>
int main(void)
{
 printf(“Hello World!”);
 return 0;
}

13.Save the source file, as explained in Table 8.2 on page 87.

Enter a name for the source code. For example, enter Hello.c. Then click
Save.

Table 8.1 Creating a new source file

On this host… Do this…

Windows Press Ctrl-N

Macintosh Press Command-N

Solaris Press Meta-N

Linux Press Meta-N (File > New Text File)

Table 8.2 Saving the source file

On this host… Do this…

Windows Press Ctrl-S (File > Save)

Macintosh Press Command-S

Solaris Press Meta-S

Linux Press Meta-S (File > Save)
87IDE 5.6 User’s Guide

Creating Console Applications
Creating Console Applications
14.Choose Project > Add Hello.c to Project...

The Add Files window appears.

15.Add the file to all build targets in the project.

Select all checkboxes to add the file to all build targets, then click OK.

16.Drag the source file inside the Sources group.

17.Choose Project > Run.

The IDE compiles, links, then runs the console application.
88 IDE 5.6 User’s Guide

9
The CodeWarrior Editor

This chapter explains how to work with the editor in the CodeWarrior™ IDE. Use
the editor to perform these tasks:

• Manage text files—the editor includes common word-processing features
for creating and editing text files. Sample text files include Read Me files
and release notes.

• Manage source files—the editor includes additional features for creating and
editing source files. The IDE processes source files to produce a program.

This chapter contains these sections:

• “Editor Window” on page 89

• “Editor Toolbar” on page 92

• “Other Editor Window Components” on page 94

Editor Window
Use the editor window to create and manage text files or source files. The
window contains these major parts:

• Editor toolbar

• Text-editing area

• Line and column indicator

• Pane splitter controls

Figure 9.1 on page 90 shows the editor window. Table 9.1 on page 90 explains
the items in the editor window.
89IDE 5.6 User’s Guide

The CodeWarrior Editor
Editor Window
Figure 9.1 Editor window

Table 9.1 Editor window—items

Item Icon Explanation

Interfaces
Menu on
page 92

Displays a list of referenced interface
files or header files for the source file.

Functions
Menu on
page 93

Displays a list of functions defined in the
source file.

Markers
Menu on
page 93

Displays a list of markers defined in the
file.
90 IDE 5.6 User’s Guide

The CodeWarrior Editor
Editor Window
Document
Settings
Menu on
page 93

Displays file-format options and a
syntax-coloring toggle.

Version Control
System
Menu on
page 94

Displays a list of available Version
Control System (VCS) commands.
Choose a command to apply to the
source file.

Path Caption on
page 95

Displays the complete path to the file.

File Modification
Icon on page 95

This icon indicates an unchanged file
since the last save.

This icon indicates a file with
modifications not yet saved.

Breakpoints
Column on
page 95

Displays breakpoints for the file. Red
dot indicates a user-specified
breakpoint. Right-click on breakpoints
column to bring up context menu.

Text Editing
Area on
page 95

Shows the text or source-code content
of the file.

Table 9.1 Editor window—items (continued)

Item Icon Explanation
91IDE 5.6 User’s Guide

The CodeWarrior Editor
Editor Toolbar
Editor Toolbar
Use the editor toolbar to complete these tasks:

• Open interface and header files

• Find function definitions

• Set and clear markers

• Modify file formats

• Control syntax coloring

• Execute version-control operations

• Determine a file’s save state

This section explains how to expand and collapse the toolbar, and how to
perform each toolbar task.

Expanding and Collapsing the Editor Window Toolbar

To expand the editor window toolbar, click this icon in the right-hand top
corner of the editor window.

To collapse the Editor Window Toolbar, click this icon in the right-hand
top corner of the Editor window.

Interfaces Menu
The Interfaces menu lists the source files included in the current source file.

Line and
Column
Indicator on
page 95

Displays the current line and column
number of the text-insertion cursor

Pane Splitter
Controls on
page 95

Drag to split the window into panes.

Table 9.1 Editor window—items (continued)

Item Icon Explanation
92 IDE 5.6 User’s Guide

The CodeWarrior Editor
Editor Toolbar
See “Finding Interface Files” on page 114 for information on navigating source
code with the Interfaces menu.

Functions Menu
The Functions menu lists the functions (routines) defined in the current file.

See “Locating Functions” on page 114 for information on navigating source code
with the Functions pop-up.

Markers Menu
The Marker menu lists markers placed in the current file. Use markers to scroll to
specific items in source code and find code segments by intuitive names.

See “Using Markers” on page 116 for information on navigating source code
with Markers.

Document Settings Menu
The Document Settings menu shows whether the IDE applies syntax coloring to
the window text, as well as the format in which the IDE saves the file.

Using the Document Settings Menu

Use the Document Settings pop-up to toggle syntax coloring on or off for the
current file, and set the EOL (end-of-line) format for saving a text file.

The EOL formats are:

• Macintosh: <CR>

• DOS: <CR><LF>

• UNIX: <LF>

To toggle syntax coloring
• Choose Document Settings > Syntax Coloring.

The editor window updates to display the new syntax color setting.
93IDE 5.6 User’s Guide

The CodeWarrior Editor
Other Editor Window Components
To specify the EOL format for the file
• Choose the EOL format for the file.

The IDE applies the specified EOL format to the file the next time it gets saved.

Version Control System Menu
In editor windows, the version control pop-up menu lists options provided by a
version control system (VCS) compatible with the IDE. Use a VCS to manage
multiple versions of files. VCS packages are available separately for use with the
IDE.

Using the Version Control System Menu

Use the Version Control System (VCS) pop-up menu to access version control
commands related to the editor window’s file. If a version control system is not
enabled for a project, the only item on the VCS menu is No Version Control
Available.

• Choose VCS > VCScommand

The IDE executes the VCS command.

Other Editor Window Components
Use other editor window components to perform these tasks:

• Determine the path to a file.

• Determine the modification status of a file.

• Set or clear breakpoints.

• Edit text or source code.

• Find the text-insertion point.

This section explains these additional editor window components.
94 IDE 5.6 User’s Guide

The CodeWarrior Editor
Other Editor Window Components
Path Caption
The Path caption shows the path to the active file. The directory delimiters follow
host conventions. For example, slashes separate directories for a path on a
Windows computer and backslashes are used on Linux and Solaris.

File Modification Icon
The File Modification icon indicates the save status of the file:

• The icon indicates an unchanged file since the last Save.

• The icon indicates a file with modifications not yet saved.

Breakpoints Column
The Breakpoints column shows breakpoints defined in the current file. Each
marker in the column indicates the line of source code at which the debugger
suspends program execution.

Text Editing Area
The text editing area behaves the same way as it does in a word processor. Enter
text or source code, perform edits, and copy or paste selections.

Line and Column Indicator
The Line and Column indicator shows the current position of the text-insertion
point. Click the indicator to specify a line to scroll into view.

Pane Splitter Controls
Use the pane splitter controls to perform these tasks:

• Add panes to editor windows.

• Adjust pane size.

• Remove panes from editor windows.

This section explains how to perform each task.
95IDE 5.6 User’s Guide

The CodeWarrior Editor
Other Editor Window Components
Adding Panes to an Editor Window

Use the Pane Splitter controls to add additional view panes in an editor window
and view two or more sections of a source file at the same time.

1. Click and drag a Pane Splitter control to add a view pane.

2. The IDE adds a new view pane to the editor window.

Resizing Panes in an Editor Window

Use the Pane Resize controls to resize the panes in an editor window.

1. Click and drag a vertical or horizontal Pane Resize control.

2. The IDE resizes the selected view pane.

Removing Panes from an Editor Window

Use the Pane Resize controls to remove additional view panes from an editor
window.

1. Remove an editor window pane.

• Double-click the Pane Resize control to remove the pane, or

• Click and drag the Pane Resize control to the left or top edge of the editor
window.

2. The IDE removes the view pane from the editor window.
96 IDE 5.6 User’s Guide

10
Editing Source Code

This chapter explains how to edit source code in the CodeWarrior™ IDE. The
IDE provides these features to help you edit source code:

• Select and indent text—the editor can select text by line, routine, or
rectangular selection. The editor also handles text indentation.

• Balance punctuation—the editor can find matching pairs of parentheses,
brackets, and braces. Most programming languages, such as C++, produce
syntax errors for punctuation that lacks a counterpart.

• Complete code—the IDE can suggest ways to complete the symbols you
enter in a source file

This chapter contains these sections:

• “Text Manipulation” on page 97

• “Punctuation Balancing” on page 100

• “Code Completion” on page 102

Text Manipulation
Use these tasks to manipulate text files:

• Select text

• Overstrike text

• Use virtual space

• Indent text

This section explains how to perform each task.

Selecting Text in Editor Windows

The editor lets you select text in several ways while you edit source files.
97IDE 5.6 User’s Guide

Editing Source Code
Text Manipulation
NOTE Enable the Left margin click selects line option in the Editor
Settings preference panel to use the right-pointing arrow cursor.

Lines
Follow these steps to select a line of text:

• Triple-click anywhere on a line, or

• Click the right-pointing cursor in the left margin of the line.

Multiple lines
Follow these steps to select multiple lines of text:

• Drag the cursor over several lines of text and release, or

• Position the cursor at the beginning of a selection range, then Shift-click the
end of the selection range to select all text between the two points, or

• Drag the right-pointing cursor to select lines of text.

Rectangular text selections
Table 10.1 on page 98 explains how to select rectangular portions of text.

Entire routines
Follow these steps to select an entire routine:

1. Hold down the Shift key.

2. Choose a function name from the Function list menu.

Table 10.1 Selecting a rectangular portion of text

On this host... Do this...

Windows Alt-drag the cursor over the portion of text.

Macintosh Command-drag the cursor over the portion of text.

Solaris Alt-drag the cursor over the portion of text.

Linux Alt-drag the cursor over the portion of text.
98 IDE 5.6 User’s Guide

Editing Source Code
Text Manipulation
Overstriking Text (Windows OS)

Use the Overstrike command to toggle between text insertion and text
overwriting mode when entering text. Press the Ins key to toggle overstrike
mode.

Using Virtual Space

Use the Virtual Space feature to place the cursor anywhere in the white space of a
line of source code and enter text at that position.

For example, consider the line of C++ code shown in Listing 10.1 on page 99.

Listing 10.1 Sample C++ source code

void aFunction (const char * inMessage) virtualspace

Toggling virtual space changes the cursor behavior:

• enabled—clicking in the virtualspace places the cursor at the location that
you clicked. You can enter text at that location.

• disabled—clicking in the virtualspace places the cursor after the last
character on the line (in the example, after the closing parenthesis). To place
the cursor beyond this character, you must repeatedly press the space bar on
your keyboard.

To use virtual space, follow these steps:

1. Select Edit > Preferences.

The IDE Preferences window opens.

2. Select Editor Settings in the IDE Preference Panels list.

The Editor Settings preference panel appears.

3. Select the Enable Virtual Space option:

4. Click Apply or Save to save your changes to the preference panel.

5. Close the IDE Preferences window.
99IDE 5.6 User’s Guide

Editing Source Code
Punctuation Balancing
Indenting and Unindenting Text Blocks

Use the Shift Left and Shift Right commands to shift a selected block of text to
the left or right. You can indent or unindent one or more lines using these
commands. The Tab Size option specifies the amount of indentation.

1. Select the text to be shifted.

2. Indent or unindent the selected text.

• To unindent text: Choose Edit > Shift-Left.

• To indent text: Choose Edit > Shift-Right.

Symbol Editing Shortcuts
You can use the browser contextual menu to enhance source-code editing in the
IDE. Use this menu to streamline text entry in editor windows. You can enter the
first few letters of a function name, then use the browser contextual menu to
complete the entry.

The IDE also provides these keyboard shortcuts with the browser enabled:

• Find symbols with prefix—find symbols matching the selected prefix

• Find symbols with substring—find symbols matching the selected
substring

• Get next symbol—obtain the next symbol from the browser database

• Get previous symbol—obtain the previous symbol from the browser
database

See the IDE Quick Reference card for more information about these keyboard
shortcuts.

Punctuation Balancing
Balance punctuation to ensure that each opening parenthesis, bracket, or brace
has a corresponding closing counterpart. This section explains how to balance
punctuation.
100 IDE 5.6 User’s Guide

Editing Source Code
Punctuation Balancing
Balancing Punctuation

Use the Balance option when editing source code to make sure that every
parenthesis (()), bracket ([]), and brace ({ }) has a mate.

1. Position the cursor between the suspect punctuation.

2. Check for the matching punctuation.

• Choose Edit > Balance

OR

• Double-click the parenthesis, bracket, or brace character to check for a
matching character.

From a text insertion point, the editor searches forward until it finds a
parenthesis, bracket, or brace, then it searches in the opposite direction until it
finds the matching punctuation. When double-clicking on a parenthesis, bracket,
or brace, the editor searches in the opposite direction until it finds the matching
punctuation.

When it finds a match, it highlights the text between the matching characters. If
the insertion point is not enclosed or if the punctuation is unbalanced, the
computer beeps.

Toggling Automatic Punctuation Balancing

Use the Editor Settings to enable or disable the punctuation balancing feature.
101IDE 5.6 User’s Guide

Editing Source Code
Code Completion
Figure 10.1 Editor Settings (Balance While Typing)

To toggle automatic punctuation balancing, follow these steps:

1. Select Edit > Preferences.

This opens the IDE Preferences window.

2. In the IDE Preference Panels list, select Editor Settings.

3. In the Other Settings area of Editor Settings, select or clear the Balance
While Typing checkbox.

Code Completion
Use code completion to have the IDE automatically suggest ways to complete the
symbols you enter in a source file. By using code completion, you avoid referring
to other files to remember available symbols.

C/C++ Code Completion will function more effectively when “Language Parser”
is selected for the “Generate Browser Data From” option in the Build Extras
target settings panel for a project. Java Code Completion is not affected by this
setting.
102 IDE 5.6 User’s Guide

Editing Source Code
Code Completion
Code Completion Configuration
You can activate, deactivate, and customize code-completion operation. These
tasks are associated with code completion:

• Activate automatic code completion

• Trigger code completion from the IDE menu bar

• Trigger code completion from the keyboard

• Deactivate automatic code completion

Activating Automatic Code Completion

Activate automatic code completion to have the IDE display a Code Completion
window that helps you complete the symbols you enter in source code. The Code
Completion preference panel configures the Code Completion window
behavior.

1. Choose Edit > Preferences.

The IDE Preferences window appears.

2. Select the Code Completion preference panel in the IDE Preference Panels
list.

3. Select the Automatic Invocation on page 425 option.

Selecting this option configures the IDE to automatically open the Code
Completion window.

4. Enter a delay in the Code Completion Delay on page 428 field.

This delay determines how long the IDE waits between the time you type a
trigger character and the time the Code Completion window appears. If you
perform any action during this delay time, the IDE cancels the Code
Completion operation.

5. Save your preferences.

Click the Save or Apply button.

The Code Completion window now appears automatically to help you complete
code in editor windows.
103IDE 5.6 User’s Guide

Editing Source Code
Code Completion
Triggering Code Completion from the IDE Menu

Trigger code completion from the main menu to open the Code Completion
window.

1. Bring forward an editor window.

2. Begin typing or place insertion point at end of source code that you want to
complete.

3. Choose Edit > Complete Code

The Code Completion window appears. Use it to complete the symbol at the
insertion point.

Triggering Code Completion from the Keyboard

To open code completion from the keyboard:

1. Bring forward an editor window.

2. Begin typing or place insertion point at end of source code to complete.

3. Press the appropriate code completion shortcut key combination.

Table 10.2 on page 104 lists the default code completion key bindings for
each IDE host. Use the Customize IDE Commands panel to change these
key bindings.

Table 10.2 Code Completion key bindings

Host Get Next
Completion

Get Previous
Completion

Complete
Code

Windows Alt-/ Alt-Shift-/ Alt-.

Macintosh Control-/ Control-Shift-/ Control-.

Linux/Solaris Control-/ Control-Shift-/ Control-.
104 IDE 5.6 User’s Guide

Editing Source Code
Code Completion
Deactivating Automatic Code Completion

Deactivate automatic code completion to prevent the IDE from displaying the
Code Completion window as you edit source code. The Code Completion
preference panel configures Code Completion window behavior.

You can still manually trigger code-completion functionality from the keyboard
or from the main menu.

NOTE To dismiss the Code Completion window after it automatically opens,
press the Esc key or click outside the active editor window.

1. Choose Edit > Preferences.

2. Select the Code Completion preference panel in the IDE Preference Panels
list.

3. Disable the Automatic Invocation on page 425 option.

Clearing this option prevents the IDE from automatically opening the Code
Completion window.

4. Save your preferences.

Click the Save or Apply button.

Code Completion Window
The Code Completion window displays possible symbols based on the context of
the insertion point. For example, in Java you can complete code for any Java
class, method, and variable from any package that has been imported or is being
used elsewhere in the project.

Figure 10.2 on page 106 shows the Code Completion window. Table 10.3 on
page 106 explains the items in the Code Completion window. Table 10.4 on
page 107 explains the icons that appear in the Code Completion list.
105IDE 5.6 User’s Guide

Editing Source Code
Code Completion
Figure 10.2 Code Completion window

Table 10.3 Code Completion window—items

Item Icon Explanation

Code
Completion list

Lists available variables and methods or
functions along with their corresponding return
types or parameters. This list changes based
on the context of the insertion point in the active
editor window. Icons help distinguish items in
the list.

Disclosure
Triangle

Click to toggle display of Documentation pane
for programming languages that support it.

Resize Bar Drag to resize the Code Completion list and the
Documentation pane.

Documentation
pane

Displays summary information or
documentation for the selected item in the
Code Completion list. This pane appears only
for programming languages that support
summary information or documentation.
106 IDE 5.6 User’s Guide

Editing Source Code
Code Completion
Navigating the Code Completion Window

Navigate the Code Completion window by mouse or keyboard. You can perform
these tasks:

• Resize the window

• Navigate the window by keyboard

• Refine the Code Completion list by keyboard

1. Bring forward an editor window.

2. Place the insertion point at the end of the source code to complete.

3. Choose Edit > Complete Code or use keyboard shortcut.

The Code Completion window appears.

4. Use the mouse to resize the Code Completion window (Mac and Windows).

The new window size remains in effect until you refine the Code Completion
list or close the Code Completion window. You refine the Code Completion
list by typing additional characters in the active editor window.

Table 10.4 Code Completion window—icons

Icon Code Type Icon Code Type

Class Method

Function Namespace

Global Variable None

Language
Keyword

Package

Local Variable Variable

Constant
107IDE 5.6 User’s Guide

Editing Source Code
Code Completion
5. Use the keyboard to navigate the Code Completion list.

Table 10.5 on page 108 explains how to navigate the Code Completion list by
keyboard.

6. Use the keyboard to refine the Code Completion list.

The Code Completion list updates as you add or delete characters in the active
editor window. Continue adding characters to narrow the list, or delete
existing characters to broaden the list. Press the Backspace key to delete
characters.

Selecting an Item in the Code Completion Window

Select an item in the Code Completion window to have the IDE enter that item in
the active editor window at the insertion point.

1. Bring forward an editor window.

2. Place the insertion point at the end of the source code to complete.

3. Choose Edit > Complete Code.

4. Select an item in the Code Completion list.

5. Enter the item into the active editor window.

Press the Return or Enter keys on the keyboard or double-click the item to
have the IDE insert that item into the editor window.

Table 10.5 Navigating the Code Completion list by keyboard

Key Action

Up Arrow Select the previous item

Down Arrow Select the next item

Page Up Scroll to the previous page

Page Down Scroll to the next page
108 IDE 5.6 User’s Guide

Editing Source Code
Code Completion
Completing Code for Data Members and Data Types

Complete code for data members for programming languages that support it. For
a list of data members type the period (.) character and activate the code
completion window. Figure 10.3 on page 109 shows an example of helping you
select the correct data type depending on what code has been typed in the source
file.

Figure 10.3 Code Completion List of Data Types

Completing Code for Parameter Lists

Complete code for parameter lists for programming languages that support it. For
example, you can complete code for parameter lists by typing the open
parenthesis(character.

1. Bring forward an editor window.

2. Place the insertion point at the end of the function or method to complete.

3. Type an open parenthesis to trigger a parameter-list.
109IDE 5.6 User’s Guide

Editing Source Code
Code Completion
4. The Code Completion window appears.

The upper portion of this window lists different (overloaded) versions of the
function or method. The lower portion shows possible parameter lists for the
selected function or method in the top portion. Use this window to complete
the parameter list for the function or method.

Figure 10.4 Code Completion for Parameter Lists

Completing Code for Pragmas

In the Mac or Windows hosted IDE you can display a list of pragmas in the code
completion window.

1. Bring forward an editor window.

2. In your source file, type #pragma followed by a space.

3. Activate the code completion window (cntrl . or Alt .).

The code completion window will display list of pragmas.
110 IDE 5.6 User’s Guide

Editing Source Code
Code Completion
Figure 10.5 Code Completion for Pragmas
111IDE 5.6 User’s Guide

Editing Source Code
Code Completion
112 IDE 5.6 User’s Guide

11
Navigating Source Code

This chapter explains how to navigate source code in the CodeWarrior™ IDE.
Navigate source code to accomplish these tasks:

• Find specific items—the editor finds interface files, functions, and lines of
source code.

• Go to a specific line—the editor can scroll to a specific line of source code.

• Use markers—the editor allows labelling of specific items of text. These
labels, or markers, provide intuitive navigation of text.

Read this chapter to learn more about typical tasks for navigating source code.

This chapter contains these sections:

• “Finding Interface Files, Functions, and Lines” on page 113

• “Going Back and Forward” on page 116

• “Using Markers” on page 116

• “Symbol Definitions” on page 119

• “Reference Templates (Macintosh)” on page 120

Finding Interface Files, Functions, and
Lines

Find interface files, functions, and lines of source code to expedite programming.
You can find these types of items:

• interface files

• functions

• lines of source code
113IDE 5.6 User’s Guide

Navigating Source Code
Finding Interface Files, Functions, and Lines
Finding Interface Files
Find interface (header) files referenced by the current source code. Some
programming languages, such as C++, use interface files in conjunction with
source code. Interface files typically define functions or objects used in the
source code. Interface files also separate function or object declarations from
implementations. This section explains how to find interface files.

Using the Interface Menu

Use the Interface menu in editor windows to open interface or header files
referenced by the current file. The project file must be open for the Interface
menu to operate.

1. Click the Interface menu.

2. Select the filename of the interface file that you want to open.

If found, the file is opened in an editor window. If not found, an alert sounds.

NOTE Only source code interface files can be opened. Libraries and pre-
compiled header files can not be opened.

Locating Functions
Find functions to expedite source-code editing. Most source files contain several
functions that divide a complicated task into a series of simpler tasks. The editor
allows scrolling to individual functions within the current source file. This
section explains how to find functions.

Using the Functions Menu

Use the Functions menu in editor windows to quickly navigate to specific
functions or routines in the current source file.

1. Click the Functions menu.

2. Select the function name to view.

The editor scrolls to display the selected function.
114 IDE 5.6 User’s Guide

Navigating Source Code
Finding Interface Files, Functions, and Lines
Alphabetizing Functions Menu with the Mouse and Key-
board

The default behavior of the Functions menu is to list functions in order of
appearance in the source file. You can use the mouse and keyboard to list
functions in alphabetical order.

Table 11.1 on page 115 Alphabetizing the Functions list on page 115 explains
how to use the mouse and keyboard to alphabetize functions in the Functions
menu.

Alphabetizing Functions Menu Order

The default behavior of the Functions menu is to list functions in order of
appearance in the source file. You can select the Sort function popup on
page 453 option in the Editor Settings preference panel to list functions in
alphabetical order.

1. Open the IDE Preferences window.

Choose Edit > Preferences.

2. Select the Editor Settings preference panel.

3. Select the Sort function popup on page 453 option.

4. Save your modifications to the Editor Settings panel.

Table 11.1 Alphabetizing the Functions list

On this host... Do this...

Windows Ctrl-click the Functions menu.

Macintosh Option-click the Functions menu.

Solaris Alt-click the Functions menu.

Linux Alt-click the Functions menu.
115IDE 5.6 User’s Guide

Navigating Source Code
Going Back and Forward
Going Back and Forward
Go back and forward in source files to edit existing code. Most source files
contain more than one screen of code. The editor always counts the number of
lines in the source files. Go to a particular line to scroll a particular item into
view.

Going to a Line

Use the Goto Line command to navigate to a specific source line in an editor
window if you know its number. Lines are numbered consecutively, with the first
line designated as line 1. The Line Number control at the bottom of the editor
window shows the line number where the text insertion point is positioned.

1. Open the Line Number window.

• Click the Line and Column Indicator control in bottom left corner of
editor window, or

• Choose Search > Go To Line

2. Type a line number in the Line Number text box.

3. Click OK.

NOTE If a line number does not exist, the insertion point jumps to the last
line of the source file.

Using Markers
Markers behave like labels in the editor, identifying specific parts of source code.
Use these tasks to work with markers:

• Add markers to a source file

• Navigate to a marker

• Remove some or all markers from a source file
116 IDE 5.6 User’s Guide

Navigating Source Code
Using Markers
Remove Markers Window
Use the Remove Markers window to manage the use of destination markers in
source files. Figure 11.1 on page 117 shows the Remove Markers window. Table
11.2 on page 117 explains the items in the window.

Figure 11.1 Remove Marker window

Adding Markers to a Source File

Use the Add Marker command to add a marker to a file to identify specific line
locations by name.

1. Position the cursor on a line.

2. Click on Marker icon and select Add Marker.

Table 11.2 Remove Markers window—items

Item Explanation

Markers list Displays a list of all markers in the current source file.

Remove button Click to remove all selected markers.

Cancel button Click to close the Remove Markers window without applying
changes.

Done button Click to close the Remove Markers window and apply changes.
117IDE 5.6 User’s Guide

Navigating Source Code
Using Markers
3. Type a name for the new marker.

4. Click Add.

The IDE adds the marker to the file.

Navigating to a Marker

Once you add a marker, you can use the Marker menu to return to it later.

1. Select the marker name from the Marker menu.

2. The editor window scrolls to display the selected marker.

Removing a Marker from a Source File

Use the Remove Marker command to remove one or more markers from a
source file.

1. Click Marker icon and select Remove Markers

2. Select the marker name to remove from the list.

3. Click Remove.

The IDE removes the selected marker.

Removing All Markers from a Source File

Use the Remove Marker command to remove one or more markers from a
source file.

1. Click Marker icon and select Remove Markers

2. Select all markers in the Markers list, as explained in Table 11.3 on
page 119.
118 IDE 5.6 User’s Guide

Navigating Source Code
Symbol Definitions
3. Click Remove.

The IDE removes all markers.

Symbol Definitions
You can find a symbol definition in your project’s source code. For the Mac OS,
you can also look up a symbol definition using the online documentation viewer
in the IDE Extras selection in the IDE Preferences panel.

Supported online reference viewers include HTMLHelp (Windows) and
QuickHelp (Mac OS), as well as older online help systems such as QuickView
(Mac OS) and THINK Reference (Mac OS).

TIP You can also use the browser to look up symbol definitions.

Figure 11.2 Find Definition

Table 11.3 Selecting all markers in the Markers list

On this host… Do this…

Windows Shift-click each marker name in the list.

Macintosh Select Edit > Select All.

Solaris Select Edit > Select All.

Linux Select Edit > Select All.
119IDE 5.6 User’s Guide

Navigating Source Code
Reference Templates (Macintosh)
Looking Up Symbol Definitions

To look up the definition of a selected symbol, follow these steps:

1. Choose Search > Find Definition

2. Enter the symbol definition.

3. Click OK.

CodeWarrior searches all files in your project for the symbol definition.

If CodeWarrior finds a definition, it opens an editor window and highlights
the definition for you to examine.

TIP To return to your original location after viewing a symbol definition,
press Shift-Ctrl B (Windows) or Shift-Command B (Mac OS) or Meta-
Shift B (Linux/Solaris). This key binding is equivalent to the Go Back
menu command.

Mac OS, Solaris, and Linux You can also use the Find Reference and Find
Definition & Reference commands to look up symbol definitions. After you
select a symbol and choose the Find Reference command, CodeWarrior searches
the online documentation for the symbol definition. After you select a symbol
and choose the Find Definition & Reference command, the IDE searches both the
project files and the online documentation for the symbol definition. If
CodeWarrior does not find a definition or reference, it notifies you with a beep.

Reference Templates (Macintosh)
If you look up a routine (such as an operating system call) in the QuickView or
THINK Reference online viewers, you can paste the template for the call into the
editor window at the text-insertion point. If you know the name of the call that
you want to add, but are not familiar with the call parameters, this technique is
useful.

Listing 11.1 on page 120 shows a sample routine template.

Listing 11.1 Sample routine template

SetRect (r, left, top, right, bottom);
120 IDE 5.6 User’s Guide

Navigating Source Code
Reference Templates (Macintosh)
Inserting a Reference Template

To insert a reference template into your code, follow these steps:

1. From the online viewer window, type the routine name that you want to
insert.

2. Select the name you just typed.

3. Choose Insert Reference Template from the Edit menu.

The IDE searches for the routine in either QuickView (Mac OS) or THINK
Reference (Mac OS), starting the required application if it is not already
running. If the IDE finds the routine, the IDE copies the template to the active
editor window and replaces the text you selected with the template.
121IDE 5.6 User’s Guide

Navigating Source Code
Reference Templates (Macintosh)
122 IDE 5.6 User’s Guide

12
Finding and Replacing
Text

This chapter explains how to work with the find-and-replace features in the
CodeWarrior™ IDE.

This chapter contains these sections:

• “Single-File Find” on page 123

• “Single-File Find and Replace” on page 126

• “Multiple-File Find and Replace” on page 129

• “Search Results Window” on page 141

• “Text-Selection Find” on page 143

• “Regular-Expression Find” on page 145

• “Comparing Files and Folders” on page 148

Single-File Find
Use the Find window to search for text within a single file:

• The Find operation returns a single instance of matching text.

• The Find All operation returns all instances of matching text.

Figure 12.1 on page 124 shows the Find window. Table 12.1 on page 124
explains the items in the Find window.
123IDE 5.6 User’s Guide

Finding and Replacing Text
Single-File Find
Figure 12.1 Find window

Table 12.1 Find window—items

Item Explanation

Find text/list box Enter a search string. Click the arrow symbol to select a
search string that you entered previously.

Find button Click to start a search operation using the string in the Find
text/list box.

Find All button Click to search for all matches in the active editor window.

Cancel button Click to close the Find window without performing a search.

Match whole word
checkbox

Check to search for whole-word matches only, ignoring
matches within words.

Clear to search for all matches of the search string, including
matches within words.

Case sensitive
checkbox

Check to consider text case during the search. The search
operation distinguishes between a capital letter and the same
letter in lower case.

Clear to disregard text case during the search. The search
operation does not distinguish between a capital letter and the
same letter in lower case.

Regular expression
checkbox

Check to treat the search string as a regular expression.

Clear to treat the search string as plain text.
124 IDE 5.6 User’s Guide

Finding and Replacing Text
Single-File Find
Searching Text in a Single File

Use the Find command to search for text in the active editor window.

1. Click Search > Find.

The Find window appears.

NOTE (Mac OS, Solaris, and Linux) Use the Customize IDE Commands
window to activate the Find menu command.

2. Enter search text into Find text/list box.

3. Set search options.

Stop at end of file
checkbox

Check to stop a search at the end of a file and not wrap
around to the beginning of the file.

Clear to wrap around to the beginning of the file and continue
a search. The search stops at the first match or at the current
cursor position.

Search up
checkbox

Check to perform a search operation back from the
current selection.

Clear to perform a search operation forward of the
current selection

Search selection only
checkbox

Check to search only the currently selected text and not the
entire file.

Clear to search the entire file.

All text
option button

Select to search all text in the file.

Code only
option button

Select to search only source code in the file.

Comments only
option button

Select to search only comments in the file.

Table 12.1 Find window—items (continued)

Item Explanation
125IDE 5.6 User’s Guide

Finding and Replacing Text
Single-File Find and Replace
4. Click the Find or Find All button to start the search.

The IDE searches the current file until it finds a match or reaches the end of the
search. A single match appears highlighted in the editor window, or multiple
matches appear in a Search Results window. The IDE beeps if it does not find
any matching text.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match in the file.

Single-File Find and Replace
Use the Find and Replace window to perform these tasks:

• Search a single file.

• Replace found text in a single file.

Figure 12.2 on page 126 shows the Find and Replace window. Table 12.2 on
page 127 explains the items in the Find and Replace window.

Figure 12.2 Find and Replace window
126 IDE 5.6 User’s Guide

Finding and Replacing Text
Single-File Find and Replace
Table 12.2 Find and Replace window—items

Item Explanation

Find text/list box Enter a search string. Click the arrow symbol to select a
search string that you entered previously.

Replace with
text/list box

Enter the replacement string. Click the arrow symbol to select
a replacement string that you entered previously.

Find button Click to start a search operation using the string in the Find
text/list box.

Replace button Click to replace the current match with the replacement string.

Replace All button Click to replace all matches with the replacement string.

Cancel button Click to close the Find and Replace window without
performing
a search.

Match whole word
checkbox

Check to search for whole-word matches only, ignoring
matches
within words.

Clear to search for all matches of the search string, including
matches within words.

Case sensitive
checkbox

Check to consider text case during the search. The search
operation distinguishes between a capital letter and the same
letter in lower case.

Clear to disregard text case during the search. The search
operation does not distinguish between a capital letter and the
same letter in lower case.

Regular expression
checkbox

Check to treat the search string as a regular expression.

Clear to treat the search string as plain text.

Stop at end of file
checkbox

Check to stop a search at the end of a file and not wrap
around to the beginning of the file.

Clear to wrap around to the beginning of the file and continue
a search. The search stops at the first match or at the current
cursor position.
127IDE 5.6 User’s Guide

Finding and Replacing Text
Single-File Find and Replace
Replacing Text in a Single File

Use the Replace command to replace matching text.

1. Click Search > Replace or Search > Find and Replace.

The Find window appears.

2. Enter search text into the Find text/list box.

3. Enter replacement text into the Replace with text/list box.

4. Set search options.

5. Find and replace text:

a. Click the Find button to search for matching text.

The IDE searches the current file until it finds a match or reaches the end
of the search. A single match appears highlighted in the editor window.
The IDE beeps if it does not find any matching text.

Search up
checkbox

Check to perform a search operation back from the
current selection.

Clear to perform a search operation forward of the
current selection

Search selection only
checkbox

Check to search only the currently selected text and not the
entire file.

Clear to search the entire file.

All text
option button

Select to search all text in the file.

Code only
option button

Select to search only source code in the file.

Comments only
option button

Select to search only comments in the file.

Table 12.2 Find and Replace window—items (continued)

Item Explanation
128 IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
b. Click the Replace or Replace All button to replace the matching text.

Click the Replace button to replace the current match. Click the Replace
button repeatedly to replace subsequent matches. Click the Replace All
button to replace all matching text in the file.

To replace consecutive matches, click the Find button to find the first match, then
repeatedly click the Replace button. To replace one match at a time, or to replace
non-consecutive matches, click the Find button to find a match, then click the
Replace button as needed.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match in the file.

Multiple-File Find and Replace
Use the Find in Files window to perform these tasks:

• Search several files.

• Replace found text in multiple files, folders, symbolics files, or projects.

• Replace found text in files within a specific build target.

Figure 12.3 on page 130 shows the Find in Files window. Table 12.3 on page 130
explains the items in
the window.
129IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Figure 12.3 Find in Files window

Table 12.3 Find in Files window—items

Item Explanation

Find text/list box Enter a search string. Click the arrow symbol to select a search
string that you entered previously.

Replace with
text/list box

Enter the replacement string. Click the arrow symbol to select a
replacement string that you entered previously.

Find button Click to start a search operation using the string in the Find text/
list box.

Find All button Click to search for all matches in the selected items.

Replace button Click to replace the current match with the replacement string.

Replace All button Click to replace all matches with the replacement string.
130 IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Stop button Click to stop the current operation.

Match whole word
checkbox

Check to search for whole-word matches only, ignoring matches
within words.

Clear to search for all matches of the search string, including
matches within words.

Case sensitive
checkbox

Check to consider text case during the search. The search
operation distinguishes between a capital letter and the same
letter in lower case.

Clear to disregard text case during the search. The search
operation does not distinguish between a capital letter and the
same letter in lower case.

Regular
expression
checkbox

Check to treat the search string as a regular expression.

Clear to treat the search string as plain text.

All text
option button

Select to search all text in the selected items.

Code only
option button

Select to search only source code in selected items.

Comments only
option button

Select to search only comments in selected items.

In Folders on
page 132 tab

Click to bring forward the In Folders page. Use this page to
search specific folders in the host file system.

In Projects on
page 134 tab

Click to bring forward the In Projects page. Use this page to
search active projects and build targets.

In Symbolics on
page 136 tab

Click to bring forward the In Symbolics page. Use this page to
search files containing symbolics (debugging and browsing)
information generated by the IDE.

In Files on
page 138 tab

Click to bring forward the In Files page. Use this page to search
files contained in custom file sets.

Table 12.3 Find in Files window—items (continued)

Item Explanation
131IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
In Folders
Use the In Folders page to search folder contents for matching text. Figure
12.4 on page 132 shows the In Folders page. Table 12.4 on page 132 explains the
items in the page.

Figure 12.4 Find in Files window—In Folders page

Table 12.4 Find in Files window—In Folders items

Item Explanation

Search in
text/list box

Enter the path to the folder that you want to search. Click the
arrow symbol to select a path that you entered previously.

Browse button Click to open a dialog box that lets you pick the folder that you
want to search.

Search sub-folders
checkbox

Check to search sub-folders of the selected folder.

Clear to search the selected folder only, ignoring any sub-
folders it may contain.

By type
text/list box

Enter the filename extensions of the files that you want to
search. Click the arrow symbol to select a set of filename
extensions.
The search ignores files whose filename extensions do not
appear in this text/list box.
132 IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Searching for Text Across Multiple Folders

Use the In Folders page to search for text in folder contents.

1. Click Search > Find in Files.

The Find in Files window appears.

2. Enter search text into the Find text/list box.

3. Enter replacement text into the Replace with text/list box.

4. Set general search options.

5. Set the In Folders page search options:

a. Enter a folder path into the Search in text/list box, or click the Browse
button to select a folder.

b. Check or clear the Search sub-folders checkbox.

c. Enter filename extensions into the By type text/list box.

6. Find and replace text:

a. Click the Find or Find All button to search for matching text.

The IDE searches the specified folder contents until it finds a match or
reaches the end of the search. A single match appears highlighted in an
editor window, or multiple matches appear in a Search Results window.
The IDE beeps if it does not find any matching text.

b. Click the Replace or Replace All button to replace the matching text.

Click the Replace button to replace the current match. Click the Replace
button repeatedly to replace subsequent matches. Click the Replace All
button to replace all matching text.

To replace consecutive matches, click the Find button to find the first match, then
repeatedly click the Replace button. To replace one match at a time, or to replace
non-consecutive matches, click the Find button to find a match, then click the
Replace button as needed.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match.
133IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
In Projects
Use the In Projects page to search active projects and build targets for matching
text. Figure 12.5 on page 134 shows the In Projects page. Table 12.5 on page 134
explains the items in the page.

Figure 12.5 Find in Files window—In Projects page

Table 12.5 Find in Files window—In Projects items

Item Explanation

Project list box Specify the projects that you want to search.

Target list box Specify the build targets that you want to search.

Project sources
checkbox

Check to search the source-code files of selected projects.
Clear to ignore source-code files of selected projects.

Project headers
checkbox

Check to search the header files of selected projects.
Clear to ignore header files of selected projects.

System headers
checkbox

Check to search system header files.
Clear to ignore system header files.

Search cached sub-
targets checkbox

Check to search sub-targets that the IDE cached for the
selected build targets.
Clear to ignore the sub-targets that the IDE cached for the
selected build targets.

File list This list shows files that the IDE will search. To remove a file
from this list, select it and press Backspace or Delete. To
open a file in this list, double-click its name.
134 IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Searching for Text Across Multiple Projects

Use the In Projects page to search for text in active projects and build targets.

1. Click Project > Make.

The IDE updates the project data to correctly list source-code files, header
files, and build targets in the In Projects page of the Find in Files window.

2. Click Search > Find in Files.

The Find in Files window appears.

3. Enter search text into the Find text/list box.

4. Enter replacement text into the Replace with text/list box.

5. Set general search options.

6. Set the In Projects page search options:

a. Use the Project list box to specify the projects that you want to search.

b. Use the Target list box to specify the build targets that you want to search.

c. Check or clear the checkboxes to refine your search criteria.

d. Remove files from the File list as needed.

7. Find and replace text:

a. Click the Find or Find All button to search for matching text.

The IDE searches the specified projects and build targets until it finds a
match or reaches the end of the search. A single match appears highlighted
in an editor window, or multiple matches appear in a Search Results
window. The IDE beeps if it does not find any matching text.

b. Click the Replace or Replace All button to replace the matching text.

Click the Replace button to replace the current match. Click the Replace
button repeatedly to replace subsequent matches. Click the Replace All
button to replace all matching text.

To replace consecutive matches, click the Find button to find the first match, then
repeatedly click the Replace button. To replace one match at a time, or to replace
non-consecutive matches, click the Find button to find a match, then click the
Replace button as needed.
135IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match.

In Symbolics
Use the In Symbolics page to search files containing symbolics information for
matching text. Figure 12.6 on page 136 shows the In Symbolics page. Table
12.6 on page 136 explains the items in the page.

Figure 12.6 Find in Files window—In Symbolics page

Table 12.6 Find in Files window—In Symbolics items

Item Explanation

Symbolics list
box

Specify the symbolics files that you want to search.

Symbolics list This list shows the symbolics files that the IDE will search. To
remove a file from this list, select it and press Backspace or
Delete. To open a file in this list, double-click its name.
136 IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Searching for Text Across Multiple Symbolics Files

Use the In Symbolics page to search for text in symbolics files. You must
generate browser data in order to search symbolics files.

1. Enable browser data for the build targets that you want to search.

Use the Build Extras target settings panel to Generate Browser Data From
a compiler or language parser, then Apply or Save your changes. Configuring
this option enables browser data.

2. Click Project > Debug.

Starting a debugging session causes the IDE to generate browser data for
the project.

NOTE The IDE does not generate browser data for some files, such
as libraries.

3. Click Debug > Kill.

The debugging session ends.

4. Click Search > Find in Files.

The Find in Files window appears.

5. Enter search text into the Find text/list box.

6. Enter replacement text into the Replace with text/list box.

7. Set general search options.

8. Set the In Symbolics page search options:

a. Use the Symbolics list box to specify the symbolics files that you want
to search.

b. Remove symbolics files from the Symbolics list as needed.

9. Find and replace text:

a. Click the Find or Find All button to search for matching text.

The IDE searches the specified symbolics files until it finds a match or
reaches the end of the search. A single match appears highlighted in an
editor window, or multiple matches appear in a Search Results window.
The IDE beeps if it does not find any matching text.
137IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
b. Click the Replace or Replace All button to replace the matching text.

Click the Replace button to replace the current match. Click the Replace
button repeatedly to replace subsequent matches. Click the Replace All
button to replace all matching text.

To replace consecutive matches, click the Find button to find the first match, then
repeatedly click the Replace button. To replace one match at a time, or to replace
non-consecutive matches, click the Find button to find a match, then click the
Replace button as needed.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match.

In Files
Use the In Files page to search file sets for matching text. Figure 12.7 on
page 138 shows the In Files page. Table 12.7 on page 139 explains the items in
the page.

Figure 12.7 Find in Files window—In Files page
138 IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
Searching for Text Across Multiple Files

Use the In Files page to search for text in file sets.

1. Click Search > Find in Files.

The Find in Files window appears.

2. Enter search text into the Find text/list box.

3. Enter replacement text into the Replace with text/list box.

4. Set general search options.

5. Set the In Files page search options:

a. Use the File Set list box to specify the file set that you want to search.

b. Use the buttons to manage the File Set list as needed.

Table 12.7 Find in Files window—In Files items

Item Explanation

File Set list box Specify the file set that you want to search. Select New File Set to
create a new set.

File Set list This list shows the files that the IDE will search. To remove a file
from this list, select it and press Backspace or Delete. To add files
to this list, click the Add Files button, or drag and drop files and
folders into the list. To open a file in this list, double-click its name.

Add Files
button

Click to open a dialog box that lets you add files to the current file
set. To enable this button, select from the File Set list box an
existing file set or the New File Set option.

Clear List
button

Click to clear the current File Set list. To enable this button, select
from the File Set list box a file set that has at least one file.

Save This Set
button

Click to save the current file set under a specific name. The file set
must have at least one file. The name appears in the File Set list
box. To enable this button, modify the current file set or select an
existing file set from the File Set list box.

Remove a Set
button

Click to open a dialog box that lets you remove file sets that you
created previously. The removed file sets no longer appear in the
File Set list box. To enable this button, select from the File Set list
box an existing file set or the New File Set option.
139IDE 5.6 User’s Guide

Finding and Replacing Text
Multiple-File Find and Replace
c. Remove files from the File Set list as needed.

6. Find and replace text:

a. Click the Find or Find All button to search for matching text.

The IDE searches the specified files until it finds a match or reaches the
end of the search. A single match appears highlighted in an editor window,
or multiple matches appear in a Search Results window. The IDE beeps if
it does not find any matching text.

b. Click the Replace or Replace All button to replace the matching text.

Click the Replace button to replace the current match. Click the Replace
button repeatedly to replace subsequent matches. Click the Replace All
button to replace all matching text.

To replace consecutive matches, click the Find button to find the first match, then
repeatedly click the Replace button. To replace one match at a time, or to replace
non-consecutive matches, click the Find button to find a match, then click the
Replace button as needed.

TIP If you clicked the Find button to start the search, click Search >
Find Next to find the next match in the file.
140 IDE 5.6 User’s Guide

Finding and Replacing Text
Search Results Window
Search Results Window
Use the Search Results window to explore multiple matches that the IDE finds.
The IDE opens this window automatically after it finds multiple matches. Also
use this window to stop searches in progress.

Figure 12.8 on page 141 shows the Search Results window. Table 12.8 on
page 142 explains the items in the window.

Figure 12.8 Search Results window
141IDE 5.6 User’s Guide

Finding and Replacing Text
Search Results Window
Table 12.8 Search Results window—items

Item Icon Explanation

Result Count text
box

Shows the total number of search
results.

Search Criteria
text box

Shows the search criteria.

Warnings button Click to display complier and linker
warnings in the Results pane. The
text box to the right of this button
shows the total number of warnings.

Stop button Click to stop the search in progress.

Previous Result
button

Click to select the previous search
result.

Next Result
button

Click to select the next search result.

Results pane Lists individual search results.

Source Code
pane
disclosure
triangle

Click to show or hide the Source
Code pane.

Pane resize bar Drag to resize the Results and
Source Code panes.

Source Code
pane

Shows the source code
corresponding to the selected item
in the Results pane. This pane
operates the same as an editor
window without pane-splitter
controls.
142 IDE 5.6 User’s Guide

Finding and Replacing Text
Text-Selection Find
Text-Selection Find
After you use the Find, Find and Replace, or Find in Files windows to perform
a successful search, you can use menu commands to apply the same search
criteria to additional searches. This way, you do not have to open the windows
again to use the same search criteria. You select text in the active editor window
to define the
search string.

Using the Find Next Command

When searching for text, you can use the Find Next command to have the IDE
find the next match:

1. Start a search with the Find, Find and Replace, or Find in Files windows.

2. After the IDE finds a match, click Search > Find Next to find a
subsequent match.

NOTE Find Next always searches forward and ignores the Search up
checkbox.

Using the Find Previous Command

When searching for text, you can use the Find Previous command to have the
IDE find the previous match. You must enable the Find Previous command in the
Customize IDE Commands window.

1. Click Edit > Commands & Key Bindings.

The Customize IDE Commands window opens.

2. Click the Commands tab in the Customize IDE Commands window.

3. Expand the Search item in the Commands pane tree structure.

4. Select the Find Previous item in the expanded list.

Scroll as needed in order to see the Find Previous item. After you select the
Find Previous item, its settings appear in Details pane.
143IDE 5.6 User’s Guide

Finding and Replacing Text
Text-Selection Find
5. Check the Appears in Menus checkbox.

The Find Previous command will appear in the Search menu in the main IDE
menu bar.

6. Click Save to confirm your changes.

7. Close the Customize IDE Commands window.

You can now select the Find Previous command in the Search menu. You can
also use the key binding associated with the command.

NOTE (Macintosh) Hold down the Shift key in order to click
Search > Find Previous.

Changing the Find String

Use the Enter Find String command to change the current find string.

1. Select the text that you want to use as the new find string.

2. Click Search > Enter Find String.

The selected text replaces the find string that you specified in the Find, Find
and Replace, or Find in Files windows.

You can now use the new find string to perform find and replace operations.

Searching with a Text Selection

Use the Find Selection command to search the active editor window for selected
text.

1. Select the text that you want to use as the search string.

2. Click Search > Find Selection.

The IDE searches the active editor window until it finds a match or reaches the
end of the search. A single match appears highlighted in the editor window. The
IDE beeps if it does not find any matching text.

You can also use the Find Next and Find Previous commands to search for
additional matching text.
144 IDE 5.6 User’s Guide

Finding and Replacing Text
Regular-Expression Find
Regular-Expression Find
Use regular expressions to search text according to sophisticated text-matching
rules. A regular expression is a text string used as a mask for matching text in a
file. To use regular expressions, select Regular expression in the Find, Find
and Replace, or Find in Files windows. Certain characters are operators with
special meanings in a regular expression.

TIP For an in-depth description of regular expressions, refer to Mastering
Regular Expressions by Jeffrey E.F. Friedl, published by O’Reilly &
Associates, Inc. On a UNIX system, also refer to the man pages
for regexp.

Table 12.9 on page 145 explains the regular-expression operators that the IDE
recognizes.

Table 12.9 Regular-expression operators recognized by the IDE

Operator Name Explanation

. match any Matches any single printing or non-printing character

except newline and null.

* match zero
or more

Replaces the smallest/preceding regular expression
with a sub-expression.

+ match one
or more

Repeats the preceding regular expression at least
once and then as many times as necessary to match
the pattern.

? match zero
or one

Repeats the preceding regular expression once or
not at all.

\n back
reference

Refers to a specified group (a unit expression enclosed

in parentheses) in the find string. The digit n identifies

the nth group, from left to right, with a number from 1
to 9.

| alternation Matches one of a choice of regular expressions. If this
operator appears between two regular expressions,
the IDE matches the largest union of strings.
145IDE 5.6 User’s Guide

Finding and Replacing Text
Regular-Expression Find
Table 12.10 on page 146 shows various examples of using regular expressions to
match particular text in a text sample.

^ match
beginning of
line

Matches items from the beginning of a string or

following a newline character. This operator also
represents a NOT operator when enclosed within
brackets.

$ match end
of line

Matches items from the end of a string or preceding a

newline character.

[...] list Defines a set of items to use as a match. The IDE does
not allow empty lists.

(...) group Defines an expression to be treated as a single unit
elsewhere in the regular expression.

- range Specifies a range. The range starts with the character
preceding the operator and ends with the character
following the operator.

Table 12.10 Examples of using regular expressions

Example
Type

This regular
expression...

...matches
this text...

...in this text
sample:

Matching simple
expressions

ex ex sample text

[(][.]stack[)] (.stack) ADDR(.stack)

Matching any
character

var. var1
var2

cout << var1;
cout << var2;

c.t cut
cot

cin >> cutF;
cin >> cotG;

Repeating
expressions

s*ion ion
ssion

information
the session

s+ion sion
ssion

confusion
the session

Table 12.9 Regular-expression operators recognized by the IDE (continued)

Operator Name Explanation
146 IDE 5.6 User’s Guide

Finding and Replacing Text
Regular-Expression Find
Using the Find String in the Replace String
Use the & operator to incorporate matching text into a replacement string. The
IDE substitutes the matching text for the & operator. Use \& to indicate a literal
ampersand in the replacement string.

Table 12.11 on page 147 shows examples of using the find string in the replace
string of regular expressions.

.

Grouping
expressions

ris ris surprise

r(i)s r is theVar is

Choosing one
character from
many

[bls]ag sag bag lag sagging bag
lagged

[[aeiou][0-9] [2 u9 cout << a[2] <<
u9;

[^bls]ag rag sagging rag
lagged

[-ab]V aV -V aVal-Val;

Matching line
beginnings and
endings

^([\t]*cout) cout
 cout

cout << "no
tab";
 cout <<
"tab";

(l*;)$ l;
;

a-ct; a =
battLvl;
b-ct;

Table 12.11 Examples of using the find string in the replace string

Find string Replace
string

Matching
text

After replacement

var[0-9] my_& var1 my_var1

tgt \&target tgt &target

Table 12.10 Examples of using regular expressions (continued)

Example
Type

This regular
expression...

...matches
this text...

...in this text
sample:
147IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Remembering Sub-expressions
Use the \n construct to recall sub-expressions from the find string in the
replacement string. The digit n ranges from 1 to 9 and represents the nth sub-
expression in the find string, counting from left to right. Enclose each sub-
expression in parentheses.

Consider these sample definitions:

• Find string: \#define[\t]+(.+)[\t]+([0-9]+);

• Replace string: const int \1 = \2;

• Sub-expression \1: (.+)

• Sub-expression \2: ([0-9]+)

These definitions show a replacement operation that recalls two sub-expressions.
Table 12.12 on page 148 shows the result of applying these sample definitions to
some text.

Comparing Files and Folders
The IDE can compare files or folder contents and graphically show you the
differences between them. You can perform these tasks:

• Compare two files.

• Compare the contents of two folders.

You perform the comparison by specifying a source item and a destination item.
You can apply or unapply the changes in the source item to the destination item.

Table 12.12 Remembering sub-expressions

Before
replacement

\1
matches
this text

\2
matches
this text

After replacement

#define var1 10; var1 10 const int var1 = 10;

#define a 100; a 100 const int a = 100;
148 IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Comparison Setup
You use the Compare Files Setup window to enter information about the files or
folders that you want to compare. Figure 12.9 on page 149 shows the Compare
Files Setup window. Table 12.13 on page 149 explains items in the window.

Figure 12.9 Compare Files Setup window

Table 12.13 Compare Files Setup window—items

Item Explanation

Source box Click the Choose button to specify the source file or folder for the
comparison, or drag and drop a file or folder into the box. Click the
selector to the left of the Choose button to specify a file in an open editor
window.

Destination
box

Click the Choose button to specify the destination file or folder for the
comparison, or drag and drop a file or folder into the box. Click the
selector to the left of the Choose button to specify a file in an open editor
window.

Case
sensitive
checkbox

Check to consider text case during the compare operation.
The comparison distinguishes between a capital letter and the same
letter in lower case.

Clear to disregard text case during the compare operation.
The comparison does not distinguish between a capital letter and the
same letter in lower case.
149IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Choosing Files to Compare

Use the Compare Files command to specify two files that you want to compare.

1. Click Search > Compare Files.

The Compare Files Setup window appears.

2. Specify a source file for the comparison.

Click the Choose button in the Source box or drag and drop the file into the
Source box. To specify a file in an open editor window, click the selector in
the Source box.

Ignore extra
space
checkbox

Check to consider extra spaces and tabs during the compare operation.
The comparison distinguishes differences in the number of spaces and
tabs in the compared files.

Clear to disregard extra spaces and tabs during the compare operation.
The comparison does not distinguish differences in the number of
spaces and tabs in the compared files.

Only show
different
files
checkbox

Check to have the Folder Compare Results window show only the
differences between the compared folders. The Files in Both Folders
pane stays blank.

Clear to have the Folder Compare Results window show all files from
the compared folders as well as the differences between those folders.
The Files in Both Folders pane shows the common files between the
compared folders.

Compare
text file
contents
checkbox

Check to identify differences in terms of a byte-by-byte comparison of
the files.
Clear to identify differences in terms of only the sizes and modification
dates of the files.

Compare
button

Click to compare the specified files or folders.

Table 12.13 Compare Files Setup window—items (continued)

Item Explanation
150 IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
3. Specify a destination file for the comparison.

Click the Choose button in the Destination box or drag and drop the file into
the Destination box. To specify a file in an open editor window, click the
selector in the Destination box.

4. Configure the checkboxes in the Text Compare Options group.

Check the Case sensitive checkbox to distinguish between a capital letter and
the same letter in lower case. Check the Ignore extra space checkbox to
disregard extra spaces or tabs in the files.

5. Click the Compare button.

The IDE performs the file comparison. The File Compare Results
window appears.

Choosing Folders to Compare

Follow these steps to specify two folders that you want to compare:

1. Click Search > Compare Files.

The Compare Files Setup window appears.

2. Specify a source folder for the comparison.

Click the Choose button in the Source box or drag and drop the folder into
the Source box.

3. Specify a destination folder for the comparison.

Click the Choose button in the Destination box or drag and drop the folder
into the Destination box.

4. Configure the checkboxes in the Text Compare Options group.

These options apply to the files inside the compared folders. Check the
Case sensitive checkbox to distinguish between a capital letter and the same
letter in lower case. Check the Ignore extra space checkbox to disregard
extra spaces or tabs in the files.

5. Configure the checkboxes in the Folder Compare Options group.

These options apply to the contents of the compared folders. Check the
Only show different files checkbox to have the Folder Compare Results
window show only the files that differ between the source folder and
151IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
destination folder. Check this option to have the Files in Both Folders pane
of the Folder Compare Results window stay blank.

Check the Compare text file contents checkbox to have the IDE perform a
content-based comparison of the text files in the compared folders. Check this
option to have the Folder Compare Results window show differences in terms
of file content instead of file sizes and modification dates.

6. Click the Compare button.

The IDE performs the folder comparison. The Folder Compare Results
window appears.

CAUTION The compare operation ignores folders matching the criteria that
you specify in the Shielded Folders preference panel.

File Comparison
The IDE file-comparison feature identifies additions, changes, and deletions
between two text files. In addition, this feature allows you to apply the
differences in the source file to the destination file.

You can also use this feature to merge changes between two versions of the same
text file. Specify one version of the text file as the source file and the other
version of the text file as the destination file. Then you can apply changes from
the source file to the destination file. The destination file becomes the merged
file.

After you use the Compare Files Setup window to specify two files for
comparison, click the Compare button. The File Compare Results window
appears. This window shows the differences between the source file and
destination file. You can apply or unapply those differences to the destination
file.

The File Compare Results window shows file differences in the form of
highlighted portions of text. The highlighting tracks with the text as you scroll
through the compared files.

Figure 12.10 on page 153 shows the File Compare Results window. Table
12.14 on page 153 explains the items in the window.
152 IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Figure 12.10 File Compare Results window

Table 12.14 File Compare Results window—items

Item Icon Explanation

Source pane N/A Shows the contents of the source file.
You cannot edit the contents of this pane.

Destination pane N/A Shows the contents of the destination file.
You can edit the contents of this pane.

Pane resize bar Drag to resize the Source and
Destination panes.

Apply button Click to apply the selected Differences
pane items to the destination file.

Unapply button Click to unapply the selected Differences
pane items from the destination file.

Undo button Click to undo your last text edit in the
Destination pane.
153IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Applying File Differences

Use the Apply Difference command to apply the selected items in the
Differences pane to the destination file.

NOTE You cannot alter the source file. You can change the destination file
by applying differences from the source file or by editing the contents
of the Destination pane.

1. Select the items in the Differences pane that you want to apply to the
destination file.

2. Click Search > Apply Difference or click the Apply button in the File
Compare Results window.

The Destination pane updates to reflect the differences that you applied to the
destination file. The applied items in the Differences pane change to an
italicized font.

TIP Use the Customize IDE Commands window to assign a key binding to
the Apply Difference command. This way, you can use the keyboard to
apply differences.

Redo button Click to redo your last text edit in the
Destination pane.

Differences
pane

N/A Shows the differences between the Source
pane and the Destination pane. Select an
item to highlight it in the Source and
Destination panes. Applied items appear in
an italicized font

Table 12.14 File Compare Results window—items (continued)

Item Icon Explanation
154 IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Unapplying File Differences

Use the Unapply Difference command to unapply the selected items in the
Differences pane from the destination file.

NOTE You cannot alter the source file. You can change the destination file
by unapplying differences from the source file or by editing the
contents of the Destination pane.

1. Select the items in the Differences pane that you want to unapply from the
destination file.

Items that you can unapply appear in an italicized font.

2. Click Search > Unapply Difference or click the Unapply button in the File
Compare Results window.

The Destination pane updates to reflect the differences that you unapplied
from the destination file. The unapplied items in the Differences pane no
longer appear in an italicized font.

TIP Use the Customize IDE Commands window to assign a key binding to
the Unapply Difference command. This way, you can use the keyboard
to unapply differences.

Folder Comparison
The IDE folder-comparison feature identifies the differences between the
contents of two folders. It reports the files in both folders, the files only in the
source folder, and the files only in the destination folder.

You can also use this feature to analyze the differences between two different
releases of a folder of software. Specify one release of the software folder as the
source folder and the other release of the software folder as the destination folder.
Then you can analyze the differences between the source and destination folders.

After you use the Compare Files Setup window to specify two folders for
comparison, click the Compare button. The Folder Compare Results window
appears and shows the differences between the source folder and destination
folder.
155IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
The Folder Compare Results window shows folder differences in the form of
three panes. Italicized items in these panes indicate non-text files.

Figure 12.11 on page 156 shows the Folder Compare Results window. Table
12.15 on page 156 explains the items in the window.

Figure 12.11 Folder Compare Results window

Table 12.15 Folder Compare Results window—items

Item Icon Explanation

Pane Expand
box

Click to enlarge the pane to fill the window.

Pane
Collapse box

Click to reduce an expanded pane to its
original size.
156 IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
Examining Items in the Folder Compare Results Window

You can use the Folder Compare Results window to open text files and
compare
file differences.

Double-click a text file to view and change its contents in an editor window.

A file whose contents differ between the source and destination folders has a
bullet next to its name. Double click the file to open a File Comparison Results
window. Use this window to examine the differences between the file contents.

Pane resize
bar

Drag to resize the panes on either side of the
bar.

Files in Both
Folders pane

N/A Shows the items that are in both the source
folder and the destination folder. A bullet next
to an item indicates that the item content
differs between the two folders.

Files Only in
Source
pane

N/A Shows the items that are in the source
folder only.

Files Only in
Destination
pane

N/A Shows the items that are in the destination
folder only.

Selected
item
group

N/A Shows file and difference information for the
selected item in the window panes.

Table 12.15 Folder Compare Results window—items (continued)

Item Icon Explanation
157IDE 5.6 User’s Guide

Finding and Replacing Text
Comparing Files and Folders
158 IDE 5.6 User’s Guide

IV

Browser
This section contains these chapters:

• Using the Browser on page 161

• Using Class Browser Windows on page 167

• Using Other Browser Windows on page 179

• Using Browser Wizards on page 189
159IDE 5.6 User’s Guide

160 IDE 5.6 User’s Guide

13
Using the Browser

This chapter explains how to work with the browser in the CodeWarrior™ IDE.
Use the browser to perform these tasks:

• Generate a browser database—the browser stores collected symbol
information in a browser database for the project. You can generate browser
data from the compiler or the language parser.

• Collect symbol information—symbols include functions, variables, and
objects. Enable the browser to collect information about the symbols in a
project.

Read this chapter to learn more about typical tasks for working with the browser.

This chapter contains these sections:

• “Browser Database” on page 161

• “Browser Symbols” on page 164

Browser Database
The browser database contains information about symbols in a program, which
include (depending on program language) global variables, functions, classes,
and type declarations, among others.

Some IDE windows require that the project contain a browser database. For
example, the Class Hierarchy window only displays information for a project
that contains a browser database. This section explains how to configure a project
to generate its browser database.

NOTE Generating a browser database increases the project’s size. To
minimize the project’s size, generate the browser database only for
targets you frequently use.
161IDE 5.6 User’s Guide

Using the Browser
Browser Database
Browser Data
Browser data contains symbolic and relationship information about the project
code. The browser uses this data to access the code information.

Use the Generate Browser Data From menu (Figure 13.1 on page 162) in the
Build Extras target settings panel to enable and disable browser data generation.
This drop-down menu provides these options, which determine how the IDE
generates browser data:

• None—The IDE does not generate browser data. Use None to disable
browser data. Select None to generate faster compiles (with no browser
features).

• Compiler—The Compiler generates the browser data. While it compiles
more slowly, the compiler generates the most accurate browser data.

• Language Parser—The Code Completion plug-in associated with the
project’s programming language generates the browser data.

Figure 13.1 Generate Browser Data From menu

Generating Browser Data

You can select an option in the Generate Browser Data From drop-down menu
to establish what the IDE uses to generate browser data for a project file.

To generate browser data, follow these steps:

1. Choose Edit > Target Settings.

2. From the Target Settings Panels list, select Build Extras.
162 IDE 5.6 User’s Guide

Using the Browser
Browser Database
3. Choose Compiler or Language Parser from the Generate Browser Data
From menu.

NOTE Some compilers do not generate browser data.

a. Compiler—The compiler generates browser data and the following
associated item appears.

If you enable Dump internal browse information after compile, the
generated browser data appears in a log window after you compile a file.

b. Language Parser—The Code Completion plug-in associated with the
project’s programming language generates the browser data. Browser data
and the #include pop-up window update as you edit.

NOTE Choose Language Parser for C/C++ code completion.

The Prefix and Macro files (Figure 13.2 on page 163) are applicable to C/
C++ Code Completion.

Figure 13.2 Generate browser data from language parser

• Prefix file—Similar to that used in the C/C++ Language Settings
panel, the Prefix file contains header files that help the C/C++ Code
Completion plug-in parse code. The Prefix file should only include
text files (not pre-compiled header files).

• Macro file—Contains C/C++ macro files that help the Code
Completion plug-in resolve any #ifdefs found in the source code
or in the header files.

4. If you selected Compiler, choose Project > Bring Up To Date or Make.

The IDE generates browser data for the project.

If you selected Language Parser, the IDE generates browser data in the
background.
163IDE 5.6 User’s Guide

Using the Browser
Browser Symbols
Disabling Browser Data

Select None to disable browser data and stop the IDE from generating browser
information for the project.

1. Choose Edit > Target Settings.

2. Select Build Extras from the Target Settings Panels list.

3. In the Generate Browser Data From drop-down menu, select None.

4. Click Save.

5. Choose Project > Make.

The IDE stops generating browser information.

Browser Symbols
Navigate browser symbols to open browser views, find symbol definitions, and
examine inheritance.

You can navigate browser symbols in these ways:

• Use the Browser contextual menu to open various browser windows for a
selected symbol.

• Double-click a symbol name in the Class Browser window to open the file
that contains the declaration of that symbol.

• Use the class hierarchy windows to determine the ancestors or descendants
of a selected symbol.

Browser Contextual Menu
Use the IDE’s browser contextual menu to enhance source-code editing in the
IDE. Use this menu to streamline text entry in editor windows. You can enter the
first few letters of a function name, then use the browser contextual menu to
complete the entry.
164 IDE 5.6 User’s Guide

Using the Browser
Browser Symbols
Using the Browser Contextual Menu

1. Open the browser contextual menu, as explained in Table 13.1 on page 165.

2. Select a command from the contextual menu.

Identifying Symbols in the Browser Database

As a shortcut, you can use browser coloring to help recognize if a symbol resides
in the browser database. When you activate a browser, you can see browser-
database symbols because they appear in the editor and browser windows
according to the colors you select.

TIP The default color setting is identical for all eight types of browser-
database symbols. You can choose a different color for each symbol type.

To change the browser symbol colors the editor uses, follow these steps:

1. Choose Edit > Preferences.

2. Select the Text Colors panel from the IDE Preference Panels list.

3. Select the Activate Syntax Coloring option.

4. Select the Activate Browser Coloring option.

5. Click the color swatch next to the symbol name to set that symbol's color.

6. Click Save.

Table 13.1 Opening a browser contextual menu

On this host... Do this...

Windows Right-click a symbol name.

Macintosh Click and hold on a symbol name.

Solaris Click and hold on a symbol name.

Linux Click and hold on a symbol name.
165IDE 5.6 User’s Guide

Using the Browser
Browser Symbols
166 IDE 5.6 User’s Guide

14
Using Class Browser
Windows

This chapter explains how to work with the Class Browser windows in the
CodeWarrior™ IDE. Use the Class Browser to perform these tasks:

• View browser data—the class browser collects information about the
elements of a computer program. Such elements include functions,
variables, and classes. The class browser displays these elements in
organized lists.

• Show data relationships—the class browser shows the relationships between
classes, data members, and methods. The class browser also updates the
display to reflect changes in class scope.

Read this chapter to learn more about typical tasks for working with Class
Browser windows.

This chapter contains these sections:

• “Class Browser window” on page 167

• “Classes pane” on page 174

• “Member Functions pane” on page 176

• “Data Members pane” on page 177

• “Source pane” on page 177

• “Status Area” on page 178

Class Browser window
Use the Class Browser window to view information about the elements of a
computer program. This section explains how to use the Class Browser window
to view browser data.
167IDE 5.6 User’s Guide

Using Class Browser Windows
Class Browser window
Figure 14.1 on page 168 shows the Class Browser window. Table 14.1 on
page 168 explains the items in the window. Table 14.2 on page 170 explains the
options in the Browser Access Filters list box.

Figure 14.1 Class Browser window

Table 14.1 Class Browser window—items

Item Icon Explanation

Go Back button Click to return to the preceding
browser view.

Go Forward
button

Click to move to the succeeding
browser view.

Browser
Contents
button

Click to open the Browser Contents
window.
168 IDE 5.6 User’s Guide

Using Class Browser Windows
Class Browser window
Class
Hierarchy
button

Click to open the Multi-class Hierarchy
window.

Single Class
Hierarchy
Window button

Click to open the Single-class
Hierarchy window for the selected
class.

Browser
Access Filters
list box

Select filters for displaying items in
class-browser panes.

Show Inherited Select to show inherited items in the
Member Functions pane on page 176
and Data Members pane on page 177.
Clear to hide inherited items from
these panes.

Classes
pane on
page 174

Lists all classes in the project browser
database.

Member
Functions
pane on
page 176

Lists all member functions defined in
the currently selected class.

Data Members
pane on
page 177

Lists all data members defined in the
selected class.

Source
pane on
page 177

Displays source code for the currently
selected item.

Status Area on
page 178

Displays various status messages and
other information.

Display toggle
buttons

Alphabetical

Hierarchical

Toggles the Classes display between
alphabetical and hierarchical listings.

Table 14.1 Class Browser window—items (continued)

Item Icon Explanation
169IDE 5.6 User’s Guide

Using Class Browser Windows
Class Browser window
New Item
button

Opens wizards to create new items
(e.g., classes, data members, member
functions).

Pane Expand
box

Expands the pane to the width of the
full window.

Pane Collapse
Box

Collapses the pane to its original size.

Classes Pane
button

Lists all classes in the project browser
database.

Class
Declaration
button

Opens a window that shows
declarations for all classes in the
project.

Open File
button

Opens the current source file in a new
editor window.

VCS list pop-up With a version control system enabled,
choose the version-control command
to execute on the displayed source file.

Table 14.2 Browser access filters

Filter Icon Show items with this access:

Public Private Protected

View as implementor • • •

View as subclass • •

View as user •

Show public •

Table 14.1 Class Browser window—items (continued)

Item Icon Explanation
170 IDE 5.6 User’s Guide

Using Class Browser Windows
Class Browser window
Viewing Class Data from Browser Contents Window

To view class data for a project in the Browser Contents window, follow these
steps:

1. Open the Browser Contents window, as explained in Table 14.3 on
page 171.

2. Select a class in the Browser Contents window.

3. Open a contextual menu for the selected class, as explained in Table 14.4 on
page 172.

Show protected •

Show private •

Table 14.3 Opening the Browser Contents window

On this host… Do this…

Windows Select View > Browser Contents.

Macintosh Select Window > Browser Contents.

Solaris Select Window > Browser Contents.

Linux Select Window > Browser Contents.

Table 14.2 Browser access filters (continued)

Filter Icon Show items with this access:

Public Private Protected
171IDE 5.6 User’s Guide

Using Class Browser Windows
Class Browser window
A contextual menu like the one shown in Figure 14.2 on page 172 appears.

Figure 14.2 Browser Contents window—contextual menu

4. Select Open browser for class classname from the contextual menu.

The classname is the name of the class that you selected.

A Class Browser window appears.

Viewing Class Data from Hierarchy Windows

To view class data from a hierarchy window, follow these steps:

1. Open a Single-Hierarchy or Multi-Class Hierarchy window:

Table 14.4 Opening a contextual menu for the selected class

On this host… Do this…

Windows Right-click the selected class.

Macintosh Control-click the selected class.

Solaris Click and hold on the selected class.

Linux Click and hold on the selected class.
172 IDE 5.6 User’s Guide

Using Class Browser Windows
Class Browser window
a. Click the Single Class Hierarchy Window button in the browser

toolbar, or

b. Click the Class Hierarchy button in the browser toolbar.

2. In the Single- or Multi-Class Hierarchy window, double-click a class name.

A Class Browser window appears.

Expanding Browser Panes

Click the Pane Expand box (just above the scroll bar in the upper right-hand
corner of the pane) to expand the Classes, Function Members, Data Members, or
Source panes in a Browser window.

1. Click the Pane Expand box to expand a pane.

This pane expands to fill the Browser window.

2. Use the enlarged pane to view data.

Alternately, you can use the resize bar between the panes to enlarge each pane.

1. Rest the cursor over the resize bar.

The cursor icon changes to this:

2. Hold down the mouse button.

3. Drag the resize bar to enlarge or shrink the pane.

Collapsing Browser Panes

Click the Pane Collapse box (just above the scroll bar in the upper right-hand
corner of the pane) to collapse the Classes, Function Members, Data Members, or
Source panes in a Browser window.

1. Click the Pane Collapse box to collapse a pane.

The chosen pane collapses to its original size.

2. You can now view other panes in a Browser window.

Alternately, you can use the resize bar between the panes to collapse each pane.
173IDE 5.6 User’s Guide

Using Class Browser Windows
Classes pane
1. Rest the cursor over the resize bar.

The cursor icon changes to this:

2. Hold down the mouse button.

3. Drag the resize bar to collapse the pane.

Classes pane
Use the Classes pane to perform these tasks:

• Create a new class

• Toggle viewing of classes

• Sort classes

Figure 14.1 on page 168 shows the Classes pane. Table 14.5 on page 174
explains the items in
the pane.

Creating a New Class

Use the New Class wizard to specify the name, declaration, and location for a
new class. Click Finish in any screen to apply default values to any remaining
parameters and complete the process. The New Class wizard creates the files that
define the class.

Table 14.5 Classes pane—items

Item Icon Explanation

New Item Click to create a new class using the New Class Wizard.

Sort
Alphabetical

Click to sort the Classes list in alphabetical order.

Sort
Hierarchical

Click to sort the Classes list in hierarchical order.
174 IDE 5.6 User’s Guide

Using Class Browser Windows
Classes pane
1. From the Classes pane, click the New Item button .

2. Enter the Name and Location in the New Class window.

3. To create a more complex class, click Next (optional).

Follow the on-screen directions to further define the class.

4. Click Finish to complete the New Class process.

Showing the Classes Pane

Use the Show Classes button to expand the Classes pane.

1. Click the Show Classes button:

2. The Classes pane appears in the Class Browser window.

Hiding the Classes Pane

Use the Hide Classes button to collapse the Classes pane.

1. Click the Hide Classes button:

2. The Classes pane disappears from the Class Browser window.

Sorting the Classes List

Use the Sort Alphabetical and Sort Hierarchical commands to specify the sort
order of classes in the Classes pane. The displayed icon always represents the
alternate sort order. For example, when the Classes list appears in alphabetical
order, the Sort Hierarchical icon is visible.

• Click the Sort Alphabetical icon .

The IDE sorts the Classes list in alphabetical order.

• Click the Sort Hierarchical icon .

The IDE sorts the Classes list in hierarchical order.
175IDE 5.6 User’s Guide

Using Class Browser Windows
Member Functions pane
Member Functions pane
Use the Member Functions pane to perform these tasks:

• Create a new member function

• Determine the inheritance type of a member function

Creating a New Member Function

Use the New Member Function wizard to specify the name, return type, and
parameters for a new member function. Click Finish in any screen to apply
default values to any remaining parameters and complete the process.

1. Click the New Item button in the Member Functions pane.

2. Enter the Member Function Declarations in the New Member Function
window.

3. Click Next.

4. Enter Member function file locations and Include Files information.

5. Click Finish.

6. Review the settings summary, then click Generate.

The IDE adds the new member function to the class declaration.

Table 14.6 Member Function and Data Member identifier icons

Meaning Icon The member is…

static a static member

virtual a virtual function that can be overridden, or an override
of an inherited function

pure virtual
or abstract

a member function that must be overridden in a
subclass to create instances of that subclass
176 IDE 5.6 User’s Guide

Using Class Browser Windows
Data Members pane
Data Members pane
Use the Data Members pane to create a new data member. This section explains
how to create the data member.

Click the New Item button in the Data Members pane to open the New Data
Member wizard. See Table 14.6 on page 176 for a complete list of identifier
icons that appear in the Data Members pane.

Creating a New Data Member

Use the New Data Member wizard to specify the name, type, and initializer for
the new data member. Specify other options to further refine the data member.
Click Finish in any screen to apply default values to any remaining parameters
and complete the process.

1. From the Data Members pane, click the New Item button:

2. Enter the Data Member Declarations in the New Data Member window.

3. Click Next.

4. Enter Data Member file locations and #include files information.

5. Click Finish.

6. Review the settings summary, then click Generate.

The IDE adds the new data member to the class declaration.

Source pane
Use the Source pane to view the source code that corresponds to the selected
class, member function, or data member. This section explains the items in the
Source pane.

Figure 14.1 on page 168 shows the Source pane. Table 14.7 on page 178 explains
the items in
the pane.

For information on editing source code, see “Editing Source Code” on page 97.
177IDE 5.6 User’s Guide

Using Class Browser Windows
Status Area
Status Area
Use the status area to perform these tasks:

• Toggle viewing of the Classes pane

• View class declarations

• View classes according to public, private, or protected access

Figure 14.1 on page 168 shows the status area. Table 14.8 on page 178 explains
items in the status area.

Table 14.7 Source pane—items

Item Icon Explanation

Open File Click to open the current source file in a new editor window.

VCS menu Enable a version-control system in order to activate this
menu. Use this menu to select and execute a version-
control command on the source file.

Table 14.8 Status area—items

Item Icon Explanation

Show Classes Pane Click to display the Classes pane in the Class
Browser window.

Hide Classes Pane Click to hide the Classes pane in the Class
Browser window.

Class Declaration Click to show the declaration of the
current class.

Access Filter Display Displays the access state of the current class.
178 IDE 5.6 User’s Guide

15
Using Other Browser
Windows

This chapter explains how to work with the Class Hierarchy windows in the
CodeWarrior™ IDE. Use Class Hierarchy windows to perform these tasks:

• View hierarchical browser data—the class hierarchy window shows a
graphical representation of hierarchical structure. Object-oriented
languages, such as C++ and Java, allow hierarchical relationships between
classes.

• Analyze inheritance structure—the class hierarchy window shows the
inheritance structure of classes. This structure reveals the data-handling
capabilities of a particular class.

Read this chapter to learn more about typical tasks for working with Class
Hierarchy windows.

This chapter contains these sections:

• on page 182“Multiple-Class Hierarchy Window” on page 179

• “Single-Class Hierarchy Window” on page 182

• “Browser Contents window” on page 183

• “Symbols window” on page 185

Multiple-Class Hierarchy Window
Use the Multi-Class Hierarchy window to visually examine the structure of every
class in the browser database. Each class name appears in a box, and lines
connect boxes to indicate related classes. The left-most box is the base class, and
subclasses appear to the right.

Figure 15.1 on page 180 shows the Multi-Class Hierarchy window. Table
15.1 on page 180 explains the items in the window.
179IDE 5.6 User’s Guide

Using Other Browser Windows
Multiple-Class Hierarchy Window
Figure 15.1 Multi-Class Hierarchy window

Viewing Browser Data by Inheritance

Use a Hierarchy window to view data in graphical form and better understand
class relationships. Use the expand and collapse arrows to enlarge or shrink the
class views.

Table 15.1 Multi-class hierarchy window—items

Item Icon Explanation

Hierarchy Control Click to expand or collapse the subclasses
displayed for a specific class.

Ancestor menu Click and hold on class or subclass box to display a
menu. Select a class from menu to display that
class.

Line button Click to toggle the lines that connect classes
between diagonal and straight lines.
180 IDE 5.6 User’s Guide

Using Other Browser Windows
Multiple-Class Hierarchy Window
1. Activate the browser.

2. Update the browser database by using the Bring Up To Date, Make, Run, or
Debug command.

3. Open a graphical Hierarchy window, as explained in Table 15.2 on page 181.

Printing Class Hierarchies

To print the contents of a Class Hierarchy window, save an image of the
window contents, then print the image file from a graphics-processing
application.

The IDE saves the image in a graphics-file format based on the host platform, as
shown in Table 15.3 on page 181.

Table 15.2 Opening the Hierarchy window

On this host… Do this…

Windows Select View > Class Hierarchy

Macintosh Select Window > Class Hierarchy

Solaris Select Window > Class Hierarchy

Linux Select Window > Class Hierarchy
Window

Table 15.3 Graphics-file format for host platforms

Host Graphics-file Format

Windows EMF (Enhanced Metafile)

Macintosh PICT (Picture)

Solaris PICT (Picture)

Linux PICT (Picture)
181IDE 5.6 User’s Guide

Using Other Browser Windows
Single-Class Hierarchy Window
1. Open the Class Hierarchy window.

2. Choose File > Save a Copy As.

3. Save the image to a file.

4. Open the image file in an graphics-processing application.

5. Print the image file.

The graphics-processing application prints the image of the class hierarchy.

Changing Line Views in a Hierarchical Window

Use the Diagonal Line and Straight Line commands to change the appearance
of the connecting lines between classes and subclasses in a hierarchical window
display.

• Click the Diagonal Line icon .

The Hierarchical window display updates to use diagonal lines.

• Click the Straight Line icon .

The Hierarchical window display updates to use straight lines.

Single-Class Hierarchy Window
Use the Single-Class Hierarchy window to examine the structure of a single class
in the browser database. The Single-Class Hierarchy window operates identically
to the Multi-Class Hierarchy window, but restricts the display to a single class.

The Single-Class Hierarchy window contains the same components as the Multi-
Class Hierarchy window.
182 IDE 5.6 User’s Guide

Using Other Browser Windows
Browser Contents window
Figure 15.2 Single-Class Hierarchy window

Opening a Single-Class Hierarchical window

Use one of these methods to open a Single-Class Hierarchical window:

• Click the Show Single-Class Hierarchy icon in a Browser toolbar.

• Use the Browser Contextual menu in one of these windows:

– New Class Browser window

– Browser Contents window

– Multi-Class Hierarchical window

A Single-Class Hierarchical window appears

Browser Contents window
Use the Browser Contents window to view browser data sorted by category into
an alphabetical list. This section explains how to use the Browser Contents
window to view browser data.
183IDE 5.6 User’s Guide

Using Other Browser Windows
Browser Contents window
Figure 15.3 on page 184 shows the Browser Contents window. Table 15.4 on
page 184 explains the items in the window.

Figure 15.3 Browser Contents window

Viewing Browser Data by Contents

Use the Browser Contents window to display symbol information stored in the
browser database, listed in alphabetical order. You can choose from these
categories:

• classes

Table 15.4 Browser Contents window—items

Item Icon Explanation

Symbols list box Select the type of symbol to display
in the Symbols list.

Symbols list Double-click a symbol name to
display the source file in a new editor
window that defines the symbol.
184 IDE 5.6 User’s Guide

Using Other Browser Windows
Symbols window
• constants

• enumerations

• functions

• global variables

• macros

• function templates

• type definitions

1. Activate the browser.

2. Use the Bring Up To Date, Make, Run, or Debug command to update the
browser database.

3. Open the Browser Contents window, as explained in Table 15.5 on page 185.

4. Select a category from the Category list pop-up.

The symbol information for the selected category appears in alphabetical
order in the Symbols list.

Symbols window
The Symbols window displays information from project browser databases. With
the browser enabled, the IDE generates a browser database for a project during
the build process.

Table 15.5 Opening the Browser Contents window

On this host… Do this…

Windows Select View > Browser Contents

Macintosh Select Window > Browser Contents

Solaris Select Window > Browser Contents

Linux Select Window > Browser Contents
185IDE 5.6 User’s Guide

Using Other Browser Windows
Symbols window
The Symbols window displays symbols that have multiple definitions in the
browser database. For example, the window displays information about multiple
versions of overridden functions in object-oriented code.

Figure 15.4 on page 186 shows the Symbols window. Table 15.5 on page 185
explains the items in the window.

Figure 15.4 Symbols window

Table 15.6 Symbols window—items

Item Explanation

Symbols
toolbar on
page 187

Provides one-click access to common browser commands and
class-filtering commands.
186 IDE 5.6 User’s Guide

Using Other Browser Windows
Symbols window
Opening the Symbols Window

Use the Symbols window to list all implementations, whether overridden or not,
of any symbol that has multiple definitions. You can access the Symbols window
by using a contextual menu.

1. Open a contextual menu, as explained in Table 15.7 on page 187.

2. Select Find all implementations of from the contextual menu that appears.

3. The Symbols window opens.

Symbols toolbar
Most of the Symbol toolbar items are identical to those in the Class Browser
window on page 167.

Symbols pane on
page 188

Displays a list of all symbols with multiple declarations.

Source pane on
page 188

Displays the source code for the currently selected item.

Table 15.7 Opening the Symbols window

On this host… Do this…

Windows Right-click the symbol name.

Macintosh Control-click the symbol name.

Solaris Click and hold on the symbol name.

Linux Click and hold on the symbol name.

Table 15.6 Symbols window—items (continued)

Item Explanation
187IDE 5.6 User’s Guide

Using Other Browser Windows
Symbols window
Symbols pane
The Symbols pane lists symbols with multiple definitions in the browser
database. Select a symbol from the list to view its definition in the Source pane.

Source pane
The Source pane used in the Symbols window is identical to the one used by the
Class Browser window on page 167. See “Source pane” on page 177 for more
details.
188 IDE 5.6 User’s Guide

16
Using Browser Wizards

When you create a new class, member function, or data member in the IDE, you
use browser wizards. These wizards provide the steps to help you complete the
process.

This chapter provides information on these wizards:

• “The New Class Wizard” on page 189

• “The New Member Function Wizard” on page 194

• “The New Data Member Wizard” on page 197

NOTE Most wizard pages contain default settings. To accept all current
settings in the wizard, click Finish in any screen. The wizard displays
a summary of all current settings for the new project. Click Generate
to accept the current settings and create the new item, or click Cancel
to return to the wizard to modify settings.

The New Class Wizard
Use the New Class wizard to specify the name, declaration, and location for a
new class. Click Finish in any screen to apply default values to remaining
parameters to complete the process. The New Class wizard creates the files that
define the class.
189IDE 5.6 User’s Guide

Using Browser Wizards
The New Class Wizard
Figure 16.1 New Class wizard—Name and Location

Using the New Class Wizard

To use the New Class Wizard, follow these steps:

1. Open the Class Browser window, as explained in Table 16.1 on page 190.

Table 16.1 Opening the Class Browser window

On this host... Do this...

Windows Select View > Class Browser

Macintosh Select Window > Class Browser

Solaris Select Window > New Class Browser

Linux Select Window > New Class Browser
190 IDE 5.6 User’s Guide

Using Browser Wizards
The New Class Wizard
2. Select Browser > New Class.

NOTE You can also click the New Item icon in the Class Browser
window to create a new class.

3. In the New C++ Class wizard, enter Name and Location information:

a. Class Name—Enter a name for the class in this field.

b. Declaration File—This menu lets you specify whether the file is a New
File, which is a new declaration file, or Relative to class, which is a
declaration that depends on an existing file in the project.

If you choose the New File option, type in the path where you want to save
the file. Alternatively, click Set next to the field to choose the path in
which to save the file.

If you choose the Relative to class option, select Before or After to
establish the order of the new class in relation to existing classes. In the
field next to the Before and After drop-down selection, type the name of
the class you want to relate to the new class. Alternatively, click Set next
to this field, type the name of a class in the window that opens, and then
click Select.

NOTE If you want to use a separate file to define the members of the new
class, type the path to the separate file in the field below the Use
separate file for member definitions checkbox. Alternatively,
choose Existing to use a standard dialog box to select the file. To
create a new, separate file, choose New and save the new file to a
location on your hard disk.

4. Click Next.
191IDE 5.6 User’s Guide

Using Browser Wizards
The New Class Wizard
Figure 16.2 New Class wizard—Base Class and Methods

5. Enter Base Classes and Methods information.

Enter a list of base classes for the new class:

a. Access—From this drop-down menu, choose an access type, Public,
Protected, or Private, for the constructor and destructor.

b. Constructor parameters—Enter a list of parameters for the constructor.

c. Virtual destructor—Click this checkbox to create a virtual destructor for
the new class.

d. As an option, you can enter the required namespaces for the base classes
and the constructor parameters in the field labeled Namespaces required
for the base classes and constructor parameters.

Or,

If needed, you can specify the base classes and constructor parameters.

6. Click Next.
192 IDE 5.6 User’s Guide

Using Browser Wizards
The New Class Wizard
Figure 16.3 New Class wizard—Include Files

7. Enter Include Files information.

Specify additional header #include files for the new class:

a. Include files that will automatically be added for base classes—This
field shows you a list of #include files that the IDE automatically adds to
find the base classes.

b. Additional header include files—Enter a list of other include files for the
new class in addition to those in the previous field. Separate each file in
the list with a comma.

8. Click Next.
193IDE 5.6 User’s Guide

Using Browser Wizards
The New Member Function Wizard
Figure 16.4 New Class wizard—Targets

9. Enter Targets information:

Select the checkbox next to the build target’s name in the list to add the class
files to a specific build target.

10.Click Finish.

Review the settings summary.

11.Click Generate.

The New Member Function Wizard
Use the New Member Function wizard to specify the name, return type, and
parameters for a new member function. Enter additional information in the
wizard fields to refine the function definition.
194 IDE 5.6 User’s Guide

Using Browser Wizards
The New Member Function Wizard
Figure 16.5 New Member Function wizard

Using the New Member Function Wizard

To use the New Member Function wizard, follow these steps:

1. Open the Class Browser window, as explained in Table 16.2 on page 195.

Table 16.2 Opening the Class Browser window

On this host... Do this...

Windows Select View > Class Browser

Macintosh Select Window > Class Browser

Solaris Select Window > New Class Browser

Linux Select Window > New Class Browser
195IDE 5.6 User’s Guide

Using Browser Wizards
The New Member Function Wizard
2. Select Browser > New Member Function.

3. In the New C++ Member Function window, enter the Member Function
Declaration.

a. Name—Type a name for the member function.

b. Return Type—Enter an appropriate function return type.

c. Parameters—Type a list of function parameters.

d. Namespaces required for parameters (optional)—Type a list of
namespaces required for parameters.

4. Click Next.

Figure 16.6 New Member Function wizard—File Locations

5. Enter Member Function File Locations and Include Files information.

6. Click Finish.

7. Review settings summary, then click Generate.
196 IDE 5.6 User’s Guide

Using Browser Wizards
The New Data Member Wizard
The New Data Member Wizard
Use the New Data Member wizard to define the new data-member declaration,
and to specify new data member file locations. The wizard offers additional
options to further define the function.

Figure 16.7 New Data Member wizard

Using the New Data Member Wizard

To use the New Data Member wizard, follow these steps:

1. Open the Class Browser window, as explained in Table 16.3 on page 198.
197IDE 5.6 User’s Guide

Using Browser Wizards
The New Data Member Wizard
2. Select Browser > New Data Member.

3. In the New C++ Data Member window, enter the Name, Type, Namespaces
required for type (optional), Initializer, and Modifiers.

a. Name—Type a name for the data member in this field.

b. Type—Enter an appropriate data-member type in this field.

c. Namespaces required for type (optional)—(Optional) Enter a list of
namespaces required for the type in the Type field. A sample namespace
is std.

d. Initializer—(Optional) Enter an initial value for the data member in this
field. Sample initializers are 100 and
inConstructorParameterName.

e. Modifiers—Select the access level and type for the new data member.

4. Click Next.

5. Specify Data Member File Locations.

This section lets you specify file locations associated with the new member
functions, including these fields: Declaration, Definition, Include file
automatically added for member type, and Additional header include
files.

a. Declaration—This field shows you the data member’s declaration file
location.

b. Definition—This field is not available in this wizard.

Table 16.3 Opening the Class Browser window

On this host... Do this...

Windows Select View > Class Browser

Macintosh Select Window > Class Browser

Solaris Select Window > New Class Browser

Linux Select Window > New Class Browser
198 IDE 5.6 User’s Guide

Using Browser Wizards
The New Data Member Wizard
c. Include file automatically added for member type—This field indicates
whether an include file will be automatically added for the data-member
type.

d. Additional header include files—Enter in this field a list of other include
files for the new data member, in addition to the file listed in the previous
field. Example files are <string> and YourHeader.h.

6. Click Finish.

7. Review settings summary, then click Generate.
199IDE 5.6 User’s Guide

Using Browser Wizards
The New Data Member Wizard
200 IDE 5.6 User’s Guide

V

Debugger
This section contains these chapters:

• Working with the Debugger on page 203

• Manipulating Program Execution on page 221

• Working with Variables on page 251

• Working with Memory on page 261

• Working with Debugger Data on page 279

• Working with Hardware Tools on page 289
201IDE 5.6 User’s Guide

202 IDE 5.6 User’s Guide

17
Working with the
Debugger

This chapter explains how to work with the debugger in the CodeWarrior™ IDE
to control program execution. The main component of the debugger is the Thread
window, which shows these items:

• Common debugging controls—step, kill, start, and stop program execution

• Variable information—see the variables in the executing code, their values,
and their addresses

• Source code—see the source code under debugger control

This chapter contains these sections:

• “About the CodeWarrior Debugger” on page 203

• “About Symbolics Files” on page 204

• “Thread Window” on page 204

• “Common Debugging Actions” on page 208

• “Symbol Hint” on page 211

• “Contextual Menus” on page 212

• “Multi-core Debugging” on page 214

• “External Builds Support”

About the CodeWarrior Debugger
A debugger controls program execution and shows the internal operation of a
computer program. Use the debugger to find problems while the program
executes. Also use the debugger to observe how a program uses memory to
complete tasks.

The CodeWarrior debugger provides these levels of control over a computer
program:
203IDE 5.6 User’s Guide

Working with the Debugger
About Symbolics Files
• Execution of one statement at a time

• Suspension of execution after reaching a specific point in the program

• Suspension of execution after changing a specified memory value

After the debugger suspends program execution, use various windows to perform
these tasks:

• View the function-call chain

• Manipulate variable values

• View register values in the computer processor

About Symbolics Files
A symbolics file contains debugging information that the IDE generates for a
computer program. The debugger uses this information to control program
execution. For example, the debugger uses the symbolics file to find the source
code that corresponds to the executing object code of the computer program.

Symbolics files contain this information:

• Routine names

• Variables names

• Variable locations in source code

• Variable locations in object code

The IDE supports several types of symbolics files. Some programs generate
separate symbolic files, while others do not. For example, when you use
CodeView on Windows, the IDE places the symbolics file inside the generated
binary file.

Thread Window
The debugger suspends execution of processes in a computer program. The
Thread window displays information about a suspended process during a debug
session.

Use the Thread window to perform these tasks:

• View the call chain for a routine

• View routine variables, both local and global
204 IDE 5.6 User’s Guide

Working with the Debugger
Thread Window
• View a routine in terms of its source code, assembly code, or a mix of both
types of code

Figure 17.1 on page 205 shows the Thread window. Table 17.1 on page 206
explains the items in the window.

Figure 17.1 Thread window
205IDE 5.6 User’s Guide

Working with the Debugger
Thread Window
Table 17.1 Thread window—items

Item Icon Explanation

Debug / Run
/ Resume
button

Click to perform these tasks:

• Continue execution up to the
next breakpoint, watchpoint, or
eventpoint

• Run the program until it exits
• Continue execution of a currently

stopped program

Stop button Click to stop (pause) program execution.

Kill button Click to terminate program execution and
close the Thread window.

Step Over
button

Click to execute the current line, including
any routines, and proceed to the next
statement.

Step Into
button

Click to execute the current line, following
execution inside a routine.

Step Out
button

Click to continue execution to the end of
the current routine, then follow execution to
the routine’s caller.

Breakpoints
button

Click to open the Breakpoints window.

Expressions
button

Click to open the Expressions window.

Symbolics
button

Click to open the Symbolics window.

Pane
Expand box

Click to enlarge the pane to fill
the window.

Pane
Collapse box

Click to reduce an expanded pane to its
original size.
206 IDE 5.6 User’s Guide

Working with the Debugger
Thread Window
Pane resize
bar

Drag to resize the panes on either side of
the bar.

Stack pane Shows the current routine calling chain,
with the most current routine name at the
bottom

Variables
pane

Shows local and global variables that the
current routine uses.

Variables
Pane Listing
button

Click this icon to switch among these
display states:

• All—show all local and global
variables in the code

• Auto—show only the local
variables of the routine pointed
to by the current-statement
arrow

• None—show no variables. Use
this display state to improve
stepping performance for slow
remote connections

Source pane
disclosure
triangle

Click to show or hide the Source pane.

Source pane Shows the executing source code. This
pane operates the same way as an editor
window, however, you cannot edit the
contents of the pane or use pane-splitter
controls.

Source File
button

Click to edit the contents of the Source
pane in an editor window.

Current-
statement
arrow

Points to statement that debugger will
execute next.

Dash Appears to left of each line at which you
can set a breakpoint or eventpoint. Click
the dash to set a breakpoint on that line.

Table 17.1 Thread window—items (continued)

Item Icon Explanation
207IDE 5.6 User’s Guide

Working with the Debugger
Common Debugging Actions
Common Debugging Actions
This section explains how to perform common debugging actions that correct
source-code errors, control program execution, and observe memory behavior:

• Start the debugger

• Step into, out of, or over routines

• Stop, resume, or kill program execution

• Run the program

• Restart the debugger

Starting the Debugger

Use the Debug command to begin a debugging session. The debugger takes
control of program execution, starting at the main entry point of the program.

Select Project > Debug or click the Debug button (shown at left) to
start the debugger.

Functions list
box

Click to show a list of functions declared in
the file. Select a function to highlight it in
the Source pane.

Line and
Column
button

Shows the current line and column number
of the text-insertion cursor. Click to specify
a line to show in the Source pane.

Source list
box

Click to specify how to display source code
in the Source pane:

• Source—programming-language
statements appear exclusively in
the pane

• Assembler—assembly-language
instructions appear exclusively in
the pane

• Mixed—each programming-
language statement shows its
corresponding assembly-
language instructions

Table 17.1 Thread window—items (continued)

Item Icon Explanation
208 IDE 5.6 User’s Guide

Working with the Debugger
Common Debugging Actions
After you start the debugging session, the IDE opens a new Thread window.

NOTE Some projects require additional configuration before the debugging
session can begin. The IDE might prompt you for permission to
perform this configuration automatically.

Stepping Into a Routine

Use the Step Into command to execute one source-code statement at a time and
follow execution into a routine call.

Select Debug > Step Into or click the Step Into button
to step into a routine.

After the debugger executes the source-code statement, the current-statement
arrow moves to the next statement determined by these rules:

• If the executed statement did not call a routine, the current-statement arrow
moves to the next statement in the source code.

• If the executed statement called a routine, the current-statement arrow
moves to the first statement in the called routine.

• If the executed statement is the last statement in a called routine, the current-
statement arrow moves to the statement that follows the calling routine.

Stepping Out of a Routine

Use the Step Out command to execute the rest of the current routine and stop
program execution after the routine returns to its caller. This command causes
execution to return up the calling chain.

Select Debug > Step Out or click the Step Out button
to step out of a routine.

The current routine executes and returns to its caller, then program execution
stops.
209IDE 5.6 User’s Guide

Working with the Debugger
Common Debugging Actions
Stepping Over a Routine

Use the Step Over command to execute the current statement and advance to the
next statement in the source code. If the current statement is a routine call,
program execution continues until reaching one of these points:

• the end of the called routine

• a breakpoint

• a watchpoint

• an eventpoint that stops execution

Select Debug > Step Over or click the Step Over button to
step over a routine.

The current statement or routine executes, then program execution stops.

Stopping Program Execution

Use the Break or Stop command to suspend program execution during a
debugging session.

Select Debug > Break, Debug > Stop, or click the Stop button to
stop program execution.

The operating system surrenders control to the debugger, which stops
program execution.

Resuming Program Execution

Use the Resume command to continue executing a suspended debugging
session. If the debugging session is already active, use this command to switch
view from the Thread window to the executing program.

Select Project > Resume or click the Debug button to
resume program execution.

The suspended session resumes, or the view changes to the running program.
210 IDE 5.6 User’s Guide

Working with the Debugger
Symbol Hint
NOTE The Resume command appears only for those platforms that
support it. If your platform does not support this command, you
must stop the current debugging session and start a new session.

Killing Program Execution

Use the Kill command to completely terminate program execution and end the
debugging session. This behavior differs from stopping a program, as stopping
temporarily suspends execution.

Select Debug > Kill or click the Kill button to
kill program execution.

The debugger terminates program execution and ends the debugging session.

Running a Program

Use the Run command to execute a program normally, without debugger control.

Select Project > Run or click the Run button to
begin program execution.

The debugger does not control program execution as the program runs.

Restarting the Debugger

Use the Restart command after stopping program execution. The debugger goes
back to the beginning of the program and begins execution again. This behavior
is equivalent to killing execution, then starting a new debugging session.

Select Debug > Restart to restart the debugger.

Symbol Hint
The symbol hint shows information about variable values. This information
appears automatically while the debugger is active.

Select the Show variable values in source code on page 452 option in the
Display Settings on page 387 preference panel to use the symbol hint.
211IDE 5.6 User’s Guide

Working with the Debugger
Contextual Menus
Figure 17.2 Symbol hint

Toggling the Symbol Hint

Turn on the symbol hint to view information about program variables in source
views.

1. Click Edit > Preferences.

The IDE Preferences window appears.

2. Select Display Settings in the IDE Preference Panels list.

3. Check or clear the Show variable values in source code checkbox.

Check the checkbox to use the symbol hint. Clear the checkbox to stop using
the symbol hint.

4. Click Apply or Save to confirm your changes to the preference panel.

5. Close the IDE Preferences window.

Using the Symbol Hint

During a debugging session, use the symbol hint to view information about
program variables.

To use the symbol hint, rest the cursor over a variable in a source view. After a
brief pause, the symbol hint appears and shows the current variable value.

Contextual Menus
The contextual menu provides a shortcut to frequently used menu commands.
The available menu commands change, based on the context of the selected item.

The symbol hint shows the current variable value.
212 IDE 5.6 User’s Guide

Working with the Debugger
Contextual Menus
Sample uses of the contextual menu for debugging tasks include:

• changing the format of variables displayed in variable panes

• manipulating breakpoints and the program counter in source panes

• viewing memory in separate windows

TIP Experiment using the contextual menu in various IDE windows to
discover additional features.

Figure 17.3 on page 213 shows a sample contextual menu in a source view.

Figure 17.3 Contextual menus
213IDE 5.6 User’s Guide

Working with the Debugger
Multi-core Debugging
Using Contextual Menus

Use contextual menus to apply context-specific commands to selected items.
Right-click, Control-click, or click and hold on an item to open a contextual
menu for that item. The contextual menu appears, displaying menu commands
applicable to the selected item.

Multi-core Debugging
The IDE allows simultaneous debugging of multiple projects. This feature
provides multi-core debugging capability for some embedded processors. By
configuring each project to operate on a single core, the IDE can debug multiple
cores by debugging multiple projects.

Configuring multi-core debugging involves these tasks:

• configuring specific target settings for each project

• for some cores, specifying a configuration file for initializing multi-core
debugging

For more information, see the Targeting documentation.

Data Viewer Plug-ins
Data Viewers are plug-ins that include an user interface to show a custom view
of data. These plug-ins are often platform specific. Data editors are data viewers
that also let you modify and write data.

The IDE will keep a registry of plug-ins that can view particular types. The plug-
ins will register themselves with the IDE and indicate which formats and
platforms they support. When a variable or memory address is selected, you can
choose the plugin from the Data menu.

A Data Viewer plugin may also designed without a custom user interface. This
type of viewer would override the built in debugger methods of showing a
variable value as text and parsing an edited value back into variable data.
214 IDE 5.6 User’s Guide

Working with the Debugger
External Builds Support
External Builds Support
The IDE will perform the following tasks on external makefiles:

• Build

• Debug

• File Management in Project Manager window

• Source Browsing

• Error Lookup

The IDE can build an external makefile and debug its output. A linker plugin will
enable the IDE to manage a command line and targets associated with a makefile.
The command line is executed when a build step is initiated. The linker plugin
will also supply the executable to use for debugging.

The linker plugin will provide a preference panel named External Build Target
that is used to configure a target. The preference panel provides text fields for
you to configure the command line for the target (which will enable building),
specify the working directory and the output file used to launch a debugging
session, and the debug platform.

The linker plugin is generic so that it can be used regardless of the target CPU
and OS. The list of available debugger preference panels will be updated by the
IDE when you select the debug platform.
215IDE 5.6 User’s Guide

Working with the Debugger
External Builds Support
Figure 17.4 External Build Target panel

The External Build Target preference panel will collect the following
information:

• Command line to be executed in the build step

The command line will be sent to the OS shell and will contain all
parameters and/or switches that are necessary for proper building of the
make file.

• Working directory in which command line will be executed.

• Output file name - Executable to be launched in the debug step. The file will
be relative to the output directory specified in the Target Settings preference
panel.

• Debugger Platform - The debug platform represents the combination of OS
and CPU that your build is targeting. “Not specified” is the default, which
indicates you have not specified a debug platform. In most cases, not
specifying a platform will result in not being able to debug. However, some
platforms may allow debugging if no additional debugger preference panel
is used. If only one platform entry exists with the “Not specified” option,
then it will become the default entry.

After the IDE converts the makefile into a CodeWarrior project, source files can
be added in the project manager window. Files that appear in the project manager
216 IDE 5.6 User’s Guide

Working with the Debugger
External Builds Support
will be parsed by the language parser and will supply Source Browsing
information, such as code completion.

When a build step is initiated, the linker plugin will gather output after the
command line begins executing. Output is directed to the IDE and displayed in a
read-only Build Output Window. A build output window is displayed for each
target. The build output window can be displayed manually by selecting the
menu command View > Build Output (Windows) or Window > Build
Output (Linux/Solaris/Mac). This command is enabled for targets that use the
external build linker.

Figure 17.5 Build Output Window

If multiple build steps are performed on the same target, the output from each
build step will be appended to the build output window. Each block of output will
be separated by “----Build started----” and “----Done----” tags.

The build output window will allow users to navigate directly to the location of a
compilation error. Double-click a line that contains an error message or press
Enter when the cursor is in the line. If the IDE determines that a valid error
message exists on the selected line, the source file is opened to the line on which
the error occurred.

Click the right mouse button in the build output window to display a context
menu.

• The Copy command will copy selected text to the clipboard. If no text is
selected then the line that contains the cursor will be copied.

• The Clear All command will clear contents of output window.
217IDE 5.6 User’s Guide

Working with the Debugger
External Builds Support
• The Go To Error command will navigate to the error location. This is
identical to double-clicking.

External Build Wizard
A wizard prompts you for information used to create projects based on external
make files. The wizard collects data about the make file and creates a
CodeWarrior project with a single target. The target is then configured to build
the user-specified make file.

The wizard can be launched by selecting File > New... and selecting External
MakeFile Wizard. The New... dialog will collect the name and location of the
project before launching the wizard.

Figure 17.6 External Build Wizard - page 1 of 3
218 IDE 5.6 User’s Guide

Working with the Debugger
External Builds Support
Figure 17.7 External Build Wizard - page 2 of 3
219IDE 5.6 User’s Guide

Working with the Debugger
External Builds Support
Figure 17.8 External Build Wizard - page 3 of 3

If the Output file entry is blank, you can still finish the wizard, but no debugging
can be done until you enter an output file in the External Build target panel. You
can also finish the wizard if the Debug platform choice is set to "Not specified".
Although, no debugging can be performed until you specify a debug platform in
the External Build target panel.

Completing the wizard will generate a new CodeWarrior IDE project and
configure it for use with the external make file. The wizard will automate these
tasks:

• Create project with single target named "External makefile"

• Set Linker to external make file linker

• Define settings in External Build target panel based on data collected from
wizard
220 IDE 5.6 User’s Guide

18
Manipulating Program
Execution

This chapter explains how to use breakpoints, watchpoints, and eventpoints to
manipulate execution of your program in the CodeWarrior™ IDE:

• Breakpoints—halt program execution on a line of source code that you
specify. You can set a breakpoint that always halts program execution, or
you can set a breakpoint that halts program execution if a condition that you
specify is true.

• Eventpoints—perform a task during program execution on a line of source
code that you specify. Eventpoints can play sounds, run scripts, log data, and
perform other operations.

• Watchpoints—halt program execution after a location in memory changes
value

• Special breakpoints—these internal breakpoints halt program execution in
special cases, such as halting program execution at the main() function or
for a C++ exception.

After you set these items in your source code, you start a debugging session to
use them. As program execution arrives at each of these items, the debugger can
halt execution, perform a task, or update data.

This chapter contains these sections:

• “Breakpoints” on page 222

• “Eventpoints” on page 233

• “Watchpoints” on page 244

• “Special Breakpoints” on page 248
221IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
Breakpoints
You use breakpoints to halt program execution on a specific line of source code.
After you set a breakpoint at a key point in the program, you can halt its
execution, examine its current state, and check register and variable values. You
can also change values and alter the flow of normal program execution. Setting
breakpoints helps you debug your program and verify its efficiency.

You can use these types of breakpoints:

• regular breakpoints—halt program execution

• conditional breakpoints—halt program execution after meeting a condition
that you specify

• temporary breakpoints—halt program execution and then remove the
breakpoint that caused the halt

You can also create breakpoint templates to simplify the process of setting
complex breakpoints. A breakpoint template has all the properties of a
breakpoint, except for its location in source code. After you define a breakpoint
template, you can have the debugger use the template as the basis for each
breakpoint you set in your source code.

Breakpoints have enabled and disabled states. Table 18.1 on page 222 explains
these states.

Breakpoints Window
Use the Breakpoints window to set breakpoints. Figure 18.1 on page 223 shows
this window. Table 18.2 on page 224 explains items in the window.

Table 18.1 Breakpoints—states

State Icon Explanation

Enabled Indicates that the breakpoint is currently enabled.
The debugger halts program execution at an
enabled breakpoint. Click the icon to disable the
breakpoint.

Disabled Indicates that the breakpoint is currently disabled.
The debugger does not halt program execution at a
disabled breakpoint. Click the icon to enable the
breakpoint.
222 IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
You can change the sort order of items in the Breakpoints window by clicking
the column titles. Click the sort order button next to the rightmost column title to
toggle between ascending and descending sort order.

Figure 18.1 Breakpoints window

Click an icon in this column to
disable or enable the Condition
associated with the item. Shows projects that the item

affects (when it affects more
than one project).

Click an icon in this column
to disable or enable a group
223IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
Table 18.2 Breakpoints window—items

Item Icon Explanation

Create
Breakpoint
Template

Click to create a new breakpoint
template in the Templates page.
You can create complex breakpoints
based on properties you define in the
breakpoint template.

Create
Breakpoint
Group

Click to create a new group in the
Groups page of the Breakpoints
window.
Clicking this button is equivalent to
clicking Breakpoints > Create
Breakpoint Group.

Set Default
Breakpoint
Template

Click to designate the selected item in
the Templates page as the default
breakpoint template. The debugger uses
this template as the basis for creating
new breakpoints.
Clicking this button is equivalent to
clicking Breakpoints > Set
Default Breakpoint Template
with the Breakpoints window frontmost.

Rename
Breakpoint

Click to rename the selected item in the
Breakpoints window.
Clicking this button is equivalent to
clicking Breakpoints > Rename
Breakpoint with the Breakpoints
window frontmost.

Breakpoint
Properties

Click to view more information about the
selected breakpoint, such as name,
associated condition, and number of hits
during execution.
Clicking this button is equivalent to
clicking Breakpoints >
Breakpoint Properties with the
Breakpoints window frontmost.
224 IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
Opening the Breakpoints Window

Use the Breakpoints window to view a list of breakpoints currently set in
your projects.

To open the Breakpoints window, click View > Breakpoints or Window >
Breakpoints Window.

NOTE Double-click a breakpoint in the Breakpoints window to display its
associated source-code line in an editor window.

Saving the Contents of the Breakpoints Window

You can save the contents of the Breakpoints window. This feature is useful for
saving sets of breakpoint data, then later re-opening those sets.

Groups tab Click to display the Groups page. This
page lets you work with breakpoints,
eventpoints, watchpoints, and internal
breakpoints.

Instances tab Click to display the Instances page. This
page lets you set breakpoints,
eventpoints, and watchpoints on a per-
thread or per-process basis.

Templates tab Click to display the Templates page.
This page lets you define breakpoint
templates and specify a default
breakpoint template.

Active These items affect program execution.
Click the icon to make inactive.

Inactive These items do not affect program
execution. Click the icon to make active.

Table 18.2 Breakpoints window—items (continued)

Item Icon Explanation
225IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
To save contents of the Breakpoints window, click File > Save or File > Save
As. Clicking File > Save As lets you specify the name and path to save the file
that stores the contents.

Working with Breakpoints
This section explains how to work with breakpoints in your source code and in
the Breakpoints window.

Setting a Breakpoint

Use the Set Breakpoint command to set a breakpoint. A regular breakpoint
suspends program execution. The debugger does not execute the line of source
code that contains the regular breakpoint.

The default breakpoint template in the Templates page of the Breakpoints
window determines the type of breakpoint that the debugger sets. The Auto
Breakpoint default breakpoint template defines a breakpoint that halts program
execution at a line of source code. You can change the default breakpoint
template to a breakpoint template that you specify.

Figure 18.2 on page 226 shows some source code and the Breakpoints column to
the left of the source code. Breakpoint icons appear in this column.

Figure 18.2 Setting Breakpoints

To set a breakpoint at a line of source code, click the Breakpoints column next to
that line. The active breakpoint icon appears in the column. After you debug the
project, the debugger halts program execution at the line that has the active
breakpoint icon.

This icon indicates an active
breakpoint.
This icon indicates an active
breakpoint.

Click the dash icon to set an
active breakpoint at this
line.

Breakpoints column
226 IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
TIP You can also set a breakpoint for selected results in the Search Results
window and for selected items in the Symbolics window.

If you debug your project first, dash icons appear in the Breakpoints column next
to source-code lines at which you can set breakpoints. Click a dash icon to set a
breakpoint at that line. The dash changes to an active breakpoint icon.

NOTE Setting a breakpoint in a file affects execution of all build targets that
include that file.

Viewing Breakpoint Properties

After you set a breakpoint, you can view and modify its properties. Table 18.3 on
page 227 explains breakpoint properties.

To view properties for a breakpoint, select its name in the Breakpoints window
and click Breakpoints > Breakpoint Properties.

Table 18.3 Breakpoint properties

Property Explanation

Breakpoint Type The type of item, such as Auto Breakpoint.

Serial number The non-persistent serial number that uniquely identifies the
item in the IDE. Use this number to identify the item in scripting
languages. This number is not the same number that the
debugger plug-ins use to identify the item.

Condition The conditional expression associated with the item. This
conditional expression must evaluate to true in order for the item to
perform its specified action.

Hit Count Displays the number of times that program execution arrived at the
breakpoint before the program stopped.

File-Info The path to the file that contains the item.

Name The name of the item, which appears in the Breakpoints window.
The IDE creates a default name based on the item properties, but
you can change this name to a more meaningful one. Use this
name to identify the item in scripting languages.
227IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
Disabling a Breakpoint

Disable a breakpoint to prevent it from affecting program execution. The
disabled breakpoint remains at the source-code line at which you set it, so that
you can enable it later. Disabling the breakpoint is easier than clearing it and re-
creating it from scratch.

To disable a breakpoint, select its name in the Breakpoints window, or click the
cursor on the source-code line that contains the breakpoint, and click Debug >
Disable Breakpoint.

The enabled breakpoint icon changes to a disabled breakpoint icon (shown
at left). The disabled breakpoint icon indicates that the breakpoint does not
halt program execution.

Enabling a Breakpoint

Enable a breakpoint to have it halt program execution. Enabling a breakpoint that
you previously disabled is easier than clearing it and re-creating it from scratch.

Original Process The persistent identifier for the active process at the time you set
the item. If information about the active process was not available
at the time you set the item, this identifier shows the process at the
time the item affected program execution.

Original-Target The path to the build target that contains the item.

Times Hit The number of times that this item affected program execution.

Times Left The number of times remaining for this item to affect
program execution.

Thread The thread in which the item takes effect.

Hardware The hardware on which to use the item. For example, set this
property to Prefer Hardware to specify that the breakpoint is a
hardware breakpoint.

Table 18.3 Breakpoint properties (continued)

Property Explanation
228 IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
To enable a breakpoint, select its name in the Breakpoints window, or click the
cursor on the source-code line that contains the breakpoint, and click Debug >
Enable Breakpoint.

The disabled breakpoint icon changes to an enabled breakpoint icon
(shown at left). The enabled breakpoint icon indicates that the breakpoint
halts
program execution.

Clearing a Breakpoint

Use the Clear Breakpoint command to clear a breakpoint.

To clear a breakpoint in source code, click the cursor on the source-code line that
contains the breakpoint and click Debug > Clear Breakpoint. You can also
click the active breakpoint icon in the Breakpoints column to clear the
breakpoint.

To clear a breakpoint in the Breakpoints window, select its name from the list in
the Groups, Instances, or Templates pages and press Delete.

Clearing All Breakpoints

Use the Clear All Breakpoints command to clear all breakpoints from your
projects.

To clear all breakpoints, click Debug > Clear All Breakpoints. The
Breakpoints window reflects your changes.

Setting a Temporary Breakpoint

Use the Temporary Breakpoint command to set temporary breakpoints. Unlike
a regular breakpoint that halts execution each time you debug a project, a
temporary breakpoint halts execution only once. The debugger removes the
temporary breakpoint after halting program execution. Setting a temporary
breakpoint is equivalent to using the Run To Cursor command.

To set a temporary breakpoint at a line of source code, Alt-click or Option-click
the dash icon next to that line. The dash icon changes to an active breakpoint
icon. After you debug the project, the debugger halts program execution at the
229IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
line that has the active breakpoint icon. After execution halts, the active
breakpoint icon reverts to a dash icon.

Setting a Conditional Breakpoint

Use the Condition column of the Breakpoints window to set a conditional
breakpoint. A conditional breakpoint has an associated conditional expression.
The debugger evaluates the expression to determine whether to halt program
execution at that breakpoint.

A conditional breakpoint behaves in two different ways:

• If the expression evaluates to true (a non-zero value), the debugger halts
program execution.

• If the expression evaluates to false (a zero value), program execution
continues without stopping.

Follow these steps to set a conditional breakpoint:

1. Set a breakpoint that you want to associate with a conditional expression.

2. Depending upon operating system, click View > Breakpoints or Window
> Breakpoints Window .

3. In the Groups or Instances pages of the Breakpoints window, find the
breakpoint that you want to associate with a conditional expression.

4. In the Condition column adjacent to a specific breakpoint, double-click to
display a text box in the blank area.

5. Enter an expression in the text box.

During subsequent debugging sessions, the debugger evaluates the expression to
determine whether to halt program execution at the conditional breakpoint.

NOTE Alternatively, drag-and-drop an expression from a source view or
from the Expression window into the Breakpoints window.

To signal a breakpoint to happen after the nth execution of the instruction, you
can enter the keywords "Hit Count" in the condition text box. For example, enter
Hit Count > 5 for the breakpoint action to occur after the instruction has executed
five times.
230 IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
Setting a thread-specific conditional breakpoint

CodeWarrior's debugger supports thread-specific breakpoints. Depending on
what the protocol supports, there are several different ways it's supported. You
can setup a special condition on a breakpoint. Enter mwThreadID ==
threadID, where mwThreadID is a keyword recognized by the core debugger
and threadID is the number that represents the ID of the thread that you want to
stop.

Working with Breakpoint Templates
This section explains how to define breakpoint templates, specify a default
template, and delete templates.

A breakpoint template defines all properties of a breakpoint except for its
location in source code. For example, you can define a breakpoint template that
stops execution only 10 times, and only if an associated conditional expression
evaluates to false.

The default breakpoint template is the breakpoint template that the debugger uses
as the basis for new breakpoints that you set. For example, if you define a
breakpoint template named Thread Break, you can specify it as the default
breakpoint template. After you do this, the Thread Break template properties
apply to all new breakpoints that you set in your source code.

The initial default breakpoint template is Auto Breakpoint, which defines the
regular breakpoint that halts program execution at a line of source code. You can
change the default breakpoint template from Auto Breakpoint to any of your
breakpoint templates. You can also change the default breakpoint template back
to
Auto Breakpoint.

Creating a Breakpoint Template

Use the Templates page of the Breakpoints window to define breakpoint
templates. You define a breakpoint template by using an existing breakpoint as a
starting point.

To define a breakpoint template, follow these steps:

1. Set a breakpoint in your source code.
231IDE 5.6 User’s Guide

Manipulating Program Execution
Breakpoints
2. Click View > Breakpoints or Window > Breakpoints Window.

The Breakpoints window appears.

3. Click the Groups tab.

4. Select the name of the breakpoint that you just set.

The debugger gives the breakpoint a default name that includes the name of
the file in which you set the breakpoint and the line at which you set the
breakpoint.

5. Click the Create Breakpoint Template button in the toolbar of the
Breakpoints window.

6. Click the Templates tab of the Breakpoints window.

The new breakpoint template appears in this page with the name New
Template.

You can rename the breakpoint template by selecting it and clicking
Breakpoints > Rename Breakpoint, or clicking the Rename Breakpoint
button in the Breakpoints window toolbar.

NOTE You cannot rename the Auto Breakpoint template.

Deleting a Breakpoint Template

Use the Templates page of the Breakpoints window to delete breakpoint
templates that you no longer need.

To delete a breakpoint template, follow these steps:

1. Click View > Breakpoints or Window > Breakpoints Window.

The Breakpoints window appears.

2. Click the Templates tab of the Breakpoints window.

3. Select the breakpoint template that you want to delete.

4. Click Edit > Delete or Edit > Clear.

NOTE You cannot delete the Auto Breakpoint template, because it defines
the regular breakpoint.
232 IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
Specifying the Default Breakpoint Template

Use the Templates page of the Breakpoints window to specify the default
breakpoint template. The debugger uses this template as the basis for creating
new breakpoints in your source code.

The initial default breakpoint template is Auto Breakpoint, which defines the
regular breakpoint. You can specify any one of your breakpoint templates, or
Auto Breakpoint, as the default breakpoint template.

To specify the default breakpoint template, follow these steps:

1. Click View > Breakpoints or Window > Breakpoints Window.

The Breakpoints window appears.

2. Click the Templates tab of the Breakpoints window.

3. Select the breakpoint template that you want to specify as the default
breakpoint template.

4. Click Breakpoints > Set Default Breakpoint Template or click the Set
Default Breakpoint Template icon in the Breakpoints window toolbar.

The debugger now uses the breakpoint template that you specified as the basis
for creating new breakpoints in your source code.

Eventpoints
You use eventpoints to perform a task when program execution arrives at a
specific line of source code or when an associated conditional expression
evaluates to true. You can set an eventpoint that performs a task such as running
a script, playing a sound, or collecting trace data. An eventpoint is equivalent to a
breakpoint that performs a task other than halting program execution.

You can use several kinds of eventpoints. The Breakpoints column represents
these eventpoints with various icons. You can set more than one eventpoint on
the same line of source code. The Breakpoints column shows all eventpoints that
you set for each line. Table 18.4 on page 234 explains the eventpoints and shows
their corresponding icons.
233IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
You can also create breakpoint templates to simplify the process of setting
complex eventpoints. Creating a breakpoint template for an eventpoint is nearly
identical to creating a breakpoint template for a breakpoint. The difference is
using an eventpoint instead of a breakpoint as the starting point for creating the
breakpoint template.

Eventpoints have enabled and disabled states. Table 18.5 on page 235 explains
these states.

Table 18.4 Eventpoints

Eventpoint Icon Explanation

Log Point on
page 235

Logs or speaks a string or expression and records
messages to the Log window

Pause Point on
page 237

Pauses execution long enough to refresh
debugger data

Script Point on
page 237

Runs a script, application, or other item

Skip Point on
page 239

Skips execution of a line of source code

Sound Point
(Windows OS) on
page 239

Plays a sound

Trace Collection
Off on page 241

Stops collecting trace data for the Trace window

Trace Collection
On on page 241

Starts collecting trace data for the Trace window
234 IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
TIP You can set an eventpoint in the Thread window and for selected
variables in the Symbolics window.

Log Point
A Log Point logs or speaks a string or expression. A Log Point can also record
messages to the Log window. You can configure the message that appears in the
log window.

Setting a Log Point

To set a Log Point, follow these steps:

1. Click the cursor on the line of source code at which you want to set the Log
Point.

2. Click Debug > Set Eventpoint > Set Log Point.

The Log Point Settings window appears (Figure 18.3 on page 236).

3. Enter the text of your log message in the Message text box.

Table 18.5 Eventpoints—states

State Icon Explanation

Enabled See
Table
18.4 on
page 23
4

Indicates that the eventpoint is currently enabled. The
debugger performs the specified task at an enabled
eventpoint. Click the icon to disable the eventpoint.

Disabled Indicates that the eventpoint is currently disabled. The
debugger does not perform the specified task at a
disabled eventpoint. Click the icon to enable the
eventpoint.
235IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
Figure 18.3 Log Point Settings window

4. Check at least one of these checkboxes:

• Log Message—check to have the IDE display your message in a Message
window when program execution reaches the Log Point

• Speak Message (Windows OS)—check to have the IDE use the sound
capabilities of the host operating system to speak the message that you
enter in the Message text box.

NOTE (Windows) Install the Speech software development kit (SDK) in
order to have the Speak Message feature work correctly.

• Treat as Expression—check to have the IDE evaluate the text you enter
in the Message text box as an expression. For example, if you enter the
name of a variable in the Message text, the debugger writes the value of
that variable in the console output window.

• Stop in Debugger—check to stop program execution in the debugger

5. Click the OK button to confirm your settings.

Example use: If you want to display the value of a variable each time some code
is executed, set a log point, check the Log Message and Treat as expression
boxes and enter the variable name in the edit box, then click OK.

Clearing a Log Point

To clear a Log Point, follow these steps:
236 IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
1. Select the Log Point that you want to clear.

Click the cursor on the line of source code that has the Log Point, or select the
Log Point by name in the Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Log Point.

Pause Point
A Pause Point suspends program execution long enough to refresh debugger
data. For example, without setting a pause point, you must wait for the debugger
to halt program execution before it can refresh data. Setting a Pause Point,
however, lets you pause the debugging session to give the debugger time to
refresh the data.

Setting a Pause Point

To set a Pause Point, follow these steps:

1. Click the cursor on the line of source code at which you want to set the
Pause Point.

2. Click Debug > Set Eventpoint > Set Pause Point.

Clearing a Pause Point

To clear a Pause Point, follow these steps:

1. Select the Pause Point that you want to clear.

Click the cursor on the line of source code that has the Pause Point, or select
the Pause Point by name in the Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Pause Point.

Script Point
A Script Point runs a script, application, or other item. After you set a Script
Point at a line of source code, its associated action occurs when program
execution arrives at that line. For example, you can set a Script Point that
performs these actions:

• (Windows) execute a file as if you had used a Windows command line
237IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
• (Mac OS) launch an AppleScript or application

Setting a Script Point

To set a Script Point, follow these steps:

1. Click the cursor on the line of source code at which you want to set the
Script Point.

2. Click Debug > Set Eventpoint > Set Script Point.

The Script Point Settings window appears (Figure 18.4 on page 238).

Figure 18.4 Script Point Settings window

3. Use the list box to specify Commands or Script File.

Specify Commands (Windows) if you intend to enter a command line that
executes a file. Specify Script File if you intend to enter a path to a script file.

4. Enter the text of your Script Point in the text box.

Enter a command line or a path to a script file.

5. Check Stop in Debugger if you want to stop program execution in the
debugger.

6. Click the OK button to confirm your settings.

Clearing a Script Point

To clear a Script Point, follow these steps:
238 IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
1. Select the Script Point that you want to clear.

Click the cursor on the line of source code that has the Script Point, or select
the Script Point by name in the Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Script Point.

Skip Point
A Skip Point prevents the debugger from executing a line of source code. This
eventpoint is useful when you are aware of a line that you need to fix, but would
like to go ahead and debug the rest of the program. You can set a Skip Point at
that line and have the debugger execute the rest of the project without executing
that particular line.

NOTE Skip Points do not work with the Java programming language.

Setting a Skip Point

To set a Skip Point, follow these steps:

1. Click the cursor on the line of source code at which you want to set the Skip
Point.

2. Click Debug > Set Eventpoint > Set Skip Point.

Clearing a Skip Point

To clear a Skip Point, follow these steps:

1. Select the Skip Point that you want to clear.

Click the cursor on the line of source code that has the Skip Point, or select
the Skip Point by name in the Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Skip Point.

Sound Point (Windows OS)
A Sound Point is an audible alert. You can set a Sound Point so that when you
step or run through code, the IDE plays a sound when program execution arrives
at the line that has a Sound Point. Unlike a Log Point set to Speak Message,
239IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
which speaks the message you specify, the Sound Point plays a simple
notification sound.

Setting a Sound Point

To set a Sound Point, follow these steps:

1. Click the cursor on the line of source code at which you want to set the
Sound Point.

2. Click Debug > Set Eventpoint > Set Sound Point.

The Sound Point Settings window appears (Figure 18.5 on page 240).

Figure 18.5 Sound point settings

3. Use the Sound to Play list box to specify the notification sound that you want
the IDE to play when program execution arrives at the Sound Point.

4. Check Stop in Debugger if you want to stop program execution in the
debugger.

5. Click the OK button to confirm your settings.

Clearing a Sound Point

To clear a Sound Point, follow these steps:

1. Select the Sound Point that you want to clear.

Click the cursor on the line of source code that has the Sound Point, or select
the Sound Point by name in the Breakpoints window.
240 IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
2. Click Debug > Clear Eventpoint > Clear Sound Point.

Trace Collection Off
A Trace Collection Off eventpoint stops the collection of trace data. This
eventpoint is useful when you want trace collection to stop when program
execution reaches a line of source code that you specify.

Setting a Trace Collection Off Eventpoint

To set a Trace Collection Off eventpoint, follow these steps:

1. Click the cursor on the line of source code at which you want to set the
Trace Collection Off eventpoint.

2. Click Debug > Set Eventpoint > Set Trace Collection Off.

Clearing a Trace Collection Off Eventpoint

To clear a Trace Collection Off eventpoint, follow these steps:

1. Select the Trace Collection Off eventpoint that you want to clear.

Click the cursor on the line of source code that has the Trace Collection Off
eventpoint, or select the Trace Collection Off eventpoint by name in the
Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Trace Collection Off.

Trace Collection On
A Trace Collection On eventpoint starts the collection of trace data. This
eventpoint is useful when you want trace collection to start when program
execution reaches a line of source code that you specify.

Setting a Trace Collection On Eventpoint

To set a Trace Collection On eventpoint, follow these steps:

1. Click the cursor on the line of source code at which you want to set the
Trace Collection On eventpoint.
241IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
2. Click Debug > Set Eventpoint > Set Trace Collection On.

Clearing a Trace Collection On Eventpoint

To clear a Trace Collection On eventpoint, follow these steps:

1. Select the Trace Collection On eventpoint that you want to clear.

Click the cursor on the line of source code that has the Trace Collection On
eventpoint, or select the Trace Collection On eventpoint by name in the
Breakpoints window.

2. Click Debug > Clear Eventpoint > Clear Trace Collection On.

Working with Eventpoints
This section explains how to work with eventpoints in your source code and in
the Breakpoints window.

Viewing Eventpoint Properties

After you set an eventpoint, you can view and modify its properties.

To view properties for an eventpoint, select its name in the Breakpoints window
and click Breakpoints > Breakpoint Properties.

Disabling an Eventpoint

Disable an eventpoint to prevent it from performing its specified action. The
disabled eventpoint remains at the source-code line at which you set it, so that
you can enable it later. Disabling the eventpoint is easier than clearing it and re-
creating it from scratch.

To disable an eventpoint, follow these steps:

1. Select the eventpoint that you want to disable.

Select the eventpoint by name in the Breakpoints window, or click the cursor
on the source-code line that contains the eventpoint.

2. Click Debug > Disable Eventpoint.

The Disable Eventpoint menu appears.
242 IDE 5.6 User’s Guide

Manipulating Program Execution
Eventpoints
3. From the menu, click the Disable Eventpoint command, where Eventpoint
is the type of eventpoint that you want to disable.

The enabled eventpoint icon changes to a disabled eventpoint icon (shown
at left). The disabled eventpoint icon indicates that the eventpoint does not
perform its specified action.

Enabling an Eventpoint

Enable an eventpoint to have it perform its specified action during program
execution. Enabling an eventpoint that you previously disabled is easier than
clearing it and re-creating it from scratch.

To enable an eventpoint, follow these steps:

1. Select the eventpoint that you want to enable.

Select the eventpoint by name in the Breakpoints window, or click the cursor
on the source-code line that contains the eventpoint.

2. Click Debug > Enable Eventpoint.

The Enable Eventpoint menu appears.

3. From the menu, click the Enable Eventpoint command, where Eventpoint is
the type of eventpoint that you want to enable.

The disabled eventpoint icon changes to its original eventpoint icon (Table
18.4 on page 234). The enabled eventpoint icon indicates that the eventpoint will
perform its specified action.

Setting a Conditional Eventpoint

Use the Condition column of the Breakpoints window to set a conditional
eventpoint. A conditional eventpoint has an associated conditional expression.
The debugger evaluates the expression to determine whether the eventpoint
performs its specified action.

A conditional eventpoint behaves in two different ways:

• If the expression evaluates to true (a non-zero value), the eventpoint
performs its specified action.

• If the expression evaluates to false (a zero value), the eventpoint does not
perform its specified action.
243IDE 5.6 User’s Guide

Manipulating Program Execution
Watchpoints
Follow these steps to set a conditional eventpoint:

1. Set an eventpoint that you want to associate with a conditional expression.

2. Click View > Breakpoints or Window > Breakpoints Window.

The Breakpoints window appears.

3. In the Groups or Instances pages of the Breakpoints window, find the
eventpoint that you want to associate with a conditional expression.

4. Double-click the Condition column in align with the eventpoint.

5. Enter an expression in the Condition text box.

During subsequent debugging sessions, the debugger evaluates the expression to
determine whether the eventpoint performs its specified action.

NOTE Alternatively, drag-and-drop an expression from a source view or
from the Expression window into the Breakpoints window.

Watchpoints
You use watchpoints (sometimes referred to as access breakpoints) to halt
program execution when a specific location in memory changes value. After you
set a watchpoint at a key point in memory, you can halt program execution when
that point in memory changes value. You can then examine the call chain, check
register and variable values, and step through your code. You can also change
values and alter the flow of normal program execution. A watchpoint is
equivalent to a memory breakpoint.

Unlike a breakpoint, a watchpoint can detect when any part of your program
affects memory. When the program writes a new value to the address or area of
memory that has the watchpoint, the debugger suspends program execution.

NOTE You cannot set a watchpoint on a local variable, because the debugger
cannot detect watchpoints for variables stored on the stack or in
registers.

You can also create breakpoint templates to simplify the process of setting
complex watchpoints. Creating a breakpoint template for a watchpoint is nearly
identical to creating a breakpoint template for a breakpoint. The difference is
244 IDE 5.6 User’s Guide

Manipulating Program Execution
Watchpoints
using a watchpoint instead of a breakpoint as the starting point for creating the
breakpoint template.

Watchpoints have enabled and disabled states. Table 18.6 on page 245 explains
these states.

TIP You can set a watchoint in the Thread window and for selected variables
in the Symbolics window.

A project can have a different maximum number of watchpoints, depending on
the build target. The IDE generally limits the acceptable range for watchpoints to
memory that it can write-protect. This range also depends on the host and on the
application. For more information, see the Targeting documentation.

Setting a Watchpoint

Use the Set Watchpoint command to set a watchpoint. A watchpoint suspends
program execution when the memory location that you specify changes value.
The debugger does not execute the line of source code that contains the
watchpoint.

To set a watchpoint, follow these steps:

1. Click Project > Debug.

A debugging session starts.

2. Click Data > View Memory.

A Memory window appears.

Table 18.6 Watchpoints—states

State Icon Explanation

Enabled Indicates that the watchpoint is currently enabled. The
debugger halts program execution at an enabled
watchpoint. Click the icon to disable the watchpoint.

Disabled Icon disappears, indicating that the watchpoint is
currently disabled. The debugger does not halt
program execution at a disabled watchpoint. Click the
icon to enable the watchpoint.
245IDE 5.6 User’s Guide

Manipulating Program Execution
Watchpoints
3. Select a range of bytes in the Memory window.

Do not double-click the range of bytes.

4. Click Debug > Set Watchpoint.

An underline appears beneath the selected range of bytes, indicating that you
set a watchpoint in that range.

TIP You can change the color of the watchpoint underline in the Display
Settings panel of the IDE Preferences window

When you debug the project, the debugger halts program execution if the
specified memory location changes value.

TIP You can also set a watchpoint for selected variables in the Thread,
Variable, and Symbolics windows.

Viewing Watchpoint Properties

After you set a watchpoint, you can view and modify its properties.

To view properties for a watchpoint, select its name in the Breakpoints window
and click Breakpoints > Breakpoint Properties.

Disabling a Watchpoint

Disable a watchpoint to prevent it from affecting program execution. The
disabled watchpoint remains at the memory location at which you set it, so that
you can enable it later.

To disable a watchpoint, select its name in the Breakpoints window, or select
the range of bytes in the Memory window at which you set the watchpoint, and
click Debug > Disable Watchpoint.

The enabled watchpoint icon disappears, which indicates a disabled watchpoint.
246 IDE 5.6 User’s Guide

Manipulating Program Execution
Watchpoints
Enabling a Watchpoint

Enable a watchpoint to have it halt program execution when its associated
memory location changes value. Enabling a watchpoint that you previously
disabled is easier than clearing it and re-creating it from scratch.

To enable a watchpoint, select its name in the Breakpoints window, or select the
range of bytes in the Memory window at which you set the watchpoint, and click
Debug > Enable Watchpoint.

The enabled watchpoint icon appears (shown at left), which indicates an
enabled watchpoint.

Clearing a Watchpoint

Use the Clear Watchpoint command to clear a watchpoint.

To clear a watchpoint in the Memory window, select range of bytes at which you
set the watchpoint and click Debug > Clear Watchpoint.

To clear a watchpoint in the Breakpoints window, select its name from the list in
the Groups or Instances pages and press Delete.

Clearing All Watchpoints

Use the Clear All Watchpoints command to clear all watchpoints from your
projects.

To clear all watchpoints, click Debug > Clear All Watchpoints. The
Breakpoints window reflects your changes.

Setting a Conditional Watchpoint

Use the Condition column of the Breakpoints window to set a conditional
watchpoint. A conditional watchpoint has an associated conditional expression.
The debugger evaluates the expression to determine whether to halt program
execution at that watchpoint.

A conditional watchpoint behaves in two different ways:
247IDE 5.6 User’s Guide

Manipulating Program Execution
Special Breakpoints
• If the expression evaluates to true (a non-zero value), the debugger halts
program execution when the memory location associated with the
watchpoint changes value.

• If the expression evaluates to false (a zero value), program execution
continues without stopping.

Follow these steps to set a conditional watchpoint:

1. Set a watchpoint that you want to associate with a conditional expression.

2. Click View > Breakpoints or Window > Breakpoints Window.

The Breakpoints window appears.

3. In the Groups or Instances pages of the Breakpoints window, find the
watchpoint that you want to associate with a conditional expression.

4. Double-click the Condition column adjacent to the watchpoint.

5. Enter an expression in the Condition text box.

During subsequent debugging sessions, the debugger evaluates the expression to
determine whether to halt program execution at the conditional watchpoint.

NOTE Alternatively, drag-and-drop an expression from a source view or
from the Expression window into the Breakpoints window.

Special Breakpoints
Special breakpoints halt program execution for very specific reasons:

• program execution arrives at the beginning of the function main()

• a C++ or Java exception occurs

• an event occurs that the debugger plug-in defines as a break event

You cannot change or delete special breakpoints, but you can enable and disable
them.

Disabling Special Breakpoints

Disable special breakpoints to prevent them from affecting program execution.
248 IDE 5.6 User’s Guide

Manipulating Program Execution
Special Breakpoints
To disable special breakpoints, click the Active icon to the left of the
Special group in the Groups page of the Breakpoints window.

The active icon changes to an inactive icon, which indicates that the special
breakpoints are disabled.

Enabling Special Breakpoints

Enable special breakpoints to have them halt program execution.

To enable special breakpoints, click the Inactive icon (shown at left) to the
left of the Special group in the Groups page of the Breakpoints window.

The inactive icon changes to an active icon, which indicates that the special
breakpoints are enabled.
249IDE 5.6 User’s Guide

Manipulating Program Execution
Special Breakpoints
250 IDE 5.6 User’s Guide

19
Working with Variables

This chapter explains how to work with variables in a CodeWarrior™ IDE
debugging session. The following windows show various types of information
about variables.

• Global Variables window—shows information about global and static
variables in your project

• Variable window—shows information for an individual variable in your
project

• Expressions window—shows variable values and lets you form calculation
expressions based on those values

This chapter contains these sections:

• “Global Variables Window” on page 251

• “Variable Window” on page 253

• “Expressions Window” on page 256

Global Variables Window
The Global Variables window shows all global and static variables for each
process that you debug. You can open separate Global Variables windows for
each process in the same build target. Use the window to observe changes in
variable values as the program executes.

Figure 19.1 on page 252 shows the Global Variables window. Table 19.1 on
page 252 explains the items in the window.
251IDE 5.6 User’s Guide

Working with Variables
Global Variables Window
Figure 19.1 Global Variables window

Opening the Global Variables Window

Use the Global Variables window to display global variables declared in a
program or static variables declared in source files that comprise the program.

To open the Global Variables window, select View > Global Variables or
Window > Global Variables Window.

Viewing Global Variables for Different Processes

You can open a separate Global Variables window for each process that the same
parent application creates.

To open the Global Variables window for a particular process, follow these steps:

Table 19.1 Global Variables window—items

Item Explanation

File Lists source files that declare global or static variables. Click a
source file to view its static variables. Click Global Variables to
view all global variables declared in the program.

Variables Lists variables according to the file selected in the File pane.
Double-click a variable to display it in a separate
Variable window.
252 IDE 5.6 User’s Guide

Working with Variables
Variable Window
1. Click Project > Debug.

A debugging session starts.

2. In the Thread window toolbar, use the Process list box to specify the process
that has the global variables that you want to examine.

3. Click View > Global Variables or Window > Global Variables
Window.

Repeat these steps for each process that has global variables that you want to
examine.

Variable Window
A Variable window allows manipulation of a single variable or variable
hierarchy used in source code. For a local variable, the window closes after
program execution exits the routine that defines the variable.

Figure 19.2 on page 253 shows the Variable window.

Figure 19.2 Variable window

Opening a Variable Window

1. Select a variable in any window pane that lists variables.

2. Open a Variable window:

• Select Data > View Variable, or

• Double-click the variable.

A Variable window appears. Double-click a value to change it.
253IDE 5.6 User’s Guide

Working with Variables
Variable Window
TIP Use Variable windows to monitor individual variables independently of
other windows. For example, use a Variable window to continue
monitoring a variable that leaves the current scope of program execution
in the Thread window.

Alternatively, use a contextual menu to open a variable window, as explained in
Table 19.2 on page 254.

Manipulating Variable Formats

You can change the way the Variables window displays data. For example, you
can add labels to variable data so that those labels appear in the Variables
window and clarify the displayed data.

For example, suppose you have the structure defined in Listing 19.1 on page 255.

Table 19.2 Opening a Variable window by using a contextual menu

On this
host…

Do this…

Windows Right-click the variable and select View Variable.

Macintosh Control-click the variable and select View Variable.

Solaris Click and hold on the variable, then select View
Variable.

Linux Click and hold on the variable, then select View
Variable.
254 IDE 5.6 User’s Guide

Working with Variables
Variable Window
Listing 19.1 Sample structure definition

struct Rect {
 short top;
 short left;
 short bottom;
 short right;
};

The Variables window might show an instance of the Rect structure like this:

myRect 0x000DCEA8

You can create an XML file that defines a new way to display the structure, as
shown in Listing 19.2 on page 255.

Listing 19.2 Sample variable format definition

<variableformats>
 <variableformat>
 <osname>osWin32</osname>
 <runtimename>runtimeWin32</runtimename>
 <typename>Rect</typename>
 <expression>
 "{T: " + ^var.top +
 " L: " + ^var.left +
 " B: " + ^var.bottom +
 " R: " + ^var.right +
 "}{H: " + (^var.bottom - ^var.top) +
 " W: " + (^var.right - ^var.left) + "}"
 </expression>
 </variableformat>
</variableformats>

Given this new variable format definition, the Variables window now shows the
same myRect instance like this:

myRect {T: 30 L: 30 B: 120 R: 120}{H: 90 W: 90}

To manipulate variable formats, you place an XML file that defines the new
format inside the VariableFormats directory at

CodeWarrior/Bin/Plugins/Support/VariableFormats/

where CodeWarrior is the path to your CodeWarrior installation.
255IDE 5.6 User’s Guide

Working with Variables
Expressions Window
The IDE reads the XML files in this directory to determine how to display
variable data. Table 19.3 on page 256 explains the main XML tags that the IDE
recognizes.

Expressions Window
The Expressions window helps you monitor and manipulate these kinds of
items:

• global and local variables

• structure members

• array elements

Figure 19.3 on page 257 shows the Expressions window. Table 19.4 on page 257
explains items in window.

Table 19.3 Variable formats—XML tags

Tag Explanation

variableformats A group of variable format records.

variableformat An individual variable format record.

osname The operating system that defines the scope of this record.

runtimename The runtime that defines the scope of this record.

typename The name of the Type that this record will format.

expression The expression that reformats the variable display. The IDE
evaluates this expression to determine the format that it applies

to the variable. The IDE replaces all occurrences of the ^var
placeholder with the name of the variable.
256 IDE 5.6 User’s Guide

Working with Variables
Expressions Window
Figure 19.3 Expressions window

Opening the Expressions Window

Use the Expressions window to inspect frequently used variables as their values
change during a debugging session.

To open the Expressions window, select View > Expressions or Window >
Expressions Window.

Alternatively, click the Expressions button in the Thread window toolbar
to open the Expressions window.

Table 19.4 Expressions window—items

Item Explanation

Expression
column

Lists expressions and expression hierarchies. Click the hierarchical
controls to expand or collapse the
expression view.

Value
column

Shows the current value of each corresponding expression. Double-
click a value to change it.
257IDE 5.6 User’s Guide

Working with Variables
Expressions Window
Adding Expressions

The Expressions window handles various ways of adding expressions for
inspection.

To add an expression to the Expressions window, do this:

• Select the desired expression and choose Data > Copy to Expression, or

• Use the contextual menu with a selected expression, or

• Drag and drop an expression from another window into the Expressions
window.

The Expressions window reflects the added expression. Drag expressions within
the window to reorder them.

Adding a Constant Value to a Variable

You can enter an expression in the Expressions window that adds a constant
value to a variable. Suppose x is a short integer type in the variable context of
some function scope in C++ code. You can enter the expression x+1 and the
IDE computes the resulting value just as you would compute it on a calculator.

1. Select the variable to which you want to add a constant value.

For example, select x.

2. Enter an expression that adds a constant value to the variable.

For example, append +1 to x so that the resulting expression is x+1.

The IDE adds the constant value to the variable and displays the result in the
Expressions window.

Making a Summation of Two Variables

You can enter an expression in the Expressions window that computes the sum of
two variables. Suppose x is a short integer type in the variable context of some
function scope in C++ code. You can enter the expression x+y and the IDE
computes the resulting value just as you would compute it on a calculator.

1. Select the variable to which you want to add another variable.

For example, select x.
258 IDE 5.6 User’s Guide

Working with Variables
Expressions Window
2. Enter an expression that adds a second variable to the first variable.

For example, append +y to x so that the resulting expression is x+y.

The IDE computes the sum of the two variables and displays the result in the
Expressions window.

Removing Expressions

The Expressions window handles various ways of removing expressions that no
longer require inspection.

To remove an expression from the Expressions window:

• Select the expression and choose Edit > Delete or Edit > Clear, or

• Select the expression and press the Backspace or Delete key.

The Expressions window updates to reflect the removed expression.

NOTE Unlike the Variable window, the Expressions window does not
remove a local variable after program execution exits the routine that
defines the variable.
259IDE 5.6 User’s Guide

Working with Variables
Expressions Window
260 IDE 5.6 User’s Guide

20
Working with Memory

This chapter explains how to work with variables in a CodeWarrior™ IDE
debugging session. The following windows show various types of information
about variables:

• Memory window—shows the memory that your project manipulates as
it executes

• Array window—shows the contents of arrays that your project manipulates
as
it executes

• Registers window—shows the register contents of a processor

• Register Details window—shows a graphical representation of processor
registers and explains register contents

• Cache window—shows processor or instructor cache data

• Trace window—shows collected trace information

This chapter contains these sections:

• “Memory Window” on page 261

• “Array Window” on page 266

• “Registers Window” on page 269

• “Register Details Window (Windows OS)” on page 272

Memory Window
The Memory window manipulates program memory content in various data
types. Use this resizable window to perform these tasks:

• View memory

• Change individual memory bytes

• Set watchpoints
261IDE 5.6 User’s Guide

Working with Memory
Memory Window
CAUTION Arbitrarily changing memory contents could degrade the
stability of the IDE, another program, or the operating system
itself. Understand the consequences of manipulating memory.

Figure 20.1 on page 262 shows the Memory window. Table 20.1 on page 262
explains the items in the window.

Figure 20.1 Memory window

Table 20.1 Memory window—items

Item Icon Explanation

Display Enter a symbol representing the
starting address of memory to
display. Valid symbols include
addresses and non-evaluating

expressions, such as main or x.

View Select the data format in which to
view memory contents.

Memory Space
(for processors
that support
multiple memory
spaces)

Choose the memory space in which
to view selected variables or
source code.
262 IDE 5.6 User’s Guide

Working with Memory
Memory Window
Viewing and Changing Raw Memory

Use the View Memory command to view and change the raw contents of
memory.

1. Select an item or expression that resides at the memory address to be
examined.

2. Choose Data > View Memory.

A new Memory window appears.

Previous Memory
Block

Click to view the preceding block
of memory.

Next Memory
Block

Click to view the succeeding block of
memory.

Address Displays a contiguous range of
memory addresses, beginning with
the address entered in the Display
field.

Hex Displays a hexadecimal
representation of the memory
addresses shown in the Address
pane.

Ascii Displays an ASCII representation of
the memory addresses shown in the
Address pane.

Word Size Select the bit size of displayed
words.

Page
(for processors
that support
multiple pages)

Select the memory-space page in
which to view source code.

Table 20.1 Memory window—items (continued)

Item Icon Explanation
263IDE 5.6 User’s Guide

Working with Memory
Memory Window
3. Select Raw data from the View list pop-up.

The contents of memory at the selected location appears in both hexadecimal
and ASCII.

Scroll through memory by selecting the Address, Hex, or ASCII pane of the
Memory window and then use the up and down arrow keys. Display a
different memory location by changing the expression in the Display field.

Change the word size displayed in the Memory window by using the Word
Size list pop-up. The choices are 8, 16, and 32 bits.

Change the contents of a particular memory location by double-clicking on
that location in either the hexadecimal or ASCII pane of the Memory window.
Replace the current value by entering a hexadecimal value in the Hex pane or
a string of ASCII characters in the ASCII pane.

Alternatively, use a contextual menu to view and change memory, as explained
in Table 20.2 on page 264.

Viewing Memory Referenced by a Pointer

Use the View Memory command to inspect memory referenced by a pointer;
including an address stored in a register.

1. Select a pointer in a source window.

2. Choose Data > View Memory.

A new Memory window appears.

Table 20.2 Opening a Memory window by using a contextual menu

On this host… Do this…

Windows Right-click the item and select View Memory.

Macintosh Control-click the item and select View Memory.

Solaris Click and hold on the item, then select View Memory.

Linux Click and hold on the item, then select View Memory.
264 IDE 5.6 User’s Guide

Working with Memory
Memory Window
3. Select Raw data from the View list pop-up.

The contents of memory referenced by the pointer appears in both
hexadecimal and ASCII.

Viewing Different Memory Spaces

Use the Page list pop-up to view a particular memory space.

NOTE This feature is available only for processors that support multiple
memory spaces.

1. Select the name of a variable or function in a source window.

2. Choose Data > View Memory.

A Memory window appears.

3. Select a memory space from the Page list pop-up.

4. Select Raw data from the View list pop-up if inspecting a variable. Select
Disassembly, Source, or Mixed from the View list pop-up if inspecting
source code.

The Memory window displays the selected memory-space page.

Setting a Watchpoint in the Memory Window

To set a Watchpoint using the Memory window, follow these steps:

1. Run/Debug your program.

2. Choose Data > View Memory.

This opens the Memory window.

3. Select a range of bytes in the Memory window.

Do not double-click the range of bytes.

4. Choose Debug > Set Watchpoint.

NOTE A red line appears under the selected variable in the Variable window,
indicating that you have set a Watchpoint. You can change the color
265IDE 5.6 User’s Guide

Working with Memory
Array Window
of this line in the Display Settings panel of the IDE Preferences
window (Edit > IDE Preferences).

Clearing Watchpoints from the Memory window

To clear a Watchpoint from the Memory window, follow these steps:

1. Select a range of bytes in the Memory window.

2. Choose Debug > Clear Watchpoint.

To clear all Watchpoints from the Memory window:

1. Open the Memory window.

You do not have to select a range of bytes.

2. Choose Debug > Clear All Watchpoints.

NOTE All Watchpoints clear automatically when the target program
terminates or the debugger terminates the program. Watchpoints will
reset next time the program runs.

Array Window
An Array window allows manipulation of a contiguous block of memory,
displayed as an array of elements. The window lists array contents sequentially,
starting at
element 0.

The Array window title shows the base address bound to the array. The base
address can bind to an address, a variable, or a register. An array bound to a local
variable closes after the routine that defines the variable returns to the calling
routine.

For array elements cast as structured types, a hierarchical control appears to the
left of each element. Use these hierarchical controls to expand or collapse the
display of each element’s contents.

Figure 20.2 on page 267 shows an Array window. Table 20.3 on page 267
explains the items in the window.
266 IDE 5.6 User’s Guide

Working with Memory
Array Window
Figure 20.2 Array window

Table 20.3 Array window—items

Item Icon Explanation

Hierarchical
control

Click to collapse the view of the
information pane.

Bind To Select the base address of the
array: Address, Variable, or
Register.

Array size Enter the number of elements to
display in the Array window.

Struct
Member

Select a specific member to
show in each element, or show
all members.

Element Shows the array elements in a
hierarchical list.
267IDE 5.6 User’s Guide

Working with Memory
Array Window
Opening an Array Window

Use the View Array command to manipulate a memory block in an Array
window.

1. Select the array that you want to view.

2. Select Data > View Array.

A new Array window appears.

TIP Drag and drop a register or variable name into an Array window to set the
base address. Use the View Memory As command to interpret memory
displayed in an Array window as a different type.

Alternatively, use a contextual menu to open an Array window, as explained in
Table 20.4 on page 268.

Value Shows the value of each array
element.

Location Shows the address in memory
of each array element.

Table 20.4 Opening an Array window by using a contextual menu

On this host… Do this…

Windows Right-click the array and select View Array.

Macintosh Control-click the array and select View Array.

Solaris Click and hold on the array, then select View Array.

Linux Click and hold on the array, then select View Array.

Table 20.3 Array window—items (continued)

Item Icon Explanation
268 IDE 5.6 User’s Guide

Working with Memory
Registers Window
Registers Window
The Registers window reveals a hierarchical view of these register types:

• general registers—contents of the central processing unit (CPU) of the host
computer

• floating-point unit (FPU) registers—contents of the FPU registers

• registers specific to the host computer

You can use the Register window to perform these tasks:

• expand the hierarchical items in the window and view their contents

• select and modify register values

• view documentation for individual registers (depending on the register)

Figure 20.3 on page 269 shows a sample Registers window.

Figure 20.3 Registers Window

General Registers
The General Registers are the register contents of the central processing unit
(CPU) of the host computer. The exact listing of these registers depends on the
host CPU and current build target. See the Targeting documentation for
additional information.
269IDE 5.6 User’s Guide

Working with Memory
Registers Window
FPU Registers
The FPU Registers are the register contents of the floating-point unit (FPU) of
the host computer. The exact listing of these registers depends on the host FPU
and current build target. See the Targeting documentation for additional
information.

Host-specific Registers
The Registers window also lists additional register contents for registers specific
to the host. The exact listing of these registers depends on the host computer and
current build target. See the Targeting documentation for additional information.

Opening the Registers Window

Open the Registers window to inspect and modify various register contents.

Table 20.5 on page 270 explains how to open the Registers window.

Viewing Registers

View registers to inspect and modify their contents.

1. Open the Registers window.

2. Expand the hierarchical list to view register groups.

Expanding the list shows the register groups that you can view or change.

Table 20.5 Opening the Registers window

On this host… Do this…

Windows Select View > Registers

Macintosh Select Window > Registers Window

Solaris Select Window > Registers Window

Linux Select Window > Registers Window
270 IDE 5.6 User’s Guide

Working with Memory
Registers Window
3. Expand a register group.

Expanding a group shows its contents, by register name and corresponding
value.

Changing Register Values

Change register values during program execution in order to examine program
behavior.

1. Open the Registers window.

2. Expand the hierarchical list to view the names and corresponding values of
the register that you want to modify.

3. Double-click the register value that you want to change.

The value highlights.

4. Enter a new register value.

5. Press Enter or Return.

The register value changes.

Changing Register Data Views

Change register data views to see register contents in a different format. For
example, you can change the view of a register from binary to hexadecimal
format.

1. Open the Registers window.

2. Expand the hierarchical list to view the names and corresponding values of
the register.

3. Select the register value that you want to view in a different format.

The value highlights.

4. Select Data > View as format, where format is the data format in which you
want to view the register value. The register value changes format.

Available formats depend on the selected register value.

5. Select Data > View as Default to restore the original data format.
271IDE 5.6 User’s Guide

Working with Memory
Register Details Window (Windows OS)
Alternatively, you can use a contextual menu to change the data format, as
explained in Table 20.6 on page 272.

Opening Registers in a Separate Registers Window

Open registers in a separate Register Window to narrow the scope of registers
that appear in a single window.

1. Open the Registers window.

2. Expand the hierarchical list to view the register or register group that you
want to view in a separate Registers window.

3. Double-click the register or register group.

4. A new Registers window opens.

The new Registers window lists the name and value of the register that you
double-clicked, or the names and values of the register group that you double-
clicked.

Register Details Window (Windows OS)
The Register Details window lets you view detailed information about
individual bits of registers from 2 bits to 32 bits in size. This window shows
information for both system registers and memory-mapped registers. To open the
Register Details window, click View > Register Details or Window >
Register Details Window.

Table 20.6 Changing the data format by using a contextual menu

On this host… Do this…

Windows Right-click the register value and select View as format.

Macintosh Control-click the register value and select View as format.

Solaris Click and hold on the register value and select
View as format.

Linux Click and hold on the register value and select
View as format.
272 IDE 5.6 User’s Guide

Working with Memory
Register Details Window (Windows OS)
The Register Details window has fields that describe the register, its bitfields,
and the values of those bitfields. XML files in the Registers folder of your
CodeWarrior installation provide the information that appears in the window.
The Registers folder is inside the Support folder. The Support folder is inside the
Plugins folder of your CodeWarrior installation.

Figure 20.4 on page 273 shows the Register Details window. Table 20.7 on
page 273 explains items in the window.

Figure 20.4 Register Details window

Table 20.7 Register Details window—items

Item Icon Explanation

Description
File on
page 275
text box

Enter the name or full path to the XML file
for the register you want to view, or click the
Browse button to open a dialog box that
you can use to specify the file.

Register
Name

Shows the name of the register depicted in
the window.

Address
text box

Enter the starting address of the register
values that you want to see in the Register
Display.
An error message appears if you enter an
invalid starting address.
273IDE 5.6 User’s Guide

Working with Memory
Register Details Window (Windows OS)
Format list
box

Specify the data format for bit values in the
Register Display:

• Binary
• Character
• Decimal
• Unsigned Decimal
• Hexadeccimal
• Default—have the IDE determine

the best format

Register
Display on
page 276

Shows a depiction of the register that you
specify in the Description File text box,
including individual register bits and their
values.

Bitfield
Name list
box

Specify a bitfield to highlight in the Register
Display. The Description portion of the
window reflects available information for the
bitfield.
Select None to have the Description portion
of the window reflect information for the
entire register and not a bitfield in that
register.

Bit Value
text box

Shows the current value of the bits in the
Bitfield Name list box, according to the
format that you specify in the Format list
box.
Click the spin buttons to increment or
decrement the current value, or enter a new
value in the text box.
Changing the value changes only the
Register Display. You must click the Write
button to write the new value to the register
itself.

Bit Value
Modifier list
box

Specify a new value for the selected bitfield,
or view a brief explanation of specific bitfield
values.
Changing the value changes only the
Register Display. You must click the Write
button to write the new value to the register.

Table 20.7 Register Details window—items (continued)

Item Icon Explanation
274 IDE 5.6 User’s Guide

Working with Memory
Register Details Window (Windows OS)
Description File
Enter in this text box the name of the register that you want to see in the Register
Display of the Register Details window. Alternatively, enter the full path to the
register description file on your computer, or click the Browse button to open a
dialog box that lets you specify the register description file. The text box is not
case sensitive.

Description Shows a description of the register or a
selected bitfield in the register.
Use the Description File on page 275 text
box to specify the register.
Use the Text View list box to view specific
register information, such as register
descriptions, bitfield descriptions, and
register details.

Revert
button

Click to change a modified value in the
Register Display to its original value.
If you clicked the Write button to write a new
value to the register, you cannot revert that
value.

Read
button

Click to have the Register Display reflect
current bit values from the register itself.

Write
button

Click to write the bit values in the Register
Display to the register.
After you write new values to the register,
you cannot revert them.

Reset
Value
button

Click to restore the default value for the
selected bitfield.
The IDE disables this button if the selected
bitfield does not have a
default value.

Text
View on
page 276
list box

Use to specify information that appears in
the Description portion of the window.

Table 20.7 Register Details window—items (continued)

Item Icon Explanation
275IDE 5.6 User’s Guide

Working with Memory
Register Details Window (Windows OS)
After you enter a name or path, the debugger searches for a matching register
description file in the Registers folder of your CodeWarrior installation and the
project access paths. If the debugger finds a matching file, the Register Display
updates the information in the Register Details window. If the debugger does not
find a matching name, an error message appears.

For example, to view the contents of the Opcode register, you can:

• type Opcode in the Description File text box and press Enter or Return, or

• type the full path to the opcode.xml file in the Registers folder and press
Enter or Return.

The debugger matches your entry with the opcode.xml file in the Registers
folder. The Register Display in the Register Details window updates its
information to show Opcode register details.

The debugger also updates the Register Display to show the current values in the
register. If the debugger fails to update the display, an error message appears.

Register Display
This display shows the current contents of 32 bits of register data, starting at the
address that you specify in the Address text box. The data appears according to
the format that you specify in the Format list box.

The Register Display groups the 32 bits of data into register bitfields. Clicking
one of the bits selects its associated bitfield. Additional information about the
bitfield, such as its name and permissions, appears in the Description portion of
the Register Details window.

Text View
Use this list box to change the information that appears in the Description portion
of the Register Details window:

• Auto—select to have the IDE determine which information to display in
the window

• Register Description—select to show information about the entire register,
such as the name of the register itself and the meaning of its contents

• Bitfield Description—select to show information about the selected bitfield
in the Register Display on page 276, such as the name of the bitfield and its
access permissions
276 IDE 5.6 User’s Guide

Working with Memory
Register Details Window (Windows OS)
• Register Details—select to show in-depth information about the current
register, such as its name, its bit values, and bit-value explanations
277IDE 5.6 User’s Guide

Working with Memory
Register Details Window (Windows OS)
278 IDE 5.6 User’s Guide

21
Working with Debugger
Data

This chapter explains how to work with data that the CodeWarrior™ IDE
debugger generates. The following windows show various types of debugger
data.

• Symbolics window—shows information that the debugger generates for
a program

• Processes window—shows individual processes and tasks that the debugger
can control

• Log window—shows messages generated during the debugging session

This chapter contains these sections:

• “Symbolics Window” on page 279

• “System Browser Window” on page 282

• “Log Window” on page 285

Symbolics Window
The Symbolics window displays information that the debugger generates for the
active file. Symbolics information includes data about program variables,
functions, data structures, and source files.

Select whether you want browser data generated by the compiler or the language
parser, by choosing Edit > targetname Settings... and selecting the Build
Extras target settings panel. Select the option from the Generate Browser Data
From dropdown list. Symbolics information will be generated during the next
build or debugging session.

Figure 21.1 on page 280 shows the Symbolics window. Table 21.1 on page 280
explains items in the window.
279IDE 5.6 User’s Guide

Working with Debugger Data
Symbolics Window
Figure 21.1 Symbolics window

Table 21.1 Symbolics window—items

Item Icon Explanation

Debugger
toolbar

Contains buttons that represent
common debugging commands,
such as stepping through code.

Executables
pane

Lists recently used executable
files that contain symbolics
information.

Files pane Lists source files in build target
being debugged, for selected
executable file.
280 IDE 5.6 User’s Guide

Working with Debugger Data
Symbolics Window
Opening the Symbolics Window

The Symbolics window displays information generated by the IDE for a file.

To open the Symbolics window, do one of these tasks:

• Select View > Symbolics or Window > Symbolics window.

• Open a symbolics file. The IDE typically appends .xSYM or .iSYM, to
the names of these files.

• Open an executable file for which the IDE previously generated symbolics
information. The IDE typically appends .exe or .app to these files.

Alternatively, click the Symbolics button in the Thread window toolbar to
open the Symbolics window.

Using the Executables Pane

The Executables pane lists recently opened executable files for which the IDE
generated symbolics information.

To use the pane, select an executable file in the list. The Files pane updates to
display information for the selected executable file.

Using the Files Pane

For the selected executable file, the Files pane lists the source files in the build
target being debugged.

To use the pane, select a file in the list. The Functions pane and Source pane
update to display information for the selected file.

Functions pane Lists functions declared in the file
selected in the Files pane.

Source pane Displays source code in the file
selected in the Files pane.

Table 21.1 Symbolics window—items (continued)

Item Icon Explanation
281IDE 5.6 User’s Guide

Working with Debugger Data
System Browser Window
Using the Functions Pane

The Functions pane lists functions declared in the selected file in the Files pane.

To use the pane, select a function in the list. The Source pane updates to display
source code for the selected function.

Using the Source Pane

The Source pane displays source code for the selected function in the Functions
pane, using the fonts and colors specified in the IDE Preferences window.

To use the pane, select a function in the Functions pane. The corresponding
source code appears in the Source pane.

If the selected function does not contain source code, the Source pane displays
the message Source text or disassembly not available.

NOTE Use the Source pane in the Symbolics window to view source code,
copy source code, and set breakpoints. Use an editor window to
modify the source code. Use a Thread window to view the currently
executing statement.

System Browser Window
The System Browser window shows system level information about processes
executing on various machines, like the host computer or the hardware under
debugger control. The window shows this information:

• running processes

• tasks for selected processes

• some hidden processes

Click on the expand icon for a process to view all tasks assigned to the selected
process. Processes under debugger control appear in bold. Double-click a task to
open it in a new Thread window, or choose the task name and click the Stack
Crawl Window button.

Figure 21.2 on page 283 shows the System Browser window. Table 21.2 on
page 284 explains items in the window.
282 IDE 5.6 User’s Guide

Working with Debugger Data
System Browser Window
NOTE If the System Browser window does not show processes for a sepcific
machine, you will need to start a debugging session for that machine.
For example, you might need to debug a project that runs on external
hardware in order to see executing processes for that hardware.

Figure 21.2 System Browser window
283IDE 5.6 User’s Guide

Working with Debugger Data
System Browser Window
Opening the System Browser Window

Use the System Windows or System menu command to view and manipulate
active processes on a selected machine. If multiple machines are available, select
each machine from the System Windows submenu to display multiple System
Browser windows. If you choose a machine that is already open, the existing
window will be brought to the front.

NOTE The System Browser window appears on platforms that support it.

Table 21.3 on page 285 explains how to open the System Browser window.

Table 21.2 System Browser window—items

Item Icon Explanation

Attach to
Process

Click to have the debugger control the selected
process.

Stack
Crawl
window

Click to open a Thread window for the selected
process.

Refresh This icon indicates that information for selected
item is periodically updated. Click this icon to
toggle between refresh and no refresh.

No
Refresh

This icon indicates that information is not
updated for the selected item.

Expand Click to expand a process and list related tasks.
284 IDE 5.6 User’s Guide

Working with Debugger Data
Log Window
Attaching Debugger to a Process

Click the Attach to Process button to assign a selected process to a new
debugging session. This assignment allows the debugger to control processes that
it does not otherwise recognize. For example, you can click the Attach to Process
button to assign dynamic link libraries or shared libraries to the debugger.

1. Select a process to attach to the debugger.

2. Click Attach to Process

3. Select an executable to attach to the process.

4. Click OK to display the Stack Crawl (Thread) window for the process.

The debugger assumes control of the selected process. Processes under debugger
control appear in bold.

Log Window
The Log window displays messages during program execution. Select the Log
System Messages option in the Debugger Settings panel to activate the Log
window.

The IDE allows you to save Log window contents to a .txt (text) file and copy
text from the Log window to the system clipboard.

Windows-hosted Log window messages include:

• Dynamic Link Library (DLL) loading and unloading

• debugging printf() messages

Table 21.3 Opening the System Browser window

Menu Bar
Layout

Do this…

Windows Select View > System

Macintosh (also applies to
Linux/Solaris)

Select Window > System Windows
285IDE 5.6 User’s Guide

Working with Debugger Data
Log Window
Macintosh-hosted Log window messages include:

• PowerPC™ code fragments

• DebugStr() messages

Figure 21.3 on page 286 shows a Windows-hosted Log window.

Figure 21.3 Log window

Opening the Log Window

Use the Debugger Settings preference panel to enable the message logging
option. The Log window records these types of messages for a program during a
debugging session:

• the start of new tasks

• routine entry and exit

• Windows: DLL loading and unloading, and debug printf() messages

• Macintosh: PowerPC code-fragment loading and DebugStr()
messages

1. Select the Log System Messages option in the Debugger Settings target
settings preference panel.
286 IDE 5.6 User’s Guide

Working with Debugger Data
Log Window
2. Select Project > Debug.

The Log window appears. It allows you to select, copy, and save logged text
to a file for later analysis. See the Targeting documentation for additional
information.
287IDE 5.6 User’s Guide

Working with Debugger Data
Log Window
288 IDE 5.6 User’s Guide

22
Working with Hardware
Tools

This chapter explains the CodeWarrior™ IDE hardware tools. Use these tools for
board bring-up, test, and analysis.

NOTE Some of the IDE features described in this chapter are not supported
by all products, such as, the Flash programmer window, hardware
diagnostic window, and logic analyzer. Some screen captures in this
chapter were taken on a Windows PC and used as examples only,
actual appearance will vary slightly on other host platforms.

This chapter contains these sections:

• “Flash Programmer Window” on page 289

• “Hardware Diagnostics Window” on page 301

• “Working with a Logic Analyzer” on page 313

• “Trace Window” on page 318

• “Cache window” on page 320

• “Profile window” on page 321

• “Command Window” on page 321

Flash Programmer Window
The Flash Programmer window lists global options for the flash programmer
hardware tool. These preferences apply to every open project file.

Figure 22.1 on page 290 shows the Flash Programmer window. Table 22.1 on
page 291 explains the items in the window.

To open the Flash Programmer window, click Tools > Flash Programmer.

The Flash Programmer window contains these panels:
289IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
• Target Configuration on page 291

• Flash Configuration on page 294

• Program / Verify on page 295

• Erase / Blank Check on page 298

• Checksum on page 299

Figure 22.1 Flash Programmer window
290 IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Target Configuration
The Target Configuration panel configures general flash programmer settings.
Figure 22.2 on page 292 shows the Target Configuration panel. Table 22.2 on
page 292 explains items in the panel.

Table 22.1 Flash Programmer window—items

Item Explanation

Flash
Programmer
pane

Shows a list of panel names. Click a panel name to display that
panel.

Show Log Click to display a text file that logs flash programmer actions. Check
the Enable Logging checkbox in the Options group to enable this
button.

Load Settings Click to restore previously saved settings for the current panel.

Save Settings Click to save settings for the current panel to a file.

OK Click to save changes to all panels and close the window.

Cancel Click to discard changes to all panels and close
the window.
291IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Figure 22.2 Target Configuration panel

Table 22.2 Target Configuration panel—items

Item Explanation

Default Project Shows the current default project in the IDE.

Default Target Shows the default build target. Clear the Use Custom Settings
checkbox to have the IDE use connection settings from the build
target for connecting to the hardware.

Use Custom
Settings checkbox.

Check to specify the connection information that you want to use
for connecting to the hardware. In this case, the IDE can connect
to the hardware without using settings from a project.
Clear to use the connection information stored in the default
project for connecting to the hardware. You cannot clear the
checkbox if you do not have an active default project or
default target.
Connection information includes the information that you specify
in the Target Processor list box, the Connection list box, and
the Use Target Initialization text box.
292 IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Target Processor
text/list box

Use to specify the hardware processor.

Connection list box Use to specify the method that the IDE uses to connect to
the hardware.

Use Target
Initialization
checkbox and text
box

Check to specify an initialization file for the hardware connection.
Enter the initialization file path in the text box, or click the
Browse button to open a dialog box that you can use to specify
the initialization file path.
Clear if you do not want to use an initialization file for the
hardware connection.

Target Memory
Buffer Address text
box

Specify the starting address of an area in RAM that the flash
programmer can use as a scratch area. The flash programmer
must be able to access this starting address through the remote
connection (after the hardware initializes).
The flash programmer should not modify any memory location
other than the target memory buffer and flash memory.
For example, the flash programmer uses the target memory
buffer to download and execute the flash device driver.

Target Memory
Buffer Size text box

Specify the size of an area in RAM that the flash programmer
can use as a scratch area, starting at the address you specify in
the Target Memory Buffer Address text box.
The flash programmer should not modify any memory location
other than the target memory buffer and flash memory.

Enable Logging
checkbox

Check to have the IDE generate detailed status information
during flash operations. Checking this checkbox enables the
Show Log button.
Clear to disable logging of detailed status information
during flash operations. Clearing this checkbox disables the
Show Log button.
Click the Show Log button to view the status information.

Verify Target
Memory Writes
checkbox

Check to have the IDE verify all write operations to the hardware
RAM by reading the result of each write operation.
Clear to have the IDE perform write operations without verifying
them.

Table 22.2 Target Configuration panel—items (continued)

Item Explanation
293IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Flash Configuration
The Flash Configuration panel configures settings for the flash device on the
hardware device. Figure 22.3 on page 294 shows the Flash Configuration panel.
Table 22.3 on page 294 explains the items in the panel.

Figure 22.3 Flash Configuration panel

Table 22.3 Flash Configuration panel—items

Item Explanation

Flash Memory
Base Address text
box

Enter the base address of the beginning of flash memory
on the hardware device. Enter the address based on the
perspective of the hardware device.

Device pane Shows an alphabetical list of supported flash device types. Select
a device type from this pane. Your selection determines the
contents of the Organization and Sector Address Map panes.
294 IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Program / Verify
The Program / Verify panel lets you program an image into flash memory and
verify the programming operation. Figure 22.4 on page 296 shows the Program /
Verify panel. Table 22.4 on page 296 explains the items in the panel.

Organization pane Shows a list of supported layouts of flash memory in the hardware
design, based on your selection in the Device pane. Each list
item is of the form
ChipCapacityxDataBusWidthxNumberOfChipsInLayout. Select an
organization from this pane. Your selection determines the
contents of the Sector Address Map pane.

For example, 2048Kx8x2 indicates a chip capacity of 2048
kilobytes, a byte-wide interface to the data bus, and a 2-chip
hardware layout.
For hardware layouts of 2 or more chips, assume an interleaved
organization. For example, for a 2048Kx16x2 organization, there
are 2 chips on a 32-bit bus, and each chip provides 16 bits of
data.

Sector Address
Map pane

Shows a map of sector addresses that reflects your selections in
the Device and Organization panes and your entry in the Flash
Memory Base Address text box. This map is for informational
purposes only.

Table 22.3 Flash Configuration panel—items (continued)

Item Explanation
295IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Figure 22.4 Program / Verify panel

Table 22.4 Program / Verify panel—items

Item Explanation

Use Selected
File checkbox
and text box

Check to specify a file to program into flash memory. Enter the file
path in the text box, or click the Browse button to locate the file
path.
Clear to have the IDE program flash memory with the file that the
default build target determines.
The file determines the address to which the IDE programs flash
memory. If you specify a file that does not contain address
information, such as a binary file, the IDE programs flash memory
at address zero. Check the Apply Address Offset checkbox to
specify an address offset from zero.

Restrict Address
Range checkbox

Check to use the Start and End text boxes to specify the address
range in which you want the IDE to program flash data. If you use a
binary file to program flash data, the flash programmer ignores data
outside the address range that
you specify.
Clear to have the IDE determine the address range in which to
program flash data.
296 IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Start text box Enter the starting address of the range that you want the flash
programmer to use for programming flash data.
Check the Restrict Address Range checkbox to enable this text
box.

End text box Enter the ending address of the range that you want the flash
programmer to use for programming flash data.
Check the Restrict Address Range checkbox to enable this text
box.

Apply Address
Offset checkbox

Check to specify an offset at which to program flash data. The IDE
adds this offset to the starting address that the file specifies. The
flash programmer begins programming flash data at the starting
address plus the offset.
Clear to have the flash programmer begin programming flash data
at the starting address that the file specifies. In this case, the IDE
does not add an offset to the starting address.

Offset text box Enter the offset to add to the starting address that the file specifies.
The flash programmer begins programming flash data at the
resulting address.
Check the Apply Address Offset checkbox to enable this
text box.

Flash Base
Address

Shows the base address of the beginning of flash memory
on the hardware device. This address is the same address that you
specify in the Flash Memory Base Address text box of the Flash
Configuration panel.

Flash Base +
Offset

Shows the resulting address of adding the offset value that you
specify in the Offset text box to the Flash Base Address value.
The flash programmer begins programming flash data at this
resulting address.

Status Shows flash programmer progress information. Click the Details
button to show more thorough progress information.

Table 22.4 Program / Verify panel—items (continued)

Item Explanation
297IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Erase / Blank Check
The Erase / Blank Check panel lets you erase an image from flash memory and
check for blank memory. Figure 22.5 on page 298 shows the Erase / Blank Check
panel. Table 22.5 on page 299 explains items in the panel.

Figure 22.5 Erase / Blank Check panel

Program button Click to have the flash programmer program flash data into the
hardware device. The Status reflects flash programmer progress.
The flash programmer does not check for blank flash memory
before it begins programming the flash data.

Verify button Click to have the IDE verify the data that the flash programmer
programmed into the hardware device. The verify operation reads
the flash data from the hardware device and compares that data
against the image file on disk. The Status reflects flash
programmer progress.

Table 22.4 Program / Verify panel—items (continued)

Item Explanation
298 IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Checksum
The Checksum panel lets you calculate checksum values. Figure 22.6 on
page 300 shows the Checksum panel. Table 22.6 on page 300 explains items in
the panel.

Table 22.5 Erase / Blank Check panel—items

Item Explanation

All Sectors
checkbox and
list

Check to apply the erase or blank check operation to the entire flash
memory.
Clear to specify sectors that you want to erase or check
for blanks. Select sectors in the list below the checkbox.

Erase Sectors
Individually
checkbox

Check to have the flash programmer ignore chip erase commands
and erase each individual sector instead.
Clear to have the flash programmer obey chip erase commands and
erase all sectors at once.
Check the All Sectors checkbox to enable this checkbox.

Status Shows flash programmer progress information. Click the Details
button to show more thorough progress information.

Erase button Click to have the flash programmer erase the sectors that you
specified. The Status reflects flash programmer progress.

Blank Check
button

Click to have the flash programmer perform these tasks:

• upload the sectors that you specified to the
hardware device

• compare the uploaded sectors against 0xff
• report the values that do not match 0xff.

The Status reflects flash programmer progress.
299IDE 5.6 User’s Guide

Working with Hardware Tools
Flash Programmer Window
Figure 22.6 Checksum panel

Table 22.6 Checksum panel—items

Item Explanation

File on Target Select to have the flash programmer read the file that you specified in
the Use Selected File text box of the Program / Verify panel. The
flash programmer reads this file to determine the required memory
regions of the flash device for the checksum operation.
The Restrict Address Range and Apply Address Offset
information that you specify in the Program / Verify panel also apply
to this option button.

File on Host Select to have the flash programmer read the file on the host
computer. The flash programmer reads this file to determine the
required memory regions of the flash device for the checksum
operation.
The Restrict Address Range and Apply Address Offset
information that you specify in the Program / Verify panel also apply
to this option button.

Memory
Range on
Target

Select to have the flash programmer read the range that you specify
in the Start and Size values in the Address Range group. The flash
programmer uses this memory range for the checksum operation.

Entire Flash Select to have the flash programmer read the entire contents of flash
memory. The flash programmer uses this data for the checksum
operation.
300 IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Hardware Diagnostics Window
The Hardware Diagnostics window lists global options for the hardware
diagnostic tools. These preferences apply to every open project file.

Figure 22.7 on page 302 shows the Hardware Diagnostics window. Table 22.7 on
page 302 explains items in the window.

To open the Hardware Diagnostics window, click Tools > Hardware
Diagnostics.

The Hardware Diagnostics window has these panels:

• Configuration on page 303

• Memory Read / Write on page 304

• Scope Loop on page 305

• Memory Tests on page 307

Start text box Enter the starting address of the range that you want the flash
programmer to use for the checksum operation.
Select Memory Range on Target option to enable this text box.

Size text box Enter the size of the address range that you want the flash
programmer to use for the checksum operation. This size is relative to
the starting address that you specify in the Start
text box.
Select Memory Range on Target option to enable this text box.

Status Shows flash programmer progress information. Click the Details
button to show more thorough progress information.

Calculate
Checksum

Click to have the flash programmer calculate the checksum according
to your specifications. At the end of the checksum operation, the
Status shows the calculated checksum.

Table 22.6 Checksum panel—items (continued)

Item Explanation
301IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Figure 22.7 Hardware Diagnostics window

Table 22.7 Hardware Diagnostics window—items

Item Explanation

Hardware
Diagnostics pane

Shows a list of panel names. Click a panel name to display that
panel in the Hardware Diagnostics window.

Load Settings Click to restore previously saved settings for the current panel.

Save Settings Click to save settings for the current panel to a file.

OK button Click to save changes to all panels and close the window.

Cancel button Click to discard changes to all panels and close
the window.
302 IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Configuration
The Configuration panel configures general flash programmer settings. Figure
22.8 on page 303 shows the Configuration panel. Table 22.8 on page 303
explains items in the panel.

Figure 22.8 Configuration panel

Table 22.8 Configuration panel—items

Item Explanation

Default Project Shows the current default project in the IDE.

Default Target Shows the default build target in the IDE. Clear the Use Custom
Settings checkbox to have the IDE use the connection settings from
the build target for diagnosing
the hardware.

Use Custom
Settings
checkbox.

Check to specify the connection information that you want to use for
diagnosing the hardware. In this case, the IDE can connect to the
hardware without using settings from a project.
Clear to use the connection information stored in the default project
for connecting to the hardware. You cannot clear the checkbox if you
do not have an active default project or
default target.
Connection information includes information that you specify in the
Target Processor list box, the Connection list box, and the Use
Target Initialization text box.
303IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Memory Read / Write
The Memory Read / Write panel configures diagnostic tests for performing
memory reads and writes over the remote connection interface. Figure 22.9 on
page 304 shows the Memory Read / Write panel. Table 22.9 on page 305
explains items in
the panel.

Figure 22.9 Memory Read / Write panel

Target
Processor
text/list box

Use to specify the hardware processor.

Connection list
box

Use to specify the method that the IDE uses to connect to
the hardware.

Use Target
Initialization
checkbox and
text box

Check to specify an initialization file for the hardware connection.
Enter the initialization file path in the text box, or click the Browse
button to locate the initialization file path.
Clear if you do not want to use an initialization file for the hardware
connection.

Table 22.8 Configuration panel—items (continued)

Item Explanation
304 IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Scope Loop
The Scope Loop panel configures diagnostic tests for performing repeated
memory reads and writes over the remote connection interface. The tests repeat
until you stop them. By performing repeated read and write operations, you can
use a scope analyzer or logic analyzer to debug the hardware device.

Figure 22.10 on page 306 shows the Scope Loop panel. Table 22.10 on page 306
explains items in the panel.

After the first 1000 operations, the Status shows the estimated time
between operations.

Table 22.9 Memory Read / Write panel—items

Item Explanation

Read Select to have the hardware diagnostic tools perform
read tests.

Write Select to have the hardware diagnostic tools perform
write tests.

Byte Select to have the hardware diagnostic tools perform byte-
size operations.

Word Select to have the hardware diagnostic tools perform word-size
operations.

Long Word Select to have the hardware diagnostic tools perform long-word-
size operations.

Target Address Specify the address of an area in RAM that the hardware diagnostic
tools should analyze. The tools must be able to access this starting
address through the remote connection (after the hardware
initializes).

Value to Write Specify the value that the hardware diagnostic tools write during
testing.
Select the Write option to enable this text box.

Status Shows hardware diagnostic progress information. Click the Details
button to show more progress information.

Access Target
button

Click to have the hardware diagnostic tools perform specified tests.
The Status shows test results.
305IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
NOTE For all values of Speed, the time between operations depends heavily
on the processing speed of the host computer.

For Read operations, the Scope Loop test has an additional feature. During the
first read operation, the hardware diagnostic tools store the value read from the
hardware. For all successive read operations, the hardware diagnostic tools
compare the read value to the stored value from the first read operation. If the
Scope Loop test determines that the value read from the hardware is not stable,
the diagnostic tools report the number of times that the read value differs from
the first read value.

Figure 22.10 Scope Loop panel

Table 22.10 Scope Loop panel—items

Item Explanation

Read Select to have the hardware diagnostic tools perform
read tests.

Write Select to perform write tests.

Byte Select to have the hardware diagnostic tools perform byte-
size operations.
306 IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Memory Tests
The Memory Tests panel lets you perform three different tests on the hardware:

• Walking Ones on page 310

• Address on page 311

• Bus Noise on page 311

Figure 22.11 on page 308 shows the Memory Tests panel. Table 22.11 on
page 308 explains items in the panel.

You can specify any combination of tests and number of passes to perform. For
each pass, the hardware diagnostic tools perform the tests in turn, until all passes
are complete. The tools tally memory test failures and display them in a log
window after all passes are complete. Errors resulting from memory test failures
do not stop the testing process, however, fatal errors immediately stop the testing
process.

Word Select to perform word-size operations.

Long Word Select to perform long-word-size operations.

Target
Address

Specify the address of an area in RAM that the hardware diagnostic
tools should analyze. The tools must be able to access this starting
address through the remote connection (after the hardware initializes).

Value to Write Specify the value that the hardware diagnostic tools write during
testing.
Select the Write option to enable this text box.

Speed slider Move to adjust the speed at which the hardware diagnostic tools
repeat successive read and write operations. Lower speeds increase
the delay between successive operations. Higher speeds decrease
the delay between
successive operations.

Status Shows hardware diagnostic progress information. Click the Details
button to show more thorough progress information.

Begin Scope
Loop button

Click to have the hardware diagnostic tools perform your specified
tests. The Status shows test results.

Table 22.10 Scope Loop panel—items (continued)

Item Explanation
307IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Figure 22.11 Memory Tests panel

Table 22.11 Memory Tests panel—items

Item Explanation

Walking 1’s Check to have the hardware diagnostic tools perform the Walking
Ones on page 310 test.
Clear to have the diagnostic tools skip the Walking Ones on page 310
test.

Address Check to have the hardware diagnostic tools perform the Address on
page 311 test.
Clear to have the diagnostic tools skip the Address on page 311 test.

Bus Noise Check to have the hardware diagnostic tools perform the Bus
Noise on page 311 test.
Clear to have the diagnostic tools skip the Bus Noise on page 311
test.

Start: Enter the starting address of the range that you want to test.

End: Enter the ending address of the range that you want to test.
308 IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Byte Select to have the hardware diagnostic tools perform byte-
size operations.

Word Select to have the hardware diagnostic tools perform word-size
operations.

Long Word Select to have the hardware diagnostic tools perform long-word-size
operations.

Passes Enter the number of times that you want to repeat the
specified tests.

Show Log Click to display a text file that logs memory test actions.

Use Target
CPU

Check to have the hardware diagnostic tools download the test code
to the hardware device. Enter in the Target Scratch Memory Start
and Target Scratch Memory End text boxes the memory range that
you want to use on the hardware device. The CPU on the hardware
device executes the test code in this memory range.
Clear to have the hardware diagnostic tools execute the test code
through the remote connection interface.
Execution performance improves greatly if you execute the test code
on the hardware CPU, but requires that the hardware has enough
stability and robustness to execute the test code.

Target
Scratch
Memory Start

Specify the starting address of an area in RAM that the hardware
diagnostic tools can use as a scratch area. The tools must be able to
access this starting address through the remote connection (after the
hardware initializes).

Target
Scratch
Memory End

Specify the ending address of an area in RAM that the hardware
diagnostic tools can use as a scratch area. The tools must be able to
access this address through the remote connection (after the
hardware initializes).

Status Shows memory test progress information. Click the Details button to
show more thorough progress information.

Begin Test Click to have the hardware diagnostic tools perform the memory tests
that you specified. The Status reflects memory test progress.

Table 22.11 Memory Tests panel—items (continued)

Item Explanation
309IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
Walking Ones
This test detects these memory faults:

• Address Line—The board or chip address lines are shorting or stuck at 0 or
1. Either condition could result in errors when the hardware reads and writes
to the memory location. Because this error occurs on an address line, the
data may end up in the wrong location on a write operation, or the hardware
may access the wrong data on a read operation.

• Data Line—The board or chip data lines are shorting or stuck at 0 or 1.
Either condition could result in corrupted values as the hardware transfers
data to or from memory.

• Retention—The contents of a memory location change over time. The effect
is that the memory fails to retain its contents over time.

The Walking Ones test includes four subtests:

• Walking Ones—This subtest first initializes memory to all zeros. Then the
subtest writes, reads, and verifies bits, with each bit successively set from
the least significant bit (LSB) to the most significant bit (MSB). The subtest
configures bits such that by the time it sets the MSB, all bits set to a value of
1. This pattern repeats for each location within the memory range that you
specify. For example, the values for a byte-based Walking Ones subtest
occur in
this order:

0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF
• Ones Retention—This subtest immediately follows the Walking Ones

subtest. The Walking Ones subtest should leave each memory location with
all bits set
to 1. The Ones Retention subtest verifies that each location has all bits set to
1.

• Walking Zeros—This subtest first initializes memory to all ones. Then the
subtest writes, reads, and verifies bits, with each bit successively set from
the LSB to the MSB. The subtest configures bits such that by the time it sets
the MSB, all bits are set to a value of 0. This pattern repeats for each
location within the memory range that you specify. For example, the values
for a byte-based Walking Zeros subtest occur in this order:

0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80, 0x00
• Zeros Retention—This subtest immediately follows the Walking Zeros

subtest. The Walking Zeros subtest should leave each memory location with
310 IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
all bits set to 0. The Zeros Retention subtest verifies that each location has
all bits set to 0.

Address
This test detects memory aliasing. Memory aliasing exists when a physical
memory block repeats one or more times in a logical memory space. Without
knowing about this condition, you might conclude that there is much more
physical memory than what actually exists.

The address test uses a simplistic technique to detect memory aliasing. The test
writes sequentially increasing data values (starting at one and increasing by one)
to each successive memory location. The maximum data value is a prime number
and its specific value depends on the addressing mode so as to not overflow the
memory location.

The test uses a prime number of elements to avoid coinciding with binary
math boundaries:

• For byte mode, the maximum prime number is 28-5 or 251.

• For word mode, the maximum prime number is 216-15 or 65521.

• For long word mode, the maximum prime number is 232-5 or 4294967291.

If the test reaches the maximum value, the value rolls over to 1 and starts
incrementing again. This sequential pattern repeats throughout the memory under
test. Then the test reads back the resulting memory and verifies it against the
written patterns. Any deviation from the written order could indicate a memory
aliasing condition.

Bus Noise
This test stresses the memory system by causing many bits to flip from one
memory access to the next (both addresses and data values). Bus noise occurs
when many bits change consecutively from one memory access to another. This
condition can occur on both address and data lines.

Address lines
To force bit flips in address lines, the test uses three approaches:

• Sequential—This approach works sequentially through all of the memory
under test, from lowest address to highest address. This sequential approach
results in an average number of bit flips from one access to the next.
311IDE 5.6 User’s Guide

Working with Hardware Tools
Hardware Diagnostics Window
• Full Range Converging—This approach works from the fringes of the
memory range toward the middle of the memory range. Memory access
proceeds in this pattern, where + number and - number refer to the next item
location (the specific increment or decrement depends on byte, word, or
long word address mode):

– the lowest address

– the highest address

– (the lowest address) + 1

– (the highest address) - 1

– (the lowest address) + 2

– (the highest address) - 2

• Maximum Invert Convergence—This approach uses calculated end point
addresses to maximize the number of bits flipping from one access to the
next. This approach involves identifying address end points such that the
values have the maximum inverted bits relative to one another. Specifically,
the test identifies the lowest address with all 0x5 values in the least
significant nibbles and the highest address with all 0xA values in the least
significant nibbles. After the test identifies these end points, memory access
alternates between low address and high address, working towards the
center of the memory under test. Accessing memory in this manner, the test
achieves the maximum number of bits flips from one access to the next.

Data lines
To force bit flips in data lines, the test uses two sets of static data, a pseudo-
random set and a fixed-pattern set. Each set contains 31 elements—a prime
number. The test uses a prime number of elements to avoid coinciding with
binary math boundaries. The sets are unique to each addressing mode so as to
occupy the full range of bits.

• The test uses the pseudo-random data set to stress the data lines in a
repeatable but pattern-less fashion.

• The test uses the fixed-pattern set to force significant numbers of data bits to
flip from one access to the next.

The subtests execute similarly in that each subtest iterates through static data,
writing values to memory. The test combines the three address line approaches
with the two data sets to produce six unique subtests:

• Sequential with Random Data
312 IDE 5.6 User’s Guide

Working with Hardware Tools
Working with a Logic Analyzer
• Sequential with Fixed Pattern Data

• Full Range Converging with Random Data

• Full Range Converging with Fixed Pattern Data

• Maximum Invert Convergence with Random Data

• Maximum Invert Convergence with Fixed Pattern Data

Working with a Logic Analyzer
(Windows OS) This section explains how to set up your project to connect to a
logic analyzer and how to use the IDE to issue commands to the logic analyzer.
For more information about setting up the logic analyzer to transmit information
to the IDE, refer to the Targeting documentation.

Configuring the Project
Use the Analyzer Connections target settings panel (Figure 22.12 on page 314)
to configure your project to connect to a logic analyzer.

Use the Connection list box to specify the logic analyzer connection that you
want to use. Click the Edit Connection button to configure the parameters of the
connection. Figure 22.13 on page 315 shows the window that appears when you
click the Edit Connection button. Table 22.12 on page 315 explains options in
this window.

NOTE Each build target supports only one connection to a logic analyzer. If
you want your project to have more logic analyzer connections, create
a build target for each additional connection.
313IDE 5.6 User’s Guide

Working with Hardware Tools
Working with a Logic Analyzer
Figure 22.12 Analyzer Connections settings panel
314 IDE 5.6 User’s Guide

Working with Hardware Tools
Working with a Logic Analyzer
Figure 22.13 Editing a logic analyzer connection

Table 22.12 Logic analyzer connection options

Option Explanation

Name Enter the name that you want to assign to this collection
of options.

Debugger Use to specify the debugger to use with the logic analyzer.

Connection Type Use to specify the connection method to the logic analyzer.

Analyzer Type Use to specify the type of logic analyzer.

Host Name Enter the Internet Protocol (IP) address of the logic analyzer.

Analyzer
Configuration File

Enter the name of the configuration file that the logic
analyzer requires.
315IDE 5.6 User’s Guide

Working with Hardware Tools
Working with a Logic Analyzer
Using the Logic Analyzer
The IDE can work with a logic analyzer in these ways:

• Connect on page 316—establish a connection to the logic analyzer

• Arm on page 317—enable the logic analyzer to collect trace data

• Disarm on page 317—disable the logic analyzer from collecting trace data

• Update Data on page 317—retrieve the latest data from the logic analyzer

• Disconnect on page 318—close connection to the logic analyzer

Before you can use the IDE to work with a logic analyzer, you must use the
Analyzer Settings target settings panel to configure a connection to the logic
analyzer.
The IDE requires this information in order to correlate collected trace data with
currently running source code.

Connect
This command uses the connection options that you specified in the Analyzer
Settings target settings panel to perform these tasks:

1. Establish a connection to the logic analyzer.

2. Load the configuration file that you specified in the Analyzer Configuration
File text box (the load process might take several minutes).

Analyzer Slot Enter the slot name that identifies the logic analyzer location.

Trace Support
File

Enter the name of the file that the logic analyzer requires to
support the collection of trace data.

Analyzer Can
Cause Target
Breakpoint

Check to allow the logic analyzer to cause a
hardware breakpoint.
Clear to prevent the logic analyzer from causing a
hardware breakpoint.

Target Breakpoint
Can Cause
Analyzer Trigger

Check to allow a hardware breakpoint to trigger the
logic analyzer.
Clear to prevent a hardware breakpoint from triggering the logic
analyzer.

Table 22.12 Logic analyzer connection options (continued)

Option Explanation
316 IDE 5.6 User’s Guide

Working with Hardware Tools
Working with a Logic Analyzer
3. Requests additional information from you as required (for example, for an
Agilent connection, the IDE asks you to select the machine that you want to
use).

4. Retrieves all data that will appear in the Trace window.

Click Tools > Logic Analyzer > Connect to use this command. You cannot
use this command if you are already connected to a logic analyzer.

Arm
This command instructs the logic analyzer to perform a Run All operation. This
operation prepares the logic analyzer to collect trace data. Click Tools > Logic
Analyzer > Arm to use this command. You cannot use this command if the IDE
has not established a connection to the logic analyzer, or if you already armed the
logic analyzer.

Disarm
This command instructs the logic analyzer to perform a Stop All operation, if it is
still running. This operation stops the logic analyzer from collecting trace data.
Click Tools > Logic Analyzer > Disarm to use this command. You cannot use
this command if the IDE has not established a connection to the logic analyzer.

NOTE You must use the Disarm command in order to update trace data in the
IDE.

Update Data
This command retrieves the most recent trace data from the logic analyzer in
order to display that data in the Trace window of the IDE. Click Tools > Logic
Analyzer > Update Data to use this command. The Trace window flushes its
previous data and updates its display with the newly retrieved trace data. You
cannot use this command until you first Disarm the logic analyzer.

NOTE The Update Data command does not update the column labels in the
Trace window. If you change the labels in the logic analyzer, you
must disconnect from it in the IDE and then reconnect to it. After you
disconnect and reconnect, the Trace window reflects your changes to
the column labels.
317IDE 5.6 User’s Guide

Working with Hardware Tools
Trace Window
Disconnect
This command disconnects the IDE from the logic analyzer, it the connection
still exists. Click Tools > Logic Analyzer > Disconnect to use this command.
After you disconnect the IDE from the logic analyzer, the Trace window flushes
its data. You cannot use this command if you are not currently connected to a
logic analyzer.

Trace Window
After you configure your project to use a logic analyzer and collect trace data,
you use the Trace window (Figure 22.14 on page 319) to view the collected data.
The trace window shows up to 100,000 states or trace frames, beginning with the
most recent frame.

The IDE determines the column labels that appear in the Trace window at the
time it connects to the logic analyzer. If you update these labels in the logic
analyzer, your changes do not appear in the Trace window if you update data. In
the IDE, you must disconnect from the logic analyzer and reconnect to it in order
to update the column labels in the Trace window.

After you use a logic analyzer to collect trace data, open the Trace window by
clicking Data > View Trace.
318 IDE 5.6 User’s Guide

Working with Hardware Tools
Cache Window
Figure 22.14 Trace window

Cache Window
Use the Cache window (Figure 22.15 on page 320) to view cache information
for the target processor. Click Data > View Cache to open the Cache window.

NOTE The View Cache menu might have additional supported commands,
depending on the target processor. For example, you might be able to
click Data > View Cache > Instruction Cache or Data > View
Cache > Data Cache to view these two types of cache concurrently.
319IDE 5.6 User’s Guide

Working with Hardware Tools
Profile Window
Figure 22.15 Cache window

Profile Window
Use the Profile window (Figure 22.16 on page 321) to examine profile data that
you collect from executing code. Examining this data helps you improve the
performance of your project. You use profiler Application Programming
Interface (API) calls or #pragma directives in your source code to turn on the
profiler, collect profiling data, and turn off the profiler. For more information,
refer to the Profiler User Guide.

NOTE The Profiler is only available if the target supports it. This feature is
dependent upon support by the target-specific compiler and a
profiling library.

To open the Profile window, add the appropriate API calls or #pragma
directives to your source code, then debug your project. The Profile window
opens automatically.
320 IDE 5.6 User’s Guide

Working with Hardware Tools
Command Window
Figure 22.16 Profile window

Command Window
The IDE supports a command-line interface to some of its features. You can use
the command-line interface together with various scripting engines, such as the
Microsoft® Visual Basic® script engine, the Java™ script engine, TCL, Python,
and Perl. You can also issue a command line that saves a log file of command-
line activity.

The Command window in the IDE shows the standard output and standard error
streams of command-line activity. Figure 22.17 on page 322 shows the
Command window.
321IDE 5.6 User’s Guide

Working with Hardware Tools
Command Window
Figure 22.17 Command window

Opening the Command Window

Use the Command window to view the standard output and standard error
streams of command-line activity.

To open the Command window, click View > Command Window.

Issuing Command Lines

Use the Command window to issue command lines to the IDE. For example,
enter debug to start a debugging session.

To issue a command line, bring forward the Command window, type the
command line, and press Enter or Return. The IDE executes the command line
that you entered.

If you work with hardware as part of your project, you can use the Command
window to issue command lines to the IDE while the hardware is running.

NOTE Enter help to see a list of available commands and a brief
explanation of each command. Enter help command to see a
detailed explanation of the command.
322 IDE 5.6 User’s Guide

VI

Compilers and Linkers
This section contains these chapters:

• Compilers on page 325

• Linkers on page 331
323IDE 5.6 User’s Guide

324 IDE 5.6 User’s Guide

23
Compilers

This chapter explains how to work with compilers in the CodeWarrior™ IDE.
The IDE uses compilers to complete these tasks:

• Generate object code—the compiler translates source code into object code.
Sample source code includes C++ files and Java files. Object code
represents the same source instructions in a language that the computer
directly understands.

• Flag syntax errors—the compiler highlights source code that generates
syntax errors. Syntax errors result from failing to follow valid structure in a
programming language. In C++, a common syntax error is forgetting to end
a statement with a semicolon.

Read this chapter to learn more about typical tasks for working with compilers.

This chapter contains these sections:

• Choosing a Compiler on page 325

• Compiling Projects on page 326

Choosing a Compiler
Choose a compiler to determine how the IDE interprets source code. The IDE
uses a plug-in compiler architecture. This architecture provides these features:

• Modularity—the IDE associates a specific compiler plug-in with a particular
programming language or environment. For example, a compiler plug-in
exists for C++ source code, and another compiler plug-in exists for Java
source code.

• Flexibility—as new programming languages develop, the IDE can use new
compiler plug-ins.

The IDE associates common filename extensions with various plug-in compilers.
For example, most Java files have the filename extension .java. The IDE
associates these files with the Java compiler. The File Mappings panel provides
control over such associations.
325IDE 5.6 User’s Guide

Compilers
Compiling Projects
Compiling Projects
Compile projects to process the source files that comprise a program and
generate object code. The compiler flags syntax errors in the source files.

Use these tasks to compile projects:

• Compile source files.

• Set the build order or link order.

• Update a project or its files.

• Create an executable file from a project.

• Run an application created from the project.

• Remove object code.

This section explains how to perform each task.

Compiling Source Files

Use the Compile commands to compile source files into binary files. The IDE
can compile a single file, multiple files, or all files in an open project.

1. Enable the Project window that contains the desired files to be compiled.

2. Select one or more files.

3. Choose Project > Compile.

The IDE compiles the selected files.

NOTE The Project menu contains most commands for compiling and
linking projects. However, depending on the project type, some
commands might be disabled or renamed.

Setting the Build and Link Order of Files

Use the Link Order view in the Project window to specify the order in which the
compiler and linker process files. Establishing the proper link order prevents link
errors caused by file dependencies. The Link Order view is sometimes called
the Segments view or Overlays view, depending on the target.

1. Click the Link Order tab in a Project window.
326 IDE 5.6 User’s Guide

Compilers
Compiling Projects
2. Click and drag files into the desired link order.

The IDE changes the link order. The build begins at the top of the link order,
processes each file, and concludes at the bottom of the link order.

NOTE The IDE uses the new link order during subsequent Update, Make,
Run, and Debug operations.

Updating Projects

Use the Bring Up To Date command to compile, but not link, the newly added,
modified, and touched files in a project. Unlike the Make and Run commands,
the Bring Up To Date command does not produce a binary file.

1. Select the project to update.

2. Choose Project > Bring Up To Date.

The IDE compiles all uncompiled project files.

Making Executable Files

Use the Make command to compile the newly-added, modified, and touched
files in a project, then link them into a binary file. Unlike the Run command, the
Make command does not execute the binary file. The Make command is useful
for creating dynamic link libraries (DLLs), shared libraries, code resources, or
tools.

1. Select the project to make.

2. Choose Project > Make.

The IDE processes the project and creates a binary file.

Running Application Projects

Use the Run command to perform these tasks:

• Compile and link a project (if necessary).

• Create a standalone application.

• Change project settings (if required).
327IDE 5.6 User’s Guide

Compilers
Compiling Projects
• Save the application.

• Run the application.

Note, the Run command is not available if the project creates a non-executable
file like a dynamic linked library (DLL), shared library, library, code resource, or
tool.

1. Select the project to run.

2. Choose Project > Run.

Synchronizing File Modification Dates

Use the Synchronize Modification Dates command to update the modification
dates of all files stored in a project. This command is useful for handling files
from a third-party editor that does not share file-status information with the IDE.

1. Select the project window.

2. Choose Project > Synchronize Modification Dates.

The IDE checks the file-modification dates and marks modified files for re-
compilation.

Removing Object Code

Use the Remove Object Code command to remove binary object code stored in
the project file and reduce project size.

1. Open the desired project.

2. Choose Project > Remove Object Code.

3. Set compaction options as desired.

• Select Recurse subprojects to remove object code from all subprojects in
the project file.

• Select Compact targets to remove these items:

Target data files with the .tdt extension.

Browser data.

Dependency information.

Additional data cached by the IDE.
328 IDE 5.6 User’s Guide

Compilers
Compiling Projects
4. Select the method by which the IDE removes the object code.

• Click All Targets to remove object code from all build targets.

• Click Current Target to remove object code only from the active build
target.

The IDE removes the specified object code from the project.
329IDE 5.6 User’s Guide

Compilers
Compiling Projects
330 IDE 5.6 User’s Guide

24
Linkers

This chapter explains how to work with linkers in the CodeWarrior™ IDE. The
IDE uses linkers to complete these tasks:

• Combine code—the linker combines source-file object code with object
code from library files and other related files. The combined code represents
a complete computer program.

• Create a binary file—the linker processes the complete program and
generates a binary file. Sample binary files include applications and shared
libraries.

Read this chapter to learn more about typical tasks for working with linkers.

This chapter contains these sections:

• Choosing Linkers on page 331

• Linking Projects on page 332

Choosing Linkers
Choose a linker to determine the binary file type produced by the IDE. This list
describes common binary files:

• Applications—applications, or executable files, represent a wide body of
computer programs. Common applications include word processors, web
browsers, and multimedia players.

• Libraries—libraries contain code for use in developing new computer
programs. Libraries simplify programming tasks and enhance re-usability.

• Specialized files—files designed for highly efficient operation in a specific
context. Such files usually support a particular combination of hardware and
software to perform tasks.

The IDE provides various linkers for software development. The Target
Settings panel contains an option for selecting a linker. The IDE maps to each
linker a group of recognized filename extensions. These mappings determine
how the IDE interprets each file.
331IDE 5.6 User’s Guide

Linkers
Linking Projects
Linking Projects
Link projects to process object code and generate a binary file. Refer to the
CodeWarrior Targeting documentation for more information about linkers for
specific computer systems. This section explains general-purpose linker tasks.

Generating Project Link Maps

Use the Generate Link Map command to create a link-map file that contains
function and cross-section information about the generated object code. The link
map reveals the files, libraries, and functions ignored by the IDE while producing
the binary output.

The IDE stores the link-map file in the project folder. The file uses the same
name as the build target, with a .MAP or .xMAP extension.

1. Select the project window.

2. Choose Edit > targetname Settings...

3. Select the linker panel in the Target Settings Panels list.

4. Select the Generate Link Map option.

5. Click Save.

6. Choose Project > Make.

The IDE generates the link-map file.
332 IDE 5.6 User’s Guide

VII

Preferences and Target
Settings

This section contains these chapters:

• Customizing the IDE on page 335

• Working with IDE Preferences on page 359

• Working with Target Settings on page 397

• Preference and Target Settings Options on page 423
333IDE 5.6 User’s Guide

334 IDE 5.6 User’s Guide

25
Customizing the IDE

The CodeWarrior™ IDE enables you to customize menus, toolbars, and key
bindings to suit your programming preferences. Use the Customize IDE
Commands window—which consists of the Commands, Toolbar Items, and Key
Bindings tabs—to build your customizations.

This chapter contains these sections:

• “Customizing IDE Commands” on page 335

• “Customize Toolbars” on page 345

• “Customize Key Bindings” on page 351

Customizing IDE Commands
You can customize the menu commands in the IDE’s menu bar, as well as
control the appearance of specific menu commands, create new command groups
to distinguish menu commands, and associate a command line (Windows,
Solaris, and Linux) or a script or application (Mac OS) with a new menu
command. The customized menu commands you create have access to IDE
information, such as the current editor selection, the frontmost window, and the
current project and its output file.

Select Edit > Commands & Key Bindings to access the Customize IDE
Commands window. Figure 25.1 on page 336 shows the Customize IDE
Commands window. Table 25.1 on page 336 explains each button in the window.
See the tasks in this chapter for more detailed information.
335IDE 5.6 User’s Guide

Customizing the IDE
Customizing IDE Commands
Figure 25.1 Customize IDE Commands window

Table 25.1 Customize IDE Commands window—button overview

Button name Explanation

New Group Click to add a new command group to the Commands list.

New Command Click to add a new command setting within a group.

Factory Settings Click to restore default options for the current Customize IDE
Commands (Commands and Toolbar Items) lists.

Revert Click to restore the most recently saved options for the current
Customize IDE Commands (Commands and Toolbar Items)
lists.

Export Click to save a file that contains commands and key bindings
to use later in the Customize IDE Commands lists.
336 IDE 5.6 User’s Guide

Customizing the IDE
Customizing IDE Commands
Commands Tab
Click the Commands tab at the top of the Customize IDE Commands window to
display the commands view. Use this view to modify existing menu commands,
and to create and remove command groups and menu commands.

Modifying Existing Commands

You can use the Commands tab of the Customize IDE Commands window to
examine and modify existing command groups and menu commands. This view
includes a Commands list. This hierarchical list organizes individual menu
commands into command groups. Click the hierarchical control next to a
command group to expand that group and view its contents.

To examine a particular item, select it in the Commands list. Information for the
selected item appears on the right-hand side of the Customize IDE Commands
window. This window provides this information for each selected item:

• Name—This field shows the name of the selected item. If the IDE does not
permit you to change the name of the selected items, this field is grayed out.

• Appears in Menus—Enable this checkbox to display the selected item in
the specified position in the CodeWarrior menu bar. For example, enabling
this checkbox for a menu command allows that menu command to appear
under the related command group in the menu bar. Disabling the checkbox
prevents the menu command from appearing in the menu bar under the
command group.

• Action—This section shows information about the action the selected item
performs. For default menu commands, this section shows the command
type, such as Command or Hierarchical Menu. For customized menu
commands that you create, this section lets you specify a command line

Import Click to open a file that contains commands and key bindings
to use in the current Customize IDE Commands lists.

Save Click to save customizations to the Customize IDE
Commands list.

Table 25.1 Customize IDE Commands window—button overview (continued)

Button name Explanation
337IDE 5.6 User’s Guide

Customizing the IDE
Customizing IDE Commands
(Windows, Solaris, and Linux) or a script (Mac OS) that runs after you
choose the customized menu command.

• Key Bindings—This area consists of the Key Bindings list, the New
Binding button, and the Auto Repeat checkbox.

Creating a New Command Group

To create a new command group for menu commands, follow these steps:

1. Click the New Group button.

The IDE creates a new command group called New Group, adds it to the
Commands list, and displays its information in the Customize IDE
Commands window.

2. Rename the new command group in the Name field.

3. Use the Appears in Menus checkbox to toggle the availability of the new
command group in the IDE menu bar.

Select the Appears in Menus checkbox to display the new command group in
the menu bar. Clear the checkbox if you do not want the command group to
appear in the menu bar.

4. Click Save.

The IDE saves your new command group. If you selected the Appears in
Menus checkbox, your new command group appears in the menu bar.

Creating a New Menu Command

To create a new menu command, follow these steps:

1. Select the command group you want to contain the new menu command.

You must select an existing command group in the Commands list.

2. Click the New Command button.

The IDE creates a new menu command named New Command and places it
within the selected command group. The information for the new menu
command appears in the Customize IDE Commands window.
338 IDE 5.6 User’s Guide

Customizing the IDE
Customizing IDE Commands
3. Enter a name for the new menu command.

You can change the default name of New Command. Enter a new name in
the Name field of the Customize IDE Commands window.

4. Use the Appears in Menus checkbox to toggle the availibility of the new
command within its command group.

5. Define the desired Action for the new menu command.

6. Click Save.

The IDE saves your new menu command. If you enabled the Appears in Menus
checkbox, the new menu command appears within the selected command group.

Figure 25.2 Command action fields
339IDE 5.6 User’s Guide

Customizing the IDE
Customizing IDE Commands
Defining Command Actions (Windows)

These fields help you associate an action with the new menu command:

• Execute—Enter in this field a command to run an application.
Alternatively, click the ellipsis button next to the field to select the
application using a standard dialog box.

• Arguments—Enter the arguments that the IDE must pass to the application
specified in the Execute field. Alternatively, choose the desired arguments
from the pop-up menu next to the field.

• Directory—Enter the working directory the IDE should use when it
executes the application specified in the Execute field. Alternatively, choose
the desired directory from the pop-up menu next to the field.

Pre-defined Variables in Command
Definitions
The IDE provides pre-defined variables for Windows, Solaris, and Linux (not
Mac OS) to associate actions with commands. When you create a new command,
you can use these pre-defined variables in command definitions to provide
additional arguments that the IDE passes to the application (which is specified in
the Execute field).

NOTE You can use variables that end with Dir as both argument and
directory names.
340 IDE 5.6 User’s Guide

Customizing the IDE
Customizing IDE Commands
Figure 25.3 Pre-defined Arguments
341IDE 5.6 User’s Guide

Customizing the IDE
Customizing IDE Commands
Figure 25.4 Pre-defined Directory variables

Table 25.2 on page 342 explains the pre-defined variables for command-line
arguments.

Table 25.2 Pre-defined variables in command definitions

Variable Command-line output

%sourceFilePath sourceFilePath is the frontmost editor window's full path.

%sourceFileDir sourceFileDir is the frontmost editor window's directory.

%sourceFileName sourceFileName is the frontmost editor window's
filename.

%sourceLineNumber sourceLineNumber is the line number of the insertion
point in the front window.
342 IDE 5.6 User’s Guide

Customizing the IDE
Customizing IDE Commands
%sourceSelection sourceSelection is the path to a temporary file containing
the currently selected text.

%sourceSelUpdate sourceSelUpdate is like sourceSelection, except the
IDE waits for the command to finish and updates the selected
text with the contents of the file.

%projectFilePath projectFilePath is the full path of the front project window.

%projectFileDir projectFileDir is the directory of the front project window.

%projectFileName projectFileName is the filename of the front project
window.

%projectSelectedFiles projectSelectedFiles passes the selected filenames in
the project window.

%targetFilePath targetFilePath is the full path of the output file of the front
project.

%targetFileDir targetFileDir is the directory of the output file of the front
project.

%targetFileName targetFileName is the filename of the output file of the
front project.

%currentTargetName currentTargetName passes the name of the current
target of the frontmost window.

%symFilePath symFilePath is the full path to the symbolics file of the front
project (can be the same as targetFile, such as CodeView).

%symFileDir symFileDir is the full directory to the symbolics file of the
front project (can be the same as targetFile, such as
CodeView)

%symFileName symFileName is the full filename to the symbolics file of
the front project (can be the same as targetFile, such as
CodeView)

Table 25.2 Pre-defined variables in command definitions (continued)

Variable Command-line output
343IDE 5.6 User’s Guide

Customizing the IDE
Customizing IDE Commands
Using a Pre-defined Variable

To use a pre-defined variable, follow these steps:

1. Create a new menu command.

The IDE creates a new menu command named New Command and places it
within your selected command group. The information for the new menu
command appears in the Customize IDE Commands window.

2. Enter a name for the new menu command.

3. Use the Appears in Menus checkbox to toggle the availability of the new
command within its command group.

4. Define the Action for the new menu command.

a. Enter in the Execute field a command line to run an application.

b. Next to the Arguments field, click on the arrow icon and select an
argument listed in the pop-up menu.

c. Next to the Directory field, click on the arrow icon and select a directory
listed in the pop-up menu.

5. Click Save.

The IDE saves your new menu command with the pre-defined variables. If you
enabled the Appears in Menus checkbox, the new menu command appears
within the selected command group.

Defining Command Actions (Mac OS)

After you create a new menu command, the Customize IDE Commands
window shows the Run App/Script field. This field appears in the Action
section of the window.

1. Click the Choose button next to the field to display a standard Open dialog
box.

2. Use the dialog box to select an application or script.

The IDE launches this application or script each time you choose the menu
command. The path to the selected application or script appears in the Run
App/Script field.
344 IDE 5.6 User’s Guide

Customizing the IDE
Customize Toolbars
Deleting Command Groups and Menu Commands

You can delete the command groups and menu commands that you create for the
IDE. Once removed, the command groups no longer appear in the IDE’s menu
bar, and the menu commands no longer activate their associated command lines
(Windows), applications or scripts (Mac OS).

NOTE If you need to temporarily remove your customized command groups
and menu commands, consider exporting your settings. If you export
your settings, you do not need to reconstruct them if you want them in
the future.

To delete a command group or menu command, follow these steps:

1. Select the command group or menu command you wish to delete.

If necessary, click the hierarchical control next to a group to expand and view
its contents.

2. Click Delete.

After clicking the Delete button, the selected command group or menu
command disappears from the Commands list.

3. Click Save.

Clicking the Save button confirms the deletion. The IDE removes deleted
command groups from its menu bar. Deleted menu commands disappear from
their respective command groups.

Customize Toolbars
You can customize your IDE toolbars to contain frequently used commands. The
IDE toolbars contain a series of elements. Each element typically represents a
menu command. After you click the element, the IDE executes the associated
menu command. The toolbar can also contain elements that execute actions other
than menu commands.
345IDE 5.6 User’s Guide

Customizing the IDE
Customize Toolbars
Figure 25.5 Toolbar Items tab

This section explains these topics:

• “Kinds of Toolbars” on page 346

• “Toolbar Elements” on page 347

• “Modify a Toolbar” on page 347

Kinds of Toolbars
The CodeWarrior IDE uses two toolbar types:

• Main toolbar (Windows OS)—This toolbar, also known as the floating
toolbar, is always available.

• Window toolbars—These toolbars appear in particular windows, such as the
Project window toolbar and the Browser window toolbar.

This distinction is important because you show, hide, clear, and reset the
different toolbar types by using different sets of menu commands. These
commands distinguish between the floating toolbar and the other window
toolbars.
346 IDE 5.6 User’s Guide

Customizing the IDE
Customize Toolbars
When you change one of these toolbar types, that change applies to every
instance of that toolbar type you subsequently create. For example, if you modify
the toolbar in an editor window, your changes appear in all editor windows
opened thereafter.

Figure 25.6 Main toolbar (Windows OS)

Figure 25.7 Project window toolbar

Toolbar Elements
A toolbar can contain these elements:

• Commands—buttons that you click to execute IDE menu commands

• Controls—menus, such as Document Settings, Functions, Header Files,
Markers, Version Control, and Current Target

• Miscellaneous—other elements, such as the File Dirty Indicator and File
Path field

• Scripts (Mac OS)—buttons that you click to execute one of the scripts
available through the Scripts menu

Click the Toolbar Items tab at the top of the Customize IDE Commands window
to display the Toolbar view. Use this view to add new elements to a toolbar.

Modify a Toolbar
You can modify a toolbar in these ways:

• Add a toolbar element

• Remove a toolbar element

• Clear all elements on a toolbar

• Reset a toolbar
347IDE 5.6 User’s Guide

Customizing the IDE
Customize Toolbars
In certain circumstances there are restrictions on which elements you can add or
remove from a toolbar. For example, you cannot add a second instance of an
element to the toolbar.

After you modify a toolbar, the changes apply to every instance of that toolbar.
For example, if you customize the Project window toolbar, those changes will
affect every Project window that you open, not just the toolbar in the active
Project window. Your changes do not affect windows that are already open.

TIP To display a ToolTip that names a toolbar element, rest the cursor over
the element. On the Mac OS 9-hosted IDE, activate Balloon Help and rest
the cursor over the element.

Adding a Toolbar Element

You add an element to a toolbar by dragging and dropping it from the Toolbar
Items list onto a toolbar. This list is in the Toolbar Items view in the Customize
IDE Commands window.

To add an element to a toolbar, follow these steps:

1. From the Toolbar Items list, select the icon next to the element that you want
to add to a toolbar.

Make sure that the destination toolbar is visible.

2. Drag the element’s icon from the Toolbar Items list to the destination toolbar.

On the Windows-hosted IDE, if the destination toolbar accepts the element, a
framing bracket appears in the toolbar. This framing bracket shows you where
the new element will appear after you release the cursor. If the destination
toolbar does not accept the element, the framing bracket does not appear.

3. Release the element at the desired position.

After you release the element, the IDE inserts the element into the
destination toolbar.

The toolbar might not accept an element for these reasons:

• The toolbar is full.

• The element already exists in the toolbar.

• The window does not support that element.
348 IDE 5.6 User’s Guide

Customizing the IDE
Customize Toolbars
• The following elements can only be added to the editor window toolbar:
Document Settings, Functions, Header Files, Markers, Version Control
menus, File Dirty Indicator, and File Path field.

• The Current Target menu element can only be added to the Project
window toolbar.

Removing a Toolbar element

To remove an element from a toolbar, follow these steps:

1. Display a contextual menu for the button that you want to remove, as
explained in Table 25.3 on page 349.

2. Select the Remove Toolbar Item command from the contextual menu.

The IDE removes the button from the toolbar.

Clearing All Buttons on Toolbars

You can clear all elements from a toolbar and build your own toolbar from
scratch. Table 25.4 on page 350 explains how to clear the main (floating) toolbar
and window toolbars.

Table 25.3 Displaying a contextual menu for a toolbar button

On this host... Do this...

Windows Right-click the button.

Macintosh Control-click the button.

Solaris Control-click the button.

Linux Ctrl-click the button.
349IDE 5.6 User’s Guide

Customizing the IDE
Customize Toolbars
Reset Toolbars

Reset a toolbar to restore its default button set. Table 25.5 on page 350 explains
how to reset the main (floating) toolbar and window toolbar by using menu
commands.

Table 25.4 Clearing toolbars

On this
host…

Do this to clear the
main toolbar…

Do this to clear the
window toolbar…

Windows Select View > Toolbars >
Clear Main Toolbar.

Select View > Toolbars >
Clear Window Toolbar.

Macintosh Select Window > Toolbar
> Clear Floating Toolbar.

Select Window > Toolbar
> Clear Window Toolbar.

Solaris Select Window > Toolbar
> Clear Floating Toolbar.

Select Window > Toolbar
> Clear Window Toolbar.

Linux Select Window > Toolbar
> Clear Floating Toolbar.

Select Window > Toolbar
> Clear Window Toolbar.

Table 25.5 Resetting a toolbar by using menu commands

On this
host…

Do this to reset the
main toolbar…

Do this to reset the
window toolbar…

Windows Select View > Toolbars >
Reset Main Toolbar.

Select View > Toolbars >
Reset Window Toolbar.

Macintosh Select Window > Toolbar
> Reset Floating
Toolbar.

Select Window > Toolbar
> Reset Window
Toolbar.
350 IDE 5.6 User’s Guide

Customizing the IDE
Customize Key Bindings
Alternatively, you can use a contextual menu to reset the main toolbar or a
window toolbar. Once you reset the toolbar, the IDE restores the default toolbar
button set. Table 25.6 on page 351 explains how to reset the main (floating)
toolbar and window toolbar by using a contextual menu.

Customize Key Bindings
You can customize the keyboard shortcuts, known as key bindings, for various
commands in the CodeWarrior IDE. You can bind a set of keystrokes to virtually

Solaris Select Window > Toolbar
> Reset Floating
Toolbar.

Select Window > Toolbar
> Reset Window
Toolbar.

Linux Select Window > Toolbar
> Reset Floating
Toolbar.

Select Window > Toolbar
> Reset Window
Toolbar.

Table 25.6 Resetting a toolbar by using a contextual menu

On this
host…

Do this to reset the
main toolbar…

Do this to reset the
window toolbar…

Windows Right-click the toolbar and
select Reset Toolbar.

Right-click the toolbar and select
Reset Toolbar.

Macintosh Control-click the toolbar and
select Reset Toolbar.

Control-click the toolbar and select
Reset Toolbar.

Solaris Click and hold on the toolbar,
then select Reset
Toolbar.

Click and hold on the toolbar, then
select Reset Toolbar.

Linux Click and hold on the toolbar,
then select Reset
Toolbar.

Click and hold on the toolbar, then
select Reset Toolbar.

Table 25.5 Resetting a toolbar by using menu commands (continued)

On this
host…

Do this to reset the
main toolbar…

Do this to reset the
window toolbar…
351IDE 5.6 User’s Guide

Customizing the IDE
Customize Key Bindings
any command. To activate the command, type its associated key binding. Use the
Customize IDE Commands window to change IDE key bindings.

You can also use the Customize IDE Commands window to look up default key
bindings for specific commands, as well as change existing key bindings to better
suit your needs.

Click the Commands tab at the top of the Customize IDE Commands window to
display the Commands view. Use this view to configure key bindings for menu
commands, editor actions, and other actions. You can also specify prefix keys.

This section has these topics:

• Modifying key bindings

• Adding key bindings

• Deleting key bindings

• Setting Auto Repeat for key bindings

• Exporting commands and key bindings

• Importing commands and key bindings

• Quote key prefix
352 IDE 5.6 User’s Guide

Customizing the IDE
Customize Key Bindings
Figure 25.8 Customize IDE Commands—Key Bindings

Adding Key Bindings

Use the Customize IDE Commands window to specify additional key bindings
for a particular command.

To add a key binding, follow these steps:

1. From the Commands list, select the command to which you want to add a new
key binding.

Click the hierarchical controls next to the command categories to expand
them as necessary so that you can see individual commands. Select the
individual command you wish to modify.

NOTE If you want to use your keyboard’s numeric keypad as part of the new
key binding, enable the Numeric Keypad Bindings checkbox in the
Customize IDE Commands window.
353IDE 5.6 User’s Guide

Customizing the IDE
Customize Key Bindings
2. Click New Binding.

After clicking this button, the Edit Key Binding dialog box appears.

Figure 25.9 Edit Key Bindings

3. Create the key combination you would like to use for the selected command.

For example, to add the key combination Ctrl-8, hold down the Ctrl key and
press the 8 key, then release both keys at the same time.

If you decide against the key combination that you just entered, or if you
make a mistake, click Cancel in the Edit Key Binding dialog box. The IDE
discards changes and returns you to the Customize IDE Commands window.

4. Click OK in the Edit Key Binding dialog box.

The new key binding appears in the Key Bindings list in the Customize IDE
Commands window.

5. Click Save in the Customize IDE Commands window to save your changes.

The new key binding is now available for use in the IDE.

Exporting Commands and Key Bindings

You can export to a file the custom commands and key bindings that you use
with the IDE. You can then import the file into another IDE running on a
different computer in order to transfer all of your custom commands and key
bindings. This process simplifies your setup on the other computer because you
do not have to recreate your custom commands and key bindings manually.

NOTE After you import your custom commands and key bindings into
another computer, the IDE running on that computer first sets all its
commands and key bindings to their default values, then imports your
custom commands and key bindings.
354 IDE 5.6 User’s Guide

Customizing the IDE
Customize Key Bindings
To export your custom commands and key bindings, follow these steps:

1. Click Export in the Customize IDE Commands window.

After you click this button, a standard Save dialog box appears.

2. Select a location in which to save the Commands&KeyBindings.mkb file.

This file contains information about your custom commands and key
bindings.

3. Click Save.

The IDE saves the Commands&KeyBindings.mkb file at the selected
location.

TIP You can rename the Commands&KeyBindings.mkb file, but
remember to preserve the .mkb extension. This extension identifies the
file as a Metrowerks Key Bindings file. Furthermore, the
Windows-hosted version of the CodeWarrior IDE uses this extension to
properly recognize the commands and key bindings file.

Importing Commands and Key Bindings

You can import custom commands and key bindings from a previously exported
file. Commands&KeyBindings.mkb is the default name of an exported file
for custom commands and key bindings.

NOTE After you import your custom commands and key bindings into
another computer, the IDE running on that computer first sets all its
commands and key bindings to their default values, then imports your
custom commands and key bindings.

To import commands and key bindings, follow these steps:

1. Click Import in the Customize IDE Commands window.

After you click this button, a standard Open dialog box appears.

2. Use the dialog box to find and open the Commands&KeyBindings.mkb
file that you want to import.

The IDE adds the custom commands and key bindings to the Customize IDE
Commands window.
355IDE 5.6 User’s Guide

Customizing the IDE
Customize Key Bindings
Quote Key prefix

The Quote Key is a special prefix key that lets you use any character (such as a-z)
as a command key without a modifier key, and still retain the ability to use that
character normally, as in editor windows.

In typical use, a key equivalent involves two keys: a modifier key (such as the
Ctrl key) combined with a printing key. However, the IDE does not require a
modifier key.

For example, you can assign the 2 key (with no modifier) to a command. If you
make this assignment, you can no longer type a 2 into your source code in the
editor. This conflict occurs because the IDE now interprets the 2 as a command
key instead of a printing key. The Quote Key prefix provides the solution to such
conflicts.

You can configure the IDE to recognize any key as the Quote Key prefix. Despite
its name, the Quote Key prefix does not have to be the key that creates the quote
character (").

After typing an assigned Quote Key prefix, the IDE interprets the next keypress
as a keystroke, not as a command.

Returning to the earlier example, assume that you assign the 2 key to a command
and the tilde key (~) to be your Quote Key prefix. To execute the command, you
would type the 2 key. To enter the character 2 into source code, you would type
the tilde key first, then the 2 key. To enter the tilde character into source code,
you would press the tilde key twice.

WARNING! The Quote Key only affects the next key or key combination
that you type. You must use the Quote Key once for each
bound key or key combination for which you want to type.

Assigning the Quote Key prefix

To assign the Quote Key prefix:

1. Click the expand control next to the Miscellaneous command group.

Miscellaneous is part of the Commands list in the Customize IDE
Commands window.
356 IDE 5.6 User’s Guide

Customizing the IDE
Customize Key Bindings
2. Select the Quote Key item.

NOTE If you want to use the numeric keypad as part of the new key binding,
enable the Numeric Keypad Bindings checkbox in the Customize
IDE Commands window.

3. Click New Binding to display the Edit Key Bindings dialog box.

4. Type the desired Quote Key prefix.

The keys you type appear in the dialog box. If you make a mistake or decide
against the keys you typed, click Cancel to return to the Customize IDE
Commands window.

5. Click OK in the Edit Key Binding dialog box.

The new Quote Key prefix appears in the Key Bindings list.
357IDE 5.6 User’s Guide

Customizing the IDE
Customize Key Bindings
358 IDE 5.6 User’s Guide

26
Working with IDE
Preferences

This chapter explains core CodeWarrior™ IDE preference panels and provides
basic information on global- and project-level preference options. Consult the
Targeting documentation for information on platform-specific preference panels.

This chapter contains these sections:

• “IDE Preferences Window” on page 359

• “General Panels” on page 361

• “Editor Panels” on page 375

• “Debugger Panels” on page 387

Abbreviated descriptions appear in this chapter. See “Preference and Target
Settings Options” on page 423 for more information on preference-panel options.

IDE Preferences Window
The IDE Preferences window lists global IDE options. These preferences,
unless superseded by a Target Settings option, apply to every open project file.
Select Edit > Preferences to open the IDE Preferences window.

The IDE Preferences window lists preferences by group:

• General—configures overall IDE preferences, such as project builds, recent
items, and third-party tools

• Editor—configures editor preferences, such as fonts, tabs, and syntax
coloring

• Debugger—configures debugger preferences, such as window hiding
during debugging sessions, low-level interactions, and variable highlighting
359IDE 5.6 User’s Guide

Working with IDE Preferences
IDE Preferences Window
Figure 26.1 IDE Preferences window

Table 26.1 IDE Preferences window

Item Explanation

IDE Preference
Panels list

Lists preference panels, organized by group. Click the hierarchical
control next to a group name to show or hide individual
preference panels.

Preference panel Shows options for the selected item in the IDE Preference Panels
list.

Factory
Settings on
page 436

Click to restore the default options for the current preference panel.

Revert Panel on
page 448

Click to restore the most recently saved options for the current
preference panel.

Export Panel on
page 433

Click to save an XML file that contains options for the current
preference panel.
360 IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
General Panels
The General section of the IDE Preference Panels defines basic options assigned
to a new project.

The General preference panels available on most IDE hosts include:

• “Build Settings” on page 361

• “Concurrent Compiles” on page 363

• “IDE Extras” on page 364

• “Help Preferences” on page 368

• “Plugin Settings” on page 368

• “Shielded Folders” on page 369

• “Source Trees” on page 371

Build Settings
The Build Settings preference panel provides options for customizing various
aspects of project builds, including:

• file actions during project builds

• memory usage to accelerate builds

• local data storage of projects stored on read-only volumes

Import Panel on
page 440

Click to open an XML file that contains options for the current
preference panel.

OK (Windows) Click to save modifications to all preference panels and close
the window.

Cancel
(Windows)

Click to discard modifications to all preference panels and close
the window.

Apply (Windows) Click to confirm modifications to all preference panels.

Save (Macintosh,
Solaris, and
Linux)

Click to save modifications to all preference panels.

Table 26.1 IDE Preferences window (continued)

Item Explanation
361IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
Figure 26.2 Build Settings preference panel

Table 26.2 Build Settings preference panel

Item Explanation

Play sound after ‘Bring Up
To Date’ & ‘Make’ on
page 445 (Macintosh,
Solaris, and Linux)

Select to have the IDE play an alert sound after
completing a

Bring Up To Date or Make command.

Success on page 453
(Macintosh, Solaris, and
Linux)

Choose the sound the IDE plays after successfully

completing a Bring Up To Date or Make
command.

Failure on page 437
(Macintosh, Solaris, and
Linux)

Choose the sound the IDE plays after failing to complete
a

Bring Up To Date or Make command.

Build before running on
page 427

Choose to always build the project before running it,
never build the project before running it, or ask for the
desired action.

Save open files before
build on page 448

Select to automatically save the contents of all editor
windows before starting a build.

Show message after
building up-to-date
project on page 451

Select to have the IDE display a message after
successfully building a project.
362 IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
Concurrent Compiles
The Concurrent Compiles preference panel controls execution of simultaneous
IDE compilation processes. The IDE lists this panel in the IDE Preference Panels
list when the active compiler supports concurrency.

The IDE uses concurrent compiles to compile code more efficiently. The IDE
improves its use of available processor capacity by spawning multiple compile
processes, which allow the operating system to perform these tasks as needed:

• optimize resource use

• use overlapped input/output

For those compilers that support concurrency, concurrent compiles improve
compile time on both single- and multiple-processor systems.

Figure 26.3 Concurrent Compiles preference panel

Include file cache on
page 440 (Macintosh)

Enter the kilobytes of memory to allocate to the file
cache used for #include files during a project build.

Compiler thread stack on
page 429 (Windows and
Macintosh)

Enter the kilobytes of memory to allocate to the stack for
execution of the IDE compiler thread. Increase the size
when compiling heavily optimized code.

Use Local Project Data
Storage on page 456

Select to specify a location to save project data if the
project is on a read-only volume. Click Choose to select
the location.

Table 26.2 Build Settings preference panel (continued)

Item Explanation
363IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
IDE Extras
The IDE Extras preference panel provides options for customizing various
aspects of the IDE, including:

• menu-bar layout

• the number of recent projects, document files, and symbolics files to
remember

• use of a third-party editor

Table 26.3 Concurrent Compiles preference panel

Item Explanation

Use Concurrent
Compiles on page 455

Select to have the IDE run multiple compilation
processes simultaneously.

Recommended on
page 447

Select to allow the number of concurrent compiles
suggested by
the IDE.

User Specified on
page 459

Select to stipulate the number of concurrent compiles.
364 IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
Figure 26.4 IDE Extras preference panel

Table 26.4 IDE Extras preference panel

Item Explanation

Menu bar layout on page 444 Choose a layout that organizes IDE menus into a
typical host-platform menu bar. Restart the IDE in
order for menu-bar layout changes to take effect.

Projects on page 446 Enter the number of recently opened projects for

the IDE to display in the Open Recent
submenu. Enter zero to disable this feature.

Documents on page 431 Enter the number of recently opened documents

for the IDE to display in the Open Recent
submenu. Enter zero to disable
this feature.

Symbolics on page 454 Enter the number of recently opened symbolics

files for the IDE to display in the Open
Recent submenu. Enter zero to disable
this feature.
365IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
Workspaces on page 461 Enter the number of recently opened workspaces

for the IDE to display in the Open Recent
submenu. Enter zero to disable this feature.

Context popup delay on page 430
(Macintosh, Solaris, and Linux)

Enter the number of ticks to wait before
displaying contextual menus. A tick is 1/60 of a
second.

Use Third Party Editor on
page 458 (Windows)

Select to use a third-party text editor to edit
source files.

Launch Editor on page 441
(Windows)

Enter a command-line expression that runs the
desired third-party text editor.

Launch Editor w/ Line # on
page 442 (Windows)

Enter a command-line expression that runs the
desired third-party text editor and passes to that
editor an initial line of text to display.

Use Multiple Document
Interface on page 457 (Windows)

Select to have the IDE use the Multiple
Document Interface (MDI). Clear to have the IDE
use the Floating Document Interface (FDI).
Restart the IDE in order for interface changes to
take effect.

Zoom windows to full screen on
page 461 (Macintosh, Solaris, and
Linux)

Select to have zoomed windows fill the entire
screen. Clear to have zoomed windows in a
default size.

Use Script menu on page 458
(Macintosh, Solaris, and Linux)

Select to display the Scripts menu in the menu
bar. Clear to remove the Scripts menu from the
menu bar.

Use External Editor on page 456
(Macintosh, Solaris, and Linux)

Select to use a third-party text editor to edit text
files in the current project. Clear to use the editor
included with the IDE.

Use ToolServer menu on page 458
(Classic Macintosh)

Select to display the ToolServer menu in the
menu bar. Clear to remove the ToolServer menu
from the menu bar.

Enable automatic Toolbar help on
page 433 (Classic Macintosh)

Select to display Balloon Help after resting the
cursor over a toolbar icon. Clear to prevent
Balloon Help from appearing.

Table 26.4 IDE Extras preference panel (continued)

Item Explanation
366 IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
Using an External Editor on the Macintosh

To use an external editor on the Macintosh, the IDE sends AppleEvents to an
alias file that points to the editor application. Manually configure the IDE to use
an external editor.

1. Choose Edit > Preferences.

The IDE Preferences window appears.

2. Select the IDE Extras panel from the IDE Preference Panels list.

3. Select the Use External Editor option.

4. Click Save.

The IDE is now prepared to use an external editor application. To specify the
external editor to use:

1. Find and open the CodeWarrior folder.

2. Create a folder named (Helper Apps) inside the CodeWarrior folder (if
it does not already exist).

3. Make an alias of the desired editor application.

4. Place the alias file inside the (Helper Apps) folder.

5. Rename the alias file External Editor.

6. Restart the IDE in order for changes to take effect.

The IDE now uses the aliased external editor.

Use default workspace on
page 456

Select this option to have the IDE use the default
workspace to save and restore state information.
Clear this option to have the IDE always start in
the same state.

Find Reference using on page 437
(Macintosh)

Choose an online browser application to view
reference information and definitions.

Show Code and Data Sizes on
page 450 (Windows)

Displays or hides Code and Data columns in
project manager.

Table 26.4 IDE Extras preference panel (continued)

Item Explanation
367IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
Help Preferences
The Help Preferences panel, available on the Solaris and Linux IDE hosts,
specifies the browser used for viewing IDE online help.

Figure 26.5 Help Preferences panel

Plugin Settings
The Plugin Settings preference panel contains options for troubleshooting third-
party IDE plug-ins.

Figure 26.6 Plugin Settings preference panel

Table 26.5 Help Preferences panel

Item Explanation

Browser Path on
page 427

Enter a path to the browser to use for viewing IDE online help.
Alternatively, use the Choose... button.

Choose... Click to select the path to the browser to use for viewing IDE
online help.
368 IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
Shielded Folders
The Shielded Folder preference panel enables the IDE to ignore specified
folders during project operations and find-and-compare operations. The IDE
ignores folders based on matching names with regular expressions defined in the
preference panel.

NOTE If the Access Paths settings panel in the Target Settings window
contains a path to a shielded folder, the IDE overrides the shielding
and includes the folder in project operations and find-and-compare
operations.

Table 26.6 Plugin Settings preference panel

Item Explanation

Level on page 442 Choose the plug-in diagnostics level the IDE
generates the next time it loads plug-ins. Restart the
IDE in order for diagnostic-level changes to take
effect. Options are None, Errors Only, and All Info.

Disable third party COM
plugins on page 431

Select to prevent the IDE from loading third-party
Common Object Model (COM) plug-ins.
369IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
Figure 26.7 Shielded Folders preference panel

Table 26.7 Shielded Folders preference panel

Item Icon Explanation

Shielded folder list Lists folders that match the specified
regular expression. The IDE skips these
folders during project operations, find-
and-compare operations, or both.

Regular Expression on
page 447

Enter the regular expression used to
shield folders from selected operations.

Project operations on page 447 Select to have the IDE skip folders
during project operations. A bullet
appears in the corresponding column of
the shielded folder list.

Find and compare
operations on page 437

Select to have the IDE skip folders
during find-and-compare operations. A
bullet appears in the corresponding
column of the shielded folder list.
370 IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
2

Source Trees
Use the Source Trees panel to add, modify, and remove source trees (root paths)
used in projects. Use source trees to define common access paths and build-target
outputs to promote sharing of projects across different hosts. Source trees have
these scopes:

• Global source trees, defined in the IDE Preferences window, apply to all
projects.

Add Click to add the current Regular
Expression field entry to the shielded
folder list.

Change Click to replace the selected regular
expression in the shielded folder list with
the current Regular Expression field
entry.

Remove Click to delete the selected regular
expression from the shielded folder list.

Table 26.8 Default regular expressions in Shielded Folders panel

Regular Expression Explanation

\(.*\) Matches folders with names that begin and end
with parentheses, such as the
(Project Stationery) folder.

CVS Matches folders named CVS. With this regular
expression, the IDE skips Concurrent Versions
System (CVS) data files.

.*[_]Data Matches the names of folders generated by the
IDE that store target data information, such as a
folder named MyProject_Data.

Table 26.7 Shielded Folders preference panel (continued)

Item Icon Explanation
371IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
• Project source trees, defined in the Target Settings window for a particular
project, apply only to files in that project. Project source trees always take
precedence over global source trees.

Except for the difference in scope, global and project source trees operate
identically.

Figure 26.8 Source Trees panel

Table 26.9 Source Trees panel

Item Explanation

Source Tree list Contains the Name and Path of currently defined source trees.

Name Enter a name for a new source tree or modify the name of a
selected source tree.

Type on page 455 Choose the source-tree path type.

Choose Click to select or modify a source-tree path.

Add Click to add a new source-tree path to the Source Tree list.
372 IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
Adding Source Trees

Add source trees that define root paths for access paths and build-target output.

1. Choose Edit > Preferences.

The IDE Preferences window appears.

2. Select the Source Trees panel from the IDE Preference Panels list.

3. Enter in the Name field a name for the new source tree.

4. Choose the source tree Type:

• Absolute Path—defines a path from the root level of the hard drive to a
desired folder, including all intermediate folders

• Environment Variable—(Windows, Solaris, and Linux) defines an
environment variable in the operating environment

• Registry Key—(Windows) defines a key entry in the operating-
environment registry

5. Enter the source-tree definition:

• For Absolute Path—Click Choose to display a subordinate dialog box.
Use the dialog box to select the desired folder. The absolute path to the
selected folder appears in the Source Trees preference panel.

• For Environment Variable—Enter the path to the desired environment
variable.

• For Registry Key—Enter the path to the desired key entry in the registry.

6. Click Add.

The IDE adds the new source tree to the Source Trees list.

Change Click to modify the selected source-tree name or path.

Remove Click to delete the selected source tree from the Source Tree
list.

Table 26.9 Source Trees panel (continued)

Item Explanation
373IDE 5.6 User’s Guide

Working with IDE Preferences
General Panels
7. Click OK, Apply, or Save.

The IDE saves the source-tree changes.

Changing Source Trees

Change a source tree to update path information for a project. The IDE must be
able to resolve source trees before building the project.

1. Choose Edit > Preferences.

2. Select the Source Trees panel from the IDE Preference Panels list.

3. Select the desired source tree in the Source Trees list.

4. If needed, enter a new name for the selected source tree.

5. If needed, choose a new path type for the selected source tree.

6. Click Change.

The IDE updates the source tree and displays changes in the Source Trees
list. A reminder message to update source-tree references in the project
appears.

7. Click OK, Apply, or Save.

The IDE saves the source-tree changes.

Removing Source Trees

Remove source trees that the project no longer uses. The IDE must be able to find
the remaining source trees before building the project.

1. Choose Edit > Preferences.

2. Select the Source Trees panel from the IDE Preference Panels list.

3. Select the source tree from the Source Trees list.

4. Click Remove.

The IDE updates the Source Trees list. A reminder message to update source-
tree references in the project appears.

5. Click OK, Apply, or Save.

The IDE saves the source-tree changes.
374 IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Editor Panels
The Editor section of the IDE Preference Panels list defines the editor settings
assigned to a new project.

The Editor preference panels available on most IDE hosts include:

• “Code Completion” on page 375

• “Code Formatting” on page 376

• “Editor Settings” on page 378

• “Font & Tabs” on page 381

• “Text Colors” on page 383

Code Completion
The Code Completion preference panel provides options for customizing the
IDE code-completion behavior, including:

• automatic invocation and indexing

• window positioning and appearance delay

• case sensitivity

Figure 26.9 Code Completion preference panel
375IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Code Formatting
The Code Formatting preference panel provides options for customizing editor
code-formatting behavior, including:

• indenting

• syntax placement

• brace handling

Table 26.10 Code Completion preference panel

Item Explanation

Automatic Invocation on
page 425

Select to automatically open the Code Completion
window to complete programming-language
symbols. Clear to manually open the window.

Window follows insertion point on
page 460

Select to have the Code Completion window follow
the insertion point as you edit text. Clear to leave
the window in place.

Display deprecated items on
page 431

Select to have the Code Completion window
display obsolete items in gray text. Clear to have
the window hide obsolete items.

Case sensitive on page 428 Select to have the IDE consider case when
completing code. Clear to have the IDE ignore
case.

Code Completion Delay on
page 428 (ticks)

Enter the number of ticks to wait before opening
the Code Completion window. A tick is 1/60 of a
second.
376 IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Figure 26.10 Code Formatting preference panel

Table 26.11 Code Formatting preference panel

Item Explanation

Use Automatic Code
Formatting

Check to have the editor automatically format your source
code according to settings in this panel.
Clear to prevent the editor from automatically formatting
your code.

Language Settings Use to specify the language type that you want to format.
Your selection changes the other options in this panel to
their default states for the selected language.

Format braces Check to have the editor automatically insert a closing
brace when you type an opening brace. The editor places
the cursor between the opening brace that you typed and
the closing brace that it inserts.
Clear to prevent the editor from automatically inserting a
closing brace when you type an opening brace.
377IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Editor Settings
The Editor Settings preference panel provides options for customizing the
editor, including:

• fonts, window locations, and insertion-point positions

Place opening brace on
separate line

Check to have the editor place on the next line an opening
brace that you type.
Clear to prevent the editor from placing on the next line an
opening brace that you type.

Indent braces Check to have the editor indent braces by one tab stop
from the previous line.
Clear to prevent the editor from indenting braces by one
tab stop from the previous line.

Place “else” on same line
as closing brace

Check to have the editor place else and else if

text on the same line as the closing brace of the if or

else if statement.

Clear to prevent the editor from placing else and else
if text on the same line as the closing brace of the if or

else if statement.

Indent code within braces Check to have the editor indent code by one tab stop from
the braces.
Clear to prevent the editor from indenting code by one tab
stop from the braces.

Indent “case” within
“switch” statement

Check to have the editor indent case statements by one

tab stop inside a switch statement.

Clear to prevent the editor from indenting case

statements by one tab stop inside a switch statement.

Close braces, brackets,
and parentheses

Check to have the editor automatically insert the
corresponding closing character when you type an
opening brace, bracket, or parenthesis. The editor places
the cursor between the opening character and the closing
character.
Clear to prevent the editor from automatically inserting the
corresponding closing character when you type an
opening brace, bracket, or parenthesis.

Table 26.11 Code Formatting preference panel (continued)

Item Explanation
378 IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
• contextual menus

• additional editor-window features

Figure 26.11 Editor Settings preference panel

Table 26.12 Editor Settings preference panel

Item Explanation

Font preferences on
page 438

Select to retain font settings for each source file. Clear
to apply default font settings each time the IDE displays
the source file.

Selection position on
page 450

Select to retain the text-insertion position in each
source file.

Window position and size on
page 460

Select to retain the location and dimensions of each
editor window.

Edit Commands on
page 432

Select to add Edit menu commands to contextual
menus.
379IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Browser Commands on
page 426

Select to add Browser menu commands to contextual
menus. Also select in order to use the Insert Template
Commands option.

Insert Template
Commands on page 440
(Macintosh)

Select to add the Insert Template submenu to
contextual menus. The submenu displays source-
defined function templates.

Project Commands on
page 446

Select to add Project menu commands to contextual
menus.

VCS Commands on
page 460

Select to add VCS (Version Control System) menu
commands to contextual menus.

Debugger Commands on
page 430

Select to add Debug menu commands to contextual
menus.

Balance while typing on
page 426

Select to flash the matching (, [, or { after typing),

], or } in an editor window.

Use multiple undo on
page 458

Select to allow multiple undo and redo operations while
editing text.

Relaxed C popup parsing on
page 447

Select to allow the C parser to recognize some non-
standard function formats and avoid skipping or
misinterpreting some definition styles.

Drag and drop editing on
page 432

Select to allow drag-and-drop text editing.

Left margin click selects
line on page 442

Select to allow selection of an entire line of text by
clicking in the left margin of the editor window.

Sort function popup on
page 453

Select to sort function names by alphabetical order in
menus. Clear to sort function names by order of
appearance in the source file.

Enable Virtual Space on
page 433 (Windows and
Macintosh)

Select to allow moving the text-insertion point beyond
the end of a source-code line. Entering new text
automatically inserts spaces between the former end of
the line and the newly entered text.

Table 26.12 Editor Settings preference panel (continued)

Item Explanation
380 IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Font & Tabs
The Font & Tabs preference panel provides options for customizing settings
used by the editor, including:

• font and font size used in editor windows

• auto indentation and tab size

• tabs on selections and replacing tabs with spaces

Figure 26.12 Font & Tabs preference panel

Balance Flash Delay on
page 426

Enter the number of ticks to flash a balancing
punctuation character. A tick is1/60 of a second.

Default file format on
page 430

Choose the default end-of-line format used to save
files.

Table 26.12 Editor Settings preference panel (continued)

Item Explanation
381IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Setting the Text Font

To set the text font, follow these steps:

1. Choose Edit > Preferences.

2. Select the Font & Tabs panel in the Editor group in the IDE Preference
Panels list.

3. In the Font Settings area of the IDE Preferences window, select a font type
in the drop-down menu in the Font field.

4. Save your font in the IDE Preferences window.

• Windows: Click OK.

• Macintosh/Linux/Solaris: Click Save.

The foreground text changes to the new font.

Table 26.13 Font & Tabs preference panel

Item Explanation

Font on page 438 Choose the typeface displayed in editor windows.

Size on page 452 Choose the font size displayed in editor windows.

Script on page 449
(Windows)

Choose the IDE script system. The script system maps
keyboard keys to characters of an alphabet.

Tab indents
selection on page 454

Select to indent each line of selected text after pressing Tab.
Clear to replace selected text with a tab character after
pressing Tab.

Tab Size on page 454 Enter the number of spaces to substitute in place of a tab
character. This number applies to the Tab Inserts Spaces
option.

Auto Indent on
page 424

Select to automatically apply the indentation level from the
previous line of text to each new line created by pressing Enter
or Return.

Tab Inserts
Spaces on page 454

Select to insert spaces instead of a tab character after
pressing Tab. The Tab Size option determines the number of
inserted spaces.
382 IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Setting the Text Size

To set the text size, follow these steps:

1. Choose Edit > Preferences.

2. Select the Font & Tabs panel in the Editor group in the IDE Preference
Panels list.

3. In the Font Settings area of the IDE Preferences window, select the Size
drop-down menu and choose a text point size (from 2 to 24 points).

4. Save your text size in the IDE Preferences window.

• Windows: Click OK.

• Macintosh/Linux/Solaris: Click Save.

The foreground text changes to the new size.

Text Colors
The Text Colors preference panel customizes colors applied to elements of
source code displayed in editor windows, such as:

• default foreground and background in editor windows

• standard comments, keywords, and strings in source code

• custom-defined keywords

• browser symbols

Default settings provide a simple scheme of at least four source-code colors. If
four colors do not provide sufficient detail, modify this preference panel to create
more sophisticated color schemes.
383IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Figure 26.13 Text Colors preference panel

Table 26.14 Text Colors preference panel

Item Explanation

Foreground on page 438 Click the color swatch to display a dialog box. Use the
dialog box to set the foreground color used in editor
windows for text.

Background on page 426 Click the color swatch to set the background color used
in
editor windows.

Activate Syntax Coloring on
page 423

Select to apply custom colors to comments, keywords,
strings, and custom keywords in text. Clear to use the
Foreground color for all text.

Comments on page 429 Click the color swatch to set the color used for source-
code comments.

Keywords on page 441 Click the color swatch to set the color used for source-
code language keywords.
384 IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Strings on page 453 Click the color swatch to set the color used for source-
code string literals.

Set 1, Set 2, Set 3, Set 4 Click a color swatch to set the color used for the
corresponding custom-keyword set.

Edit Click to add, modify, or remove keywords from the
corresponding custom-keyword set.

Activate Browser
Coloring on page 423

Select to apply custom colors to browser symbols in text.
Clear to use the Foreground color for all text.

Classes Click the color swatch to set the color used for source-
code classes.

Constants Click the color swatch to set the color used for source-
code constants.

Enums Click the color swatch to set the color used for source-
code enumerations.

Functions Click the color swatch to set the color used for source-
code functions.

Globals Click the color swatch to set the color used for source-
code global variables.

Macros Click the color swatch to set the color used for source-
code macros.

Templates Click the color swatch to set the color used for source-
code templates.

TypeDefs Click the color swatch to set the color used for source-
code type definitions.

Other Click the color swatch to set the color used for other
symbols not specified in the Activate Browser Coloring
section.

Table 26.14 Text Colors preference panel (continued)

Item Explanation
385IDE 5.6 User’s Guide

Working with IDE Preferences
Editor Panels
Setting the Foreground Text Color

Use the Foreground Color option to configure the foreground text color
displayed in editor windows.

1. Choose Edit > Preferences.

2. Select the Text Colors panel in the Editor group in the IDE Preference
Panels list.

3. Click the Foreground color box to set the editor’s foreground color.

4. Pick color.

5. Click OK in the Color Picker window.

6. Click OK or Save

The foreground text color changes to the new color.

Setting the Background Text Color

Use the Background Color option to configure the background color displayed
by all editor windows.

1. Choose Edit > Preferences.

2. Select the Text Colors panel in the Editor group in the IDE Preference
Panels list.

3. Click the Background color box to set the editor’s background color.

4. Pick color.

5. Click OK in the Color Picker window.

6. Click OK or Save

The background text color changes to the new color.

Activate Syntax and Browser Coloring

Use the Activate Syntax Coloring and Activate Browser Coloring options to
configure the syntax and browser colors that all editor windows display.

1. Choose Edit > Preferences.
386 IDE 5.6 User’s Guide

Working with IDE Preferences
Debugger Panels
2. Select the Text Colors panel in the Editor group in the IDE Preference
Panels list.

3. Select the checkbox next to the Activate Syntax Coloring or the Activate
Browser Coloring option.

4. Click on the colored box next to the option.

5. Pick color.

6. Click OK in the Color Picker window.

7. Click OK or Save

Debugger Panels
The Debugger section of the IDE Preference Panels defines the basic debugger
settings assigned to a new project.

The Debugger preference panels available on most IDE hosts include:

• “Display Settings” on page 387

• “Window Settings” on page 389

• “Global Settings” on page 391

• “Remote Connections” on page 393

Display Settings
The Display Settings preference panel provides options for customizing various
aspects of the IDE Debugger, including:

• assignment of colors to changed variables and watchpoints

• viewing variable types

• displaying local variables

• using decimal values

• sorting functions

• using dynamic objects

Figure 26.14 on page 388 shows the Display Settings preference panel. Table
26.15 on page 388 explains the items in the preference panel.
387IDE 5.6 User’s Guide

Working with IDE Preferences
Debugger Panels
Figure 26.14 Display Settings preference panel

Table 26.15 Display Settings preference panel

Item Explanation

Variable values change on
page 459

Click the color swatch to set the color that indicates a
changed variable value.

Watchpoint indicator on
page 460

Click the color swatch to set the color that indicates a
changed watchpoint value.

Show variable types on
page 452

Select to always show the type associated with each
variable.

Show variable location on
page 452

Select to display the Location column in the
Variables pane of the Thread window.

Show all locals on page 450 Select to show all local variables. Clear to have the
debugger show only variables near the program
counter.
388 IDE 5.6 User’s Guide

Working with IDE Preferences
Debugger Panels
Window Settings
The Window Settings preference panel provides options for customizing how
the debugger displays windows during debugging sessions, including non-
debugging and project windows.

Smart Variable Formatting Controls whether variables in variable windows,
panes and expression displays are formatted using
entries in XML files located in the VariableFormats
support folder; such as the Windows_Formats.xml
file.

Show hidden locals Select to show hidden local variables. A hidden local
variable is a variable that is in scope, but is hidden
by a variable of the same name in a deeper scope.

Show values as decimal on
page 451

Select to always show decimal values instead of
hexadecimal values.

Sort functions by method name
in symbolics window on
page 452

Select to sort functions of the form
className::methodName in the Symbolics

window by methodName. Clear to sort

by className.

Attempt to show the dynamic
runtime type of objects on
page 424

Select to attempt to display the runtime type of the
specified language objects. Clear to display the
static type.

Show variable values in source
code on page 452

Select to show variable values in contextual menus
in the source code.

Default size for unbounded
arrays on page 431

Enter the default number of unbounded array
elements to display in a View Array window.

Scientific Notation for (1-9) or
more 0s after “0.”

Maximum number of zeros after a decimal point in a
float value such as 0.034. For example, a value of 2
means 0.00045 will be displayed in scientific notation
as 4.5e-4; a value of 3 will be displayed as 0.00045.
Does not change value precision, only value display.

Table 26.15 Display Settings preference panel (continued)

Item Explanation
389IDE 5.6 User’s Guide

Working with IDE Preferences
Debugger Panels
Figure 26.15 Window Settings preference panel

Table 26.16 Window Settings preference panel

Item Explanation

Do nothing on page 431 Select to leave all windows in place when starting
a debugging session.

Minimize non-debugging
windows on page 444 (Windows)

Select to minimize all non-debugging windows
when starting a debugging session.

Collapse non-debugging
windows on page 429 (Macintosh,
Solaris, and Linux)

Select to collapse all non-debugging windows
when starting a debugging session.

Hide non-debugging windows on
page 439

Select to hide, but not close, all non-debugging
windows when starting a debugging session.

Close non-debugging windows on
page 428

Select to close all non-debugging windows,
except for the active project window, when
starting a debugging session.

Do nothing to project windows on
page 431

Select to prevent the IDE from hiding project
windows when starting a debugging session.

Use Debugging Monitor on
page 456 (Classic Macintosh)

Select to use a second monitor during debugging
sessions.

Monitor for debugging on page 444
(Classic Macintosh)

Choose the monitor to display debugging
windows. The coordinates in parentheses identify

the selected monitor in the QuickDraw®
coordinate space.
390 IDE 5.6 User’s Guide

Working with IDE Preferences
Debugger Panels
Global Settings
The Global Settings preference panel provides options for customizing various
global options for the debugger, including:

• file caching to accelerate debugger sessions

• automatic launch of applications and libraries

• confirmation of attempts to close or quit debugging sessions

Move open windows to debugging
monitor when debugging starts on
page 445
(Classic Macintosh)

Select to move all open windows to the selected
debugging monitor when a debugging session
starts.

Open windows on debugging
monitor during debugging on
page 445 (Classic Macintosh)

Select to display on the debugging monitor any
window opened during a debugging session.

Show threads in separate
windows on page 451

Select to display threads in separate Thread
windows. Clear to show all threads in one
window. Restart active debugging sessions in
order for changes to take effect.

Show processes in separate
windows on page 451

Select to display processes in separate windows.
Clear to show all processes in one window.

Table 26.16 Window Settings preference panel (continued)

Item Explanation
391IDE 5.6 User’s Guide

Working with IDE Preferences
Debugger Panels
Figure 26.16 Global Settings preference panel

Table 26.17 Global Settings preference panel

Item Explanation

Cache Edited Files Between
Debug Sessions on page 427

Select to maintain a cache of modified files
between debugging sessions. Use this option to
debug through the original source code for files
modified since the last build.

Maintain files in cache on
page 444

Enter the number of days that the IDE maintains
its file cache.

Purge Cache on page 447 Click to delete the file cache maintained by the
IDE, freeing memory and disk space.

Confirm invalid file modification
dates when debugging on
page 429

Select to have the IDE display a warning
message when debugging a project with mis-
matched file modification dates.

Automatically launch applications
when SYM file opens on page 425

Select to automatically launch the application
program associated with an open symbolics file.

Confirm “Kill Process” when
closing or quitting on page 430

Select to prompt for confirmation before killing
processes upon quitting a debugging session.
392 IDE 5.6 User’s Guide

Working with IDE Preferences
Debugger Panels
Remote Connections
The Remote Connections preference panel configures general network settings
for remote-debugging connections between the host computer and other
computers. Use these general settings as the basis for defining more specific
connections for individual projects in conjunction with the Remote Debugging
settings panel. The Target Settings window contains the Remote Debugging
settings panel.

Select stack crawl window when
task is stopped on page 450

Select to bring forward the Stack Crawl window
(also known as the Thread window) after the
debugger stops tasks.

Don’t step into runtime support
code on page 432

Select to have the IDE not step into Metrowerks
Standard Library (MSL) runtime support code and
instead directly step into your own code.

Auto Target Libraries on page 424 Select to have the IDE attempt to debug
dynamically linked libraries (DLLs) loaded by the
target application.

Table 26.17 Global Settings preference panel (continued)

Item Explanation
393IDE 5.6 User’s Guide

Working with IDE Preferences
Debugger Panels
Figure 26.17 Remote Connections preference panel

Table 26.18 Remote Connections preference panel

Item Explanation

Remote Connection list Displays the name and connection type of all remote
connections currently defined.

Add Click to add a new remote connection to the Remote
Connection list.

Change Click to change the settings of the selected remote
connection.

Remove Click to remove the selected remote connection from the
Remote Connection list.
394 IDE 5.6 User’s Guide

Working with IDE Preferences
Debugger Panels
Adding Remote Connections

Add a remote connection that defines a general network connection between the
host computer and a remote computer.

1. Choose Edit > Preferences.

2. Select the Remote Connections panel from the IDE Preference Panels list.

3. Click Add.

The New Connection dialog box appears.

4. Enter the name for the general remote connection.

5. Choose from the Debugger pop-up menu the desired debugger for use with
the remote connection.

6. Configure the Browse in processes window option as desired:

• selected—the IDE filters the Processes window list and the list of
available debuggers for an opened symbolics file. The filter prevents an
unavailable remote connection from appearing in either list.

• cleared—the IDE does not filter the Processes window list or the list of
available debuggers for an opened symbolics file. Both available and
unavailable remote connections appear in the lists.

7. Choose from the Connection Type pop-up menu the desired network
protocol for the remote connection.

8. Enter the Internet Protocol address of the remote computer in the IP Address
field.

9. Click OK.

The IDE adds the new remote connection to the Remote Connections list.

10.Click OK, Apply, or Save.

Changing Remote Connections

Change a remote connection to update network-connection information between
the host and remote computer.

1. Choose Edit > Preferences.
395IDE 5.6 User’s Guide

Working with IDE Preferences
Debugger Panels
2. Select the Remote Connections panel from the IDE Preference Panels list.

3. Select from the Remote Connections list the remote connection that requires
modification.

4. Click Change.

A dialog box appears with the current network settings for the selected remote
connection.

5. If needed, enter a new name for the general remote connection.

6. If needed, choose from the Debugger pop-up menu a new debugger for use
with the remote connection.

7. If needed, toggle the Browse in processes window option.

8. If needed, choose from the Connection Type pop-up menu a new network
protocol for the remote connection.

9. If needed, enter a new Internet Protocol address for the remote computer.

10.Click OK.

The IDE updates the remote connection and displays changes in the Remote
Connections list.

11.Click OK, Apply, or Save.

Removing Remote Connections

Remove a remote connection that the project no longer uses.

1. Choose Edit > Preferences.

2. Select the Remote Connections panel from the IDE Preference Panels list.

3. Select from the Remote Connections list the obsolete remote connection.

4. Click Remove.

The IDE updates the Remote Connections list.

5. Click OK, Apply, or Save.
396 IDE 5.6 User’s Guide

27
Working with Target
Settings

This chapter explains core CodeWarrior™ IDE target settings panels and
provides basic information on target settings options for the current project’s
build targets. Consult the Targeting documentation for information on platform-
specific target settings panels.

This chapter contains these sections:

• “Target Settings Window” on page 397

• “Target Panels” on page 400

• “Code Generation Panels” on page 411

• “Editor Panels” on page 414

• “Debugger Panels” on page 416

Abbreviated descriptions appear in this chapter. See “Preference and Target
Settings Options” on page 423 for more information on target settings panel
options.

Target Settings Window
The Target Settings window lists settings for the current project’s build targets.
These target settings supersede global preferences defined in the IDE
Preferences window.

The Target Settings window lists settings by group:

• Target—configures overall build target settings, such as names, browser
caching, file mappings, and access paths

• Language Settings—configures programming language settings. Consult
the Targeting documentation for more information about these settings
panels
397IDE 5.6 User’s Guide

Working with Target Settings
Target Settings Window
• Code Generation (Windows)—configures processor, disassembler, and
optimization settings for generating code

• Linker—configure linker settings for transforming object code into a final
executable file. Consult the Targeting documentation for more information
about these settings panels.

• Editor—configure custom keyword sets and colors

• Debugger—configure settings for executable files, program suspension, and
remote debugging

• Command-Line Extras (Linux/Solaris)—configure environmental
variables for user applications and define custom tool commands (if
necessary)

Figure 27.1 Target Settings window
398 IDE 5.6 User’s Guide

Working with Target Settings
Target Settings Window
Opening the Target Settings Window

Use the Target Settings window to modify build target options for the current
project.

Choose Edit > targetname Settings to display the Target Settings window.

Table 27.1 Target Settings window

Item Explanation

Target Settings Panels list Lists settings panels, organized by group. Click
the hierarchical control next to a group name to
show or hide a list of individual settings panels.

Settings panel Shows options for the selected item in the
Target Settings Panels list.

Factory Settings on page 436 Click to restore the default options for the
current settings panel.

Revert Panel on page 448 Click to restore the most recently saved options
for the current settings panel.

Export Panel on page 433 Click to save an XML file that contains set
options for the current panel.

Import Panel on page 440 Click to open an XML file that contains settings
for the current panel.

OK (Windows) Click to save modifications to all settings panels
and close the window.

Cancel (Windows) Click to discard modifications to all settings
panels and close the window.

Apply (Windows) Click to confirm modifications to all settings
panels.

Save (Macintosh, Solaris, and Linux) Click to save modifications to all settings panels.
399IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
Target Panels
The Target group of the Target Settings Panels defines general target settings
assigned to a new project.

The panels available on most IDE hosts include:

• “Target Settings” on page 400

• “Access Paths” on page 401

• “Build Extras” on page 404

• “Runtime Settings” on page 406

• “File Mappings” on page 408

• “Source Trees” on page 411

Target Settings
The Target Settings panel provides options for:

• setting the name of the current build target

• setting the linker, pre-linker, and post-linker for the build target

• specifying the project output directory for the final output file

Figure 27.2 Target Settings panel
400 IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
Access Paths
The Access Paths settings panel defines the search paths for locating and
accessing a build target’s system files and header files.

NOTE The Windows version of the Access Paths settings panel displays
either User Paths or System Paths, depending on the selected radio
button. The Macintosh, Solaris, and Linux versions of the Access
Paths settings panel display both User Paths and System Paths.

Table 27.2 Target Settings panel—items

Item Explanation

Target Name on page 455 Enter a name (26 or fewer characters) for the
selected build target as it will appear in the
project window.

Linker on page 443 Select the linker to use on the current build
target.

Pre-linker on page 446 Select the pre-linker to use on the current
build target.

Post-linker on page 446 Select the post- linker to use on the current
build target.

Output Directory on page 445 Shows the location where the IDE creates
the output binary file. Click Choose to
change this location.

Choose Click to select the directory in which the IDE
saves the output binary file.

Clear Click to delete the current Output Directory
path.

Save project entries using relative
paths on page 449

Select to save project file entries using a
relative path from a defined access path.
This option is helpful if the project has
multiple files with the same name.
401IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
Figure 27.3 Access Paths settings panel

Table 27.3 Access Paths settings panel

Item Explanation

Always Search User Paths on
page 424

Select to treat #include <...> statements

the same as #include "..." statements.

Source relative includes on
page 453

Select to search for dependent files in the same
location as the source file. If the dependent file is
not found in this location, specified User and
System paths are searched. If this option is
enabled, the Always Search User Paths should
also be enabled.

User Paths on page 459 The User Paths list shows currently defined user-
level access paths searched by #include
"..." statements.
402 IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
The User Paths and System Paths lists display columns with status icons for
each access path. There are different types of access paths. Table 27.4 on
page 403 explains these items.

System Paths on page 454 The System Paths list shows currently defined
system-level access paths searched by
#include <...> statements.

Interpret DOS and Unix Paths on
page 441
(Macintosh)

Select to treat / and \ as subfolder separator

characters. Clear to treat / and \ as ordinary
text.

Require Framework Style
Includes on page 448 (Mac OS X)

Select to require #include statements of the

form LibraryName/HeaderFile.h.
Clear to allow statements of the form
HeaderFile.h.

Add Default on page 423 Click to restore the default user- and system-level
access paths.

Host Flags on page 440 list pop-
up

Choose the host platforms that can use the
selected access path.

Add Click to add a user- or system-level access path.

Change Click to modify the selected user- or system-level
access path.

Remove Click to remove the selected user- or system-level
access path.

Table 27.4 User Paths and System Paths list columns

Name Icon Explanation

Search status A checkmark icon indicates an active access path that
the IDE searches.

No checkmark icon indicates an inactive access path
that the IDE does not search.

Table 27.3 Access Paths settings panel (continued)

Item Explanation
403IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
Build Extras
The Build Extras settings panel contains options that define how the
CodeWarrior IDE builds a project.

Recursive search A folder icon indicates that the IDE recursively
searches subdirectories of the access path.

No folder icon indicates that the IDE does not
recursively search the access path.

Framework
(Mac OS X
development)

An ƒ icon indicates that the access path points to a
framework. Framework paths are implicitly recursive.

No ƒ icon indicates that the access path does not
point to a framework.

Access path Shows the full access path to the selected directory.
Access paths have these types:

• Absolute—the complete path, from the root
level of the hard drive to the directory,
including all intermediate directories

• Project—the path from the project file
relative to the designated directory

• CodeWarrior—the path from the
CodeWarrior IDE relative to the designated
directory

• System—the path from the operating
system’s base directory relative to the
designated directory

• Source tree—the path from a user-defined
source tree relative to the designated
directory

Table 27.4 User Paths and System Paths list columns (continued)

Name Icon Explanation
404 IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
Figure 27.4 Build Extras settings panel

Table 27.5 Build Extras settings panel

Item Explanation

Use modification date
caching on page 457

Select to have the IDE cache modification date
information and use that information each time it
builds a target. Builds are faster if file modification
dates are cached.
Note that it is recommended to uncheck this option if
you are using an external editor or using mounted
directories.

For one-time changes to files (for example, those
updated by a VCS tool outside of the IDE or editing a
file with an external editor), you should check the
modification date by clicking the “Synchronize
Modification Dates” button in the project window
toolbar.

Cache Subprojects on
page 427

Select to improve multi-project updating and linking
speed.
405IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
Runtime Settings
The Runtime Settings panel specifies a debugging application for non-
executable files. Dynamic linked libraries (DLLs), shared libraries, and code
resources are sample non-executable files.

Generate Browser Data
From on page 438

Choose whether the IDE generates browser data for
the project, and the method by which the IDE
generates that data.

Dump internal browse
information after compile on
page 432

Select to have the IDE dump raw browser information
for viewing. This option appears after selecting
Compiler from the Generate Browser Data From on
page 438 pop-up menu.

Prefix file Enter the path to your project’s prefix file. This options
appears after selecting Language Parser from the
Generate Browser Data From on page 438 pop-up
menu.

Macro file Enter the path to your project’s macro file. This
options appears after selecting Language Parser
from the Generate Browser Data From on page 438
pop-up menu.

Use External Debugger on
page 456

Select to use an external debugger instead of the
CodeWarrior debugger.

Application on page 424 Click Browse to select the external debugger
application. Alternatively, enter the path to the
external debugger.

Arguments on page 424 Enter any program arguments to pass to the external
debugger when the IDE transfers control.

Initial directory on page 440 Click Browse to select an initial directory for the
external debugger. Alternatively, enter the path to the
initial directory.

Table 27.5 Build Extras settings panel (continued)

Item Explanation
406 IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
Figure 27.5 Runtime Settings panel

Table 27.6 Runtime Settings panel

Item Explanation

Host Application for Libraries &
Code Resources on page 439

Click Choose to select the program for debugging
non-executable files. Alternatively, enter the path to
the application program. Click Clear to delete the
current field entry.

Working Directory on page 460 Enter the path to a directory used for debugging the
non-executable files. Leave this field blank to use the
same directory that contains the non-executable files.

Program Arguments on
page 446

Enter a command line of program arguments to pass
to the host application when the IDE transfers control.

Environment Settings on
page 433

Lists the environment variables that have been added
to the build target.

Add Click to add the current Variable and Value pair to
the Environment Settings list.
407IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
File Mappings
The File Mappings settings panel associates filename extensions with a
CodeWarrior plug-in compiler. These associations determine whether the IDE
recognizes a source file by its filename extension or file type. Use the settings
panel to add, change, and remove file mappings.

Change Click to replace the selected entry in the Environment
Settings list with the current Variable and Value pair.

Remove Click to delete the selected environment variable from
the Environment Settings list.

Variable on page 459 Enter a name for the environment variable. This
name pairs with the information in the Value field.

Value on page 459 Enter a value for the environment variable. This value
pairs with the information in the Variable field.

Table 27.6 Runtime Settings panel (continued)

Item Explanation
408 IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
Figure 27.6 File Mappings settings panel

Table 27.7 File Mappings settings panel

Item Icon Explanation

File Mappings list Displays a list of currently defined mappings between
filename extensions and plug-in compilers.

File Type on
page 437

Enter a file type (such as TEXT) for the file mapping.
Alternatively, click Choose to set the file type by
selecting an example file. This file type also appears
in the corresponding column of the File Mappings list.

Extension on
page 434

Enter the filename extension (such as .cpp) for the
file mapping. This filename extension also appears in
the corresponding column of the File Mappings list.

Resource File flag A bullet in this column denotes a resource file. The
IDE includes these resource files when building the
final output file. Use the Flags pop-up menu to toggle
this flag.
409IDE 5.6 User’s Guide

Working with Target Settings
Target Panels
Launchable flag A bullet in this column denotes a launchable file. The
IDE opens launchable files with the application that
created them. Double-click launchable files from the
Project window. Use the Flags pop-up menu to
toggle this flag.

Precompiled File
flag

A bullet in this column denotes a precompiled file.
The IDE builds precompiled files before building
other files. Use the Flags pop-up menu to toggle this
flag.

Ignored By Make
flag

A bullet in this column denotes a file ignored by the
compiler during builds. For example, use this option
to ignore text (.txt) files or document (.doc)
files. Use the Flags pop-up menu to toggle this flag.

Compiler on
page 429

Choose from this list the plug-in compiler to
associate with the selected file mapping. This
compiler selection also appears in the corresponding
column of the File Mappings list.

Flags Choose from this pop-up menu the desired flags for
the selected file mapping. A checkmark indicates an
active flag. Bullets appear in the corresponding
columns of the File Mappings list to reflect flag
states.

Edit Language on
page 432

Choose from this list the desired language to
associate with the selected file mapping. The IDE
applies the appropriate syntax coloring for the
selected language.

Add Click to add the current File Type, Extension, Flags,
Compiler, and Edit Language entries to the File
Mappings list.

Change Click to change the selected item in the File
Mappings list to reflect the current File Type,
Extension, Flags, Compiler, and Edit Language
entries.

Remove Click to remove the selected item in the File
Mappings list.

Table 27.7 File Mappings settings panel (continued)

Item Icon Explanation
410 IDE 5.6 User’s Guide

Working with Target Settings
Code Generation Panels
Source Trees
The Source Trees settings panel in the Target Settings window defines project-
specific root paths. These project-specific paths override the global root paths
defined in the Source Trees preference panel of the IDE Preferences window.
Refer to “Source Trees” on page 371 for information on adding, changing, or
removing paths.

Code Generation Panels
The Code Generation group of the Target Settings Panels provides a single core
panel for configuring optimization routines. Consult the Targeting
documentation for more information about platform-specific settings panels.

Global Optimizations
The Global Optimizations settings panel configures how the compiler optimizes
object code. All optimization routines rearrange object code without affecting its
logical execution sequence.

NOTE Always debug programs with optimization routines disabled. The IDE
does not provide source views of optimized code.
The Global Optimizations panel is specific to Freescale compilers.
This panel is not used on the Linux-hosted IDE, since it uses gcc.
411IDE 5.6 User’s Guide

Working with Target Settings
Code Generation Panels
Figure 27.7 Global Optimizations settings panel

The Details field lists individual optimization routines applied at the selected
optimization level. Table 27.9 on page 413 explains these optimizations and their
availability at certain optimization levels.

Table 27.8 Global Optimizations settings panel—items

Item Explanation

Faster Execution Speed Select to favor optimization routines that increase the
execution speed of the final object code, at the expense of
larger code size.

Smaller Code Size Select to favor optimization routines that reduce the size of
the final object code, at the expense of slower execution
speed.

Optimization Level slider Move to the desired optimization level. The IDE applies
more optimization routines at higher optimization levels.
The Details field lists the active optimization routines.
412 IDE 5.6 User’s Guide

Working with Target Settings
Code Generation Panels
Table 27.9 Optimization routines

Optimization
Routine

Explanation Optimization
Level

Global Register Allocation
or
Global Register Allocation
Only for Temporary Values

Stores working values of heavily
used variables in registers
instead of memory.

1, 2, 3, 4

Dead Code Elimination Removes statements never
logically executed or referred to
by other statements.

1, 2, 3, 4

Branch Optimizations Merges and restructures portions
of the intermediate code
translation in order to reduce
branch instructions.

1, 2, 3, 4

Arithmetic Operations Replaces intensive
computational instructions with
faster equivalent instructions that
produce the same result.

1, 2, 3, 4

Expression Simplification Replaces complex arithmetic
expressions with simplified
equivalent expressions.

1, 2, 3, 4

Common Subexpression
Elimination

Replaces redundant expressions
with a single expression.

2, 3, 4

Copy Propagation
or
Copy and Expression
Propagation

Replaces multiple occurrences
of one variable with a single
occurrence.

2, 3, 4

Peephole Optimization Applies local optimization
routines to small sections of
code.

2, 3, 4

Dead Store Elimination Removes assignments to a
variable that goes unused before
being reassigned again.

3, 4

Live Range Splitting Reduces variable lifetimes to
achieve optimal allocation.
Shorter variable lifetimes reduce
register spilling.

3, 4
413IDE 5.6 User’s Guide

Working with Target Settings
Editor Panels
Editor Panels
The Editor group of the Target Settings Panels provides a single core panel for
configuring custom keywords within a project.

Loop-Invariant Code
Motion

Moves static computations
outside of a loop

3, 4

Strength Reduction Inside loops, replaces
multiplication instructions with
addition instructions.

3, 4

Loop Transformations Reorganizes loop object code in
order to reduce setup and
completion-test overhead.

3, 4

Loop Unrolling
or
Loop Unrolling (Opt for
Speed Only)

Duplicates code inside a loop in
order to spread branch and
completion-test overhead over
more operations.

3, 4

Vectorization For processors that support
vector optimizations, translates
computations with code-loop
arrays into equivalent vector
instructions.

3, 4

Lifetime Based Register
Allocation
or
Register Coloring

In a particular routine, uses the
same processor register to store
different variables, as long as no
statement uses those variables
simultaneously.

3, 4

Instruction Scheduling Rearranges the instruction
sequence to reduce conflicts
among registers and processor
resources.

3, 4

Repeated Iterates the optimization routines
listed between {* and *}.

4

Table 27.9 Optimization routines (continued)

Optimization
Routine

Explanation Optimization
Level
414 IDE 5.6 User’s Guide

Working with Target Settings
Editor Panels
Custom Keywords
The Custom Keywords panel configures as many as four keyword sets, each
with a list of keywords and syntax coloring for a project. These project-specific
settings supersede the global settings defined in the Text Colors preference panel
of the IDE Preferences window.

Figure 27.8 Custom Keywords settings panel

Adding a Keyword to a Keyword Set

To add a keyword to a keyword set, follow these steps:

1. Click Edit next to the desired keyword set.

A dialog box appears. This dialog box lists the current collection of keywords
in the keyword set.

2. Enter the new keyword into the field at the top of the dialog box.

3. Click Add.

The new keyword appears in the keyword list.

Table 27.10 Custom Keywords settings panel—items

Item Explanation

Keyword set 1,
Keyword set 2,
Keyword set 3,
Keyword set 4

Click a color swatch to set the color used for the
corresponding custom-keyword set.

Edit Click to add, modify, or remove keywords from the
corresponding custom-keyword set.
415IDE 5.6 User’s Guide

Working with Target Settings
Debugger Panels
4. Select Case Sensitive as desired.

When selected, the IDE treats the case of each keyword in the keyword set as
significant. When cleared, the IDE ignores the case of each keyword in the
keyword set.

5. Click Done.

The IDE saves the modified keyword set.

Removing a Keyword from a Keyword Set

To remove a keyword from a keyword set, follow these steps:

1. Click Edit next to the desired keyword set.

A dialog box appears. This dialog box lists the current collection of keywords
in the keyword set.

2. Select the obsolete keyword in the Custom Keywords list.

3. Press the delete key for your platform.

• Windows, Solaris, and Linux: Backspace

• Macintosh: Delete

4. Click Done.

The IDE saves the modified keyword set.

Debugger Panels
The Debugger group of the Target Settings Panels defines general debugger
settings for the project. Consult the Targeting documentation for more
information about platform-specific settings panels.

The Debugger panels available on most IDE hosts include:

• “Other Executables” on page 417

• “Debugger Settings” on page 419

• “Remote Debugging” on page 421
416 IDE 5.6 User’s Guide

Working with Target Settings
Debugger Panels
Other Executables
The Other Executables settings panel configures additional executable files for
the IDE to debug together with the current build target.

Figure 27.9 Other Executables settings panel

Table 27.11 Other Executables settings panel

Item Icon Explanation

File list Lists executable files that the IDE can debug together
with the current build target.

Debug column Click in this column to toggle debugging of the
corresponding executable file.

Add Click to select an executable file to add to the File list.

Change Click to change the selected entry in the File list.

Remove Click to remove the selected entry in the File list.
417IDE 5.6 User’s Guide

Working with Target Settings
Debugger Panels
Adding an Executable File to the File List

To add an executable file to the File list, follow these steps:

1. Click Add.

The Debug Additional Executable dialog box appears.

2. Enter in the File Location field the path to the executable file.

Alternatively, click Choose to display a dialog box. Use the dialog box to
select the executable file. The path to the selected executable file appears in
the File Location field.

3. Select Download file during remote debugging as desired.

When selected, the IDE downloads the executable file from a remote
computer during the debugging session. Enter the path to the remote file.
Alternatively, click Choose to select the file. Click Clear to delete the current
entry.

4. Select Debug merged executable as desired.

When selected, the IDE debugs an executable file that merged with the project
output. Enter the path to the original executable file (prior to merging).
Alternatively, click Choose to select the file. Click Clear to delete the current
entry.

5. Click Done.

The IDE adds the executable file to the File list.

Changing an Executable File in the File List

To change an executable file in the File list, follow these steps:

1. Select the desired path.

2. Click Change.

The Debug Additional Executable dialog box appears.

3. Modify the File Location field as desired.

4. Modify the Download file during remote debugging option as desired.

5. Modify the Debug merged executable option as desired.
418 IDE 5.6 User’s Guide

Working with Target Settings
Debugger Panels
6. Click Done.

The IDE modifies the executable file.

Removing an Executable File from the File List

To remove an executable file from the File list, follow these steps:

1. Select the obsolete path.

2. Click Remove.

The IDE removes the executable file from the File list.

Debugger Settings
The Debugger Settings panel configures activity logs, data-update intervals, and
other debugger-related options.

Figure 27.10 Debugger Settings panel
419IDE 5.6 User’s Guide

Working with Target Settings
Debugger Panels
Table 27.12 Debugger Settings panel

Item Explanation

Location of Relocated Libraries
and Code Resources on
page 443

Enter the path to code resources or relocated
libraries required for debugging the project.
Alternatively, click Choose to select the required
files.

Stop on application launch on
page 453

Select to halt program execution at the beginning of
a debugging session. Select the desired stop point:
Program entry point, Default language entry
point, or User specified.

Program entry point on
page 446

Select to halt program execution upon entering the
program.

Default language entry point on
page 431

Select to halt program execution upon entering a
default point defined by the programming language.

User specified Select to halt program execution at a specified
function or address. Enter the desired function
name or address in the corresponding field. If you
enter an address, ensure that it is correct and within
your program.

Auto-target Libraries Select to debug dynamically linked libraries (DLLs)
loaded by the target application, at the expense of
slower performance.

Cache symbolics between
runs on page 428

Select to have the IDE cache the symbolics
information it generates for a project. Clear to have
the IDE discard the information after each
debugging session ends.

Log System Messages on
page 443

Select to log all system messages to a Log window.

Stop at Watchpoints on
page 453

Select to halt program execution at every
watchpoint. Clear to halt program execution at
watchpoints with changed values.

Update data every n seconds on
page 455

Enter the number of seconds n to wait before
updating the data displayed in debugging-session
windows.
420 IDE 5.6 User’s Guide

Working with Target Settings
Debugger Panels
Remote Debugging
The Remote Debugging settings panel configures target-specific network
settings for remote-debugging connections between the host computer and other
computers. Use this target-specific panel to build on the general connections
defined in the Remote Connections panel of the IDE Preferences window.

Figure 27.11 Remote Debugging settings panel

Table 27.13 Remote Debugging settings panel

Item Explanation

Enable remote debugging on
page 433

Select to define (for the current build target) a
remote-debugging connection in terms of a general
connection. Choose from the Connection pop-up
menu the desired general connection.

Remote download path on
page 448

Enter the path to the directory in which to store
downloaded files.

Launch remote host
application on page 442

Select to launch an application on the remote
computer to serve as a host application. Enter the
path to the remote application.
421IDE 5.6 User’s Guide

Working with Target Settings
Debugger Panels
422 IDE 5.6 User’s Guide

28
Preference and Target
Settings Options

Use this chapter to look up CodeWarrior™ IDE preference panel or target setting
options and learn more about their capabilities. Option names are arranged in
alphabetical order.

NOTE This chapter covers options for the core IDE preference or target
setting panels described in this manual.

A

Activate Browser Coloring
Select this option to activate coloring of browser symbols in editor windows.
Clear the option to apply the default text color to all symbols. Click the color
swatch next to a symbol to modify its color.

Activate Syntax Coloring
Select this option to activate coloring of Comments, Keywords, Strings, and
Custom Keyword Sets symbols in editor windows. Clear the option to apply the
default text color to all symbols. Click the color swatch next to a symbol to
modify its color.

Add Default
Click this button to restore the default user path or system path to the Access
Paths panel.
423IDE 5.6 User’s Guide

Preference and Target Settings Options
Always Search User Paths
This option controls the search criteria the IDE uses to find system and user files.

• selected—the IDE treats searching for system files (such as #include
<...>) the same as user files (#include "...").

• disabled—the IDE treats system paths differently from user paths.

Application
In this field enter the path to the external debugger that the IDE uses in place of
the CodeWarrior debugger. Alternatively, click Browse to open a dialog box.
Use the dialog box to select the external debugger.

Arguments
In this field enter command-line arguments to pass to the external debugger at the
beginning of a debugging session.

Attempt to show the dynamic runtime type of
objects
Select this option to display runtime types for C++, Object Pascal, and SOM
objects. Clear the option to display static types.

Auto Indent
Select this option to apply automatically the same indentation as the previous line
for each new line of text created by pressing Enter or Return. Clear the option to
always return to the left margin for each new line of text.

Auto Target Libraries
Select this option to have the IDE attempt to debug dynamically linked libraries
(DLLs) loaded by the target application. The IDE debugs the DLLs that have
symbolics information.

This option applies to non-project debugging sessions, such as debugging an
attached process.
424 IDE 5.6 User’s Guide

Preference and Target Settings Options
NOTE Selecting this option may slow IDE performance. Clear the option to
improve speed.

Automatic Invocation
Select this option to have the Code Completion window automatically open after
typing specific programming-language characters in the active editor window.
Clear the option to manually open the Code Completion window.

The specific characters that trigger opening of the Code Completion window
depend on the programming language that you use. For example, typing a period
after a Java class opens the Code Completion window, allowing you to complete
the class invocation.

You can change the time it takes for the Code Completion window to appear
after you type a trigger character. If you perform any activity during this delay
time, the Code Completion window is canceled.

See also:

• “Code Completion Delay” on page 428

Automatically launch applications when SYM file
opens
Select this option to launch an application associated with an open symbolics file.
The IDE sets an implicit breakpoint at the main entry point of the application.
Clear the option to open the symbolics file without launching the associated
application.

Table 28.1 on page 425 explains how to skip launching the target program

Table 28.1 Bypass launching the target program

On this host… Do this…

Windows Press Alt while the IDE opens the symbolics file.

Macintosh Press Option while the IDE opens the symbolics file.

Solaris Press Alt while the IDE opens the symbolics file.

Linux Press Alt while the IDE opens the symbolics file.
425IDE 5.6 User’s Guide

Preference and Target Settings Options
B

Background
Click this color swatch to configure the background color of editor windows.

Balance Flash Delay
In this field enter the time, in ticks, to highlight a matching punctuation character
during a Balance while typing check. Each tick represents 1/60th of a second
(16.67 milliseconds).

Sample tick values include:

• 0 (zero)—disables balance flashing

• 30—the default flash value (1/2 of a second)

• 999—the maximum-flash delay value

Balance while typing
Select this option to have the editor check for balanced parentheses, brackets, and
braces in editor windows. For each closing parenthesis, bracket, or brace, the
editor attempts to find the opening counterpart.

The IDE behaves differently, depending on whether it finds the counterpart:

• Found—the editor window scrolls to display the matching character, then
returns to the insertion point. The Balance Flash Delay option determines
how long the editor displays the matching character.

• Not found—the IDE beeps.

Browser Commands
Select this option to add Browser menu commands to contextual menus. Clear
the option to remove commands from the contextual menus.
426 IDE 5.6 User’s Guide

Preference and Target Settings Options
Browser Path
In this field enter a path to the browser to use for viewing IDE online help. The
Netscape Navigator® browser is the default application. The PATH environment
variable specifies the path to the browser.

To change the default setting, or if the IDE cannot find Netscape Navigator, in
the Browser Path field enter a path to an alternate browser. Alternatively, click
Set to select the path.

Build before running
Choose from this pop-up menu the way in which the IDE handles project builds
before running the compiled application:

• Always—always build projects before running them.

• Never—never build projects before running them.

• Ask—ask each time how to proceed.

C

Cache Edited Files Between Debug Sessions
Select this option to maintain a cache of edited files between debugging sessions.
Use this option to debug through the original source code for files modified since
the last build.

In the Maintain files in cache field enter the number of days to keep the cached
files. Click Purge Cache to delete the current cache.

See also:

• “Maintain files in cache” on page 444

• “Purge Cache” on page 447

Cache Subprojects
Use this option to improve multi-project updating and linking.
427IDE 5.6 User’s Guide

Preference and Target Settings Options
• selected—the IDE increases its memory requirements in order to generate
symbolics information for both the build targets and the subprojects within
each build target.

• cleared—the IDE does not increase its memory requirements and does not
generate symbolics information.

Cache symbolics between runs
Select this option to have the IDE maintain a cache of symbolics information
generated for the project. The IDE refers to this cached symbolics information
during subsequent debugging sessions. The cache improves IDE performance.
Clear the option to force the IDE to discard the symbolics information at the end
of each debugging session.

Case sensitive
Select this option to have the IDE consider case when completing code. Clear the
option to have the IDE ignore case.

The IDE can determine possible symbol matches according to case. For example,
if you clear the Case sensitive option and type str in the active editor window,
the IDE displays both string and String as possible matches. Selecting the
option causes the IDE to display only string as a possible match.

Close non-debugging windows
Select this option to close non-debugging windows, except for the active project
window, when starting a debugging session. At the end of the debugging session,
the IDE automatically re-opens the closed windows.

Code Completion Delay
In this field enter the number of ticks to have the IDE wait from the time you type
a trigger character to the time the Code Completion window opens. A tick is 1/60
of a second.

Performing any activity during this delay time cancels opening of the Code
Completion window.

See also:

• “Automatic Invocation” on page 425
428 IDE 5.6 User’s Guide

Preference and Target Settings Options
Collapse non-debugging windows
Select this option to collapse non-debugging windows when starting a debugging
session. At the end of the debugging session, the IDE automatically restores the
collapsed windows.

Comments
Select the Activate Syntax Coloring option in order to configure this option.
Use this option to configure the color of C, C++, and Java comments displayed in
editor windows. The IDE then uses the chosen color for comments placed
between /* and */ or from // to the end of a line.

Click the color swatch next to Comments to set the color.

Compiler
Choose from this list pop-up the desired compiler for the selected File Type in
the File Mappings list. Select None to not associate the selected file type with
any compiler.

Compiler thread stack
In this field enter the maximum kilobytes of stack size for the IDE to allocate to
compiling and linking thread support.

The IDE threads all build processes, with compiling and linking occurring on a
thread separate from the main application thread. This setting controls the
compiler-thread stack size.

To avoid frequent compiler crashes, such as when building very large or complex
projects, increase the default compiler-thread-stack size.

Confirm invalid file modification dates when
debugging
Select this option to keep track of source-file modification dates in a project. The
IDE displays a warning message if the modification dates do not match. The
message warns of possible discrepancies between object code and source code.
Clear the option to prevent the IDE from displaying the warning message.
429IDE 5.6 User’s Guide

Preference and Target Settings Options
Confirm “Kill Process” when closing or quitting
Select the Confirm “Kill Process” when closing or quitting option to have the
IDE prompt for confirmation before killing processes upon closing the Thread
window or quitting the IDE. Clear the option to kill processes without prompting.

Context popup delay
In this field enter the minimum time, in ticks, to hold down the mouse button
before IDE contextual menus appear. Each tick represents 1/60 of a second
(16.67 milliseconds).

Sample tick values include:

• 0 (zero)—disables appearance of contextual menus

• 40—default popup delay value (2/3 of a second)

• 240—maximum popup delay value

D

Debugger Commands
Select this option to add Debug menu commands to IDE contextual menus. Clear
the option to remove commands from the contextual menus.

Default file format
Choose from this list pop-up the default end-of-line (EOL) conventions used by
the IDE to save files:

• Macintosh: <CR>

• DOS: <LF><CR>

• UNIX: <LF>
430 IDE 5.6 User’s Guide

Preference and Target Settings Options
Default language entry point
Select this option to halt program execution upon entering a default point defined
by the programming language. For example, C++ defines the main() function
as the default point.

Default size for unbounded arrays
Enter in this field the default number of elements to display in View Array
windows for unbounded arrays.

Disable third party COM plugins
Select this option to prevent the IDE from loading third-party Component Object
Model (COM) plugins. Clear the option to have the IDE load the plugins at start-
up time.

Use this option to help troubleshoot problems with the IDE. If the problem goes
away after disabling the plug-ins, then a conflict exists between the third-party
plugins and the IDE plugins.

Display deprecated items
Select this option to have the Code Completion window display obsolete
programming-language items. Clear the option to have the window hide the
obsolete items.

Deprecated items appear in gray text in the Code Completion window.

Do nothing
Select this option to leave all windows in place during a debugging session.

Do nothing to project windows
Select this option to prevent the IDE from manipulating project windows when
starting a debugging session. Use this option to help debug multiple build targets
or multiple projects.

Documents
In this field enter the number of recent documents to display in the Open Recent
submenu.
431IDE 5.6 User’s Guide

Preference and Target Settings Options
Don’t step into runtime support code
Select this option to have the IDE bypass stepping into the Metrowerks Standard
Library (MSL) runtime support code and instead directly step into your own
code. Clear the option to have the IDE step into the MSL runtime setup code,
then step into your own code.

Drag and drop editing
Select this option to allow dragging and dropping of text in editor windows.
Clear the option to disable drag-and-drop text editing.

Dump internal browse information after compile
Select this option to view the raw browser information that a plug-in compiler or
linker provides for the IDE. Use this option to help develop plug-ins for use with
the IDE.

NOTE After enabling the Dump internal browse information after
compile option, compile only single files or small files. Compiling an
entire project can create huge internal browser information for the
IDE to display.

E

Edit Commands
Select this option to add Edit menu commands to IDE contextual menus. Clear
the option to remove the commands from the contextual menus.

Edit Language
Choose from this pop-up menu the programming language to associate with the
selected file mapping. The selected language determines the syntax-color
scheme. For example, choose C/C++ to apply the appropriate syntax-color
scheme for C or C++ programming-language components.
432 IDE 5.6 User’s Guide

Preference and Target Settings Options
Enable automatic Toolbar help
Select this option to display Balloon Help after resting the cursor over a toolbar
button. Clear the option to prevent Balloon Help from appearing.

Enable remote debugging
Select this option to define a remote-debugging connection specific to the current
build target. Choose from the Connection pop-up menu the general connection
to use as the basis for the target-specific connection.

Enable Virtual Space
Use this option to configure the editor for handling spaces in different ways.

• selected—the editor allows moving the text-insertion point past the end of a
line of text, using either the arrow keys or the mouse. After moving to the
desired position, begin entering text. The editor automatically inserts spaces
between the former end of the line and the newly entered text.

• cleared—the editor requires manual insertion of spaces to move past the end
of a line of text.

Environment Settings
Use this section to specify environment variables to pass to your program as part
of the environment parameter in your program’s main() function, or as part of
environment calls. These environment variables are only available to the target
program. When your program terminates, the settings are no longer available.

NOTE The Environment Settings section appears only when you develop
code for a Windows build target. The section does not appear for any
other build target.

Export Panel
Click this button to save to an Extensible Markup Language (XML) file the
current state of the active preference or settings panel.
433IDE 5.6 User’s Guide

Preference and Target Settings Options
Extension
In this field enter a filename extension, such as the .c or .h , for a selected File
Type in the File Mappings list. Table 28.2 on page 434 lists default filename
extensions.

Table 28.2 Default filename extensions

Type Extension Explanation

Minimum CodeWarrior
Installation

.iSYM CodeWarrior Intel® Symbols

.mch CodeWarrior Precompiled Header

.mcp CodeWarrior Project File

.SYM CodeWarrior Mac OS 68K Debug
Symbols

.xSYM CodeWarrior Mac OS PPC Debug
Symbols

.dbg CodeWarrior Debug Preferences

.exp Exported Symbol File

.iMAP CodeWarrior Link Map

.MAP CodeWarrior Link Map

Assembly .a Assembly Source File (Windows and
Macintosh)

.asm Assembly Source File

.dump CodeWarrior Disassembled File
434 IDE 5.6 User’s Guide

Preference and Target Settings Options
C and C++ .c++ C++ Source File

.cc C++ Source File

.hh C++ Header File

.hpp C++ Header File

.i C Inline Source File

.icc C++ Inline Source File

.m Object C Source File

.mm Object C++ Source File

Default C and C++ .c C Source File

.cp C++ Source File

.cpp C++ Source File

.h C and C++ Header File

Default Java .class Java Class File

.jar Java Archive File

.jav Java Source File

.java Java Source File

Java .JMAP Java Import
Mapping Dump

.jpob Java Constructor File

.mf Java Manifest File

Table 28.2 Default filename extensions (continued)

Type Extension Explanation
435IDE 5.6 User’s Guide

Preference and Target Settings Options
F

Factory Settings
Click this button to change all modified options to their default values in the
current preference or settings panel.

Library .a (Static) Archive Library (Solaris and
Linux)

.lib Library File

.o Object File
(Windows and Macintosh)

.o Object (Relocatable) Library or Kernel
Module
(Solaris and Linux)

.obj Object File

.pch Precompiled Header Source File

.pch++ Precompiled Header Source File

.so Shared Library (Linux)

Script .sh Shell Script (Linux)

.psh Precompile Shell Script (Linux)

.pl Perl Script (Linux)

Mac OS X .dylib Mach-O Dynamic Library

.a Mach-O Static Library

.o Mach-O Object File

.plist Property List

Table 28.2 Default filename extensions (continued)

Type Extension Explanation
436 IDE 5.6 User’s Guide

Preference and Target Settings Options
Failure
Choose from this pop-up menu a sound to play after a Bring Up To Date or
Make operation fails.

File Type
Enter in this field the four-character file type for the selected file mapping in the
File Mappings list.

Find and compare operations
A bullet in the Find and compare operations column, whose label
appears at left, indicates that the IDE ignores matching folders for find-
and-compare operations. Such operations include dragging a folder into
fields in the Find window, or comparing folder contents.

Find Reference using
Choose from the Find Reference using options, an online browser application to
look up references and definitions.

For example, use this option to look up documentation for language keywords:

1. Select an online browser application, such as THINK Reference, with the
Find Reference using option.

2. Select a language keyword, such as boolean, in the source code.

3. Choose the Find Reference menu command. The IDE looks up reference
information for the boolean keyword in the THINK Reference
documentation.

Although they are not included with the CodeWarrior product, the IDE supports
these online browser formats:

• Apple Help Viewer (CW manuals)

• Apple Help Viewer (Mac OS X API Ref)

• PalmQuest Reference (Palm Pilot)

• QuickView–such as Macintosh Programmer’s Toolbox Assistant (MPTA)

• THINK Reference
437IDE 5.6 User’s Guide

Preference and Target Settings Options
Font
Choose from the Font options the typeface to use for displaying text in editor
windows. This setting behaves in two different ways, depending on the current
IDE state:

• No editor windows open—the setting modifies the default font. All editor
windows take on the default font.

• Editor windows open—the setting modifies the font displayed in the
frontmost editor window only. Other editor windows remain unaffected.
The default font remains unchanged.

Font preferences
Select the Font preferences option to remember font settings for each file in a
project. Clear the option to use the default font settings every time the IDE opens
each file. The Font & Tabs preference panel defines the default settings.

Foreground
Use the Foreground option to configure the color of any text not affected by the
Activate Syntax Coloring or Activate Browser Coloring options.

Click the color swatch to change the current color.

G-I

Generate Browser Data From
Choose from this pop-up menu whether the IDE generates browser data, and
from what source it generates that data.

Choose from these possibilities:

• None—Disable browser-data generation. Certain IDE features that use
browser data will be unable to work with the project, but the project’s size
will be smaller.

• Compiler—Have the IDE use the compiler to generate browser data. If you
choose this option, you must Make the project in order to generate the
438 IDE 5.6 User’s Guide

Preference and Target Settings Options
browser data. The IDE uses the compiler assigned to the project to generate
browser data during the build process.

• Language Parser—Have the IDE use the language parser to generate the
browser data. Certain IDE features, such as C/C++ Code Completion,
function more effectively if you choose this option. The IDE uses the
language parser assigned to the project to generate browser data.

NOTE If you choose the Language Parser option, you can also have the IDE
take into account your custom macro definitions. To do so, enter the
path to your prefix file in the Prefix file field and the path to your
macro file in the Macro file field.

Grid Size X
In the Grid Size X field enter the number of pixels to space between markings on
the x-axis of the Layout Editor grid.

Grid Size Y
In the Grid Size Y field enter the number of pixels to space between markings on
the y-axis of the Layout Editor grid.

Hide non-debugging windows
Select the Hide non-debugging windows option to hide, but not close, non-
debugging windows when starting a debugging session.

To reveal the hidden windows, do one of these tasks:

• Use the Window menu, or

• Double-click the names of the hidden files in the Project window, or

• Perform lookups for symbols within the hidden windows.

At the end of the debugging session, the IDE automatically reveals the hidden
windows.

Host Application for Libraries & Code Resources
The Host Application for Libraries & Code Resources field lets you specify a
host application to use when debugging a non-executable file, such as a shared
library, dynamic link library (DLL), or code resource. The application that you
439IDE 5.6 User’s Guide

Preference and Target Settings Options
specify in this field is not the debugger application, but rather the application
with which the non-executable file interacts.

Host Flags
The Host Flags list pop-up defines the host platforms which can use the selected
access path. The settings include:

• None–no host can use this access path.

• All–all hosts can use this access path.

• Windows–only use this path for Windows build targets.

• Mac OS–only use this path for Mac OS build targets.

NOTE Multiple hosts can be selected.

Import Panel
Click Import Panel to load the contents of a previously saved Extensible
Markup Language (XML) file into the active preference or settings panel.

Include file cache
Use the Include file cache option to specify the upper limit of kilobytes of
memory used by the IDE for caching #include files and precompiled
headers. The larger the value entered, the more memory the IDE uses to
accelerate builds.

Initial directory
In this field enter the initial directory for use with the external debugger.
Alternatively, click Browse to open a dialog box. Use the dialog box to select the
initial directory.

Insert Template Commands
Select the Insert Template Commands option to display the Insert Template
submenu in contextual menus. The submenu displays source-defined function
templates. Clear to remove the submenu from the contextual menus.
440 IDE 5.6 User’s Guide

Preference and Target Settings Options
NOTE Select the Browser Commands option in order to select the Insert
Template Commands option. Otherwise, the Insert Template
Commands state has no effect.

Interpret DOS and Unix Paths
This option determines how the IDE treats filenames for interface files:

• Selected—the IDE treats the backslash (\) and the forward slash (/)
characters as subfolder separator characters. In the example

#include "sys/socks.h"

the IDE searches for a subfolder called sys that contains a socks.h
file.

• Cleared—the IDE treats both the backslash and forward slash characters as
part of the filename. Using the same example, the IDE now searches for a
sys/socks.h filename.

K-L

Keywords
Use the Keywords option to configure the color of C, C++, and Java
programming language’s keywords displayed in editor windows when the
Activate Syntax Coloring option is enabled. Coloring does not include macros,
types, variables defined by system interface files, or variables defined in source
code. Click the color swatch next to Keywords to set the color.

Launch Editor
Enter in the Launch Editor field a command-line expression that specifies the
third-party text editor that the CodeWarrior IDE runs to edit text files.

The IDE expands the %file variable of the command-line expression into the
full file path. For example, to run the Emacs text editor to edit text files, enter this
command-line expression:

runemacs %file
441IDE 5.6 User’s Guide

Preference and Target Settings Options
Consult the documentation provided with the third-party text editor for more
information about using command lines.

Launch Editor w/ Line #
Enter in the Launch Editor w/ Line # field a command-line expression that
specifies the third-party text editor that the IDE runs to edit text files, and an
initial line of text that the third-party editor displays upon running.

The IDE expands the %line variable of the command-line expression into an
initial line of text for the third-party text editor to display. For example, to run the
Emacs text editor to edit a text file, and to have the Emacs editor display the line
provided to it by the IDE, enter this command-line expression:

emacs %file %line

Consult the documentation provided with the third-party text editor for more
information about using command lines.

Launch remote host application
Select this option to launch an application on the remote computer to serve as a
host application. Enter the path to the remote host application.

Left margin click selects line
Select the Left margin click selects line option to use a right-pointing
cursor, shown at left, to select entire lines of text from the left margin.
Clear the option to disable use of the right-pointing cursor.

With the right-pointing cursor active, click in the left margin to select the
current line, or click and drag along the left margin to select multiple lines.

Level
Choose from the Level options the amount of information reported for IDE plug-
ins in development. This information is useful for diagnosing plug-in behavior or
for viewing information about the properties of installed plug-ins.

Choose one of these levels of plug-in diagnostic information:

• None (default)—The IDE does not activate plug-in diagnostics or produce
output.
442 IDE 5.6 User’s Guide

Preference and Target Settings Options
• Errors Only—The IDE reports problems encountered while loading plug-
ins. These problems appear in a new text file after the IDE starts up

• All Info—The IDE reports information for each installed plug-in, such as
problems with plug-in loading, optional plug-in information, and plug-in
properties. This information appears in a new text file after the IDE starts
up. The text file also contains a complete list of installed plug-ins and their
associated preference panels, compilers, and linkers.

The IDE allows saving and printing the text file. Use the file as an error reference
for troubleshooting plug-ins. The text file also provides suggestions for
correcting general plug-in errors.

Linker
Use the Linker option menu to select the linker to use with the project. The
choices available are always dependent on the plug-in linkers that are available to
the CodeWarrior IDE.

To learn more about the linkers, see the appropriate Targeting manual.

Location of Relocated Libraries and Code
Resources
Enter in this field the path to the relocated libraries and code-resource files
required for debugging the project. Alternatively, click Choose to display a
dialog box. Use the dialog box to select the required files.

Log System Messages
Select this option to have the IDE maintain a log of all system messages
generated during the debugging session. The Log window displays this platform-
specific information. Clear the option to disable the log.
443IDE 5.6 User’s Guide

Preference and Target Settings Options
M

Maintain files in cache
Enter in the Maintain files in cache text box the number of days that the IDE
maintains files in the file cache.

Menu bar layout
Choose from the Menu bar layout options the desired configuration of menus
listed in the IDE:

• Windows—organizes the menu bar according to a typical Microsoft®

Windows® arrangement

• Macintosh—organizes the menu bar according to a typical Apple®

Mac® OS arrangement

Minimize non-debugging windows
Select the Minimize non-debugging windows option to minimize non-
debugging windows to a reduced size when a debugging session starts. At the
end of the debugging session, the IDE automatically restores the minimized
windows.

NOTE The Minimize non-debugging windows option is only available in
MDI mode.

See also:

• “Use Multiple Document Interface” on page 457

Monitor for debugging
Choose from the Monitor for debugging options the specific monitor to use
during debugging sessions. The IDE displays debugging windows in the selected
monitor. The coordinates in parentheses identify the selected monitor in
QuickDraw space.
444 IDE 5.6 User’s Guide

Preference and Target Settings Options
Move open windows to debugging monitor when
debugging starts
Select the Move open windows to debugging monitor when debugging starts
option to move all open windows to the selected debugging monitor after a
debugging session starts. At the end of the debugging session, the IDE restores
the moved windows to their original positions.

O

Open windows on debugging monitor during
debugging
Select the Open windows on debugging monitor during debugging option to
display on the debugging monitor any window that opens during the debugging
session.

The IDE does not save the positions of windows closed on the debugging
monitor during the debugging session. This behavior prevents window positions
from gravitating to the debugging monitor.

Output Directory
Use the Output Directory caption to show the location the IDE places a final
linked output file. The default location is the directory that contains your project
file. Select Choose to specify the location path.

P

Play sound after ‘Bring Up To Date’ & ‘Make’
Select the Play sound after ‘Bring Up To Date’ & ‘Make’ option to play a
sound after a build operation completes. Choose different sounds for successful
445IDE 5.6 User’s Guide

Preference and Target Settings Options
and unsuccessful builds using the Success and Failure pop-up options,
respectively.

See also:

• “Failure” on page 437

• “Success” on page 453

Post-linker
Use the Post-linker option to select a post-linker that performs additional work
(such as format conversion) on the final executable file.

For more information see the appropriate Targeting manual.

Pre-linker
Use the Pre-linker option to select a pre-linker that performs additional work on
the object code in a project. This work takes place before the IDE links the object
code into the final executable file.

For more information about the pre-linkers available, see the build targets
Targeting manual.

Program Arguments
Use the Program Arguments field to enter command-line arguments to pass to
the project at the beginning of a debugging session. Your program receives these
arguments after you choose Project > Run.

Program entry point
Select this option to halt program execution upon entering the program.

Projects
Enter the number of recent projects to display in the Open Recent submenu.

Project Commands
Select the Project Commands option to add Project menu commands to
contextual menus. Clear the option to remove the commands from the contextual
menus.
446 IDE 5.6 User’s Guide

Preference and Target Settings Options
Project operations
A bullet in the Project operations column, whose label appears at left,
indicates that the IDE ignores matching folders for project operations.
Such operations include dragging a folder into the Project window,
building a project, or searching access paths after choosing File > Open.

Purge Cache
Click Purge Cache to delete the contents of the current file cache.

R

Recommended
Select the Recommended option to allow the number of concurrent compiles
suggested by the IDE. This suggestion takes into account the number of active
Central Processing Units (CPUs) on the host computer.

Regular Expression
Enter in the Regular Expression field a text pattern to match against folder
names. The IDE excludes matching folders and their contents from selected
project operations or find-and-compare operations.

Relaxed C popup parsing
Use the Relaxed C popup parsing option to control the strictness of C coding
conventions:

• Select the option to have the IDE recognize some non-standard functions
that interfere with Kernighan-and-Ritchie conventions. The IDE displays the
non-standard functions in the Routine list pop-up.

• Clear the option to have the IDE recognize only functions that conform to
Kernighan-and-Ritchie conventions. The IDE displays only the standard
functions in the Routine list pop-up.
447IDE 5.6 User’s Guide

Preference and Target Settings Options
For more information, refer to “Reference Manual,” of The C Programming
Language, Second Edition, by Kernighan and Ritchie, published by Prentice
Hall.

NOTE Toggle the Relaxed C popup parsing option to maximize
recognition of functions, macros, and routine names in the source
code.

Remote download path
Enter the path to the directory in which to store files downloaded from the remote
host application.

Require Framework Style Includes
This option determines the strictness with which the IDE treats #include
statements for frameworks:

• selected—the IDE requires the framework in addition to the referenced
header file. In the example

#include <Cocoa/CocoaHeaders.h>

the IDE requires the presence of Cocoa/ in order to find the
CocoaHeaders.h file.

• cleared—the IDE requires only the referenced header file. Using the same
example, Cocoa/ becomes optional.

Revert Panel
Click Revert Panel to revert all modified options in the current preference or
settings panel to the values present when the panel was originally opened.

S

Save open files before build
Select the Save open files before build option to automatically save files during
project operations:
448 IDE 5.6 User’s Guide

Preference and Target Settings Options
• Preprocess

• Precompile

• Compile

• Disassemble

• Bring Up To Date

• Make

• Run

NOTE (Solaris and Linux) The GNU tools read files from disk before
compiling them. Select the Save open files before build option to
save changes to modified files before compiling them. Otherwise, the
GNU compilers do not process the file changes.

Save project entries using relative paths
Use the Save project entries using relative paths option to store the location of
a file using a relative path from one of the access paths. The settings include:

• enabled–the IDE stores extra location information to distinctly identify
different source files with the same name. The IDE remembers the location
information even if it needs to re-search for files in the access paths.

• disabled–the IDE remembers project entries only by name. This setting can
cause unexpected results if two or more files share the same name. In this
case, re-searching for files could cause the IDE to find the project entry in a
different access path.

Script
Choose from the Scripts options the script system (language) used to display text
in editor windows. This setting behaves in two different ways, depending on the
current IDE state:

• No editor windows open—the setting modifies the default script system. All
editor windows take on the default script system.

• Editor windows open—the setting modifies the script system displayed in
the frontmost editor window only. Other editor windows remain unaffected.
The default script system remains unchanged.
449IDE 5.6 User’s Guide

Preference and Target Settings Options
Select stack crawl window when task is stopped
Select the Select stack crawl window when task is stopped option to
automatically bring the Thread window to the foreground after the debugger
stops a task. Clear the option to leave the Thread window in its previous position.

This option is useful for watching variable values change in multiple Variable
windows as the debugger steps through code.

Selection position
Select the Selection position option to remember these items for each editor
window:

• visible text

• insertion-point location

• selected text

Clear the option to open each editor window according to default settings and
place the insertion point at the first line of text.

NOTE The IDE must be able to write to the file in order to remember
selection position.

Show all locals
Select the Show all locals option to display all local variables in Variable
windows. Clear the option to show only variables near the program counter.

The Variables pane uses these display settings:

• Variables: All—shows all local variables in the code.

• Variables: Auto—only shows the local variables of the routine to which the
current-statement arrow currently points.

• Variables: None—does not show variables. Use this setting to improve
stepping performance for slow remote connections.

Show Code and Data Sizes
Enable this option in the IDE Extras panel of the IDE preferences panels to
display the Code and Data columns in the project manager window.
450 IDE 5.6 User’s Guide

Preference and Target Settings Options
Show message after building up-to-date project
Select the Show message after building up-to-date project option to have the
IDE display a message after building an up-to-date project.

Show threads in separate windows
Select the Show threads in separate windows option to open a separate Thread
window for each task. Clear the option to use one Thread window to display
multiple tasks.

Show processes in separate windows
Select the Show processes in separate windows option to open a separate
window for each process. Clear the option to use one window to display multiple
tasks processes.

Show the component palette when opening a
form
Select the Show the component palette when opening a form option to
automatically display the Component Palette after opening a form in the Layout
Editor. Clear the option to require manual opening of the Component Palette.

Show the object inspector when opening a form
Select the Show the object inspector when opening a form option to
automatically open an Object Inspector window when opening a layout in the
Layout Editor. Clear the option to require manual opening of the Object
Inspector.

Show values as decimal
Select the Show values as decimal instead of hex option to display variable
values in decimal form. Clear the option to display the values in hexadecimal
form.
451IDE 5.6 User’s Guide

Preference and Target Settings Options
Show variable location
Select the Show variable location option to display the Location column in the
Variables pane of the Thread window. Clear the option to hide the Location
column.

Show variable types
Select the Show variable types option to display the type associated with each
variable in Variable windows. Clear the option to hide the variable types.

Show variable values in source code
Select the Show variable values in source code option to show current values
for variable names displayed in contextual menus. Clear the option to show
variable names only.

Size
Choose from the Size options the font size used to display text in editor windows.
This setting behaves in two different ways, depending on the current IDE state:

• No editor windows open—the setting modifies the default font size. All
editor windows take on the default font size.

• Editor windows open—the setting modifies the font size displayed in the
frontmost editor window only. Other editor windows remain unaffected.
The default font size remains unchanged.

Sort functions by method name in symbolics
window
Select the Sort functions by method name in symbolics window option to
alphabetically sort functions by method name. Clear the option to alphabetically
sort by class name. The sorting affects functions of the form
className::methodName that appear in the Symbolics window.

Since most C++ and Java source files contain methods that belong to the same
class, select the option to simplify selection of functions by typing method
names.
452 IDE 5.6 User’s Guide

Preference and Target Settings Options
Stop at Watchpoints
Select this option to halt program execution at each watchpoint, regardless of
whether the watchpoint value changed. Clear the option to halt execution at
watchpoints with changed values.

Stop on application launch
Select this option to halt program execution at a specified point each time a
debugging session begins.

Strings
Use the Strings option to configure the color of anything that is not a comment,
keyword, or custom keyword and displayed in editor windows when the Activate
Syntax Coloring option is enabled. Sample strings include literal values,
variable names, routine names, and type names.

Click the color swatch next to Strings to set the color.

Sort function popup
Select the Sort function popup option to sort function names by alphabetical
order in list pop-ups. Clear the option to sort function names by order of
appearance in the source file.

Source relative includes
Select to search for dependent files in the same location as the source file. If the
dependent file is not found in this location, specified User and System paths are
searched. If this option is enabled, the Always Search User Paths should also be
enabled. For example, if the compiler is currently scanning the main source file
and discovers an include header file statement, the header file is searched for in
the same location as the main file. If not found, the specified access paths will be
searched. If the header file declared in the main file also contains an include
statement for another header file, it too will be searched for in the same sequence.

Success
Choose from the Success options a sound to play after a Bring Up To Date or
Make operation succeeds.
453IDE 5.6 User’s Guide

Preference and Target Settings Options
Symbolics
Enter the number of recent symbolics files to display in the Open Recent
submenu.

System Paths
Click the System Paths radio button to display the System Paths pane in the
Access Paths preference panel.

Supported hosts:

• Windows: available.

• Macintosh: not available.

T

Tab indents selection
Use the Tab indents selection option to control how the editor inserts tabs into
the currently selected lines of text:

• Select the option so that pressing Tab causes the editor to insert tab
characters in front of each selected line of text. The editor thereby indents
the selected text.

• Clear the option so that pressing Tab causes the editor to replace selected
text with a tab character. The editor thereby overwrites the selected text.

Tab Inserts Spaces
Select the Tab Inserts Spaces option to have the editor insert spaces instead of
tab characters into text. Clear the option to have the editor use tab characters.

The Tab Size option determines the number of spaces inserted by the editor.

Tab Size
Enter in the Tab Size field the number of spaces to substitute in place of a tab
character in text. This number applies to the Tab Inserts Spaces option.
454 IDE 5.6 User’s Guide

Preference and Target Settings Options
Target Name
Use the Target Name text box to set or modify the name of the current build
target. This name appears in the Targets view in the Project window. This name
is not the name assigned to the final output file, that is set in the Linker panel for
the build target.

Type
Choose from the Type options the desired source-tree path type:

• Absolute Path—This source-tree type is based on a file path.

• Environment Variable—This source-tree type is based on an existing
environment-variable definition. The Macintosh-hosted IDE cannot create
or modify this source-tree type.

• Registry Key—This source-tree type is based on an existing Windows
registry key entry.

U

Update data every n seconds
Select this option to update the information displayed in debugging-session
windows after a specified time interval. Enter the number of seconds n to elapse
before the next update. Clear this option to prevent data updates and keep the
same window information throughout the debugging session.

Use Concurrent Compiles
Select the Use Concurrent Compiles option to run more than one compiling
process at a time. Concurrent compiling makes better use of available processor
capacity by allowing the operating system to optimize resource utilization, such
as taking advantage of over-lapped input/output.

Both single- and multi-processor systems benefit from enabling concurrent
compiles. On multiprocessor systems, the speed-up is significant.
455IDE 5.6 User’s Guide

Preference and Target Settings Options
Use Debugging Monitor
Select the Use Debugging Monitor option to view debugging windows on a
second monitor after a debugging session starts. This option only appears when
the second monitor is connected to the computer.

Use default workspace
Select this option to have the IDE use the default workspace. The IDE uses the
default workspace to save and restore window and debugging states from one
session to the next.

For example, if you select this option and close the IDE with a project window
visible onscreen, that project window reappears the next time you start the IDE.

Clear this option to have the IDE start with the same default state for each new
session: no windows visible onscreen.

For example, if you clear this option and close the IDE with a project window
visible onscreen, that project window does not appear the next time you start the
IDE. Instead, the IDE always starts without opening any windows.

Use External Debugger
Select this option to have the IDE use an external debugger application in place
of the CodeWarrior debugger.

Use External Editor
Select the Use External Editor option to use an external text editor to modify
text files in the current project. Clear the option to use the text editor included
with the IDE.

Use Local Project Data Storage
Select the Use Local Project Data Storage option to store (on the host
computer) data associated with a project file on a read-only volume. Clear the
option to store project data inside the same folder as the project file itself.

After loading a project file, the IDE creates or updates an associated project data
folder. The IDE stores intermediate project data in this folder. When building or
closing a project, the IDE uses the information in the project data folder to update
the project file.
456 IDE 5.6 User’s Guide

Preference and Target Settings Options
By default, the IDE places the project data folder within the same folder as the
project file. However, the IDE cannot create or update a project data folder in a
location that grants read-only privileges.

If you are creating one project to be accessed by multiple users that are running
CodeWarrior on separate machines, then each user should select this option to
create a local data storage folder for the shared project. The folder containing the
project file should be set to read-only. This will cause the target information to be
stored locally on each user’s machine, instead of inside a folder next to the
project file.

Use modification date caching
Use the Use modification date caching option to determine whether the IDE
checks the modification date of each project file prior to making the project. The
settings include:

• enabled–the IDE caches the modification dates of the files in a project. At
compilation time, the IDE refers to this cache to determine whether a
specific file should be recompiled. This can shorten compilation time
significantly for large projects.

• disabled–the IDE checks every file at each recompile of the project. Use
this setting if using third-party editors to ensure that the IDE checks every
file at compilation time.

Use Multiple Document Interface
Toggle this option to change the IDE interface:

• Selected—The IDE uses MDI (Multiple Document Interface). In this
interface, the IDE uses a main application window with a gray background.
IDE windows appear inside the main application window. The gray
background obscures your view of the desktop.

• Cleared—The IDE uses FDI (Floating Document Interface). In this
interface, the IDE does not use a main application window. You can see
through the IDE user interface to your desktop. IDE windows appear above
the desktop.
457IDE 5.6 User’s Guide

Preference and Target Settings Options
Use multiple undo
Select the Use multiple undo option to remember several undo and redo
operations in editor windows. Clear the option to remember only the most recent
undo or redo action.

The IDE stores undo and redo actions on a stack in first-in last-out (FILO) order,
however, the stack size and capability are limited. For example, assume there are
five undo actions on the stack (ABCDE). If the IDE redoes two actions (ABC),
then performs a new action (ABCF), the undo events (DE) are no longer
available.

Use Script menu
Select the Use Script menu option to display the Scripts menu in the IDE menu
bar. Clear the option to remove the Scripts menu from the menu bar. The Scripts
menu provides convenient access to IDE scripts.

For more information about scripting the IDE, refer to the CodeWarrior
Scripting Reference.

Use Third Party Editor
Select the Use Third Party Editor option to use a third-party text editor to
modify text files. Clear the option to use the text editor included with the IDE.

Enter in the Launch Editor and Launch Editor w/ Line # fields command-line
expressions that specify information that the IDE passes to the third-party editor.

Consult the documentation provided with the third-party text editor for more
information about using command lines.

See also:

• “Launch Editor” on page 441

• “Launch Editor w/ Line #” on page 442

Use ToolServer menu
Select the Use ToolServer menu option to display the ToolServer menu in the
IDE menu bar. Clear the option to remove the ToolServer menu from the menu
bar.
458 IDE 5.6 User’s Guide

Preference and Target Settings Options
User Paths
Click this radio button to display the User Paths pane in the Access Paths
preference panel.

User Specified
Select the User Specified option to stipulate the number of concurrent compiles
to allow in the IDE. Enter the desired number in the text box beside the option.

NOTE The IDE accommodates a maximum of 1024 concurrent compiles.
However, there is a point where the host system becomes compute-
bound, and allowing more processes only adds overhead. For a single-
processor system, the practical limit is approximately 12 concurrent
compiles.

V

Value
The Value text box defines the value of the variable defined in the Variable text
box that will be passed to a host application when control is transferred to it by
the IDE.

Variable
The Variable text box defines the name of a variable to be passed to a host
application when control is transferred to it by the IDE.

Variable values change
Use the Variable values change option to configure the color of changed
variables that appear in debugger windows. Click the color swatch to change the
current color.
459IDE 5.6 User’s Guide

Preference and Target Settings Options
VCS Commands
Select the VCS Commands option to add VCS menu commands to contextual
menus. Clear the option to remove the commands from the contextual menus.

Refer to the documentation that came with the version control system to learn
about using it with the CodeWarrior IDE.

W-Z

Watchpoint indicator
Use the Watchpoint indicator option to configure the color of watchpoints that
appear in debugger windows. Click the color swatch to change the current color.

Window follows insertion point
Select this option to have the Code Completion window follow the insertion
point as you edit text in the active editor window. Clear the option to leave the
Code Completion window in place.

Window position and size
Select the Window position and size option to remember the location and
dimensions of each editor window. Clear the option to open each editor window
according to default settings.

NOTE The IDE must be able to write to the file in order to remember
window position and size.

Working Directory
Enter the path to the default directory to which the current project has access.
Debugging occurs in this location. If this field is blank, debugging occurs in the
same directory as the executable file.
460 IDE 5.6 User’s Guide

Preference and Target Settings Options
Workspaces
Enter the number of recent workspace files to display in the Open Recent
submenu.

Zoom windows to full screen
Use the Zoom windows to full screen option to configure the behavior of the
zoom box in the upper right-hand corner of all editor windows:

• Select the option to have the IDE resize a zoomed window to fill the entire
screen.

• Clear the option to have the IDE resize a zoomed window to its default size.
461IDE 5.6 User’s Guide

Preference and Target Settings Options
462 IDE 5.6 User’s Guide

VIII

Menus
This section contains these chapters:

• IDE Menus on page 465

• Menu Commands on page 497
463IDE 5.6 User’s Guide

464 IDE 5.6 User’s Guide

29
IDE Menus

This chapter provides an overview of CodeWarrior™ IDE menus and their
commands. The IDE provides two different arrangements of IDE menus,
configurable in the IDE Extras preference panel:

• Windows menu layout

• Macintosh menu layout

This chapter lists the IDE menus under each menu layout. For each menu, a table
shows this information:

• Menu command—the name of each command in the menu.

• Description—a short description of each command.

This chapter has these sections:

• “Windows Menu Layout” on page 465

• “Macintosh Menu Layout” on page 480

Windows Menu Layout
This section provides an overview of the menus and menu commands available
in the Windows menu layout.

File Menu
The File menu contains commands for opening, creating, saving, closing, and
printing source files and projects. The File menu also provides different methods
for saving edited files.
465IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Table 29.1 File menu commands

Menu command Explanation

New on page 515 Creates new projects using the New Project wizard or
project stationery files.

Open on page 517 Opens source and project files for editing and project
modification operations.

Find and Open File on
page 510

Opens the file specified in the Find and Open File dialog or
from the selected text in the active window.
When using the Windows menu layout on a Macintosh
host, hold down the Option key to change this command to
Find on page 509.

Close on page 502 Closes the active window.

Save on page 523 Saves the active file using the editor window’s filename.
When using the Windows menu layout on a Macintosh
host, hold down the Option key to change this command to
Save All on page 524.

Save All on page 524 Saves all open editor windows.
When using the Windows menu layout on a Macintosh
host, hold down the Option key to substitute this command
for the Save on page 523 command.

Save As on page 524 Saves a copy of the active file under a new name and
closes the original file.

Save A Copy As on
page 523

Saves a copy of the active file without closing the file.

Revert on page 523 Discards all changes made to the active file since the last
save operation.

Open Workspace on
page 517

Opens a workspace that you previously saved.

Close Workspace on
page 503

Closes the current workspace. (You cannot close the
default workspace.)

Save Workspace on
page 524

Saves the current state of onscreen windows, recent
items, and debugging.

Save Workspace As on
page 524

Saves an existing workspace under a different name.
466 IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Edit Menu
The Edit menu contains all customary editing commands, along with some
CodeWarrior additions. This menu also includes commands that open the
Preferences and Target Settings windows.

Import Components on
page 513

Imports the components from another catalog into the
current catalog.

Close Catalog on
page 503

Closes the current catalog and its associated Catalog
Components window and Component Palette.

Import Project on
page 514

Imports a project file previously saved in extensible
markup language format (XML) and converts it into project
file format.

Export Project on
page 508

Exports the active project file to disk in extensible markup
language (XML) format.

Page Setup on page 517 Displays the Page Setup dialog for setting paper size,
orientation, and other printer options.

Print on page 518 Displays the Print dialog for printing active files, and the
contents of Project, Message, and Errors & Warning
window contents.

Open Recent on
page 517

Displays a submenu of recently opened files and projects
that can be opened in the IDE.

Exit on page 508 Quits the CodeWarrior IDE.
When using the Windows menu layout on a Macintosh
host, this command does not appear. Instead, use the
Quit or Quit CodeWarrior on page 518

command in the File menu or the Quit or Quit
CodeWarrior on page 518 command in the
CodeWarrior menu.

Table 29.1 File menu commands (continued)

Menu command Explanation
467IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Table 29.2 Edit menu commands

Menu command Explanation

Undo on page 531 Undoes the last cut, paste, clear, or typing operation.
If you cannot undo the action, this command changes to
Can’t Undo.

Redo on page 519 Redoes the action of the last Undo operation.
If you cannot redo the action, this command changes to
Can’t Redo.

Cut on page 505 Removes the selected text and places a copy of it on the
Clipboard.

Copy on page 504 Copies the selected text and places a copy of it on the
Clipboard.

Paste on page 517 Places the contents of the Clipboard at current insertion
point or replaces the selected text.

Delete on page 506 Removes the selected text without placing a copy on the
Clipboard.
When using the Windows menu layout on a Macintosh
host, this command does not appear. Instead, use the
Clear on page 501 command.

Select All on page 524 Selects all text in current editor window or text box for cut,
copy, paste, clear, or typing operations.

Balance on page 499 Selects text between the nearest set of parenthesis,
braces, or brackets.

Shift Left on page 525 Moves selected text one tab stop to the left.

Shift Right on page 526 Moves selected text one tab stop to the right.

Get Previous
Completion on page 512

Shortcut for selecting the previous item that appears in
the Code Completion window.

Get Next Completion on
page 512

Shortcut for selecting the next item that appears in the
Code Completion window.

Complete Code on
page 503

Opens the Code Completion window.

Preferences on page 518 Opens the IDE Preferences window where you can set
general IDE, editor, debugger, and layout options.
468 IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
View Menu
The View menu contains commands for viewing toolbars, the class browser, the
Message window, and debugging windows.

Target Settings on
page 528
(the name changes, based
on the name of the active
build target)

Opens the project’s Target Settings window where you
can set target, language, code generation, linker, editor,
and debugger options.

Version Control
Settings on page 532

Opens the VCS Settings window to enable activation of a
version control system and its relevant settings.

Commands & Key
Bindings on page 503

Opens the Customize IDE Commands window where you
can create, modify, remove menus, menu commands,
and key bindings.

Table 29.3 View menu commands

Menu command Explanation

Toolbars on page 530 Use the Toolbars menu to show, hide, reset, and clear
window and main toolbars.

Project Inspector on
page 518

Opens or brings to the front a Project Inspector window.

Browser Contents on
page 500

Opens or brings to the front a Browser Contents window.

Class Browser on page 501 Opens or brings to the front a New Class Browser
window.

Class Hierarchy or Class
Hierarchy Window on
page 501

Opens or brings to the front a Class Hierarchy window.

Build Progress or Build
Progress Window on
page 500

Opens the Build Progress window.

Table 29.2 Edit menu commands (continued)

Menu command Explanation
469IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Search Menu
The Search menu contains commands for finding text, replacing text, comparing
files, and navigating code.

Errors & Warnings or Errors
& Warnings Window on
page 508

Opens or brings to the front an Errors & Warnings
window.

Symbolics or Symbolics
Window on page 527

Opens the Symbolics window.

Processes or Processes
Window on page 518

Opens or brings to the front a Processes window.

Breakpoints or Breakpoints
Window on page 499

Opens or brings to the front the Breakpoints window. Use
this window to view, create, modify, and remove
breakpoints.

Registers or Register
Window on page 519

Opens or brings to the front a Register window.

Expressions or
Expressions Window on
page 509

Opens or brings to the front an Expressions window. Use
to view, create, modify, and remove expressions.

Global Variables or Global
Variables Window on
page 512

Opens or brings to the front a Global Variables window.

Table 29.4 Search menu commands

Menu command Explanation

Find on page 509 Opens the Find and Replace window for performing
searches in the active editor window.

Replace on page 520 Opens the Find and Replace window for replacing text in
the active editor window.

Find in Files on page 510 Opens the Find in Files window for performing searches in
the active editor window.

Table 29.3 View menu commands (continued)

Menu command Explanation
470 IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Find Next on page 510 Finds the next occurrence of the find string in the active
editor window.
When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find Previous on page 511.

Find In Next File on
page 510

Finds the next occurrence of the find string in the next file
listed in the Find window’s File Set.
When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find In Previous File on page 510.

Enter Find String on
page 507

Replaces the Find text box string with the selected text.
When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Enter Replace String on page 507.

Find Selection on
page 511

Finds the next occurrence of the selected text in the active
editor window.
When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find Previous Selection on page 511.

Replace Selection on
page 521

Replaces the replace string in the Replace text box with
the selected text.

Replace and Find Next on
page 520

Replaces the selected text with the Replace text box
string, then performs a Find Next operation.
When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Replace and Find Previous on page 520.

Replace All on page 520 Finds all matches of the Find text box string and replaces
them with the Replace text box string.

Find Definition on
page 509

Searches for definition of the routine name selected in the
active editor window using the project’s source files.
When using the Windows menu layout on a Macintosh
host, hold down the Option key to change this command
to Find Reference on page 511.

Go Back on page 512 Returns to the previous CodeWarrior browser view.

Go Forward on page 512 Moves to the next CodeWarrior browser view.

Table 29.4 Search menu commands (continued)

Menu command Explanation
471IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Project Menu
The Project menu contains commands for manipulating files, handling libraries,
compiling projects, building projects, and linking projects.

Go to Line on page 512 Opens the Go To Line dialog where you can specify by
line number where to position the text insertion point.

Compare Files on
page 504

Opens the Compare Files Setup window where you can
choose to compare folders or files and merge their
contents.

Apply Difference on
page 498

Adds, removes, or changes the selected text in the
destination file to match the selected text in the source
file.

Unapply Difference on
page 531

Reverses the modifications made to the destination file by
the Apply Difference command.

Table 29.5 Project menu commands

Menu command Explanation

Add Window on page 497 Adds the active window to the project.

Add Files on page 497 Opens a dialog box that you can use to add multiple files
to the active project.

Create Group on page 505 Opens the Create Group dialog box that you can use to
add a new file group to the active project. The new file
group appears below the selected file or group.

Create Target on
page 505

Opens the Create Target dialog box that you can use to
add a new build target to the active project. The new build
target appears below the selected build target.

Create Overlay or Create
Segment on page 505
or
Create Overlay or Create
Segment on page 505

Opens the Create Segment/Overlay dialog box that you
can use to add a new segment or overlay to the active
project. The new segment or overlay appears below the
selected one.

Table 29.4 Search menu commands (continued)

Menu command Explanation
472 IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Create Design on
page 504

Opens the Create New Design dialog box that you can
use to add a design to the active project. The new design
appears in the Design tab of the project window.

Export Project as GNU
Makefile on page 508

Exports the current project to a GNU makefile.
When using the Windows menu layout on a Macintosh
host, this command does not appear.

Check Syntax on
page 500

Checks the active editor window or selected files in the
project window for compilation errors.

Preprocess on page 518 Preprocesses the active editor window or selected files in
the project window and displays results in a new editor
window.

Precompile on page 518 Precompiles the active editor window or selected files in
the project window and stores results in a new header file.

Compile on page 504 Compiles the active editor window or selected files in the
project window.

Disassemble on page 506 Disassembles the active editor window or selected files in
the project window and displays results in a new editor
window.

Bring Up To Date on
page 500

Compiles all marked or modified files in the current build
target of the active project.

Make on page 514 Compiles and links all marked or modified files in the
current build target of the active project, saving the
executable file.

Stop Build on page 527 Stops the current compile and linking operation and
cancels the remainder of the build process.

Remove Object Code on
page 519

Removes object code from one or more build targets in
the project.
When using the Windows menu layout on a Macintosh
host, hold down the Shift key to change this command to
Remove Object Code & Compact on
page 519.

Re-search for Files on
page 521

Resets the cached locations of source files using the
project access paths, and stores them for faster builds
and project operations.

Table 29.5 Project menu commands (continued)

Menu command Explanation
473IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Debug Menu
The Debug menu contains commands for managing program execution.

Reset Project Entry
Paths on page 522

Resets the location of all source files in the active project
using the project access paths.

Synchronize Modification
Dates on page 527

Updates the modification dates of all source files in the
active project.

Debug on page 506

or

Resume on page 523

Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Run on page 523 Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Set Default Project on
page 525

Uses the Set Default Project menu to choose the default
project when more than one project is open in the IDE.

Set Default Target on
page 525

Uses the Set Default Target menu to choose the default
build target when more than one build target is present in
the project file.

Table 29.6 Debug menu commands

Menu command Explanation

Break on page 499 Pauses execution of the program in a debugging session
to enable examination of register and variable contents

Kill on page 514 Terminates the current debugging session returning
control to the IDE.

Restart on page 522 Terminates the current debugging session, then restarts
the program from the beginning.

Table 29.5 Project menu commands (continued)

Menu command Explanation
474 IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Step Over on page 527 Executes each source line in the program, treating routine
calls as a single statement and stopping the program at
the next line of code.

Step Into on page 526 Executes each source line in the program, following any
subroutine calls.

Step Out on page 527 Executes each source line in the subroutine and stops the
program when the routine returns to its caller.

Run to Cursor on
page 523

Sets a temporary breakpoint on the source line containing
the insertion point.

Change Program
Counter on page 500

Opens the Change Program Counter dialog box that you
can use to move the current statement arrow to an
address or symbol.

Set Breakpoint on
page 525
or
Clear Breakpoint on
page 501

Sets a breakpoint on the source line containing the
insertion point.
Clears the breakpoint on the source line containing the
insertion point.

Set Eventpoint on
page 525

Sets an eventpoint on the source line containing the
insertion point.

Clear Eventpoint on
page 502

Clears the breakpoint on the source line containing the
insertion point.

Set/Clear Breakpoint on
page 525

Opens the Set/Clear Breakpoint dialog box that you can
use for setting or clearing breakpoints by address or
symbol.

Enable Breakpoint on
page 507
or
Disable Breakpoint on
page 506

Activates the disabled breakpoint on the source line
containing the insertion point.
De-activates the breakpoint on the source line containing
the insertion point.

Clear All Breakpoints on
page 501

Clears all breakpoints currently set in the default build
target of the active project.

Table 29.6 Debug menu commands (continued)

Menu command Explanation
475IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Data Menu
The Data menu contains commands that control how the CodeWarrior debugger
displays data values. This menu appears only during a debugging session.

Show Breakpoints on
page 526
or
Hide Breakpoints on
page 513

Adds a Breakpoint Column to all project editor windows
where you can set, view, or clear breakpoints.
Removes the Breakpoint Column from all project editor
windows.

Set Watchpoint on
page 525
or
Clear Watchpoint on
page 502

Sets a watchpoint on the source line containing the
insertion point.
Clears the watchpoint on the source line containing the
insertion point.

Enable Watchpoint on
page 507
or
Disable Watchpoint on
page 506

Activates the disabled watchpoint on the source line
containing the insertion point.
De-activates the watchpoint on the source line containing
the insertion point.

Clear All Watchpoints on
page 501

Clears all watchpoints currently set in the default build
target of the active project.

Break on C++
Exception on page 499

Configures the debugger to break at __throw() each
time a C++ exception occurs.

Break on Java
Exceptions on page 499

Use this menu to select the Java exceptions on which the
debugger breaks.

Connect on page 504 Establishes communication with an embedded device to
start a debugging session.
When using the Windows menu layout on a Macintosh
host, this command does not appear.

Table 29.6 Debug menu commands (continued)

Menu command Explanation
476 IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Table 29.7 Data menu commands

Menu command Explanation

Show Types on page 526 Toggles the appearance of the data type on local and
global variables displayed in Variable panes and Variable
windows.

Refresh All Data on
page 519

Updates data displays.

New Expression on
page 516

Creates a new expression entry in the Expressions
window.

Copy to Expression on
page 504

Copies the selected variable to the Expressions window.

View As on page 532 Displays the View As dialog where the data type of the
selected variable can be specified.

View Variable on
page 534

Displays the selected variable in a new Variables window.

View Array on page 532 Displays the selected array variable in a new Arrays
window.

View Memory on
page 534

Displays the selected variable in a new Memory window.

View Memory As on
page 534

Displays the View As dialog where the data type of the
selected variable can be specified, then shown in a new
Memory window.

Cycle View on page 505 Toggles the data view among View Source on
page 534, View Disassembly on page 534,

View Mixed on page 534, and View Raw
Data on page 534.

View Source on page 534 View data as source code.

View Disassembly on
page 534

View data as language disassembly.

View Mixed on page 534 View data as source code and its disassembly.

View Raw Data on
page 534

View data without applied formatting.
477IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Window Menu
The Window menu contains commands that manipulate IDE windows.

The menu lists the names of all open file and project windows. A checkmark
appears beside the active window, and an underline indicates a modified and
unsaved file.

View As Default on
page 532

Views the selected variable in the default value format.

View As Binary on
page 532

Views the selected variable as a binary value.

View As Signed
Decimal on page 533

Views the selected variable as a signed decimal value.

View As Unsigned
Decimal on page 534

Views the selected variable as an unsigned decimal value.

View As Hexadecimal on
page 533

Views the selected variable as a hexadecimal value.

View As Character on
page 532

Views the selected variable as a character value.

View As C String on
page 532

Views the selected variable as a C string.

View As Pascal String on
page 533

Views the selected variable as a Pascal string.

View As Unicode
String on page 533

Views the selected variable as a Unicode string.

View As Floating Point on
page 533

Views the selected variable as a floating point value.

View As Enumeration on
page 533

Views the selected variable as an enumerated value.

View As Fixed on
page 533

Views the selected variable as a 32-bit fixed value.

Table 29.7 Data menu commands (continued)

Menu command Explanation
478 IDE 5.6 User’s Guide

IDE Menus
Windows Menu Layout
Help Menu
The Help menu contains commands for accessing the IDE’s online help.

Table 29.8 Window menu commands

Menu command Explanation

Close on page 502 Closes the active window.
When using the Windows menu layout on a Macintosh
host, hold down the Option key to change this command
to Close All on page 502.

Close All on page 502 Closes all non-project windows.
When using the Windows menu layout on a Macintosh
host, hold down the Option key to substitute this
command for the Close on page 502 command.

Cascade on page 500 Arranges all editor windows so that only the title bar is
visible.

Tile Horizontally on
page 528

Tiles all editor windows horizontally on the screen so
none overlap.

Tile Vertically on page 529 Tiles all editor windows vertically on the screen so none
overlap.

Save Default Window on
page 524

Saves the active browser windows settings and applies it
to other browser windows as they are opened.

Table 29.9 Help menu commands

Menu command Explanation

CodeWarrior Help on page 503 Launches a help viewer to display the online help.
Click on a link to view a specific IDE topic.

Index Launches a help viewer to display a glossary of
common terms used in the CodeWarrior help and
manuals.

Search Launches a help viewer to a page for searching the
CodeWarrior help and manuals.
479IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Macintosh Menu Layout
This section provides an overview of the menus and menu commands available
in the Macintosh menu layout.

Apple Menu
The Apple menu (Mac OS 9.x.x and earlier) provides access to the CodeWarrior
About box, shows system applications, and lists additional items.

Select About Freescale CodeWarrior on page 497 to display the IDE
version and build-number information.

When using the Macintosh menu layout on a Windows host, this menu does not
appear.

CodeWarrior Menu
The CodeWarrior Menu (visible in Mac OS X only) provides access to the
CodeWarrior About box, IDE preferences, and the command that quits the IDE.

When using the Macintosh menu layout on a Windows host, this menu does not
appear.

Freescale Website on page 515 Launches a browser and automatically points you to
the Freescale web site.

About Freescale
CodeWarrior on page 497

Displays the CodeWarrior IDE version and build
number information.

Table 29.9 Help menu commands (continued)

Menu command Explanation
480 IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
File Menu
The File menu contains commands for opening, creating, saving, closing, and
printing source files and projects. The File menu also provides different methods
for saving edited files.

Table 29.10 Apple menu commands

Menu command Explanation

About Freescale
CodeWarrior on page 497

Displays the CodeWarrior IDE version and build
number information.

Preferences on page 518 Opens the IDE Preferences window where you can
set general IDE, editor, debugger, and layout
options.

Quit or Quit CodeWarrior on
page 518

Quits the CodeWarrior IDE.

Table 29.11 File menu commands

Menu command Explanation

New Text File on page 516 Creates a new text file and displays it in a new editor
window.

New on page 515 Creates new projects using the New Project wizard or
project stationery files.

Open on page 517 Opens source and project files for editing and project
modification operations.

Open Recent on page 517 Displays a submenu of recently opened files and projects
that can be chosen to open in the IDE.

Find and Open File on
page 510

Opens the file specified in the Find and Open File dialog
or from the selected text in the active window.

Close on page 502 Closes the active window.
When using the Macintosh menu layout on a Macintosh
host, hold down the Option key to change this command
to Close All on page 502.
481IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Save on page 523 Saves the active file using the editor window’s filename.
When using the Macintosh menu layout on a Macintosh
host, hold down the Option key to change this command
to Save All on page 524.

Save As on page 524 Saves a copy of the active file under a new name and
closes the original file.

Save A Copy As on
page 523

Saves a copy of the active file without closing the file.

Revert on page 523 Discards all changes made to the active file since the last
save operation.

Open Workspace on
page 517

Opens a workspace that you previously saved.

Close Workspace on
page 503

Closes the current workspace. (You cannot close the
default workspace.)

Save Workspace on
page 524

Saves the current state of onscreen windows, recent
items, and debugging.

Save Workspace As on
page 524

Saves an existing workspace under a different name.

Import Components on
page 513

Imports the components from another catalog into the
current catalog.

Close Catalog on
page 503

Closes the current catalog and its associated Catalog
Components window and Component Palette.

Import Project on
page 514

Imports a project file previously saved in extensible
markup language format (XML) and converts it into
project file format.

Export Project on
page 508

Exports the active project file to disk in XML format.

Page Setup on page 517 Displays the Page Setup dialog for setting paper size,
orientation, and other printer options.

Table 29.11 File menu commands (continued)

Menu command Explanation
482 IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Edit Menu
The Edit menu contains all customary editing commands, along with some
CodeWarrior additions. This menu also includes the commands that open the
Preferences and Target Settings windows.

Print on page 518 Displays the Print dialog for printing active files, and the
contents of Project, Message, and Errors & Warning
window contents.

Quit or Quit
CodeWarrior on page 518
(Classic Mac OS)

Quits the CodeWarrior IDE.

Table 29.12 Edit menu commands

Menu command Explanation

Undo on page 531 Undoes the action of the last cut, paste, clear or typing
operation.
If you cannot undo the action, this command changes to
Can’t Undo.

Redo on page 519 Redoes the action of the last Undo operation.
If you cannot redo the action, this command changes to
Can’t Redo.

Cut on page 505 Removes the selected text and places a copy of it on the
Clipboard.

Copy on page 504 Copies the selected text and places a copy of it on the
Clipboard.

Paste on page 517 Places the contents of the Clipboard at current insertion
point or replaces the selected text.

Clear on page 501 Removes the selected text without placing a copy on the
Clipboard.
When using the Macintosh menu layout on a Windows
host, this command does not appear. Instead, use the
Delete on page 506 command.

Table 29.11 File menu commands (continued)

Menu command Explanation
483IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Search Menu
The Search menu contains commands for finding text, replacing text, comparing
files, navigating code, and finding routine definitions.

Select All on page 524 Selects all text in the current editor window or text box for
cut, copy, paste, clear, or typing operations.

Balance on page 499 Selects text between the nearest set of parenthesis,
braces, or brackets.

Shift Left on page 525 Moves selected text one tab stop to the left.

Shift Right on page 526 Moves selected text one tab stop to the right.

Get Previous
Completion on page 512

Shortcut for selecting the previous item that appears in
the Code Completion window.

Get Next Completion on
page 512

Shortcut for selecting the next item that appears in the
Code Completion window.

Complete Code on
page 503

Opens the Code Completion window.

Insert Reference
Template on page 514

Inserts a routine template corresponding to the selected
Mac OS Toolbox call in the active window.
When using the Macintosh menu layout on a Windows
host, this command does not appear.

Preferences on page 518 Opens the IDE Preferences window where you can set
general IDE, editor, debugger, and layout options.

Target Settings on
page 528
(name changes, based on
name of active build target)

Opens the project’s Target Settings window where you
can set target, language, linker, editor, and debugger
options.

Version Control Settings on
page 532

Opens the VCS Settings window to enable activation of a
version control system and its relevant settings.

Commands & Key
Bindings on page 503

Opens the Customize IDE Commands window where
you can create, modify, remove menus, menu
commands, and key bindings.

Table 29.12 Edit menu commands (continued)

Menu command Explanation
484 IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Table 29.13 Search menu commands

Menu command Explanation

Find and Replace on
page 511

Opens the Find and Replace window for performing find
and replace operations on the active editor window.

Find in Files on page 510 Opens the Find in Files window for performing searches
in the active editor window.

Find Next on page 510 Finds the next occurrence of the find string in the active
editor window.
When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find Previous on page 511.

Find In Next File on
page 510

Finds the next occurrence of the find string in the next
file listed in the Find window’s File Set.
When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find In Previous File on page 510.

Enter Find String on
page 507

Replaces the Find text box string with the selected text.
When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Enter Replace String on page 507.

Find Selection on page 511 Finds the next occurrence of the selected text in the
active editor window.
When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find Previous Selection on page 511.

Replace Selection on
page 521

Replaces the replace string in the Replace text box with
the selected text.

Replace and Find Next on
page 520

Replaces the selected text with the Replace text box
string, then performs a Find Next operation.
When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Replace and Find Previous on page 520.

Replace All on page 520 Finds all matches of the Find text box string and replaces
them with the Replace text box string.
485IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Project Menu
The Project menu contains commands for manipulating files, handling libraries,
compiling projects, building projects, and linking projects.

Find Definition on page 509 Searches for the definition of the routine name selected
in the active editor window using the project’s source
files.
When using the Macintosh menu layout on a Macintosh
host, hold down the Shift key to change this command to
Find Definition & Reference on page 509.

Find Reference on
page 511

Searches for the definition of the routine name selected
in the active editor window using the specified online
help system.
When using the Macintosh menu layout on a Windows
host, this command does not appear.

Go Back on page 512 Returns to the previous CodeWarrior browser view.

Go Forward on page 512 Moves to the next CodeWarrior browser view.

Go to Line on page 512 Opens the Go To Line dialog where you can specify by
line number where to position the text insertion point.

Compare Files on page 504 Opens the Compare Files Setup window where you can
choose to compare folders or files and merge their
contents.

Apply Difference on
page 498

Adds, removes, or changes the selected text in the
destination file to match the selected text in the source
file.

Unapply Difference on
page 531

Reverses the modifications made to the destination file
by the Apply Difference command.

Table 29.13 Search menu commands (continued)

Menu command Explanation
486 IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Table 29.14 Project menu commands

Menu command Explanation

Add Window on page 497
(name changes, based on
name of selected item)

Adds the active window to the project.

Add Files on page 497 Opens a dialog that you can use to add multiple files to
the active project.

Create Group on page 505
or
Create Target on page 505
or
Create Overlay or Create
Segment on page 505
or
Create Overlay or Create
Segment on page 505

Displays the Create Group dialog where you can add a
new file group to the active project immediately after
selected file or group.
Displays the Create Target dialog where you can add a
new build target to the active project immediately after
selected build target.
Displays the Create Overlay dialog where you can add a
new memory overlay to the active project immediately
after the selected overlay.
Displays the Create Segment dialog where you can add
a new segment to the active project immediately after
the selected segment.

Create Design on page 504 Opens the Create New Design dialog box that you can
use to add a design to the active project. The new design
appears in the Design tab of the project window.

Check Syntax on page 500 Checks the active editor window or selected files in the
project window for compilation errors.

Preprocess on page 518 Preprocesses the active editor window or selected files
in the project window and displays results in a new editor
window.

Precompile on page 518 Precompiles active editor window or selected files in
project window and stores results in a new header file.

Compile on page 504 Compiles the active editor window or selected files in
project window.

Disassemble on page 506 Disassembles the active editor window or selected files
in the project window and displays the results in a new
editor window.

Bring Up To Date on
page 500

Compiles all marked or modified files in the current build
target of the active project.
487IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Make on page 514 Compiles and links all marked or modified files in the
current build target of the active project; saving the
executable file.

Stop Build on page 527 Stops the current compile and link operation and cancels
the remainder of the build process.

Remove Object Code on
page 519

Removes the object code from one or more build targets
in the project.
When using the Macintosh menu layout on a Macintosh
host, hold down the Option key to change this command
to Remove Object Code & Compact on
page 519.

Re-search for Files on
page 521

Resets the cached locations of source files using the
project access paths, and storing them for faster builds
and project operations.

Reset Project Entry
Paths on page 522

Resets the location of all source files in the active project
using the project access paths.

Synchronize Modification
Dates on page 527

Updates the modification dates of all source files in the
active project.

Debug on page 506
or
Resume on page 523

Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.
Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Run on page 523 Compiles and links all marked or modified files in the
current build target of the active window, then runs the
built executable file.

Set Default Project on
page 525

Uses the Set Default Project menu to choose the default
project when more than one project is open in the IDE.

Set Default Target on
page 525

Uses the Set Default Target menu to choose the default
build target when more than one build target is present in
the project file.

Table 29.14 Project menu commands (continued)

Menu command Explanation
488 IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Debug Menu
The Debug menu contains commands for managing program execution.

Table 29.15 Debug menu commands

Menu command Explanation

Kill on page 514 Terminates the current debugging session returning
control to the IDE.

Restart on page 522 Terminates the current debugging session, then
restarts the program from the beginning.

Step Over on page 527 Executes each source line in the program, treating
routine calls as a single statement and stopping the
program at the next line of code.

Step Into on page 526 Executes each source line in the program, following
any subroutine calls.

Step Out on page 527 Executes each source line in the subroutine and stops
the program when the routine returns to its caller.

Stop on page 527 Pauses execution of the program in a debugging
session to enable examination of register and variable
contents.

Set Breakpoint on page 525
or
Clear Breakpoint on
page 501

Sets a breakpoint on the source line containing the
insertion point.
Clears the breakpoint on the source line containing the
insertion point.

Set Eventpoint on page 525 Sets an eventpoint on the source line containing the
insertion point.

Clear Eventpoint on
page 502

Clears the breakpoint on the source line containing the
insertion point.

Set/Clear Breakpoint on
page 525

Displays the Set/Clear Breakpoint dialog for setting or
clearing breakpoints by address or symbol.

Enable Breakpoint on
page 507
or
Disable Breakpoint on
page 506

Activates the disabled breakpoint on the source line
containing the insertion point.
De-activates the breakpoint on the source line
containing the insertion point.
489IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Clear All Breakpoints on
page 501

Clears all breakpoints currently set in the default build
target of the active project.

Show Breakpoints on
page 526
or
Hide Breakpoints on
page 513

Adds a Breakpoint Column to all project editor windows
where breakpoints can be set, viewed, and cleared.
Removes the Breakpoint Column from all project editor
windows.

Set Watchpoint on page 525
or
Clear Watchpoint on
page 502

Sets a watchpoint on the source line containing the
insertion point.
Clears the watchpoint on the source line containing the
insertion point.

Enable Watchpoint on
page 507
or
Disable Watchpoint on
page 506

Activates the disabled watchpoint on the source line
containing the insertion point.
De-activates the watchpoint on the source line
containing the insertion point.

Clear All Watchpoints on
page 501

Clears all watchpoints currently set in the default build
target of the active project.

Run to Cursor on page 523 Sets a temporary breakpoint on the source line
containing the insertion point.

Change Program Counter on
page 500

Displays the Change Program Counter dialog where
you can move the current statement arrow to an
address or symbol.

Break on C++ Exception on
page 499

Configures the debugger to break at __throw() each
time a C++ exception occurs.

Break on Java Exceptions on
page 499

Use this menu to select which Java exceptions the
debugger should break on.

Switch to Monitor on
page 527

Configures the IDE to use an external debugger
instead of the CodeWarrior debugger.
When using the Macintosh menu layout on a Windows
host, this command does not appear.

Table 29.15 Debug menu commands (continued)

Menu command Explanation
490 IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Data Menu
The Data menu contains commands that control how the CodeWarrior debugger
displays data values. This menu only appears during a debugging session.

Table 29.16 Data menu commands

Menu command Description

Show Types on page 526 Toggles the appearance of the data type on local and
global variables displayed in Variable panes and
Variable windows.

Refresh All Data on page 519 Updates data displays.

New Expression on page 516 Creates a new expression entry in the Expressions
window.

Copy to Expression on
page 504

Copies the selected variable to the Expressions
window.

View As on page 532 Displays the View As dialog where the data type of the
selected variable can be specified.

View Variable on page 534 Displays the selected variable in a new Variables
window.

View Array on page 532 Displays the selected array variable in a new Arrays
window.

View Memory on page 534 Displays the selected variable in a new Memory
window.

View Memory As on
page 534

Displays the View As dialog where the data type of the
selected variable can be specified, then shown in a
new Memory window.

Cycle View on page 505 Toggles the data view among View Source on
page 534, View Disassembly on page 534,

View Mixed on page 534, and View Raw
Data on page 534.

View Source on page 534 View data as source code.

View Disassembly on
page 534

View data as disassembled.

View Mixed on page 534 View data as source code and disassembled.
491IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Window Menu
The Window menu contains commands that manipulate IDE windows. The
Window menu is divided into several sections:

View Raw Data on page 534 View data without applied formatting.

View As Default on page 532 Views selected variable in default value format.

View As Binary on page 532 Views selected variable as a binary value.

View As Signed Decimal on
page 533

Views selected variable as a signed decimal value.

View As Unsigned
Decimal on page 534

Views selected variable as an unsigned decimal value.

View As Hexadecimal on
page 533

Views selected variable as a hexadecimal value.

View As Character on
page 532

Views selected variable as a character value.

View As C String on
page 532

Views selected variable as a C string.

View As Pascal String on
page 533

Views selected variable as a Pascal string.

View As Unicode String on
page 533

Views selected variable as a Unicode string.

View As Floating Point on
page 533

Views selected variable as a floating point value.

View As Enumeration on
page 533

Views selected variable as an enumerated value.

View As Fixed on page 533 Views selected variable as a 32-bit fixed value.

View As Fract on page 533 Views selected variable as a fract value.
When using the Macintosh menu layout on a Windows
host, this command does not appear.

Table 29.16 Data menu commands (continued)

Menu command Description
492 IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
• window commands to stack, tile, zoom, collapse, and save window
positions.

• toolbar submenu for showing, hiding, resetting, and clearing window and
floating toolbars.

• commands to open specific browser, IDE, and debugger windows.

• names of all open file and project windows.

A check mark appears beside the active window, and an underline denotes a
modified and unsaved file.

Table 29.17 Window menu commands

Menu command Description

Stack Editor Windows on
page 526

Arranges all editor windows so that only the title bar is
visible.

Tile Editor Windows on
page 528

Tiles all editor windows horizontally on the screen so
none overlap.

Tile Editor Windows
Vertically on page 528

Tiles all editor windows vertically on the screen so
none overlap.

Zoom Window on page 535 Restores the active editor window to its previous size
and position.

Collapse Window on
page 504
(Minimize Window on
page 515)
or
Expand Window on page 508
(Maximize Window on
page 514)

Collapses the active editor window so that only its title
bar is visible.

Expands the collapsed editor window to its previous
size and position.

Save Default Window on
page 524

Saves the current browser-window settings for later re-
use.

Toolbars on page 530 Use the Toolbars submenu to show, hide, reset, and
clear window, main, and floating toolbars.

Browser Contents on
page 500

Opens or brings to the front a Browser Contents
window.
493IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
Class Hierarchy or Class
Hierarchy Window on
page 501

Opens or brings to the front a Class Hierarchy window.

New Class Browser on
page 515

Opens or brings to the front a New Class Browser
window.

Build Progress or Build
Progress Window on
page 500

Opens or brings to the front a Build Progress window.

Errors & Warnings or Errors
& Warnings Window on
page 508

Opens or brings to the front an Errors & Warnings
window.

Project Inspector on
page 518

Opens or brings to the front a Project Inspector
window.

ToolServer Worksheet on
page 530

Opens or brings to the front a ToolServer Worksheet
window.
When using the Macintosh menu layout on a Windows
host, this command does not appear.

Symbolics or Symbolics
Window on page 527

Opens or brings to the front a Symbolics window.

Processes or Processes
Window on page 518

Opens or brings to the front a Processes window.

Expressions or Expressions
Window on page 509

Opens or brings to the front an Expressions window.
Use to view, create, modify, and remove expressions.

Global Variables or Global
Variables Window on
page 512

Opens or brings to the front a Global Variables window.

Breakpoints or Breakpoints
Window on page 499

Opens or brings to the front a Breakpoints window. Use
to view, create, modify, and remove breakpoints.

Registers or Register
Window on page 519

Opens or brings to the front a Register window.

Table 29.17 Window menu commands (continued)

Menu command Description
494 IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
VCS Menu
The VCS (Version Control System) menu appears in the IDE’s menu bar when
the Use Version Control option is enabled. The CodeWarrior IDE can operate
with many difference version control systems including CVS, Visual SourceSafe,
and others.

This icon represents the VCS menu in the Macintosh-hosted IDE
menu bar.

Refer to the documentation that came with the version control system to learn
about using it with the CodeWarrior IDE.

Tools Menu
On the Mac OS hosted IDE, the Tools menu appears in the IDE’s menu bar after
you enable the Use ToolServer menu checkbox in the IDE Extras preference
panel. The Tools menu contains commands for controlling Apple® ToolServer™
and Macintosh Programmer’s Workbench (MPW).

Macintosh: This icon represents the Tools menu in the Macintosh-hosted
IDE menu bar.

Refer to Targeting Mac OS to learn about using ToolServer and MPW
with projects.

Scripts Menu
The Scripts menu appears in the IDE’s menu bar after you enable the Use script
menu checkbox in the IDE Extras preference panel and creates a (Scripts)
folder in the Freescale CodeWarrior folder of your IDE installation.

The Scripts menu uses the directory structure of the (Scripts) folder to create
a hierarchical menu. This hierarchical menu lists all scripts in the (Scripts)
folder. Open a script-editing utility or a text editor to learn more about the scripts
that might already exist in the (Scripts) folder.

Refer to the CodeWarrior Scripting Reference to learn about scripting the IDE.

Help Menu
The Help menu contains commands for accessing the IDE’s online help.
495IDE 5.6 User’s Guide

IDE Menus
Macintosh Menu Layout
NOTE Classic Macintosh: The Help menu contains additional menu
commands for Balloon Help and accessing Apple’s online help.

Table 29.18 Help menu commands

Menu command Description

CodeWarrior Help on
page 503

Launches a help viewer to display the online help. Click
on a link to view a specific IDE topic.

Index (Windows) Opens the online help to the Index tab.

Search (Windows) Opens the online help to the Search tab.

Freescale Website on
page 515

Launches a browser and automatically points you to
the Freescale website.

About Freescale
CodeWarrior on page 497
(Windows)

Displays the CodeWarrior IDE version and build
number information.
496 IDE 5.6 User’s Guide

30
Menu Commands

This section presents an alphabetical listing of all available menu commands in
the CodeWarrior™ IDE. Menu commands that appear only on certain host
platforms are documented. A menu command that has no host information is
available on all hosts.

Use this listing as a reference to find information about a specific menu
command.

A

About Freescale CodeWarrior
This command displays the CodeWarrior IDE version and build number
information.

TIP Click the Installed Products button in this window to view and save
information about installed products and plug-ins for the CodeWarrior
IDE. You can also use this window to enable or disable plug-in
diagnostics.

Add Files
The Add Files command opens a dialog which allows one or more files to be
added to the project.

Add Window
The Add Window command adds the file in the active Editor window to the
open project. The name of the menu command changes, based on the name of the
497IDE 5.6 User’s Guide

Menu Commands
active window. For example, if the name of the active window is MyFile, the
name of the menu command changes to Add MyFile to Project.

Align
Reveals the Align submenu with component alignment commands like Right
Edges, Vertical Centers, and others.

See also:

• “Bottom Edges” on page 499

• “Horizontal Center” on page 513

• “Left Edges” on page 514

• “Right Edges” on page 523

• “To Grid” on page 529

• “Top Edges” on page 530

• “Vertical Center” on page 532

All Exceptions
The All Exceptions command of the Java submenu tells the debugger to break
every time an exception occurs. This behavior includes exceptions thrown by the
virtual machine, your own classes, the debugger, classes in classes.zip,
and so on. Java programs throw many exceptions in the normal course of
execution, so catching all exceptions causes the debugger to break often.

Anchor Floating Toolbar
The Anchor Floating Toolbar command attaches the floating toolbar beneath
the menu bar. Once attached, the anchored toolbar can not be moved again until
it is unanchored.

See also: “Unanchor Floating Toolbar” on page 531

Apply Difference
The Apply Difference command applies the selected difference from the source
file into the destination file.
498 IDE 5.6 User’s Guide

Menu Commands
B

Balance
The Balance command selects all text starting at the current insertion point and
enclosed in parentheses (), brackets [], or braces {},

Bottom Edges
The Bottom Edges command of the Align submenu aligns the bottom edges of
the selected components.

Break
The Break command temporarily suspends execution of the target program and
returns control to the debugger.

See also: “Stop” on page 527.

Break on C++ Exception
The Break on C++ Exception command tells the debugger to break at
__throw() each time a C++ exception occurs.

Break on Java Exceptions
The Break on Java Exceptions command reveals the Java Exceptions submenu.

See also:

• “Exceptions in Targeted Classes” on page 508

• “Uncaught Exceptions Only” on page 531.

Breakpoints or Breakpoints Window
These commands open the Breakpoints window.

Bring To Front
The Bring To Front command moves the selected objects so that they are
displayed in front of all other objects.
499IDE 5.6 User’s Guide

Menu Commands
Bring Up To Date
The Bring Up To Date command updates the current build target in the active
project by compiling all of the build target’s modified and touched files.

Browser Contents
The Browser Contents command opens the Browser Contents window. This
command is not available if the Enable Browser option is not activated.

Build Progress or Build Progress Window
These commands open the Build Progress window. Use it to monitor the IDE’s
status as it compiles a project.

C

Cascade
The Cascade command arranges open editor windows one on top of another,
with their window titles visible.

Change Program Counter
The Change Program Counter command opens a window that lets you move
the current-statement arrow to a particular address or symbol.

Check Syntax
The Check Syntax command checks the syntax of the source file in the active
Editor window or the selected files in the open project window. If the IDE detects
one or more errors, a Message window appears and shows information about the
errors.

The Check Syntax command is not available if the active Editor window is
empty or no project file is open.

Check Syntax does not generate object code.

Table 30.1 on page 501 explains how to abort the syntax-checking process:
500 IDE 5.6 User’s Guide

Menu Commands
Class Browser
The Class Browser command opens a Class Browser window. This command is
unavailable if the Enable Browser option is not enabled.

Class Hierarchy or Class Hierarchy Window
These commands open a Multi-Class Browser window. This command is
unavailable if the Enable Browser option is not enabled.

Clear
The Clear command removes the selected text. This menu command is
equivalent to pressing the Backspace or Delete key.

Clear All Breakpoints
The Clear All Breakpoints command clears all breakpoints in all source files
belonging to the target program.

Clear All Watchpoints
The Clear All Watchpoints command clears all watchpoints in the current
program.

Clear Breakpoint
The Clear Breakpoint command clears the breakpoint at the currently selected
line. If the Show Breakpoints option is enabled, the marker in the Breakpoints
column of the Editor window disappears.

Table 30.1 Aborting the syntax-checking process

On this host… Do this…

Windows Press Esc

Macintosh Press Command-. (Command-Period)

Solaris Press Esc

Linux Press Esc
501IDE 5.6 User’s Guide

Menu Commands
Clear Eventpoint
This command opens a submenu that lets you remove an eventpoint from the
currently selected line. If the Show Breakpoints option is active, the Breakpoints
column in the editor windows shows a marker next to each line with an
eventpoint. The marker represents the eventpoint type.

Clear Floating Toolbar
The Clear Floating Toolbar command removes all shortcut icons from the
floating toolbar. Once the toolbar is cleared, drag shortcut icons from the
Commands and Key Bindings window to the toolbar to create a custom floating
toolbar.

Clear Main Toolbar
The Clear Main Toolbar command removes all shortcut icons from the main
toolbar. Once the toolbar is cleared, drag shortcut icons from the Commands and
Key Bindings window to the toolbar to create a custom main toolbar.

Clear Watchpoint
The Clear Watchpoint command removes a watchpoint from the selected
variable or memory range.

Clear Window Toolbar
The Clear Window Toolbar command removes all shortcut icons from the
window toolbar. Once the toolbar is cleared, drag shortcut icons from the
Commands and Key Bindings window to the toolbar to create a custom window
toolbar.

Close
The Close command closes the active window.

Close All
The Close All command closes all open windows of a certain type. The name of
this menu command changes, based on the type of item selected. For example,
502 IDE 5.6 User’s Guide

Menu Commands
select one of several open editor windows, the menu command changes its name
to Close All Editor Documents.

NOTE Macintosh: Press the Option key to change Close to Close All.

Close Catalog
The Close Catalog command closes the current catalog and removes the catalog
from the Component Catalog window and the Component Palette.

Close Workspace
This command closes the current workspace.

You cannot close the default workspace, but you can choose whether to use it by
toggling the Use default workspace on page 456 option in the IDE Extras on
page 364 preference panel.

Commands & Key Bindings
The Commands and Key Bindings command opens the Customize IDE
Commands window.

Complete Code
The Complete Code command opens the Code Completion window. Use this
window to help you automatically complete programming-language symbols as
you type them in the active editor window.

CodeWarrior Glossary
The CodeWarrior Glossary command opens and displays a list of vocabulary
terms used by the CodeWarrior manuals and online help.

CodeWarrior Help
This command opens the online help for the CodeWarrior IDE.
503IDE 5.6 User’s Guide

Menu Commands
Collapse Window
The Collapse Window command collapses the active window so that only its
title is visible.

Compare Files
The Compare Files command opens the Compare Files Setup window. Use it to
choose two files or folders for comparison and merging. After choosing the
items, a comparison window appears that shows differences between the items.

Compile
The Compile command compiles selected source files into binary files. The IDE
compiles source files that are:

• part of the current project and open in the active Editor window, or

• selected files, segments, or groups in a project window.

Connect
The Connect command establishes communication between the IDE and
embedded hardware to begin a debugging session.

Copy
The Copy command copies selected text to the system Clipboard. If the Message
Window is active, the Copy command copies all text in the Message Window to
the Clipboard.

Copy to Expression
The Copy to Expression command copies the variable selected in the active
pane to the Expressions window.

Create Design
This command creates a new design in the current project. The new design
appears in the Design tab of the project window. You cannot create a design if
each build target in the project already belongs to a design.
504 IDE 5.6 User’s Guide

Menu Commands
Create Group
The Create Group command creates a new group in the current project. This
command is active when the Files view is visible in the project window.

Create Overlay or Create Segment
These commands create a new segment or overlay in the current project. This
command is active when the Segments view or Overlays view is visible in the
project window.

Create Target
The Create Target command creates a new build target in the current project.
This command is active when the Targets view is visible in the project window.

Cut
The Cut command copies the selected text to the system Clipboard, replacing the
previous Clipboard contents, and removes it from the current document or text
box.

Cycle View
Toggles view among various data formats.

See also:

• “View Disassembly” on page 534

• “View Mixed” on page 534

• “View Raw Data” on page 534

• “View Source” on page 534
505IDE 5.6 User’s Guide

Menu Commands
D

Debug
This command compiles and links a project, then runs the CodeWarrior debugger
with the project’s code. If debugging is active, the debugging window appears to
examine program information and step through the code as it executes. If
debugging is not active, the window appears, but the program executes without
stopping in the debugger.

Delete
The Delete command removes selected text without placing it on the system
clipboard. This menu command is equivalent to pressing the Backspace or Delete
key.

Disable Breakpoint
The Disable Breakpoint command de-activates the breakpoint at the currently
selected line.

Disable Watchpoint
The Disable Watchpoint command de-activates a watchpoint for the selected
variable or memory range.

Disassemble
The Disassemble command disassembles the compiled source files selected in
the project window. After disassembling a file, the IDE creates a .dump file
that contains the file’s object code. The .dump file appears in a new window
after the IDE completes the disassembly process.

Display Grid
The Display Grid command toggles the visibility of grid lines in the layout
window. When checked, the grid lines appear, otherwise, no grid is visible.
506 IDE 5.6 User’s Guide

Menu Commands
E

Enable Breakpoint
The Enable Breakpoint command activates a breakpoint at the currently
selected line. The breakpoint appears in the left side of the editor window if the
Breakpoint column is visible. The states of the breakpoint marker include:

• enabled breakpoint.

• disabled breakpoint.

• no breakpoint in line.

Enable Watchpoint
The Enable Watchpoint command activates a watchpoint for the selected
variable or memory range.

Enabled watchpoints are indicated by an underline of the selected variable or
range of memory. Disabled watchpoints have a grey underline. The underline’s
color can be configured in the Display Settings preference panel of the IDE
Preference window.

Enter Find String
The Enter Find String command copies selected text in the active window
directly into the target search string. It will then appear in the Find text box of
both the Find and Replace and Find in Files windows. Once done, use any of
the find commands to search for matches without opening any Find-related
windows.

Enter Replace String
The Enter Replace String command copies the selected text in the active
window directly into the target search string. It will then appear in the Replace
with text box of both the Find and Replace and Find in Files windows. Once
done, use any of the find commands to search for matches without opening any
Find-related windows.
507IDE 5.6 User’s Guide

Menu Commands
NOTE Macintosh: Press the Shift key to change the Enter Find String
command to the Enter Replace String menu command.

Errors & Warnings or Errors & Warnings Window
These commands open the Errors and Warnings window.

Exceptions in Targeted Classes
The Exceptions in Targeted Classes command of the Java submenu instructs
the debugger to break on exceptions thrown by your own classes in the project.
Choose this command to break on exceptions thrown by your classes, rather than
exceptions that Java programs throw in the normal course of execution.

Exit
The Exit command exits the CodeWarrior IDE immediately, provided that:

• all changes to the open editor files are already saved, or

• the open editor files are not changed.

If a Project window is open, the IDE saves all changes to the project file before
exiting. If an Editor window is open and changes are not saved, the CodeWarrior
IDE asks if you want to save your changes before exiting.

Expand Window
The Expand Window command expands a collapsed window (a window with
only its title visible). Only available when a collapsed window is currently active.

Export Project
The Export Project command exports a CodeWarrior project to a file in XML
format. The IDE prompts for a name and location to save the new XML file.

Export Project as GNU Makefile
This command exports a CodeWarrior project to a GNU makefile. The IDE
displays a message that tells you the name of the makefile and its location on the
hard disk.
508 IDE 5.6 User’s Guide

Menu Commands
Expressions or Expressions Window
These commands open an Expressions window.

F

Find
The Find command opens the Find and Replace window to perform find
operations within the active file.

Find Definition & Reference
The Find Definition & Reference command searches for the definition of the
selected routine name in the active Editor window. Searching starts within the
source files belonging to the open project. If the IDE does not find a definition, a
system beep sounds.

If the IDE does not find the routine definition within the project files, searching
continues, using the online help system specified in the IDE Extras preference
panel.

NOTE Macintosh: Press the Option key to change the Find Definition menu
command to the Find Definition & Reference menu command.

Find Definition
The Find Definition command searches for the definition of the selected routine
name in the active window. Searching occurs in the source files belonging to the
open project. If the IDE finds the definition, the source file that contains the
definition appears in an Editor window, and the routine name appears
highlighted.

If the IDE finds more than one definition, a Message window appears warning of
multiple definitions. If the IDE does not find a definition, a system beep sounds.
509IDE 5.6 User’s Guide

Menu Commands
NOTE Select the Activate Browser option in the Build Extras target
settings panel and re-compile the project in order to use the Find
Definition command.

Find in Files
The Find in Files command opens the Find in Files window. This window
allows you to perform find-and-replace operations across multiple files using
specified search criteria.

Find In Next File
The Find in Next File command searches for the next occurrence of the Find
text box string in the next file listed in the Find in Files window.

Find In Previous File
This command searches for the next occurrence of the Find text box string in the
previous file listed in the Find in Files window.

NOTE (Macintosh) Press the Shift key to change the Find In Next File menu
command to the Find In Previous File menu command.

Find Next
The Find Next command searches for the next occurrence of the Find text box
string in the active window.

Find and Open File
The Find and Open File command opens the Find and Open File dialog. Enter a
filename, click OK, and the IDE searches the current project access paths as
specified in the Access Paths panel of the Target Settings window.

Find and Open ‘Filename’
The Find and Open ‘Filename’ command opens an existing text file, using the
currently selected text in the Editor window as the filename.
510 IDE 5.6 User’s Guide

Menu Commands
Find Previous
The Find Previous command searches for the previous occurrence of the user
defined string in the active window.

NOTE Macintosh: Press the Shift key to change the Find Next menu
command to the Find Previous menu command.

Find Previous Selection
The Find Previous Selection searches for the previous occurrence of the
selected text in the active editor window.

NOTE Macintosh: Press the Shift key to change the Find Selection menu
command to the Find Previous Selection menu command.

Find Reference
The Find Reference command searches for the definition of the selected routine
name in the active Editor window, using the online help system specified in the
IDE Extras preference panel.

If the IDE does not find a definition, a system beep sounds.

Find and Replace
The Find and Replace command opens the Find and Replace window. Use this
window to perform find-and-replace operations within the active file.

Find Selection
The Find Selection command searches for the next occurrence of the selected
text in the active Editor window.
511IDE 5.6 User’s Guide

Menu Commands
G

Get Next Completion
The Get Next Completion command acts as a shortcut that bypasses using the
Code Completion window. Instead of scrolling through the Code Completion
window to select the next symbol from the one currently selected, use this
command to insert that next symbol directly into the active editor window.

Get Previous Completion
The Get Previous Completion command acts as a shortcut that bypasses using
the Code Completion window. Instead of scrolling through the Code Completion
window to select the previous symbol from the one currently selected, use this
command to insert that previous symbol directly into the active editor window.

Global Variables or Global Variables Window
These commands open the Global Variables window. Use this window to view
global variables for an entire project or for a single file. Click a filename in the
Files list to display the file’s global variables in the Variables list.

Go Back
The Go Back command returns to the previous view in the CodeWarrior
browser.

Go Forward
The Go Forward command moves to the next view in the CodeWarrior Browser
(after you select Go Back command to return to previous view).

Go to Line
The Go to Line command opens the Line Number dialog box. Enter a specific
line number to move the text-insertion point. If the line number specified exceeds
the number of lines in the file, the text-insertion point moves to the last line in the
file.
512 IDE 5.6 User’s Guide

Menu Commands
H

Hide Breakpoints
The Hide Breakpoints command conceals the Breakpoints column, which
appears to the left of the source code shown in editor windows.

Hide Floating Toolbar
The Hide Floating Toolbar command conceals the IDE’s floating toolbar. After
concealing the floating toolbar, the command changes to Show Floating
Toolbar.

Hide Main Toolbar
The Hide Main Toolbar command conceals the IDE’s main toolbar. After
concealing the main toolbar, the command changes to Show Main Toolbar.

Hide Window Toolbar
The Hide Window Toolbar command conceals the toolbar in the active
window. After concealing the window toolbar, the command changes to Show
Window Toolbar.

Horizontal Center
The Horizontal Center command of the Align submenu aligns the horizontal
centers of the selected components.

I

Import Components
The Import Components command imports components from another catalog
for use with the current catalog.
513IDE 5.6 User’s Guide

Menu Commands
Import Project
The Import Project command imports project files previously saved in a XML
file with the Export Project command.

Insert Reference Template
This command inserts a routine template corresponding to the selected Mac OS
Toolbox call in the active window. The IDE uses the online reference database
application specified in the Find Reference Using pop-up to search for the
routine’s definition.

K-L

Kill
The Kill command terminates the target program and returns control to the
debugger.

Left Edges
The Left Edges command of the Align submenu aligns the left edges of the
selected components.

M-N

Make
The Make command builds the selected project by compiling and linking its
modified and touched files. The results of a successful build depend on the
selected project type.

Maximize Window
Windows equivalent of Expand Window.
514 IDE 5.6 User’s Guide

Menu Commands
See also: “Expand Window” on page 508

Freescale Website
The Freescale Website command launches a web browser and displays the
Freescale web site.

Minimize Window
Windows equivalent of Collapse Window.

See also: “Collapse Window” on page 504

New
The New command opens the New window. Use the New window to create new
projects, files, components, and objects.

New Class
The New Class command opens the New Class wizard. Use this wizard to help
create new classes in a project.

New Class Browser
The New Class Browser command opens a Browser window. The IDE grays out
this menu command if the CodeWarrior browser is not activated. This menu
command is equivalent to the Class Browser menu command.

New Data Member
The New Data Member command opens the New Data Member wizard. Use
this wizard to help create new data members for a class.

New Event
The New Event command opens the New Event window. Use this window to
help create new events for a selected class in a project.
515IDE 5.6 User’s Guide

Menu Commands
New Event Set
The New Event Set command opens the New Event Set window to create a new
event set for a selected class in a project.

New Expression
The New Expression command creates a new entry in the Expressions window,
prompting entry of a new expression.

New Member Function
The New Member Function command opens the New Member Function
wizard. Use this wizard to help create new member functions for a class.

New Method
The New Method command opens the New Method window. Use this window
to create a new method for a selected class in a project.

New Property
The New Property command opens the New Property window. Use this window
to create a new property for a selected class in a project.

New Text File
The New Text File command creates a new editable text file and opens an editor
window.

No Exceptions
The No Exceptions command of the Java submenu instructs the debugger to not
break when exceptions occur.
516 IDE 5.6 User’s Guide

Menu Commands
O

Open
The Open command opens an existing project or source file.

Open Recent
The Open Recent menu item reveals a submenu of recently opened projects and
files. Choose a file from the submenu to open that item.

If two or more files in the submenu have identical names, the submenu shows the
full paths to those files in order to distinguish between them.

Open Scripts Folder
This command opens the (Scripts) folder. This command is only available
if the Use Scripts menu option is enabled.

Open Workspace
This command opens a workspace file that you previously saved.

P-Q

Page Setup
The Page Setup command sets the options used for printing CodeWarrior IDE
files.

Paste
The Paste command replaces the selected text with contents of the system
clipboard into the active Editor window or text box. If no text is selected, the IDE
places the clipboard contents at the text-insertion point.

The Paste command is unavailable if the Message window is active.
517IDE 5.6 User’s Guide

Menu Commands
Precompile
The Precompile command precompiles the text file in the active Editor window
into a precompiled header file.

Preferences
The Preferences command opens the IDE Preferences window. Use this window
to change the global preferences used by the CodeWarrior IDE.

Preprocess
This command preprocesses selected source files in any language that has a
preprocessor, such as C, C++, and Java.

Print
The Print command prints CodeWarrior IDE files, as well as Project, Message,
and Errors and Warnings window contents.

Processes or Processes Window
These commands open the Processes window for those platforms that support it.

Project Inspector
Opens the Project Inspector window so that you can view information about your
project. You can also use this window to manipulate file-specific information.

Quit or Quit CodeWarrior
Mac OS command equivalent of Exit on page 508: See “Exit” on page 508.
518 IDE 5.6 User’s Guide

Menu Commands
R

Redo
After undoing an operation, you can redo it. For example, after choosing the
Undo Typing command to remove some text that you typed, you can choose
Redo Typing to override the undo and restore the text.

You can enable the Use multiple undo option in the Editor Settings preference
panel to allow greater flexibility with regard to Undo and Redo operations.
After enabling this option, you can choose Undo multiple times to undo multiple
actions, and you can Redo multiple times to redo multiple actions.

Refresh All Data
This command updates the data that appears in all windows.

Register Details Window
The Register Details Window command opens the Register Details window,
which allows you to view descriptions of registers, bit fields, and bit values.

Registers or Register Window
These commands reveal the Registers submenu, which can be used to view
general registers or FPU registers.

See also: “Register Details Window” on page 519

Remove Object Code
The Remove Object Code command shows the Remove Object Code dialog
box. Use this dialog box to remove binary object code from the active project, or
to mark the project’s files for re-compilation.

Remove Object Code & Compact
This command removes all binaries from the project and compacts it.
Compacting the project removes all binary and debugging information and
519IDE 5.6 User’s Guide

Menu Commands
retains only the information regarding the files that belong to the project and
project settings.

Remove Selected Items
The Remove Selected Items command removes the currently selected items
from the Project window.

CAUTION You cannot undo this command.

Replace
The Replace command opens the Find and Replace dialog box. Use this dialog
box to perform find-and-replace operations within the active file.

Replace All
The Replace All command finds all occurrences of the Find string and replaces
them with the Replace string. If no text is selected in the active Editor window
and there is no text in the Find text box, the IDE dims this menu command.

Replace and Find Next
This command substitutes selected text with text in the Replace text box of the
Find window, and then performs a Find Next operation. If no text is selected in
the active Editor window and there is no text in the Find field of the Find
window, the IDE grays out this menu command.

Replace and Find Previous
This command substitutes selected text with the text in the Replace text box of
the Find window, and then performs a Find Previous operation. If no text is
selected in the active Editor window and there is no text in the Find field of the
Find window, the IDE grays out this menu command.

NOTE (Mac OS) Press the Shift key to change the Replace and Find Next
menu command to the Replace and Find Previous menu command.
520 IDE 5.6 User’s Guide

Menu Commands
Replace Selection
The Replace Selection command substitutes the selected text in the active
window with the text in the Replace text box of the Find window. If no text is
selected in the active Editor window, the IDE grays out the menu command.

This menu command replaces one instance of a text string without having to
open the Find window. Suppose that you replaced all occurrences of the variable
icount with jcount. While scrolling through your source code, you notice an
instance of the variable icount misspelled as icont. To replace this
misspelled variable with jcount, select icont and the Replace Selection
menu command.

Re-search for Files
The Project > Re-search for Files command speeds up builds and other project
operations, the IDE caches the location of project files after finding them in the
access paths. Re-search for Files forces the IDE to forget the cached locations
and re-search for them in the access paths. This command is useful if you moved
several files and you want the IDE to find the files in their new locations.

If the Save project entries using relative paths option is enabled, the IDE does
not reset the relative-path information stored with each project entry, so re-
searching for files finds the source files in the same location (the exception is if
the file no longer exists in the old location). In this case, the IDE only re-searches
for header files. To force the IDE to also re-search for source files, choose the
Project > Reset Project Entry Paths menu command.

If the Save project entries using relative paths option is disabled, the IDE re-
searches for both header files and source files.

Reset
The Reset command resets the program and returns control to the IDE.

Reset Floating Toolbar
The Reset Floating Toolbar command restores the default state of the floating
toolbar. Use this command to return the floating toolbar to its original default
settings.
521IDE 5.6 User’s Guide

Menu Commands
Reset Main Toolbar
The Reset Main Toolbar command restores the default state of the main toolbar.
Use this command to return the main toolbar to its original default settings.

Reset Project Entry Paths
The Reset Project Entry Paths command resets the location information stored
with each project entry and forces the IDE to re-search for the project entries in
the access paths. This command does nothing if the Save project entries using
relative paths option is disabled.

Reset Window Toolbar
The Reset Window Toolbar command restores the default state of the toolbar in
the active window. Use this command to return the toolbar to its original default
settings.

Resize
The Resize command reveals the Resize submenu.

See also:

• “To Largest Height” on page 529

• “To Largest Width” on page 530

• “To Smallest Height” on page 531

• “To Smallest Width” on page 531

Restart
The Restart command terminates the current debugging session, then starts a
new debugging session.

Restore Window
The Restore Window command restores a minimized window (a window
reduced to an item in the task bar).
522 IDE 5.6 User’s Guide

Menu Commands
Resume
The Resume command switches from the IDE to the running application. This
menu command only appears after the IDE starts a debugging session and the
application being debugged is currently running.

Revert
The Revert command restores the last saved version of the active Editor
window.

Right Edges
The Right Edges command of the Align submenu aligns the right edges of the
selected components.

Run
The Run command compiles, links, creates a standalone application, and then
runs that application. This command is unavailable if the project creates libraries,
shared libraries, code resources, and other non-application binaries.

Run to Cursor
The Run to Cursor command sets a temporary breakpoint at the line of source
code that has the text-insertion point, then runs the program.

S

Save
The Save command saves the contents of the active window to disk.

Save A Copy As
The Save A Copy As command saves the active window to a separate file. This
command operates in different ways, depending on the active window.
523IDE 5.6 User’s Guide

Menu Commands
Save All
The Save All command saves all currently open editor files.

NOTE Mac OS: Press the Option key to change the Save command to the
Save All menu command.

Save As
The Save As command saves the contents of the active window to disk under a
different name.

Save Default Window
This command saves the window settings, such as position and size, of the active
Browser or Search Results window. The IDE applies the saved settings to
subsequently opened windows.

Save Workspace
This command saves the current state of onscreen windows, recent items, and
debugging. Use the dialog box that appears to name the workspace and navigate
to a location in which to store the workspace file.

Save Workspace As
This command saves a copy of an existing workspace. Use this command to save
the workspace under a different name.

Select All
The Select All command selects all text in the active window or text box. This
command is usually used in conjunction with other Edit menu commands such
as Cut, Copy, and Clear.

Send To Back
The Send To Back command moves the selected window behind all other
windows.
524 IDE 5.6 User’s Guide

Menu Commands
Set Breakpoint
The Set Breakpoint command sets a breakpoint at the currently selected line. If
the Show Breakpoints option is active, the Breakpoints column in the editor
windows will display a marker next to each line with a breakpoint.

Set/Clear Breakpoint
The Set/Clear Breakpoint command displays the Set/Clear Breakpoints dialog
that lets you set or clear a breakpoint at a particular address or symbol.

Set Default Project
The Set Default Project command sets a particular project as the default project
when more than one project is open. This is the project that all commands are
directed.

Set Default Target
The Set Default Target command allows you to specify a different build target
within the current project. Choose the build target to work with from the
submenu. This menu command is useful for switching between multiple build
targets in a project and performing a build for each target.

Set Eventpoint
This command opens a submenu that lets you set an eventpoint at the currently
selected line. If the Show Breakpoints option is enabled, the Breakpoints
column in the editor windows shows a marker next to each line with an
eventpoint. The marker represents the eventpoint type.

Set Watchpoint
The Set Watchpoint command sets a watchpoint for the selected variable or
memory range. Watchpoint variables are identified using an underline.

Shift Left
The Shift Left command shifts the selected source code one tab to the left. The
amount of shift is controlled by the Tab Size option.
525IDE 5.6 User’s Guide

Menu Commands
Shift Right
The Shift Right command shifts the selected source code one tab to the right.
The amount of shift is controlled by the Tab Size option.

Show Breakpoints
The Show Breakpoints command displays the Breakpoints column in editor
windows. When active, the Breakpoints column appears along the left edge of all
editor windows.

Show Floating Toolbar
The Show Floating Toolbar command displays the IDE’s floating toolbar. After
displaying the floating toolbar, the command changes to Hide Floating Toolbar.

Show Main Toolbar
The Show Main Toolbar command displays the IDE’s main toolbar. After
displaying the main toolbar, the command changes to Hide Main Toolbar.

Show Types
The Show Types command displays the data types of all local and global
variables that appear in the active variable pane or variable window.

Show Window Toolbar
The Show Window Toolbar command displays the toolbar in the active
window. After displaying the window toolbar, the command changes to Hide
Window Toolbar.

Stack Editor Windows
The Stack Editor Windows command arranges open editor windows one on top
of another, with their window titles visible.

Step Into
The Step Into command executes a single statement, stepping into function calls.
526 IDE 5.6 User’s Guide

Menu Commands
Step Out
The Step Out command executes the remainder of the current function, then
exits to that function’s caller.

Step Over
The Step Over command executes a single statement, stepping over function
calls.

Stop
This command temporarily suspends execution of the target program and returns
control to the debugger.

Stop Build
The Stop Build command halts the build currently in progress.

Switch to Monitor
This command transfers control from the CodeWarrior debugger to an external
third-party debugger.

Symbolics or Symbolics Window
These commands open the Symbolics window. Use this window to examine the
executable files in a project.

Synchronize Modification Dates
The Synchronize Modification Dates command updates the modification dates
stored in the project file. The IDE checks the modification date of each file in the
project and marks (for recompiling) those files modified since the last successful
compile process.
527IDE 5.6 User’s Guide

Menu Commands
T-U

Target Settings
The Target Settings command displays the Target Settings window. This
window contains settings panels used by the active build target. The name of the
menu command changes, based on the name of the current build target. For
example, if the name of the current build target is ReleaseTarget, the
name of the menu command changes to ReleaseTarget Settings.

Tile Editor Windows
The Tile Editor Windows command arranges and resizes all open editor
windows so that none overlap on the monitor.

Figure 30.1 Tile Editor windows—example

Tile Editor Windows Vertically
The Tile Editor Windows Vertically command resizes all open editor windows
to be vertically long, and arranged horizontally across the monitor so that all are
viewable.

Tile Horizontally
This command arranges open editor windows horizontally so that none overlap.
528 IDE 5.6 User’s Guide

Menu Commands
Figure 30.2 Tile horizontally—example

Tile Vertically
This command resizes open editor windows vertically and arranges them so that
none overlap.

Figure 30.3 Tile vertically—example

To Grid
The To Grid command of the Align submenu aligns selected components to a
grid in the layout. You can display or hide the on screen grid.

To Largest Height
The To Largest Height command of the Resize submenu resizes the selected
components to match the height of the component with the largest height.
529IDE 5.6 User’s Guide

Menu Commands
To Largest Width
The To Largest Width command of the Resize submenu resizes the selected
components to match the width of the component with the largest width.

Toolbars
The Toolbars command reveals the Toolbars submenu.

See also:

• “Show Window Toolbar” on page 526

• “Hide Window Toolbar” on page 513

• “Reset Window Toolbar” on page 522

• “Clear Window Toolbar” on page 502

• “Show Main Toolbar” on page 526

• “Hide Main Toolbar” on page 513

• “Reset Main Toolbar” on page 522

• “Clear Main Toolbar” on page 502

• “Hide Floating Toolbar” on page 513

• “Show Floating Toolbar” on page 526

• “Reset Floating Toolbar” on page 521

• “Clear Floating Toolbar” on page 502

ToolServer Worksheet
The ToolServer Worksheet command opens the ToolServer Worksheet window
for use with the Apple® ToolServer™ application program.

The IDE can disable this command for these reasons:

• You did not install ToolServer on your computer.

• You installed ToolServer on your computer, but you did not start it.

Top Edges
The Top Edges command of the Align submenu aligns the top edges of the
selected components.
530 IDE 5.6 User’s Guide

Menu Commands
To Smallest Height
The To Smallest Height command of the Resize submenu resizes the selected
components to match the height of the component with the smallest height.

To Smallest Width
The To Smallest Width command of the Resize submenu resizes selected
components to match the width of the component with the smallest width.

Unanchor Floating Toolbar
The Unanchor Floating Toolbar command detaches the floating toolbar from
beneath the menu bar.

Unapply Difference
The Unapply Difference command reverses the action of the Apply
Difference command in a file-comparison window.

Uncaught Exceptions Only
The Uncaught Exceptions Only command of the Java submenu instructs the
debugger to break only on unhandled exceptions.

Undo
The Undo command reverses the last action. The name of this menu command
changes based upon the editor settings as well as the most recent action. For
example, after typing text in an open Editor window, the Undo command
changes its name to Undo Typing. Choose the Undo Typing command to
remove the typed text.

By default, only one undo or redo action is allowed. If the Use multiple undo
option is enabled, undo and redo can act upon multiple actions.

Ungroup
The Ungroup command separates a selected group so that you can move each
component independently.
531IDE 5.6 User’s Guide

Menu Commands
V-Z

Version Control Settings
The Version Control Settings command opens the VCS Settings window.

Vertical Center
The Vertical Center command of the Align submenu aligns the vertical centers
of the selected components.

View Array
The View Array command creates a separate window to display a selected array.

View As
The View As command displays a selected variable in a specified data type.

View As Binary
The View As Binary command displays the selected variable as a binary value.

View As Character
The View As Character command displays the selected variable as a character
value.

View As C String
The View As C String command displays the selected variable as a C character
string.

View As Default
The View As Default command displays the selected variable in its default
format, based on the variable’s type.
532 IDE 5.6 User’s Guide

Menu Commands
View As Enumeration
The View As Enumeration command displays the selected variable as an
enumeration.

View As Fixed
The View As Fixed command displays the selected variable as a fixed-type
numerical value.

View As Floating Point
The View As Floating Point command displays the selected variable as a
floating-point value.

View As Fract
This command displays the selected variable as a fractional data type.

NOTE The fractional data type is specific to the Mac OS.

View As Hexadecimal
The View As Hexadecimal command displays the selected variable as a
hexadecimal value.

View As Pascal String
The View As Pascal String command displays the selected variable as a Pascal
character string.

View As Signed Decimal
This command displays the selected variable as a signed decimal value.

View As Unicode String
The View As Unicode String command displays the selected variable as a
Unicode character string.
533IDE 5.6 User’s Guide

Menu Commands
View As Unsigned Decimal
The View As Unsigned Decimal command displays the selected variable as an
unsigned decimal value.

View Disassembly
This command changes the data view to show language disassembly.

View Memory
The View Memory command displays the contents of memory as a hexadecimal/
ASCII character dump.

View Memory As
The View Memory As command displays the memory that a selected variable
occupies or the memory to which a selected register points.

View Mixed
This command changes the data view to show source code intermixed with
assembly code.

View Raw Data
This command changes the data view to show raw data (instead of formatting
that data as source code, disassembly, or another format).

View Source
This command changes the data view to show source code.

View Variable
The View Variable command creates a separate window to display a selected
variable.
534 IDE 5.6 User’s Guide

Menu Commands
Zoom Window
The Zoom Window command expands the active window to its previously set
size. Choose Zoom Window a second time to return the window to its original
size.
535IDE 5.6 User’s Guide

Menu Commands
536 IDE 5.6 User’s Guide

Index

Symbols
#include files, caching 440
%file command-line string 441
%line command-line string 442
(Scripts) folder 495, 517
.*[_]Data 371
.mcp 35
\(.*\) 371
^var 256
__throw() 499

A
about

breakpoints 221
console applications 85
dockable windows 69
eventpoints 221
Files page in Project window 46
markers 116
projects 29
special breakpoints 221
watchpoints 221
workspaces 81

About Freescale CodeWarrior menu
command 497

Absolute Path option
in Source Trees preference panel 455
in Type list box 455

abstract, icon for 176
access breakpoint - refer to watchpoints 244
access breakpoint enabled 245
Access Filter display 178
Access Paths settings panel 369, 401

columns
Framework 404
Recursive Search 404
Search Status 403

options
Add 403
Add Default 403
Always Search User Paths 402

Change 403
Host Flags 403
Interpret DOS and Unix Paths 403
Remove 403
Require Framework Style Includes 403
System Paths 454
User Paths 459

Access Target button 305
Action option 337
actions for debugging 208
Activate Browser Coloring option 423

in Text Colors panel 438
Activate Browser option

and relation to Symbolics window 279
in Build Extras panel 510

Activate Syntax Coloring option 423, 429
in Text Colors panel 438, 441, 453

activating automatic code completion 103
Active icon 225
Add button 403
Add Default button 423
Add Files button 139
Add Files menu command 497
Add Window menu command 497
adding

gray background behind IDE. See Use
Multiple Document Interface, turning on.

remote connections 395
source trees 373

Address checkbox 308
Address Line fault 310
Address text box 273
advanced topics

for projects 39
Align submenu 498, 499, 513, 514, 523, 529, 530,

532
Horizontal Center command 513
Left Edges command 514
Vertical Center command 523, 529, 530, 532

All Exceptions command 498
All Info option, in Plugin Diagnostics 443
537IDE 5.6 User’s Guide

All Sectors checkbox 299
All Sectors list 299
All Text option button 125, 128, 131
alphabetical sorting of Functions list pop-up 115
Always Search User Paths option 424
Analyzer Can Cause Target Breakpoint

checkbox 316
Analyzer Configuration File text box 315
Analyzer Connections target settings panel 313
Analyzer Slot text box 316
Analyzer Type list box 315
Ancestor pop-up 180
Anchor Floating Toolbar command 498
Appears in Menus 337, 338
Appears in Menus checkbox 144
Apple Help Viewer 437
Apple menu 480
Application field 424
applications

for the console, about 85
for the console, creating 86

Apply Address Offset checkbox 297
Apply button 153
Apply Difference command 154, 498, 531
Arguments field 424
Arithmetic Optimizations 413
Arm command 317
Array window 266

opening 268
arrays, setting default viewing size for

unbounded 431
arrows

current statement 207
assigning

Quote Key prefix 356
Attempt To Use Dynamic Type of C++, Object

Pascal And SOM Objects option 424
Auto Indent option 424
Auto Repeat 338
Auto Target Libraries option 424
Auto, of Text View list box 276
auto-complete code. See code completion.
Automatic Invocation option 425
Automatically Launch Applications When SYM

File Opened option 425
Auto-target Libraries option 424

B
Background option 426
background, desktop

removing from behind IDE. See Use
Multiple Document Interface, turning on.

seeing behind IDE. See Use Multiple
Document Interface, turning off.

Balance Flash Delay option 426
Editor Settings panel 426

Balance menu command 499
Balance While Typing option 426
balancing punctuation 100, 101

toggling 101
Balloon Help 348, 433, 496
Base Classes field 192
Begin Scope Loop button 307
Begin Test button 309
Bit Value Modifier list box 274
Bit Value text box 274
Bitfield Description option

of Text View pop-up menu 276
Bitfield Name list box 274
Blank Check button 299
Bottom Edges command 499
boxes

Destination 149
Pane Collapse 156, 206
Pane Expand 156, 206
Source 149

Branch Optimizations 413
Break command 210
Break menu command 499
Break On C++ Exception menu command 499
Break on Java Exceptions command 499
Breakpoint Properties button 224
breakpoint template 231
breakpoint template, defined 222
breakpoint templates

creating 231
deleting 232
specifying the default 233
working with 231

Breakpoints 222
breakpoints

Breakpoint Type property 227
clearing all 229
Condition property 227
538IDE 5.6 User’s Guide

conditional 222
default template 231
defined 222
disabled 222, 245
enabled 222
File-Info property 227
Hardware property 228
Hit Count property 227
Name property 227
Original Process property 228
Original-Target property 228
purpose of 221
regular 222
saving sets of 225
Serial Number property 227
setting conditional 230
setting temporary 229
template 231
temporary 222
Thread property 228
Times Hit property 228
Times Left property 228
viewing 225
working with 226

Breakpoints button 206
Breakpoints column, in editor window 95
Breakpoints menu command 499
Breakpoints window 222

Active icon 225
Breakpoint Properties button 224
Create Breakpoint Template button 224
Groups tab 225
Inactive icon 225
Instances tab 225
opening 225
Rename Breakpoint button 224
saving contents of 225
Set Default Breakpoint Template button 224
Templates tab 225

Breakpoints Window menu command 499
breakpoints, clearing 229
breakpoints, disabling 228
breakpoints, enabling 228, 243
breakpoints, setting 226
breakpoints, viewing properties for 227
Bring To Front menu command 499
Bring Up To Date

menu command 54, 55
Bring Up To Date menu command 437, 500
Browse button 132, 273, 275, 293, 296, 304
Browse In Processes Window option 395, 396
browser 164

Class Browser window 167
Classes pane 174
collapsing panes 173
creating new classes 174, 189, 190
creating new data members 197
creating new member functions 194, 195,

197
expanding panes 173
hierarchy windows 180
Member Functions pane 176
overview 25
printing class hierarchies 181
purpose of 161
setting options 161
Source pane 177
status area 178
viewing data by contents 184
viewing data by inheritance 180
working with 161

Browser Access Filters 169
Browser Commands option 426

Editor Settings panel 441
Browser Contents 168
Browser Contents command 500
Browser Contents window 183

Symbols list 184
browser database

defined 161
Browser menu 426
Browser Path option 427
Browser Wizard 189
Build Before Running option 427
Build Extras panel

options
Initial Directory field 440
Use External Debugger 456
Use modification date caching 457

Build Extras settings panel 279, 404
options

Application 406
Arguments 406
Cache Subprojects 405
539IDE 5.6 User’s Guide

Dump internal browse information after
compile 406

Generate Browser Data From 406
Initial directory 406
Use External Debugger 406
Use modification date caching 405

Build Extras target settings panel 510
Build Progress menu command 500
Build Progress Window menu command 500
Build Settings panel

options
Include file cache 440
Play sound after ‘Bring Up To Date’ &

‘Make’ 445
Save open files before build 448
Show message after building up-to-date

project 451
Success 453
Use Local Project Data Storage 456

Build Settings preference panel 361
options

Build before running 362
Compiler thread stack 363
Failure 362
Include file cache 363
Play sound after ‘Bring Up To Date’ &

‘Make’ 362
Save open files before build 362
Show message after building up-to-date

project 362
Success 362
Use Local Project Data Storage 363

build system
overview 25

build targets 31
configuring 58
creating 56
management 51
managing 56
moving 53
removing 51, 57
renaming 54, 58
setting default 57
strategies for 41

Bus Noise checkbox 308
Bus Noise test

subtests

Full Range Converging 312
Maximum Invert Convergence 312
Sequential 311

bus noise, defined 311
Button

Choose 344
Delete 345
Export 355
Import 355
New Binding 354
Save 345

buttons
Access Target 305
Add 403
Add Default 423
Add Files 139
Apply 153
Begin Scope Loop 307
Begin Test 309
Blank Check 299
Breakpoint Properties 224
Breakpoints 206
Browse 132, 273, 275, 293, 296, 304
Calculate Checksum 301
Cancel 124, 127, 291, 302
Change 403
Clear List 139
Compare 150
Create Breakpoint Template 224
Debug 206
Details 297, 299, 301, 305, 307, 309
Edit 385
Erase 299
Export Panel 433
Expressions 206
Factory Settings 436
Find 124, 127, 130
Find All 124, 130
Installed Products 497
Kill 206
Line and Column 208
Load Settings 291, 302
Next Result 142
OK 291, 302
Previous Result 142
Program 298
Purge Cache 447
540IDE 5.6 User’s Guide

Read 275
Redo 154
Remove 403
Remove a Set 139
Rename Breakpoint 224
Replace 127, 130
Replace All 127, 130
Reset Value 275
resetting in toolbars 350
Resume 206
Revert 275
Run 206
Save Settings 291, 302
Save This Set 139
Set Default Breakpoint Template 224
Show Log 291, 309
Source File 207
Step Into 206
Step Out 206
Step Over 206
Stop 131, 142, 206
Symbolics 206
Unapply 153
Undo 153
Variables Pane Listing 207
Verify 298
Warnings 142
Write 275

By Type text/list box 132
Byte option button 305, 306, 309

C
cache

purging 447
Cache Edited Files Between Debug Sessions

option 427
Cache Subprojects option 427
Cache Symbolics Between Runs option 428
Cache window 319

opening 319
caching

#include files 440
precompiled headers 440

Calculate Checksum button 301
Can’t Redo menu command 468, 483
Can’t Undo menu command 468, 483
Cancel button 124, 127, 291, 302

Cancel button, in Remove Markers window 117
Cascade menu command 500
Case Sensitive checkbox 124, 127, 131, 149
Case Sensitive option 428
Change button 403
Change Program Counter menu command 500
changing

find strings 144
line views in a hierarchical window 182
register data views 271
register values 271
remote connections 395
source trees 374

Check Syntax command 500
Checkbox

Numeric Keypad Bindings 353
checkboxes

Address 308
All Sectors 299
Analyzer Can Cause Target Breakpoint 316
Appears in Menus 144
Apply Address Offset 297
Bus Noise 308
Case sensitive 124, 127, 131, 149
Compare text file contents 150
Enable Logging 293
Erase Sectors Individually 299
Ignore extra space 150
Log Message 236
Match whole word 124, 127, 131
Only show different files 150
Project headers 134
Project sources 134
Regular expression 124, 127, 131
Restrict Address Range 296
Search cached sub-targets 134
Search selection only 125, 128
Search sub-folders 132
Search up 125, 128
Speak Message 236
Stop at end of file 125, 127
Stop in Debugger 236, 238, 240
System headers 134
Target Breakpoint Can Cause Analyzer

Trigger checkbox 316
Treat as Expression 236
Use Custom Settings 292, 303
541IDE 5.6 User’s Guide

Use Selected File 296
Use Target CPU 309
Use Target Initialization 293, 304
View Target Memory Writes 293
Walking 1’s 308

Checkout Status column
in Files view of Project window 47

Checksum panel 299
child windows, defined 70
choosing

a default project 37
linkers 331
one character from many in regular

expressions 147
class browser

purpose of windows 167
working with windows 167

Class Browser menu command 501
Class Browser window 167

Classes pane 169
Data Members pane 169
Member Functions pane 169
Status area 169

class data
viewing from hierarchy windows 172

Class Declaration 178
Class Hierarchy 169
Class Hierarchy menu command 501
Class Hierarchy Window menu command 501
class hierarchy windows

purpose of 179
working with 179

classes
creating 174, 189, 190
hiding pane for 175
showing pane for 175
sorting list of 175

Classes option 385
Classes pane 174

in Class Browser window 169
classes.zip 498
Clear All Breakpoints menu command 501
Clear All Watchpoints menu command 501
Clear Breakpoint menu command 501
Clear Eventpoint menu command 502
Clear Floating Toolbar command in Toolbar

submenu 502

Clear List button 139
Clear Main Toolbar menu command 502
Clear menu command 501
Clear Watchpoint menu command 502
Clear Window Toolbar command in Toolbar

submenu 502
clearing

all breakpoints 229
all watchpoints 247
breakpoints 229
watchpoints 247

client area, defined 70
Clone Existing Target option 56
Close All command 63
Close All Editor Documents menu command 503
Close All menu command 502
Close Catalog menu command 503
Close command 38, 63
Close menu command 502
Close Non-debugging Windows option 428
Close Workspace menu command 503
closing

all files 63
dockable windows 79
files 63
projects 38
workspaces 83

Code 414
code

adding markers to 117
completing 102
disabling breakpoints 228
disabling eventpoints 242
disabling special breakpoints 248
disabling watchpoints 246
enabling breakpoints 228, 243
enabling special breakpoints 249
enabling watchpoints 247
locating 113
navigating 113
setting breakpoints in 226
setting watchpoints in 245
viewing breakpoint properties 227
viewing eventpoint properties 242
viewing watchpoint properties 246

Code column
in Files view of Project window 46
542IDE 5.6 User’s Guide

code completion
activating automatic behavior 103
configuration 103
deactivating automatic behavior 105
for data members 109
for parameter lists 109
navigating window 107
selecting items 108
triggering by keyboard 104
triggering from IDE menu bar 104

Code Completion Delay option 428
Code Completion preference panel 375

options
Automatic Invocation 376
Case sensitive 376
Code Completion Delay 376
Display deprecated items 376
Window follows insertion point 376

Code Completion window 105
code completion, triggering from IDE menu

bar 104
Code Formatting preference panel 376

options
Close Braces, Brackets, And

Parentheses 378
Format Braces 377
Indent Braces 378
Indent Case Within Switch

Statement 378
Indent Code Within Braces 378
Language Settings 377
Place Else On Same Line As Closing

Brace 378
Place Opening Brace On Separate

Line 378
Use Automatic Code Formatting 377

Code Only option button 125, 128, 131
CodeWarrior

menu reference 465
overview 21

CodeWarrior Glossary command 503
CodeWarrior Help menu command 503
CodeWarrior IDE

Apple menu 480
CodeWarrior menu 480
Data menu 476, 491
Debug menu 474, 489

Edit menu 467, 483
File menu 465, 481
Help menu 479, 495
Project menu 472, 486
Scripts menu 495
Search menu 470, 484
Tools menu 495
VCS menu 495
Window menu 469, 478, 492

CodeWarrior menu 480
CodeWarriorU.com 16
Collapse Non-debugging Windows option 429
Collapse Window menu command 504
collapsing

browser panes 173
dockable windows 78

COM 431
Command Actions

Arguments 340
Defining (Mac OS) 344
Defining (Windows) 340
Directory 340
Execute 340

Command Group
Delete 345

Command Groups 345
Delete 345

Command window 321
issuing command lines 322
opening 322

command-line window 321
Commands

Import 355
Modify 337

commands 175
About Freescale CodeWarrior 497
Add Files 497
Add Window 497
Apply Difference 154, 498
Arm 317
Balance 499
Bottom Edges 499
Break 210, 499
Break On C++ Exception 499
Break on Java Exceptions 499
Breakpoints 499
Breakpoints Window 499
543IDE 5.6 User’s Guide

Bring To Front 499
Bring Up To Date 500
Browser Contents 168, 500
Build Progress 500
Build Progress Window 500
Can’t Redo 468, 483
Can’t Undo 468, 483
Cascade 500
Change Program Counter 500
Check Syntax 500
Class Browser 501
Class Declaration 178
Class Hierarchy 169, 501
Class Hierarchy Window 501
Clear 501
Clear All Breakpoints 501
Clear All Watchpoints 501
Clear Breakpoint 501
Clear Eventpoint 502
Clear Main Toolbar 502
Clear Watchpoint 502
Close 38, 502
Close All 502
Close All Editor Documents 503
Close Catalog 503
Close Workspace 503
CodeWarrior Glossary 503
CodeWarrior Help 503
Collapse Window 504
Commands & Key Bindings 503
Compare Files 150, 504
Compile 504
Complete Code 503
Connect 316, 504
Copy 504
Copy To Expression 504
Create Design 504
Create Group 505
Create Target 505
Cut 505
Cycle View 505
Debug 208, 506
Delete 506
Diagonal Line 182
Disable Breakpoint 506
Disable Watchpoint 506
Disarm 317

Disassemble 506
Disconnect 318
Display Grid 506
Enable Breakpoint 507
Enable Watchpoint 507
Enter Find String 144, 507
Enter Replace String 507
Errors And Warnings 508
Errors And Warnings Window 508
Exit 508
Expand Window 508
Export Project 38, 508, 514
Export Project as GNU Makefile 508
Expressions 509
Expressions Window 509
File Path 47
Find 125, 509
Find and Open ‘Filename’ 510
Find and Open File 510
Find And Replace 511
Find Definition 509
Find Definition & Reference 120, 509
Find In Files 510
Find In Next File 510
Find In Previous File 510
Find Next 143, 510
Find Previous 143, 511
Find Previous Selection 511
Find Reference 120, 511
Find Selection 144, 511
Get Next Completion 512
Get Previous Completion 512
Global Variables 512
Global Variables Window 512
Go Back 168, 512
Go Forward 168, 512
Go To Line 512
Hide Breakpoints 513
Hide Classes 175
Hide Classes pane 178
Hide Window Toolbar 513
Import Components 513
Import Project 38, 514
Insert Reference Template 514
Kill 211, 514
Make 514
Maximize Window 514
544IDE 5.6 User’s Guide

Minimize Window 515
New 515
New Class 515
New Class Browser 515
New Data 515
New Event 515
New Event Set 516
New Expression 516
New Item 174
New Member Function 516
New Method 516
New Property 516
New Text File 516
Open 517
Open File 178
Open In Windows Explorer 47
Open Recent 517
Open Scripts Folder 517
Open Workspace 517
Page Setup 517
Pane Collapse 173
Pane Expand 173
Precompile 518
Preferences 518
Print 518
Processes 518
Processes Window 518
Project Inspector 36
Redo 519
Refresh All Data 519
Register Details Window 272, 519
Register Windows 519
Registers 519
Remove Object Code 519
Remove Object Code & Compact 519
Remove Toolbar Item 349
Replace 128, 520, 521
Replace All 520
Replace and Find Next 520
Restart 211
Resume 210, 523
Revert 523
Run 211, 446, 523
Run To Cursor 523
Save Default Window 524
Save Workspace 524
Save Workspace As 524

Select All 524
Send To Back 524
Set Breakpoint 525
Set Default Project 38, 525
Set Default Target 525
Set Eventpoint 525
Set Watchpoint 525
Shift Right 525, 526
Show Breakpoints 501, 526
Show Classes 175
Show Classes pane 178
Show Inherited 169
Show private 171
Show protected 171
Show public 170
Show Types 526
Show Window Toolbar 513
Single Class Hierarchy Window 169
Sort Alphabetical 174, 175
Sort Hierarchical 174
Stack Editor Windows 526
Step Into 209
Step Out 209
Step Over 210, 527
Stop 210
Stop Build 527
Straight Line 182
Switch To Monitor 527
Symbolics 527
Symbolics Window 527
Synchronize Modification Dates 527
Unapply Difference 155
Update Data 317
View Array 532
View as implementor 170
View as subclass 170
View As Unsigned Decimal 532, 533, 534
View as user 170
View Disassembly 534
View Mixed 534
View Source 534
View Variable 534
Zoom Window 535

Commands & Key Bindings menu command 503
Commands tab 335, 337, 352
Commands&KeyBindings.mkb file 355
Comments Only option button 125, 128, 131
545IDE 5.6 User’s Guide

Comments option 429
common debugging actions 208
Common Subexpression Elimination 413
Compare button 150
Compare Files command 150
Compare Files menu command 504
Compare Files Setup window 149

Case Sensitive checkbox 149
Compare button 150
Compare Text File Contents checkbox 150
Destination box 149
Ignore Extra Space checkbox 150
Only Show Different Files checkbox 150
Source box 149

Compare Text File Contents checkbox 150
comparing files

differences, applying 154
differences, unapplying 155
overview 148
setup 149, 150

comparing files, explained 152
comparing folders

examining results 157
overview 148
setup 149, 151

comparing folders, explained 155
comparison

destination item 148
source item 148

Compile menu command 504
compiler

avoiding crashes 429
Compiler option 429
Compiler option, in Generate Browser Data From

menu 438
compiler thread stack

and avoiding compiler crashes 429
Compiler Thread Stack field 429
Complete Code menu command 503
completing code 102
Component Object Model. See COM.
Concurrent Compiles panel

options
Use Concurrent Compiles 447, 455
User Specified 459

Concurrent Compiles preference panel 363
options

Recommended 364
Use Concurrent Compiles 364
User Specified 364

condition, breakpoint property 227
conditional access breakpoint 247
conditional breakpoint, defined 230
conditional breakpoints 222

setting 230
conditional eventpoint, defined 243
conditional eventpoints

setting 243
conditional watchpoint, defined 247
conditional watchpoints

setting 247
Configuration panel 303
configuring

build targets 58
code completion 103
projects for a logic analyzer 313
targets 58

Confirm “Kill Process” When Closing Or
Quitting option 430

Confirm Invalid File Modification Dates When
Debugging option 429

Connect command 316
Connect menu command 504
Connection list box 293, 304
Connection pop-up menu, in Remote Debugging

settings panel 421
Connection Type list box 315
Connection Type option 395, 396
console applications

creating 85, 86
applications

creating console
applications 86

console applications, about 85
constant

adding to a variable 258
Constants option 385
contents

of register 272
Context Popup Delay option 430
contextual menus 212

File Path command 47
Open In Windows Explorer command 47
using 214
546IDE 5.6 User’s Guide

using to dock a window 72
controlling program execution 203
conventions

figures 20
for manual 19
keyboard shortcuts 20

Copy And Expression Propagation 413
Copy menu command 504
Copy Propagation 413
Copy To Expression command 504
cores, debugging multiple 214
Create Breakpoint Template button 224
Create Design menu command 504
Create Group menu command 505
Create Target command 56
Create Target menu command 505
creating

a new data member 177
build targets 56
console application 86
console applications 85, 86
custom project stationery 39
empty projects 35
files (Macintosh) 60
files (Windows) 59
member functions 176
new classes 174, 189, 190
new data member 197
new data members 197
new member function 194
new member functions 195
projects from makefiles 34
projects using stationery 33
subprojects 40
targets 56

cross-platform migration, and opening
projects 36

Current Target list pop-up 44
Current Target menu 349
current-statement arrow 207
custom project stationery 39
Customize IDE Commands window 143, 335,

352, 353
Action 337
Appears in Menus 337, 338
Appears in Menus checkbox 144
Auto Repeat 338

Key Bindings 338
Name field 337
New Binding 338
New Group 338
Numeric Keypad Bindings checkbox 357

Cut command 505
CVS 371
Cycle View menu command 505

D
dash 207
Data column

in Files view of Project window 46
Data Line fault 310
data members

completing code 109
creating 177, 197
identifier icons 176

Data Members pane 177
in Class Browser window 169

Data menu 476, 491
data, for debugger, working with 279
database

navigation for browser 164
deactivating automatic code completion 105
Dead Code Elimination 413
Dead Store Elimination 413
Debug button 206
Debug column

in Files view of Project window 46
Debug command 54, 55, 208
Debug menu 430, 474, 489

Clear All Breakpoints command 475, 490
Disable Watchpoint command 475, 476, 490
Enable Breakpoint command 475, 489
Enable Watchpoint command 475, 476, 489,

490
Hide Breakpoints command 476, 490

Debug menu command 506
debugger 447

attaching to a process 285
choosing for an opened symbolics file 395
overview 25
restarting 211
starting 208
working with data 279
working with memory 261
547IDE 5.6 User’s Guide

working with variables 251
Debugger Commands option 430
Debugger list box 315
Debugger section, of IDE preference panels 387
Debugger Settings panel 285, 419

options
Auto-target Libraries 420
Cache symbolics between runs 420
Default language entry point 420, 431
Location of Relocated Libraries and

Code Resources 420, 443
Log System Messages 420, 443
Program entry point 446
Stop at Watchpoints 420, 453
Stop on application launch 420, 453
Update data every n seconds 455
Update data every n seconds 420
User specified 420

debugger, defined 203
debugging

common actions 208
multiple cores 214
program execution 203
restarting a session 211
starting a session 208

Declaration File field 191
default breakpoint template 231
Default File Format option 430
default filename extensions 434
Default Language Entry Point option

Debugger Settings panel 431
Default Project 292, 303
default projects 37
default size and position of windows, setting 524
Default Size For Unbounded Arrays option 431
Default Target 292, 303
default target, setting 57
default workspace

definition of 81
using 82

definition
of breakpoint template 222
of breakpoints 222
of bus noise 311
of child windows 70
of client area 70
of conditional breakpoint 230

of conditional eventpoint 243
of conditional watchpoint 247
of debugger 203
of default workspace 81
of dock 69
of eventpoints 233
of IDE 15
of machines 282
of memory aliasing 311
of non-modal 71
of project 29
of regular expression 145
of special breakpoints 248
of symbolics file 204
of symbols 119, 120
of temporary breakpoint 229
of touch 46
of watchpoints 244
of workspace 81

Delete menu command 506
Description 275
Description File text box 273, 275
Design view 53
Designs view 37
desktop background

removing from behind IDE. See Use
Multiple Document Interface, turning on.

seeing behind IDE. See Use Multiple
Document Interface, turning off.

Destination box 149
destination item, for comparison 148
Destination pane 153
details

viewing for registers 272
Details button 297, 299, 301, 305, 307, 309
development-process cycle for software 21
Device pane 294
diagnostics

disabling for plug-ins 497
enabling for plug-ins 497

Diagonal Line 182
dialog boxes

New Connection 395
difference from Single-Class Hierarchy

window 182
Differences pane 154
Disable Breakpoint menu command 506
548IDE 5.6 User’s Guide

Disable Third Party COM Plugins option 431
Disable Watchpoint menu command 506
disabled breakpoint 222, 245
disabled eventpoint 235
disabling

plug-in diagnostics 497
Disarm command 317
Disassemble menu command 506
disclosure triangles

Source Code pane 142
Source pane 207

Disconnect command 318
Display Deprecated Items option 431
Display Grid menu command 506
Display Settings panel 246

options
Show all locals 450
Show tasks in separate windows 451
Show values as decimal instead of

hex 451
Show variable location 452
Show variable types 452
Show variable values in source

code 452
Sort functions by method name in

symbolics window 452
Variable Values Change 459
Watchpoint Indicator 460

Display Settings preference panel 387
options

Attempt to use dynamic type of C++,
Object Pascal and SOM objects 389

Default size for unbounded arrays 389
Show all locals 388
Show tasks in separate windows 391
Show values as decimal instead of

hex 389
Show variable location 388
Show variable types 388
Show variable values in source

code 389
Sort functions by method name in

symbolics window 389
Variable values change 388
Watchpoint indicator 388

DLL 393, 424
Do Nothing option 431

Do Nothing To Project Windows option 431
dock bars 78
dock, defined 69
dockable windows 69, 72

about 69
closing 79
collapsing 78
dock bars 78
docking windows of the same kind 74
expanding 78
moving 79
suppressing 77
turning off 77
types 70

Document Settings list pop-up 93
document settings pop-up

using 93
documentation

formats 18
structure 18
types 19

Documents option
IDE Extras panel 431

Don’t Step Into Runtime Support Code 432
Don’t Step Into Runtime Support Code

option 432
Done button, in Remove Markers window 117
drag and drop

using to dock a window 73
Drag And Drop Editing option 432
Dump Internal Browse Information After

Compile option 432
dump memory 534

E
Edit button 385
Edit Commands option 432
Edit Language option 432
Edit menu 432, 467, 483
editing

source code 97
symbols, shortcuts for 100

editor 89
overview 25
third-party support 458

Editor section, of IDE preference panels 375
Editor Settings panel
549IDE 5.6 User’s Guide

options
Balance Flash Delay 426
Browser Commands 441
Font Preferences 438
Insert Template Commands 440
Left margin click selects line 442
Project Commands 446
Relaxed C popup parsing 447
Selection position 450
Sort function popup 453
Use multiple undo 458
VCS Commands 460
Window position and size 460

Editor Settings preference panel 378
options

Balance Flash Delay 381
Balance while typing 380
Browser Commands 380
Debugger Commands 380
Default file format 381
Drag and drop editing 380
Edit Commands 379
Enable Virtual Space 380
Font preferences 379
Insert Template Commands 380
Left margin click selects line 380
Project Commands 380
Relaxed C popup parsing 380
Selection position 379
Sort function popup 380
Use multiple undo 380
VCS Commands 380
Window position and size 379

editor toolbar 92
editor window 89

adding panes to 96
Breakpoints column 95
collapsing toolbar in 92
expanding toolbar in 92
line and column indicator 95
pane splitter controls 95
removing panes from 96
resizing panes 96
text editing area 95

editor windows
other 94
selecting text in 97

Emacs text editor 441, 442
empty projects

creating 35
Empty Target option 56
Enable Automatic Toolbar Help option 433
Enable Breakpoint menu command 507
Enable Browser option 500
Enable Logging checkbox 293
Enable Remote Debugging option 433
Enable Virtual Space option 433
Enable Watchpoint menu command 507
enabled breakpoint 222
enabled eventpoint 235
enabled watchpoint 245
enabling

plug-in diagnostics 497
End text box 297, 308
end-of-line format 430
enlarging panes, in browser 173
Enter Find String command 144
Enter Find String menu command 507
Enter Replace String menu command 507
Entire Flash option button 300
Enums option 385
Environment Settings option 433
Environment Variable option

of Source Trees preference panel 455
Environment Variable option, in Type pop-up

menu 455
environment variables

Macintosh limitations 455
EOL format 430
Erase / Blank Check panel 298
Erase button 299
Erase Sectors Individually checkbox 299
Errors And Warnings menu command 508
Errors And Warnings Window menu

command 508
Errors Only option

of Plugin Diagnostics 443
eventpoints

defined 233
disabled 235
enabled 235
Log Point 234, 235
Log Point, clearing 236
Log Point, setting 235
550IDE 5.6 User’s Guide

Pause Point 234, 237
Pause Point, clearing 237
Pause Point, setting 237
purpose of 221
Script Point 234, 237
Script Point, clearing 238
Script Point, setting 238
setting conditional 243
Skip Point 234, 239
Skip Point, clearing 239
Skip Point, setting 239
Sound Point 234, 239
Sound Point, clearing 240
Sound Point, setting 240
Sound Point, Speak Message 239
Trace Collection Off 234, 241
Trace Collection Off, clearing 241
Trace Collection Off, setting 241
Trace Collection On 234, 241
Trace Collection On, clearing 242
Trace Collection On, setting 241
working with 242

eventpoints, disabling 242
eventpoints, viewing properties for 242
examining debugger data 279
examining memory 261
examining variables 251
Exceptions In Targeted Classes command in Java

Exceptions submenu 508
executable files

adding to the Other Executables list 418
changing in the Other Executables list 418
removing from the Other Executables

list 419
execution

of program, controlling 203
execution, killing 211
execution, resuming 210
execution, stopping 210
Exit menu command 508
Expand Window menu command 508
expanding

browser panes 173
dockable windows 78

Export 355
Export Panel button 336, 360, 433

Export Project as GNU Makefile menu
command 508

Export Project command 38
Export Project menu command 508, 514
exporting

projects to XML files 38
Expression Simplification 413
Expressions button 206
Expressions menu command 509
Expressions window 256

adding expressions 258
opening 257

Expressions Window menu command 509
Extension field 434
external editor

using on the Macintosh 367
external editor support 458

F
Factory Settings button 436
Failure option 437
FDI 366, 457

and dockable windows 69
fields

Application 424
Arguments 424
Base Classes 192
Compiler thread stack 429
Declaration File 191
Extension 434
File Type 437
IP Address 395
Relative to class 191
Run App/Script 344

figure conventions 20
File

Commands&KeyBindings.mkb 355
File column

in Files view of Project window 46
%file command-line string 441
File Compare Results window 152

Apply button 153
Destination pane 153
Differences pane 154
pane resize bar 153
Redo button 154
Source pane 153
551IDE 5.6 User’s Guide

Unapply button 153
Undo button 153

File list 134
file management 51
File Mappings list 429
File Mappings settings panel 408

options
Add 410
Change 410
Compiler 410
Edit Language 410
Extension 409
File Mappings list 409
File Type 409
Flags 410
Ignored By Make flag 410
Launchable flag 410
Precompiled File flag 410
Remove 410
Resource File flag 409

File menu 465, 481
New Text File command 481

file modification icon 95
File On Host option button 300
File On Target option button 300
File Path command 47
file paths

viewing 47
File Set list 139
File Set list box 139
File Type field 437
File Type option 429
file-info, breakpoint property 227
filename extensions

default settings 434
files

close all 63
closing 63
comparing 152
creating (Macintosh) 60
creating (Windows) 59
destination (for a comparison) 148
inspecting 36
moving 53
opening 60
print selections 64
printing 64

renaming 53
replacing text in 128
reverting 65
save all 62
saving 61
saving copies 62
searching (multiple) 139
searching (single) 125
source (for a comparison) 148
touching 54
touching all 54
untouching 55
untouching all 55
working with 59

Files In Both Folders pane 157
Files Only In Destination pane 157
Files Only In Source pane 157
Files page, about 46
Files tab 51
Files view 37, 53, 55

Checkout Status column 47
Code column 46
Data column 46
Debug column 46
File column 46
Interfaces list pop-up 47
Sort Order button 47
Target column 46
Touch column 46

files, tasks for managing 59
Find

by text selection 143
single-file 123

Find All button 124, 130
Find and compare operations option

Shielded Folders panel 437
Find And Open ‘Filename’ menu command 510
Find and Open File command 510
Find and Replace

multiple-file 129
single-file 126

Find And Replace menu command 511
Find and Replace window

All Text option button 128
Cancel button 127
Case Sensitive checkbox 127
Code Only option button 128
552IDE 5.6 User’s Guide

Comments Only option button 128
Find button 127
Find text/list box 127
Match Whole Word checkbox 127
Regular Expression checkbox 127
Replace All button 127
Replace button 127
Replace With text/list box 127
Search Selection Only checkbox 128
Search Up checkbox 128
Stop At End Of File checkbox 127

Find button 124, 127, 130
Find command 125, 509
Find Definition & Reference command 120
Find Definition & Reference menu command 509
Find Definition menu command 509
Find In Files menu command 510
Find in Files window

All Text option button 131
Case Sensitive checkbox 131
Code Only option button 131
Comments Only option button 131
Find All button 130
Find button 130
Find text/list box 130
In Files page 138, 139

Add Files button 139
Clear List button 139
File Set list 139
File Set list box 139
Remove A Set button 139
Save This Set button 139

In Files tab 131
In Folders page 132, 133

Browse button 132
By Type text/list box 132
Search In text/list box 132
Search Sub-Folders checkbox 132

In Folders tab 131
In Projects page 134, 135

File list 134
Project Headers checkbox 134
Project list box 134
Project Sources checkbox 134
Search Cached Sub-Targets

checkbox 134
System Headers checkbox 134

Target list box 134
In Projects tab 131
In Symbolics page 136, 137

Symbolics list 136
Symbolics list box 136

In Symbolics tab 131
Match Whole Word checkbox 131
Regular Expression checkbox 131
Replace All button 130
Replace button 130
Replace With text/list box 130
Stop button 131

Find In Next File menu command 510
Find In Previous File menu command 510
Find Next

using 143
Find Next command 143
Find Next menu command 510
Find Previous

using 143
Find Previous command 143

enabling in the Customize IDE Commands
window 143

Find Previous menu command 511
Find Previous Selection menu command 511
Find Reference command 120
Find Reference menu command 511
Find Reference using option

IDE Extras panel 437
Find Selection command 144
Find Selection menu command 511
Find symbols with prefix 100
Find symbols with substring 100
Find text/list box 124, 127, 130
Find window

All Text option button 125
Cancel button 124
Case Sensitive checkbox 124
Code Only option button 125
Comments Only option button 125
Find All button 124
Find button 124
Find text/list box 124
Match Whole Word checkbox 124
Regular Expression checkbox 124
Search Selection Only checkbox 125
Search Up checkbox 125
553IDE 5.6 User’s Guide

Stop At End Of File checkbox 125
finding text

overview 123
Flags pop-up menu 410

Ignored By Make flag 410
Launchable flag 410
Precompiled File flag 410
Resource File flag 409

Flash Base + Offset 297
Flash Base Address 297
Flash Configuration panel 294
Flash Memory Base Address text box 294
Flash Programmer pane 291
flash programmer panels

Checksum 299
Erase / Blank Check 298
Flash Configuration 294
Program / Verify 295
Target Configuration 291

Flash Programmer window 289
Cancel button 291
Checksum panel

Calculate Checksum button 301
Details button 301
Entire Flash option button 300
File On Host option button 300
File On Target option button 300
Memory Range On Target option

button 300
Size text box 301
Start text box 301
Status 301

Erase / Blank Check panel
All Sectors checkbox 299
All Sectors list 299
Blank Check button 299
Details button 299
Erase button 299
Erase Sectors individually

checkbox 299
Status 299

Flash Configuration panel
Device pane 294
Flash Memory Base Address text

box 294
Organization pane 295
Sector Address Map pane 295

Flash Programmer pane 291
Load Settings button 291
OK button 291
opening 289
Program / Verify panel

Apply Address Offset checkbox 297
Browse button 296
Details button 297
End text box 297
Flash Base + Offset 297
Flash Base Address 297
Offset text box 297
Program button 298
Restrict Address Range checkbox 296
Start text box 297
Status 297
Use Selected File checkbox 296
Use Selected File text box 296
Verify button 298

Save Settings button 291
Show Log button 291
Target Configuration panel

Browse button 293
Connection list box 293
Default Project 292
Default Target 292
Enable Logging checkbox 293
Target Memory Buffer Address text

box 293
Target Memory Buffer Size text

box 293
Target Processor text/list box 293
Use Custom Settings checkbox 292
Use Target Initialization checkbox 293
Use Target Initialization text box 293
View Target Memory Writes

checkbox 293
floating a window 76
Floating Document Interface. See FDI.
floating window type 70
focus bar 53
Folder Compare Results window 155

Files In Both Folders pane 157
Files Only In Destination pane 157
Files Only In Source pane 157
Pane Collapse box 156
Pane Expand box 156
554IDE 5.6 User’s Guide

pane resize bar 157
Selected Item group 157

folders
comparing 155
Registers 273
searching (multiple) 133

Font & Tabs panel 383
options

Font 438
Scripts 449
Size 452
Tab indents selection 454
Tab Inserts Spaces 454
Tab Size 454

Font & Tabs preference panel 381, 383
options

Auto Indent 382
Font 382
Script 382
Size 382
Tab indents selection 382
Tab Inserts Spaces 382
Tab Size 382

Font option
Font & Tabs panel 438

Font Preferences option
Editor Settings panel 438

Font Settings 382
Foreground option

Text Colors panel 438
Format list box 274
format, for end of line (EOL) 430
formats

for documentation 18
FPU Registers 270
Framework column, in Access Paths panel 404
Full Range Converging subtest 312
function

New Data Member 177
functions

creating new member 176
locating 113, 114

Functions list box 208
Functions list pop-up 93

sorting alphabetically 115
using 114

Functions option 385

G
General Registers 269
General section, of IDE preference panels 361
Generate Browser Data From option 438

Compiler 438
Language Parser 439
Language Parser, Macro file 439
Language Parser, Prefix file 439
None 438

Generate Constructor and Destructor 192
Get Next Completion menu command 512
Get next symbol 100
Get Previous Completion menu command 512
Get previous symbol 100
Global Optimizations settings panel 411

options
Details 412
Faster Execution Speed 412
Optimization Level slider 412
Smaller Code Size 412

Global Register Allocation 413
Global Register Allocation Only For Temporary

Values 413
Global Settings panel

options
Maintain Files in Cache 444
Select stack crawl window when task is

stopped 450
Global Settings preference panel

options
Auto Target Libraries 393
Automatically launch applications

when SYM file opened 392
Cache Edited Files Between Debug

Sessions 392
Confirm "Kill Process" when closing or

quitting 392
Confirm invalid file modification dates

when debugging 392
Don’t step into runtime support

code 393
Maintain files in cache 392
Purge Cache 392
Select stack crawl window when task is

stopped 393
Global Variables menu command 512
Global Variables window 251
555IDE 5.6 User’s Guide

opening 252
viewing for different processes 252

Global Variables Window menu command 512
Globals option 385
Go Back 168
Go Back menu command 512
Go Forward 168
Go Forward menu command 512
Go To Line menu command 512
going back 116
going forward 116
going to a particular line 116
gray background, adding behind IDE. See Use

Multiple Document Interface, turning on.
gray background, removing from behind IDE. See

Use Multiple Document Interface, turning off.
Grid Size X option

Layout Editor panel 439
Grid Size Y option

Layout Editor panel 439
group management 51
grouping

regular expressions 147
groups

moving 53
removing 51
renaming 53
Selected Item 157
touching 54
touching all 54
untouching 55
untouching all 55

Groups tab 225

H
hardware diagnostic panels

Configuration 303
Memory Read / Write 304
Memory Tests 307

Address 311
Bus Noise 311
Bus Noise in address lines 311
Bus Noise in data lines 312
Walking Ones 310

Scope Loop 305
Hardware Diagnostics pane 302
Hardware Diagnostics window 301

Cancel button 302
Configuration panel

Browse button 304
Connection list box 304
Default Project 303
Default Target 303
Target Processor text/list box 304
Use Custom Settings checkbox 303
Use Target Initialization checkbox 304
Use Target Initialization text box 304

Hardware Diagnostics pane 302
Load Settings button 302
Memory Read / Write panel

Access Target button 305
Byte option button 305
Details button 305
Long Word option button 305
Read option button 305
Status 305
Target Address text box 305
Value to write text box 305
Word option button 305
Write option button 305

Memory Tests panel
Address checkbox 308
Begin Test button 309
Bus Noise checkbox 308
Byte option button 309
Details button 309
End text box 308
Long Word option button 309
Passes text box 309
Show Log button 309
Start text box 308
Status 309
Target Scratch Memory End text

box 309
Target Scratch Memory Start text

box 309
Use Target CPU checkbox 309
Walking 1’s checkbox 308
Word option button 309

OK button 302
opening 301
Save Settings button 302
Scope Loop panel

Begin Scope Loop button 307
556IDE 5.6 User’s Guide

Byte option button 306
Details button 307
Long Word option button 307
Read option button 306
Speed slider 307
Status 307
Target Address text box 307
Value to write text box 307
Word option button 307
Write option button 306

hardware tools, working with 289
hardware, breakpoint property 228
headers

caching precompiled headers 440
Help menu 479, 495
Help Preferences panel 368

options
Browser Path 368
Set 368

Hide Breakpoints menu command 513
Hide Classes 175
Hide Classes pane 178
Hide Floating Toolbar command 513
Hide Main Toolbar command in Toolbar

submenu 513
Hide non-debugging windows option

Windowing panel 439
Hide Window Toolbar command 513
hiding

classes pane 175
Hierarchy Control 180
hierarchy window 180
hierarchy windows

changing line views 182
using to view class data 172

hit count, breakpoint property 227
Horizontal Center command 513
Host Application for Libraries & Code Resources

option
Runtime Settings panel 439

Host Application For Libraries And Code
Resources field

of Runtime Settings panel 439
Host Name text box 315
host-specific registers 270
how to

activate automatic code completion 103

add a constant to a variable 258
add a keyword to a keyword set 415
add an executable file 418
add expressions (Expressions window) 258
add markers to a source file 117
add panes to an editor window 96
add remote connections 395
add source trees 373
adding subprojects to a project 40
alphabetize Functions list pop-up order 115
apply file differences 154
arm a logic analyzer 317
attach the debugger to a process 285
balance punctuation 101
change an executable file 418
change line views in a hierarchical

window 182
change register data views 271
change register values 271
change remote connections 395
change source trees 374
change the find string 144
choose a default project 37
choose files to compare 150
choose folders to compare 151
clear a breakpoint 229
clear a Log Point 236
clear a Pause Point 237
clear a Script Point 238
clear a Skip Point 239
clear a Sound Point 240
clear a Trace Collection Off eventpoint 241
clear a Trace Collection On eventpoint 242
clear a watchpoint 247
clear all breakpoints 229
clear all watchpoints 247
close a docked window 79
close a workspace 83
close projects 38
collapse a docked window 78
collapse browser panes 173
collapse the editor window toolbar 92
complete code for data members 109
complete code for parameter lists 109
connect to a logic analyzer 317
create a breakpoint template 231
create a console application 86
557IDE 5.6 User’s Guide

create a new class 174, 189, 190
create a new data member 197
create a new data members 177
create a new member function 176, 194, 195
create custom project stationery 39
create empty projects 35
create new projects from makefiles 34
create new projects using project

stationery 33
deactivate automatic code completion 105
delete a breakpoint template 232
disable a breakpoint 228
disable a watchpoint 246
disable an eventpoint 242
disarm a logic analyzer 317
disconnect from a logic analyzer 318
dock a window by using a contextual

menu 72
dock a window by using drag and drop 73
dock windows of the same kind 74
enable a breakpoint 228, 243
enable a watchpoint 247
examine items in the Folder Compare

Results window 157
expand a docked window 78
expand browser panes 173
expand the editor window toolbar 92
export projects to XML files 38
float a window 76
generate project link maps 332
go to a particular line 116
hide the classes pane 175
import projects saved as XML files 38
indent text blocks 100
insert a reference template 121
issue command lines 322
kill program execution 211
look up symbol definitions 120
make a summation of two variables 258
make a window an MDI Child 77
manipulate variable formats 254
move a docked window 79
navigate browser data 164
navigate Code Completion window 107
navigate to a marker 118
open a recent workspace 84
open a single-class hierarchical window 183

open a workspace 83
open an Array window 268
open projects 35
open projects created on other hosts 36
open registers in a separate Registers

window 272
open subprojects 41
open the Breakpoints window 225
open the Cache window 319
open the Command window 322
open the Expressions window 257
open the Flash Programmer window 289
open the Global Variables window 252
open the Hardware Diagnostics window 301
open the Log window 286
open the Processes window 282, 284
open the Profile window 320
open the Registers window 270
open the Symbolics window 281
open the symbols window 187
open the Target Settings window 399
open the Trace window 318
overstrike text (Windows) 99
print class hierarchies 181
print projects 37
remove a keyword from a keyword set 416
remove a marker from a source file 118
remove all markers from a source file 118
remove an executable file 419
remove panes from an editor window 96
remove remote connections 396
remove source trees 374
replace text in a single file 128
resize panes in an editor window 96
restart the debugger 211
resume program execution 210
run a program 211
save a copy of a workspace 83
save a workspace 82
save projects 36
save the contents of the Breakpoints

window 225
search a single file 125
search for text across multiple files 139
search for text across multiple folders 133
search for text across multiple projects 135
558IDE 5.6 User’s Guide

search for text across multiple symbolics
files 137

search with a text selection 144
select entire routines 98
select item in Code Completion window 108
select lines 98
select multiple lines 98
select rectangular portions of lines 98
select text in editor windows 97
set a breakpoint 226
set a conditional breakpoint 230
set a conditional eventpoint 243
set a conditional watchpoint 247
set a Log Point 235
set a Pause Point 237
set a Script Point 238
set a Skip Point 239
set a Sound Point 240
set a temporary breakpoint 229
set a Trace Collection Off eventpoint 241
set a Trace Collection On eventpoint 241
set a watchpoint 245
show the classes pane 175
sort the classes list 175
specify the default breakpoint template 233
start the debugger 208
step into a routine 209
step out of a routine 209
step over a routine 210
stop program execution 210
suppress dockable windows 77
toggle automatic punctuation balancing 101
toggle the symbol hint 212
trigger code completion by keyboard 104
trigger code completion from IDE menu

bar 104
unapply file differences 155
undock a window 75
unfloat a window 77
unindent text blocks 100
update data from a logic analyzer 317
use an external editor on the Macintosh 367
use contextual menus 214
use the default workspace 82
use the document settings pop-up 93
use the Executables pane in the Symbolics

window 281, 282

use the Files pane in the Symbolics
window 281

use the Find Next command 143
use the Find Previous command 143
use the Functions list pop-up 114
use the Functions pane in the Symbolics

window 282
use the Interfaces list pop-up 114
use the symbol hint 212
use the VCS pop-up 94
use virtual space 99
view a file path 47
view breakpoint properties 227
view browser data by contents 184
view browser data by inheritance 180
view class data from hierarchy window 172
view eventpoint properties 242
view global variables for different

processes 252
view registers 270
view watchpoint properties 246

I
icon

for Tools menu 495
for VCS menu 495

icons
Active 225
file modification 95
for data members 176
for member functions 176
Inactive 225

IDE
and threading 429
Apple menu 480
Code Completion window 105
CodeWarrior menu 480
Data menu 476, 491
Debug menu 474, 489
defined 15
Edit menu 467, 483
editing source code 97
editor 89
File menu 465, 481
Flash Programmer window 289
Hardware Diagnostics window 301
hardware tools 289
559IDE 5.6 User’s Guide

Help menu 479, 495
linkers 331
Mac-hosted 348
menu reference 465
preferences, working with 359
project manager and build targets 29
Project menu 472, 486
Scripts menu 495
Search menu 470, 484
target settings, working with 397
Tools menu 495
tools overview 24
User’s Guide overview 15
VCS menu 495
Window menu 469, 478, 492
Windows-hosted 348
workspaces 81

IDE Extras 495
IDE Extras panel

options
Documents 431
Find Reference using 437
Launch Editor 441
Launch Editor w/ Line # 442
Menu bar layout 444
Projects 446
Symbolics 454
Use Default Workspace’ 456
Use External Editor 456
Use Multiple Document Interface 457
Use Script menu 458
Use ToolServer menu 458
Workspaces 461
Zoom windows to full screen 461

IDE Extras preference panel 364
options

Context popup delay 366
Documents 365
Enable automatic Toolbar help 366
Find Reference using 367
Launch Editor 366
Launch Editor w/ Line # 366
Menu bar layout 365
Projects 365
Recent symbolics 365, 366
Use Default workspace 367
Use External Editor 366

Use Multiple Document Interface 366
Use Script menu 366
Use Third Party Editor 366
Use ToolServer menu 366
Zoom windows to full screen 366

Use Third Party Editor option 458
IDE Preference Panels list 360
IDE Preference Panels, Font & Tabs 383
IDE Preference Panels, Font Settings 382
IDE preferences

Activate Browser Coloring 385
Activate Syntax Coloring 384
Add 371, 372, 394
Attempt to use dynamic type of C++, Object

Pascal and SOM objects 389
Auto Indent 382
Auto Target Libraries 393
Automatic Invocation 376
Automatically launch applications when

SYM file opened 392
Background 384
Balance Flash Delay 381
Balance while typing 380
Browser Commands 380
Browser Path 368
Build before running 362
Cache Edited Files Between Debug

Sessions 392
Case sensitive 376
Change 371, 373, 394
Choose 372
Classes 385
Close Braces, Brackets, And

Parentheses 378
Close non-debugging windows 390
Code Completion Delay 376
Collapse non-debugging windows 390
Comments 384
Compiler thread stack 363
Confirm "Kill Process" when closing or

quitting 392
Confirm invalid file modification dates when

debugging 392
Constants 385
Context popup delay 366
Debugger Commands 380
Default file format 381
560IDE 5.6 User’s Guide

Default size for unbounded arrays 389
Disable third party COM plugins 369
Display deprecated items 376
Do nothing 390
Do nothing to project windows 390
Documents 365
Don’t step into runtime support code 393
Drag and drop editing 380
Edit 385
Edit Commands 379
Enable automatic Toolbar help 366
Enable Virtual Space 380
Enums 385
Failure 362
Find and compare operations 370
Find Reference using 367
Font 382
Font preferences 379
Foreground 384
Format Braces 377
Functions 385
Globals 385
Hide non-debugging windows 390
Include file cache 363
Indent Braces 378
Indent Case Within Switch Statement 378
Indent Code Within Braces 378
Insert Template Commands 380
Keywords 384
Language Settings 377
Launch Editor 366
Launch Editor w/ Line # 366
Left margin click selects line 380
Level 369
Macros 385
Maintain files in cache 392
Menu bar layout 365
Minimize non-debugging windows 390
Monitor for debugging 390
Move open windows to debugging monitor

when debugging starts 391
Name 372
Open windows on debugging monitor during

debugging 391
Other 385
Place Else On Same Line As Closing

Brace 378

Place Opening Brace On Separate Line 378
Play sound after ‘Bring Up To Date’ &

‘Make’ 362
Project Commands 380
Project operations 370
Projects 365
Purge Cache 392
Recent symbolics 365, 366
Recommended 364
Regular Expression 370
Relaxed C popup parsing 380
Remote Connection list 394
Remove 371, 373, 394
Save open files before build 362
Script 382
Select stack crawl window when task is

stopped 393
Selection position 379
SEt 368
Set 1, Set 2, Set 3, Set 4 385
Shielded folder list 370
Show all locals 388
Show message after building up-to-date

project 362
Show tasks in separate windows 391
Show values as decimal instead of hex 389
Show variable location 388
Show variable types 388
Show variable values in source code 389
Size 382
Sort function popup 380
Sort functions by method name in symbolics

window 389
Source Tree list 372
Strings 385
Success 362
Tab indents selection 382
Tab Inserts Spaces 382
Tab Size 382
Templates 385
Type 372
TypeDefs 385
Use Automatic Code Formatting 377
Use Concurrent Compiles 364
Use Debugging Monitor 390
Use Default workspace 367
Use External Editor 366
561IDE 5.6 User’s Guide

Use Local Project Data Storage 363
Use Multiple Document Interface 366
Use multiple undo 380
Use Script menu 366
Use Third Party Editor 366
Use ToolServer menu 366
User Specified 364
Variable values change 388
VCS Commands 380
Watchpoint indicator 388
Window follows insertion point 376
Window position and size 379
Zoom windows to full screen 366

IDE Preferences window 246, 336, 359, 360
Apply button 361
Cancel button 361
Factory Settings button 336, 360
IDE Preference Panels list 360
Import Panel 440
Import Panel button 337, 361
OK button 361
Revert Panel button 336, 360
Save button 337, 361

Ignore Extra Space checkbox 150
Ignored By Make File flag 410
Import button 355
Import Commands 355
Import Components menu command 513
Import Panel 440
Import Project command 38
Import Project menu command 514
importing

projects saved as XML files 38
In Files page 138, 139
In Files tab 131
In Folders page 132, 133
In Folders tab 131
In Projects page 134, 135
In Projects tab 131
In Symbolics page 136, 137
In Symbolics tab 131
Inactive icon 225
Include file cache option

Build Settings panel 440
Include Files 196
Include files 193
#include files, caching 440

indenting
text blocks 100

Initial Directory field
Build Extras panel 440

Initializer 198
Insert Reference Template 121
Insert Reference Template menu command 514
Insert Template Commands option

Editor Settings panel 440
inserting a reference template 121
inspecting

project files 36
Installed Products button 497
Instances tab 225
Instruction Scheduling 414
Integrated Development Environment. See IDE.
interface files

locating 113, 114
Interface menu 54
Interfaces list pop-up

in Files view of Project window 47
using 114

interfaces list pop-up 92
IP Address field 395

J
Java Exceptions Submenu

No Exceptions command 516
Java Exceptions submenu

All Exceptions command 498
Exceptions In Targeted Classes

command 508
Uncaught Exceptions Only command 531

Java submenu 498, 508, 516, 531

K
Key Bindings 335, 338

Add 353
Customize 351

key bindings 120
keyboard conventions 20
keyboard shortcuts

Find symbols with prefix 100
Find symbols with substring 100
Get next symbol 100
Get previous symbol 100

keys
562IDE 5.6 User’s Guide

Quote Key prefix 356
keywords

adding to a keyword set 415
removing from a keyword set 416

Keywords option
Text Colors panel 441

Kill button 206
Kill command 211
Kill menu command 514
killing program execution 211

L
Language Parser option, in Generate Browser

Data From menu 439
Launch Editor option

IDE Extras panel 441
Launch Editor w/ Line # option

IDE Extras panel 442
Launch Remote Host Application option

Remote Debugging settings panel 442
Launchable flag 410
Layout Editor panel

options
Grid Size X 439
Grid Size Y 439
Show the component palette when

opening a form 451
Show the object inspector when

opening a form 451
layout management 51
layouts

moving 53
removing 51
renaming 53

least significant bit 310
Left Edges command 514
Left margin click selects line option

Editor Settings panel 442
Level option

Plugin Settings panel 442
Lifetime Based Register Allocation 414
line

going to in source code 116
Line And Column button 208
line and column indicator, in editor window 95
%line command-line string 442
Line Display 180

lines, selecting 98
lines, selecting multiple 98
lines, selecting rectangular portions of 98
link maps

generating for projects 332
Link Order page 49
Link Order tab 51
Link Order view 37, 53
Linker option

Target Settings panel 443
linkers 331

choosing 331
linking projects 332
Linux

modifier key mappings 20
list

of symbols in Browser Contents
window 184

list boxes
Analyzer Type 315
Bit Value Modifier 274
Bitfield Name 274
Connection 293, 304
Connection Type 315
Debugger 315
File Set 139
Format 274
Functions 208
Project 134
Source 208
Symbolics 136
Target 134
Text View 275, 276

list menus
document settings 93
functions 93
interfaces 92
markers 93
VCS 94

list pop-up menus
Current Target 44

list pop-ups
Ancestor 180
Browser Access Filters 169
document settings 93
functions 93
interfaces 92
563IDE 5.6 User’s Guide

markers 93
Symbols 184
VCS 170

lists
All Sectors 299
File 134
File Mappings 429
File Set 139
Symbolics 136

Live Range Splitting 413
Load Settings button 291, 302
locating functions 113, 114
locating interface files 113, 114
locating source code 113
Location of Relocated Libraries and Code

Resources option
Debugger Settings panel 443

Log Message checkbox 236
Log Point 234, 235
Log Point Settings window 236

Message text box 236
Speak Message checkbox 236
Stop in Debugger checkbox 236
Treat as Expression checkbox 236

Log Point, clearing 236
Log Point, setting 235
Log System Messages 285
Log System Messages option

Debugger Settings panel 443
Log Window

Log System Messages option 285
Log window 285

opening 286
logic analyzer 313

Arm command 317
arming 317
configuring a project 313
Connect command 316
connecting to 317
Disarm command 317
disarming 317
Disconnect command 318
disconnect from 318
Update Data command 317
updating data from 317
using 316

Logic Analyzer connection options

Analyzer Can Cause Target Breakpoint
checkbox 316

Analyzer Configuration File text box 315
Analyzer Slot text box 316
Analyzer Type list box 315
Connection Type list box 315
Debugger list box 315
Host Name text box 315
Name text box 315
Target Breakpoint Can Cause Analyzer

Trigger checkbox 316
Trace Support File text box 316

Long Word option button 305, 307, 309
looking up symbol definitions 120
Loop Transformations 414
Loop Unrolling 414
Loop Unrolling (Opt For Speed Only) 414
Loop-Invariant Code Motion 414
LSB 310

M
Mac OS

QuickHelp 119
QuickView 119, 120
THINK Reference 120

Mac OS X API 437
machines, defined 282
Macintosh

creating files 60
using an external editor 367

Macintosh menu layout 480
Macro file option, in Generate Browser Data

From menu 439
Macros option 385
Maintain Files In Cache option 427
Maintain Files in Cache option

Global Settings panel 444
Make command 53, 54, 55
Make menu command 514
Make option 437
Make toolbar button 44
Makefile Importer wizard 34
makefiles

converting into projects 34
managing

build targets 56
projects 33
564IDE 5.6 User’s Guide

targets 56
managing files, tasks 59
manipulating program execution 221

Breakpoints window 222
manual conventions 19
markers 116

adding to a source file 117
navigating to 118
removing all from source files 118
removing from source files 118

Markers list pop-up 93
Markers list, in Remove Markers window 117
Match Whole Word checkbox 124, 127, 131
matching

any character with regular expressions 146
replace strings to find strings with regular

expressions 147, 148
with simple regular expressions 146

Maximize Window menu command 514
Maximum Invert Convergence subtest 312
.mcp 35
MDI 366, 444, 457

and dockable windows 69
making a window an MDI child 77

Member Function Declaration 196
member functions

creating 176, 195
identifier icons 176

Member Functions pane 176
in Class Browser window 169

memory aliasing, defined 311
memory dump 534
Memory Range On Target option button 300
Memory Read / Write panel 304
memory tests

Address 311
Bus Noise 311

address lines 311
data lines 312

Bus Noise test
Full Range Converging subtest 312
Maximum Invert Convergence

subtest 312
Sequential subtest 311

Walking Ones 310
Walking Ones test

Address Line fault 310

Data Line fault 310
Ones Retention subtest 310
Retention fault 310
Walking Ones subtest 310
Walking Zeros subtest 310
Zeros Retention subtest 310

Memory Tests panel 307
Address test 311
Bus Noise test 311

address lines 311
data lines 312

Walking Ones test 310
Memory window 261
memory, working with 261
Menu

Current Target 349
menu

Search 120
Menu bar layout option

IDE Extras panel 444
menu commands

About Freescale CodeWarrior 497
Add Files 497
Add Window 497
Apply Difference 154, 498
Arm 317
Balance 499
Bottom Edges 499
Break 499
Break On C++ Exception 499
Break on Java Exceptions 499
Breakpoints 499
Breakpoints Window 499
Bring To Front 499
Bring Up To Date 500
Browser Contents 500
Build Progress 500
Build Progress Window 500
Can’t Redo 468, 483
Can’t Undo 468, 483
Cascade 500
Change Program Counter 500
Check Syntax 500
Class Browser 501
Class Hierarchy 501
Class Hierarchy Window 501
Clear 501
565IDE 5.6 User’s Guide

Clear All Breakpoints 501
Clear All Watchpoints 501
Clear Breakpoint 501
Clear Eventpoint 502
Clear Watchpoint 502
Close 502
Close All 502
Close All Editor Documents 503
Close Catalog 503
Close Workspace 503
CodeWarrior Help 503
Collapse Window 504
Commands & Key Bindings 503
Compare Files 150, 504
Compile 504
Complete Code 503
Connect 316, 504
Copy 504
Copy To Expression 504
Create Design 504
Create Group 505
Create Target 505
Cycle View 505
Debug 506
Delete 506
Disable Breakpoint 506
Disable Watchpoint 506
Disarm 317
Disassemble 506
Disconnect 318
Display Grid 506
Enable Breakpoint 507
Enable Watchpoint 507
Enter Find String 144, 507
Enter Replace String 507
Errors And Warnings 508
Errors And Warnings Window 508
Exit 508
Expand Window 508
Export Project 508, 514
Export Project as GNU Makefile 508
Expressions 509
Expressions Window 509
Find 125, 509
Find and Open ‘Filename’ 510
Find and Open File 510
Find And Replace 511

Find Definition 509
Find Definition & Reference 509
Find In Files 510
Find In Next File 510
Find In Previous File 510
Find Next 143, 510
Find Previous 143, 511
Find Previous Selection 511
Find Reference 511
Find Selection 144, 511
Get Next Completion 512
Get Previous Completion 512
Global Variables 512
Global Variables Window 512
Go Back 512
Go Forward 512
Go To Line 512
Hide Breakpoints 513
Hide Window Toolbar 513
Import Components 513
Import Project 514
Insert Reference Template 121, 514
Kill 514
Make 514
Maximize Window 514
Minimize Window 515
New 515
New Class 515
New Class Browser 515
New Data 515
New Event 515
New Event Set 516
New Expression 516
New Member Function 516
New Method 516
New Property 516
New Text File 516
Open 517
Open Recent 517
Open Scripts Folder 517
Open Workspace 517
Page Setup 517
Precompile 518
Preferences 518
Print 518
Processes 518
Processes Window 518
566IDE 5.6 User’s Guide

Redo 519
Refresh All Data 519
Register Details Window 272, 519
Register Windows 519
Registers 519
Remove Object Code 519
Remove Object Code & Compact 519
Remove Toolbar Item 349
Replace 128, 520, 521
Replace All 520
Replace and Find Next 520
Resume 523
Revert 523
Run 446, 523
Run To Cursor 523
Save Default Window 524
Save Workspace 524
Save Workspace As 524
Select All 524
Send To Back 524
Set Breakpoint 525
Set Default Project 525
Set Default Target 525
Set Eventpoint 525
Set Watchpoint 525
Shift Right 525, 526
Show Breakpoints 501, 526
Show Types 526
Show Window Toolbar 513
Stack Editor Windows 526
Step Over 527
Stop Build 527
Switch To Monitor 527
Symbolics 527
Symbolics Window 527
Synchronize Modification Dates 527
Unapply Difference 155
Update Data 317
View Array 532
View As Unsigned Decimal 532, 533, 534
View Disassembly 534
View Mixed 534
View Source 534
View Variable 534
Zoom Window 535

menu layouts
Macintosh 480

Windows 465
menu reference

for IDE 465
menus 169

contextual 212
VCS 178

Message text box 236
Minimize non-debugging windows option

Windowing panel 444
Minimize Window menu command 515
Monitor for debugging option

Windowing panel 444
most significant bit 310
Move open windows to debugging monitor when

debugging starts option
Windowing panel 445

moving
build targets 53
dockable windows 79
files 53
groups 53
layouts 53
targets 53

MSB 310
Multi-Class Hierarchy window 179, 182
multi-core debugging 214
Multiple Document Interface. See MDI.
multiple files, searching 139
multiple folders, searching 133
multiple projects, searching 135
multiple Redo 519
multiple symbolics files, searching 137
multiple Undo 519
multiple-file Find and Replace window 129

N
Name field 337
Name text box 315
name, breakpoint property 227
navigating

browser data 164
Code Completion window 107
to markers 118

navigating data 164
navigating source code 113
New Binding 338, 354
New C++ Class window 191
567IDE 5.6 User’s Guide

New C++ Data Member window 198
New C++ Member Function window 196
New Class Browser menu command 515
New Class menu command 515
New Class wizard 174, 189, 190
New Command 338
New command 59, 86
New Command Group

Create 338
New Connection dialog box 395
New Data Member 177, 196, 198
new data member functions

creating 197
New Data Member wizard 177, 197
New Data menu command 515
New Event menu command 515
New Event Set menu command 516
New Expression menu command 516
New Group 338
New Item 174
New Member Function menu command 516
New Member Function wizard 176, 194, 195
new member functions

creating 194
New Menu Command

Create 338, 344
New menu command 515
New Method menu command 516
New Property menu command 516
New Text File command 60
New Text File menu command 516
Next Result button 142
No Exceptions command 516
None option

of Plugin Diagnostics 442
None option, in Generate Browser Data From

menu 438
non-modal, defined 71
notes

for the latest release 15
Numeric Keypad Bindings 353
Numeric Keypad Bindings checkbox

of Customize IDE Commands window 357

O
Offset text box 297
OK button 291, 302

Ones Retention subtest 310
Only Show Different Files checkbox 150
Open command 60
Open File 178
Open In Windows Explorer command 47
Open menu command 517
Open Recent menu command 517
Open Scripts Folder menu command 517
Open windows on debugging monitor during

debugging option
Windowing panel 445

Open Workspace menu command 517
opening 187

a recent workspace 84
a single-class hierarchical window 183
files 60
Flash Programmer window 289
Hardware Diagnostics window 301
projects 35
projects from other hosts 36
subprojects 41
Symbolics window 281
symbols window 187
workspaces 83

opening last project (default workspace) 456
opening last project, preventing (default

workspace) 456
openings

registers in a separate Registers window 272
optimizations

Arithmetic Optimizations 413
Branch Optimizations 413
Common Subexpression Elimination 413
Copy And Expression Propagation 413
Copy Propagation 413
Dead Code Elimination 413
Dead Store Elimination 413
Expression Simplification 413
Global Register Allocation 413
Global Register Allocation Only For

Temporary Values 413
Instruction Scheduling 414
Lifetime Based Register Allocation 414
Live Range Splitting 413
Loop Transformations 414
Loop Unrolling 414
Loop Unrolling (Opt For Speed Only) 414
568IDE 5.6 User’s Guide

Loop-Invariant Code Motion 414
Peephole Optimization 413
Register Coloring 414
Repeated 414
Strength Reduction 414
Vectorization 414

option buttons
All text 125, 128, 131
Byte 305, 306, 309
Code Only 125, 128, 131
Comments Only 125, 128, 131
Entire Flash 300
File on Host 300
File on Target 300
Long Word 305, 307, 309
Memory Range on Target 300
Read 305, 306
Word 305, 307, 309
Write 305, 306

options 432
Access Paths settings panel 369, 401
Activate Browser 510
Activate Browser Coloring 423
Activate Syntax Coloring 423, 429
Add Default 423
Always Search User Paths 424
Application 424
Arguments 424
Attempt to use dynamic type of C++, Object

Pascal and SOM objects 424
Auto Indent 424
Auto Target Libraries 424
Automatic Invocation 425
Automatically Launch Applications When

SYM File Opened 425
Auto-target Libraries 424
Background 426
Balance Flash Delay 426
Balance while typing 426
Bring Up To Date 437
Browse in processes window 395, 396
Browser Commands 426
Browser Path 427
Build before running 427
Build Extras settings panel 404
Build Settings preference panel 361

Cache Edited Files Between Debug
Sessions 427

Cache Subprojects 427
Cache symbolics between runs 428
Case Sensitive 428
Checksum panel 299
choosing host application for non-executable

files 439
Classes 385
Close non-debugging windows 428
Code Completion Delay 428
Code Completion preference panel 375
Code Formatting preference panel 376
Collapse non-debugging windows 429
Comments 429
Compiler 429
Compiler thread stack 429
Concurrent Compiles preference panel 363
Configuration panel 303
Confirm “Kill Process” when closing or

quitting 430
Confirm invalid file modification dates when

debugging 429
Connection Type 395, 396
Constants 385
Context popup delay 430
Debugger Commands 430
Debugger preference panels 387
Debugger Settings 285
Debugger Settings panel 419
Default File Format 430
Default size for unbounded arrays 431
Disable third party COM plugins 431
Display Deprecated Items 431
Display Settings preference panel 387
Do nothing 431
Do nothing to project windows 431
Drag and drop editing 432
Dump internal browse information after

compile 432
Edit Commands 432
Edit Language 432
Editor preference panels 375
Editor Settings preference panel 378
Enable automatic Toolbar help 433
Enable remote debugging 433
Enable Virtual Space 433
569IDE 5.6 User’s Guide

Enums 385
Environment Settings 433
Erase / Blank Check panel 298
Failure 437
File Mappings settings panel 408
File Type 429
Flash Configuration panel 294
Font & Tabs preference panel 381, 383
Functions 385
General preference panels 361
Generate Browser Data From 438
Global Optimizations settings panel 411
Globals 385
Help Preferences panel 368
IDE Extras preference panel 364
Import Panel 440
Macros 385
Maintain files in cache 427
Make 437
Memory Read / Write panel 304
Memory Tests panel 307
Other 385
Other Executables settings panel 417
Plugin Settings preference panel 368
Program / Verify panel 295
Purge Cache 427
Remote Connections preference panel 393
Remote Debugging settings panel 421
Require Framework Style Includes 448
Runtime Settings panel 406
Scope Loop panel 305
Set 1, Set 2, Set 3, Set 4 385
setting for browser 161
Shielded Folders preference panel 369
Source Trees preference panel 371
Target Configuration panel 291
Target Settings panel 400
Templates 385
TypeDefs 385
Use Multiple Document Interface 69
User specified 420
Window Follows Insertion Point 460
Window Settings preference panel 389

Organization pane 295
original process, breakpoint property 228
original-target, breakpoint property 228
other editor windows 94

Other Executables settings panel 417
Other option 385
Output Directory option

Target Settings panel 445
Overlays tab 51
overstrike 99
overstriking text (Windows) 99
overtype. See overstrike.
overview

of browser 25
of build system 25
of CodeWarrior 21
of debugger 25
of editor 25
of IDE project manager and build targets 29
of IDE tools 24
of IDE User’s Guide 15
of project manager 25
of search engine 25

P
Page Setup command 517
pages

In Files 138
In Folders 132
in project window 45
In Projects 134
In Symbolics 136

PalmQuest reference 437
Pane Collapse 173
Pane Collapse box 156, 206
Pane Expand 173
Pane Expand box 156, 206
Pane resize bar 142, 153, 157, 207
pane resize bar

in File Compare Results window 153
in Folder Compare Results window 157

pane splitter controls, in editor window 95
panel

Display Settings 246
panels

Analyzer Connections 313
Font & Tabs 383

panes
adding to editor window 96
Destination 153
Device 294
570IDE 5.6 User’s Guide

Differences 154
Files in Both Folders 157
Files Only in Destination 157
Files Only in Source 157
Flash Programmer 291
Hardware Diagnostics 302
Organization 295
removing from editor window 96
resizing in an editor window 96
Results 142
Sector Address Map 295
Source 153, 207
Source Code 142
Stack 207
Variables 207

parameter lists
completing code 109

Passes text box 309
path caption 95
Pause Point 234, 237
Pause Point, clearing 237
Pause Point, setting 237
Peephole Optimization 413
Play sound after ‘Bring Up To Date’ & ‘Make’

option
Build Settings panel 445

Plugin Diagnostics
All Info option 443
Errors Only option 443
None option 442

plug-in diagnostics
disabling 497
enabling 497

Plugin Settings panel
options

Level 442
Plugin Settings preference panel 368

options
Disable third party COM plugins 369
Level 369

plug-ins
saving information about those installed in

IDE 497
viewing those installed in IDE 497

pop-up menus
document settings 93
functions 93

interfaces 92
markers 93
VCS 94

pop-ups
Ancestor 180
Browser Access Filters 169
Symbols 184
VCS 170

Post-linker option
Target Settings panel 446

Precompile menu command 518
Precompiled File flag 410
precompiled headers

caching 440
preference panels

Build Settings 361
Code Completion 375
Code Formatting 376
Concurrent Compiles 363
Display Settings 387
Editor Settings 378
Font & Tabs 381, 383
Help Preferences 368
IDE Extras 364
Plugin Settings 368
Remote Connections 393
reverting 448
Shielded Folders 369
Source Trees 371
Window Settings 389

preferences
Activate Browser Coloring 385
Activate Syntax Coloring 384
Add 371, 372, 394
Apply button 361
Attempt to use dynamic type of C++, Object

Pascal and SOM objects 389
Auto Indent 382
Auto Target Libraries 393
Automatic Invocation 376
Automatically launch applications when

SYM file opened 392
Background 384
Balance Flash Delay 381
Balance while typing 380
Browser Commands 380
Browser Path 368
571IDE 5.6 User’s Guide

Build before running 362
Cache Edited Files Between Debug

Sessions 392
Cancel button 361
Case sensitive 376
Change 371, 373, 394
Choose 372
Classes 385
Close Braces, Brackets, And

Parentheses 378
Close non-debugging windows 390
Code Completion Delay 376
Collapse non-debugging windows 390
Comments 384
Compiler thread stack 363
Confirm "Kill Process" when closing or

quitting 392
Confirm invalid file modification dates when

debugging 392
Constants 385
Context popup delay 366
Debugger 387
Debugger Commands 380
Default file format 381
Default size for unbounded arrays 389
Disable third party COM plugins 369
Display deprecated items 376
Do nothing 390
Do nothing to project windows 390
Documents 365
Don’t step into runtime support code 393
Drag and drop editing 380
Edit 385
Edit Commands 379
Editor 375
Enable automatic Toolbar help 366
Enable Virtual Space 380
Enums 385
Export Panel button 336, 360
Factory Settings button 336, 360
Failure 362
Find and compare operations 370
Find Reference using 367
Font 382
Font preferences 379
for IDE 359
Foreground 384

Format Braces 377
Functions 385
General 361
Globals 385
Hide non-debugging windows 390
IDE Preference Panels list 360
IDE window 359
Import Panel button 337, 361
Include file cache 363
Indent Braces 378
Indent Case Within Switch Statement 378
Indent Code Within Braces 378
Insert Template Commands 380
Keywords 384
Language Settings 377
Launch Editor 366
Launch Editor w/ Line # 366
Left margin click selects line 380
Level 369
Macros 385
Maintain files in cache 392
Menu bar layout 365
Minimize non-debugging windows 390
Monitor for debugging 390
Move open windows to debugging monitor

when debugging starts 391
Name 372
OK button 361
Open windows on debugging monitor during

debugging 391
Other 385
Place Else On Same Line As Closing

Brace 378
Place Opening Brace On Separate Line 378
Play sound after ‘Bring Up To Date’ &

‘Make’ 362
Project Commands 380
Project operations 370
Projects 365
Purge Cache 392
Recent symbolics 365, 366
Recommended 364
Regular Expression 370
Relaxed C popup parsing 380
Remote Connection list 394
Remove 371, 373, 394
Revert Panel button 336, 360
572IDE 5.6 User’s Guide

Save button 337, 361
Save open files before build 362
Script 382
Select stack crawl window when task is

stopped 393
Selection position 379
Set 368
Set 1, Set 2, Set 3, Set 4 385
Shielded folder list 370
Show all locals 388
Show message after building up-to-date

project 362
Show tasks in separate window 391
Show values as decimal instead of hex 389
Show variable location 388
Show variable types 388
Show variable values in source code 389
Size 382
Sort function popup 380
Sort functions by method name in symbolics

window 389
Source Tree list 372
Strings 385
Success 362
Tab indents selection 382
Tab Inserts Spaces 382
Tab Size 382
Templates 385
Type 372
TypeDefs 385
Use Automatic Code Formatting 377
Use Concurrent Compiles 364
Use Debugging Monitor 390
Use Default workspace 367
Use External Editor 366
Use Local Project Data Storage 363
Use Multiple Document Interface 366
Use multiple undo 380
Use Script menu 366
Use Third Party Editor 366
Use ToolServer menu 366
User Specified 364
Variable values change 388
VCS Commands 380
Watchpoint indicator 388
Window follows insertion point 376
Window position and size 379

Zoom windows to full screen 366
Preferences menu command 518
Prefix file option, in Generate Browser Data From

menu 439
prefix keys

Quote Key 356
Pre-linker option

Target Settings panel 446
Previous Result button 142
print

file selections 64
Print command 64, 518
printing

class hierarchies 181
files 64
projects 37

process
attaching debugger to 285

process cycle
of software development 21

processes
related to machines 282
viewing global variables for 252

Processes menu command 518
Processes window 282, 395

opening 282, 284
Processes Window menu command 518
products

saving information about those installed in
IDE 497

viewing those installed in IDE 497
Profile window

opening 320
program

killing execution 211
resuming execution 210
running 211
stopping execution 210

Program / Verify panel 295
Program Arguments field

of Runtime Settings panel (Windows) 446
Program Arguments option

Runtime Settings panel 446
Program button 298
Program Entry Point option

Debugger Settings panel 446
program execution, manipulating 221
573IDE 5.6 User’s Guide

project
configuring for a logic analyzer 313

Project Commands option
Editor Settings panel 446

project data folder 456
Project Headers checkbox 134
Project Inspector command 36
Project list box 134
project manager 29

overview 25
Project menu 446, 472, 486

Remove Object Code command 473, 488
Stop Build command 473, 488

Project operations option
Shielded Folders panel 447

Project Sources checkbox 134
project stationery

creating 39
custom 39

Project window
about Files page 46
Current Target list pop-up 44
Files view

Checkout Status column 47
Code column 46
Data column 46
Debug column 46
File column 46
Interfaces list pop-up 47
Sort Order button 47
Target column 46
Touch column 46

Make toolbar button 44
Synchronize Modification Dates toolbar

button 44
Target Settings toolbar button 44

project window 43
Link Order page 49
pages 45
Targets page 50

project window, about 43
project, defined 29
projects

about subprojects 40
advanced topics 39
choosing default 37
closing 38

creating custom stationery 39
creating empty 35
creating subprojects 40
creating using makefiles 34
creating using stationery 33
data folder 456
exporting to XML files 38
generating link maps for 332
importing XML versions of 38
inspecting files 36
linking 332
managing 33
opening 35
opening from other hosts 36
printing 37
project window 43
project window pages 45
project window, about 43
reopening last one used (default

workspace) 456
reopening last one used, preventing (default

workspace) 456
saving 36
searching (multiple) 135
strategies for 41
subprojects, strategies for 42
working with 29

Projects option
IDE Extras panel 446

properties
condition, breakpoint 227
file-info, breakpoint 227
hardware, breakpoint 228
hit count, breakpoint 227
name, breakpoint 227
original process, breakpoint 228
original-target, breakpoint 228
serial number, breakpoint 227
thread, breakpoint 228
times hit, breakpoint 228
times left, breakpoint 228
type, breakpoint 227

punctuation balancing, toggling 101
punctuation, balancing 100, 101
pure virtual

icon for 176
Purge Cache button 447
574IDE 5.6 User’s Guide

Purge Cache option 427
purging cache 447
purpose

of breakpoints 221
of Browser Contents window 183
of Classes pane in browser 174
of Data Members pane 177
of eventpoints 221
of Member functions pane 176
of Multi-Class Hierarchy window 179
of Single-Class Hierarchy window 182
of Source pane 177
of special breakpoints 221
of status area in browser 178
of Symbols window 185
of watchpoints 221

Q
QuickDraw 444
QuickHelp (Mac OS) 119
QuickView 119, 120, 437
QuickView, Mac OS 120
QuickView, THINK Reference 120
Quote Key prefix 356

assigning 356

R
Read button 275
Read option button 305, 306
Recursive Search column, in Access Paths

panel 404
Redo button 154
Redo menu command 519
reference information

for IDE menus 465
reference template 120
reference template, inserting 121
reference templates (Macintosh) 120
Refresh All Data menu command 519
Register Coloring 414
Register Description option

of Text View pop-up menu 276
Register Details option

of Text View pop-up menu 277
Register Details window 272

Address text box 273
Bit Value Modifier list box 274

Bit Value text box 274
Bitfield Description text view option 276
Bitfield Name list box 274
Browse button 273, 275
Description 275
Description File text box 273, 275
Format list box 274
Read button 275
Register Description text view option 276
Register Details text view option 277
Register display 274, 276
Register Name 273
Reset Value button 275
Revert button 275
Text View list box 275, 276
using 276
Write button 275

Register Details Window command 272
Register Details Window menu command 519
Register display 274, 276
Register Name 273
Register Windows menu command 519
registers

changing data views of 271
changing values of 271
FPU Registers 270
General Registers 269
host-specific 270
Register Details window 272
viewing 270
viewing details of 272

Registers folder 273
Registers menu command 519
Registers window 269

opening 270
opening more than one 272

Registry Key option
of Source Trees preference panel 455

Registry Key option, in Type pop-up menu 455
regular breakpoints 222
Regular Expression checkbox 124, 127, 131
Regular Expression option

Shielded Folders panel 447
regular expressions 145

.*[_]Data 371
\(.*\) 371
choosing one character from many 147
575IDE 5.6 User’s Guide

CVS 371
defined 145
grouping 147
matching any character 146
matching simple expressions 146
using the find string in the replace

string 147, 148
Relative to class field 191
Relaxed C popup parsing option

Editor Settings panel 447
release notes 15
remembering last project (default

workspace) 456
remembering last project, turning off (default

workspace) 456
remote connections

adding 395
changing 395
removing 396

Remote Connections preference panel 393
options

Add 394
Change 394
Remote Connection list 394
Remove 394

Remote Debugging settings panel 421
Connection pop-up menu 421
options

Launch remote host application 442
Remove A Set button 139
Remove button 403
Remove button, in Remove Markers window 117
Remove command 51
Remove Markers window 117

Cancel button 117
Done button 117
Markers list 117
Remove button 117

Remove Object Code & Compact menu
command 519

Remove Object Code menu command 519
Remove Toolbar Item 349
removing

build targets 51, 57
desktop background from behind IDE. See

Use Multiple Document Interface, turning
on.

files 51
gray background from behind IDE. See Use

Multiple Document Interface, turning off.
groups 51
layouts 51
remote connections 396
source trees 374
targets 51, 57

Rename Breakpoint button 224
Rename command 53, 58
renaming

build targets 54, 58
files 53
groups 53
layouts 53
targets 53, 54, 58

reopening last project used
in default workspace 456
suppressing in the default workspace 456

Repeated optimizations 414
Replace All button 127, 130
Replace All menu command 520
Replace and Find Next menu command 520
Replace and Find Previous command 520
Replace button 127, 130
Replace command 128
Replace menu command 520, 521
Replace With text/list box 127, 130
replacing

text in a single file 128
text, overview 123

Require Framework Style Includes 448
Reset Value button 275
Reset Window Toolbar command in Toolbar

submenu 49, 521, 522
resetting

toolbars 350
resize bars

Pane 142, 207
Resize submenu

To Smallest Height command 531
To Smallest Width command 531

resizing
panes in an editor window 96

Resource File flag 409
Restart command 211
restarting
576IDE 5.6 User’s Guide

debugger 211
Restore Window command (Windows) 522
Restrict Address Range checkbox 296
Result Count text box 142
results

of multi-item search 141
Results pane 142
Resume button 206
Resume command 210
Resume menu command 523
resuming program execution 210
Retention fault 310
Revert button 275
Revert command 65
Revert menu command 523
reverting

files 65
preference panels 448
settings panels 448

revision control 460, 495
routine

stepping into 209
stepping out of 209
stepping over 210

routine, selecting entirely 98
Run App/Script 344
Run button 206
Run command 54, 55, 211
Run menu command 446, 523
Run To Cursor menu command 523
running

a program 211
Runtime Settings panel 406

Host Application For Libraries And Code
Resources field 439

options
Add 407
Change 408
Environment Settings 407
Host Application for Libraries & Code

Resources 407, 439
Program Arguments 407, 446
Remove 408
Value 408
Variable 408
Working Directory 407, 460

Program Arguments field (Windows) 446

S
Save a Copy As command 62
Save All command 62
Save command 61
Save Default Window menu command 524
Save open files before build option

Build Settings panel 448
Save project entries using relative paths option

Target Settings panel 48, 449
Save Settings button 291, 302
Save This Set button 139
Save Workspace As menu command 524
Save Workspace menu command 524
saving

a copy of a workspace 83
all files 62
file copies 62
files 61
information about installed plug-ins 497
information about installed products 497
projects 36
workspaces 82

Scope Loop panel 305
Script Point 234, 237
Script Point Settings window

Stop in Debugger checkbox 238
Script Point, clearing 238
Script Point, setting 238
(Scripts) folder 495, 517
Scripts menu 495
Scripts option

Font & Tabs panel 449
search

single characters with regular
expressions 146

using finds strings in replace strings with
regular expressions 148

Search Cached Sub-Targets checkbox 134
Search Criteria text box 142
search engine

overview 25
Search In text/list box 132
Search menu 120, 470, 484
Search Results window 141

Next Result button 142
Pane resize bar 142
Previous Result button 142
577IDE 5.6 User’s Guide

Result Count text box 142
Results pane 142
Search Criteria text box 142
setting default size and position of 524
Source Code pane 142
Source Code Pane disclosure triangle 142
Stop button 142
Warnings button 142

Search Selection Only checkbox 125, 128
Search Status column, in Access Paths panel 403
Search Sub-Folders checkbox 132
Search Up checkbox 125, 128
searching

choosing one character from many in regular
expressions 147

grouping regular expressions 147
multiple files 139
multiple folders 133
multiple projects 135
multiple symbolics files 137
single characters with regular

expressions 146
single files 125
using finds strings in replace strings with

regular expressions 147
using regular expressions 145
with simple regular expressions 146

Sector Address Map pane 295
seeing desktop background behind IDE. See Use

Multiple Document Interface, turning off.
Segments tab 51
Select All menu command 524
Select stack crawl window when task is stopped

option
Global Settings panel 450

Selected Item group 157
selecting

Code Completion window items 108
text in editor windows 97

selecting entire routines 98
selecting lines 98
selecting multiple lines 98
selecting rectangular portions of lines 98
Selection position option

Editor Settings panel 450
selections

searching (text) 144

Send To Back menu command 524
Sequential subtest 311
serial number, breakpoint property 227
Set 1, Set 2, Set 3, Set 4 385
Set Breakpoint menu command 525
Set Default Breakpoint Template button 224
Set Default Project command 38
Set Default Project menu command 525
Set Default Target menu command 525
Set Eventpoint menu command 525
Set Watchpoint menu command 525
setting

browser options 161
temporary breakpoints 229

setting access breakpoint 245
setting default size and position of windows 524
settings

Add 372, 403, 407, 410
Add Default 403
Always Search User Paths 402
Application 406
Apply button 399
Arguments 406
Auto-target Libraries 420
Cache subprojects 405
Cache symbolics between runs 420
Cancel button 399
Change 373, 403, 408, 410
Choose 372, 401
Clear 401
Compiler 410
Default language entry point 420
Details 412
Dump internal browse information after

compile 406
Edit Language 410
Environment Settings 407
Export Panel button 399
Extension 409
Factory Settings button 399
Faster Execution Speed 412
File Mappings list 409
File Type 409
Flags 410
Generate Browser Data From 406
Host Application for Libraries & Code

Resources 407
578IDE 5.6 User’s Guide

Host Flags 403
IDE window 397
Ignored By Make flag 410
Import Panel button 399
Initial directory 406
Interpret DOS and Unix Paths 403
Launchable flag 410
Linker 401
Log System Messages 420
Name 372
OK button 399
Optimization Level slider 412
Output Directory 401
Post-linker 401
Precompiled File flag 410
Pre-linker 401
Program Arguments 407
Program entry point 420
Remove 373, 403, 408, 410
Require Framework Style Includes 403
Resource File flag 409
Revert Panel button 399
Save button 399
Save project entries using relative paths 401
Smaller Code Size 412
Source Tree list 372
Stop at Watchpoints 420
Stop on application launch 420
Target Name 401
Target Settings Panels list 399
Type 372
Update data every n seconds 420
Use External Debugger 406
Use modification date caching 405
User specified 420
Value 408
Variable 408
Working Directory 407

settings panels
Access Paths 369, 401
Build Extras 404, 510
Debugger Settings 285, 419
File Mappings 408
Global Optimizations 411
Other Executables 417
Remote Debugging 421
reverting 448

Runtime Settings 406
Source Trees 371
Target Settings 400

setup
code completion 103

Shielded Folders panel
options

Find and compare operations 437
Project operations 447
Regular Expression 447

Shielded Folders preference panel 369
options

Add 371
Change 371
Find and compare operations 370
Project operations 370
Regular Expression 370
Remove 371
Shielded folder list 370

Shift Right menu command 525, 526
shortcut conventions 20
Show all locals option

Display Settings panel 450
Show Breakpoints menu command 501, 526
Show Classes 175
Show Classes pane 178
Show Floating Toolbar command 513
Show Floating Toolbar command in Toolbar

submenu 526
Show Inherited 169
Show Log button 291, 309
Show Main Toolbar command 513
Show message after building up-to-date project

option
Build Settings panel 451

Show private 171
Show protected 171
Show public 170
Show tasks in separate windows option

Display Settings panel 451
Show the component palette when opening a form

option
Layout Editor panel 451

Show the object inspector when opening a form
option

Layout Editor panel 451
Show Types menu command 526
579IDE 5.6 User’s Guide

Show values as decimal instead of hex option
Display Settings panel 451

Show variable location option
Display Settings panel 452

Show variable types option
Display Settings panel 452

Show variable values in source code option
Display Settings panel 452

Show Window Toolbar command 513
Show Window Toolbar command in Toolbar

submenu 526
showing

classes pane 175
shrinking panes, in browser 173
Single Class Hierarchy Window 169
single files, searching 125
single-class hierarchical window

opening 183
Single-Class Hierarchy window 182

difference from Multi-Class Hierarchy
window 182

single-file Find and Replace window 126
single-file Find window 123
size

setting default for unbounded arrays 431
Size option

Font & Tabs panel 452
Size text box 301
Skip Point 234, 239
Skip Point, clearing 239
Skip Point, setting 239
software

development process cycle 21
Solaris

modifier key mappings 20
Sort Alphabetical 174, 175
Sort function popup option

Editor Settings panel 453
Sort functions by method name in symbolics

window option
Display Settings panel 452

Sort Hierarchical 174, 175
Sort Order button

in Files view of Project window 47
sorting

classes list 175
Functions list pop-up (alphabetically) 115

Sound Point 234, 239
Sound Point Settings window

Stop in Debugger checkbox 240
Sound Point, clearing 240
Sound Point, setting 240
Sound Point, Speak Message 239
Source box 149
source code

disabling breakpoints 228
disabling eventpoints 242
disabling special breakpoints 248
disabling watchpoints 246
editing 97
enabling breakpoints 228, 243
enabling special breakpoints 249
enabling watchpoints 247
going to a particular line 116
locating 113
setting breakpoints in 226
setting watchpoints in 245
viewing breakpoint properties 227
viewing eventpoint properties 242
viewing watchpoint properties 246

Source Code pane 142
Source Code Pane disclosure triangle 142
source code, navigating 113
source file

adding markers to 117
Source File button 207
source files

removing all markers from 118
removing markers from 118

source item, for comparison 148
Source list box 208
Source pane 153, 177, 207

in Symbols window 188
Source Pane disclosure triangle 207
source relative includes 453
source trees

adding 373
changing 374
removing 374

Source Trees panel
options

Add 372
Change 373
Choose 372
580IDE 5.6 User’s Guide

Name 372
Remove 373
Source Tree list 372
Type 372, 455

Source Trees preference panel 371
Absolute Path option 455
Environment Variable option 455
Registry Key option 455

Source Trees settings panel 371
Speak Message checkbox 236
special breakpoints

defined 248
purpose of 221

special breakpoints, disabling 248
special breakpoints, enabling 249
Speed slider 307
Stack Editor Windows menu command 526
Stack pane 207
Start text box 297, 301, 308
starting

debugger 208
state

disabled, for breakpoints 222, 245
disabled, for eventpoints 235
enabled, for breakpoints 222
enabled, for eventpoints 235
enabled, for watchpoints 245

static
icon for 176

stationery
creating for projects 39
creating projects 33
custom 39

Status 297, 299, 301, 305, 307, 309
Status area

in Class Browser window 169
status area 178
Step Into button 206
Step Into command 209
Step Out button 206
Step Out command 209
Step Over button 206
Step Over command 210
Step Over menu command 527
stepping into a routine 209
stepping out of a routine 209
stepping over a routine 210

Stop At End Of File checkbox 125, 127
Stop at Watchpoints option

Debugger Settings panel 453
Stop Build menu command 527
Stop button 131, 142, 206
Stop command 210, 527
Stop in Debugger checkbox 236, 238, 240
Stop On Application Launch option

Debugger Settings panel 453
stopping program execution 210
Straight Line 182
strategies

for build targets 41
for projects 41
for subprojects 42

Strength Reduction 414
Strings option

Text Colors panel 453
structure

of documentation 18
submenus

Align 498, 499
subproject, defined 40
subprojects

creating 40
opening 41
strategies for 42

Success option
Build Settings panel 453

summation, of two variables 258
Switch To Monitor menu command 527
symbol definitions 119, 120
symbol definitions, looking up 120
Symbol hint 211
symbol hint

toggling 212
turning off 212
turning on 212
using 212

symbol implementations
viewing all 187

symbol-editing shortcuts 100
Symbolics button 206
symbolics file, defined 204
symbolics files

choosing a debugger for 395
searching (multiple) 137
581IDE 5.6 User’s Guide

Symbolics list 136
Symbolics list box 136
Symbolics menu command 527
Symbolics option

IDE Extras panel 454
Symbolics window 279

opening 281
using the Executables pane 281, 282
using the Files pane 281
using the Functions pane 282

Symbolics Window menu command 527
symbols

shortcuts for editing 100
viewing all implementations 187

Symbols list
in Browser Contents window 184

Symbols pane 188
Symbols pop-up 184
Symbols window 185

Source pane 188
Symbols pane 188
toolbar 187

symbols window 187
Synchronize Modification Dates command 50
Synchronize Modification Dates menu

command 527
Synchronize Modification Dates toolbar

button 44
System Headers checkbox 134
System Paths list

Framework column 404
Recursive Search column 404
Search Status column 403

System Paths option
Access Paths panel 454

T
Tab indents selection option

Font & Tabs panel 454
Tab Inserts Spaces option

Font & Tabs panel 454
Tab Size option

Font & Tabs panel 454
tabs

Groups 225
In Files 131
In Folders 131

In Projects 131
In Symbolics 131
Instances 225
Templates 225

Target Address text box 305, 307
Target Breakpoint Can Cause Analyzer Trigger

checkbox 316
Target column

in Files view of Project window 46
Target Configuration panel 291
Target list box 134
target management 51
Target Memory Buffer Address text box 293
Target Memory Buffer Size text box 293
Target Name option

Target Settings panel 455
Target Processor text/list box 293, 304
Target Scratch Memory End text box 309
Target Scratch Memory Start text box 309
target settings

Add 372, 403, 407, 410
Add Default 403
Always Search User Paths 402
Application 406
Apply button 399
Arguments 406
Auto-target Libraries 420
Cache subprojects 405
Cache symbolics between runs 420
Cancel button 399
Change 373, 403, 408, 410
Choose 372, 401
Clear 401
Compiler 410
Connection pop-up menu 421
Default language entry point 420
Details 412
Dump internal browse information after

compile 406
Edit Language 410
Environment Settings 407
Export Panel button 399
Extension 409
Factory Settings button 399
Faster Execution Speed 412
File Mappings list 409
File Type 409
582IDE 5.6 User’s Guide

Flags 410
for IDE 397
Generate Browser Data From 406
Host Application for Libraries & Code

Resources 407
Host Flags 403
Ignored By Make flag 410
Import Panel button 399
Initial directory 406
Interpret DOS and Unix Paths 403
Launchable flag 410
Linker 401
Log System Messages 420
Name 372
OK button 399
Optimization Level slider 412
Output Directory 401
Post-linker 401
Precompiled File flag 410
Pre-linker 401
Program Arguments 407
Program entry point 420
Remove 373, 403, 408, 410
Require Framework Style Includes 403
Resource File flag 409
Revert Panel button 399
Save button 399
Save project entries using relative paths 401
Smaller Code Size 412
Source Tree list 372
Source Trees 371
Stop at Watchpoints 420
Stop on application launch 420
Target Name 401
Target Settings Panels list 399
Type 372
Update data every n seconds 420
Use External Debugger 406
Use modification date caching 405
User specified 420
Value 408
Variable 408
Working Directory 407

Target Settings command 528
Target Settings panel 58, 400

options
Choose 401

Clear 401
Linker 401, 443
Output Directory 401, 445
Post-linker 401, 446
Pre-linker 401, 446
Save project entries using relative

paths 48, 401, 449
Target Name 401, 455

target settings panels
Access Paths 401
Analyzer Connections 313
Build Extras 404, 510
Debugger Settings 285, 419
File Mappings 408
Global Optimizations 411
Other Executables 417
Remote Debugging 421
Runtime Settings 406
Target Settings 400

Target Settings Panels list 399
Target Settings toolbar button 44
Target Settings window 397

Apply button 399
Cancel button 399
Export Panel button 399
Factory Settings button 399
Import Panel button 399
OK button 399
opening 399
Revert Panel button 399
Save button 399
Target Settings Panels list 399

targets 31
configuring 58
creating 56
files 51
managing 56
moving 53
removing 51, 57
renaming 53, 54, 58
setting default 57
strategies for 41

Targets page 50
Targets tab 58
Targets view 37, 53, 56
tasks

activating automatic code completion 103
583IDE 5.6 User’s Guide

adding a constant to a variable 258
adding a keyword to a keyword set 415
adding an executable file 418
adding expressions (Expressions

window) 258
adding markers to a source file 117
adding panes to an editor window 96
adding remote connections 395
adding source trees 373
adding subprojects to a project 40
alphabetizing Functions list pop-up

order 115
applying file differences 154
arming a logic analyzer 317
attaching the debugger to a process 285
balancing punctuation 101
changing an executable file 418
changing line views in a hierarchical

window 182
changing register data views 271
changing register values 271
changing remote connections 395
changing source trees 374
changing the find string 144
choosing a default project 37
choosing files to compare 150
choosing folders to compare 151
clearing a breakpoint 229
clearing a Log Point 236
clearing a Pause Point 237
clearing a Script Point 238
clearing a Skip Point 239
clearing a Sound Point 240
clearing a Trace Collection Off

eventpoint 241
clearing a Trace Collection On

eventpoint 242
clearing a watchpoint 247
clearing all breakpoints 229
clearing all watchpoints 247
closing a docked window 79
closing a workspace 83
closing projects 38
collapsing a docked window 78
collapsing browser panes 173
collapsing the editor window toolbar 92
completing code for data members 109

completing code for parameter lists 109
connecting to a logic analyzer 317
creating a breakpoint template 231
creating a console application 86
creating a new class 174, 189, 190
creating a new data member 177, 197
creating a new member function 176, 194,

195
creating custom project stationery 39
creating empty projects 35
creating new projects from makefiles 34
creating new projects using project

stationery 33
deactivating automatic code completion 105
deleting a breakpoint template 232
disabling a breakpoint 228
disabling a watchpoint 246
disabling an eventpoint 242
disarming a logic analyzer 317
disconnecting from a logic analyzer 318
docking a window by using a contextual

menu 72
docking a window by using drag and

drop 73
docking windows of the same kind 74
enabling a breakpoint 228, 243
enabling a watchpoint 247
examining items in the Folder Compare

Results window 157
expanding a docked window 78
expanding browser panes 173
expanding the editor window toolbar 92
exporting projects to XML files 38
floating a window 76
for managing files 59
generating project link maps 332
going to a particular line 116
hiding the classes pane 175
importing projects saved as XML files 38
indenting text blocks 100
inserting a reference template 121
issuing command lines 322
killing program execution 211
looking up symbol definitions 120
making a summation of two variables 258
making a window an MDI child 77
manipulating variable formats 254
584IDE 5.6 User’s Guide

moving a docked window 79
navigating browser data 164
navigating Code Completion window 107
navigating to a marker 118
opening a recent workspace 84
opening a single-class hierarchical

window 183
opening a workspace 83
opening an Array window 268
opening projects 35
opening projects created on other hosts 36
opening registers in a separate Registers

window 272
opening subprojects 41
opening the Breakpoints window 225
opening the Cache window 319
opening the Command window 322
opening the Expressions window 257
opening the Flash Programmer window 289
opening the Global Variables window 252
opening the Hardware Diagnostics

window 301
opening the Log window 286
opening the Processes window 282, 284
opening the Profile window 320
opening the Registers window 270
opening the Symbolics window 281
opening the symbols window 187
opening the Target Settings window 399
opening the Trace window 318
overstriking text (Windows) 99
printing class hierarchies 181
printing projects 37
removing a keyword from a keyword

set 416
removing a marker from a source file 118
removing all markers from a source file 118
removing an executable file 419
removing panes from an editor window 96
removing remote connections 396
removing source trees 374
replacing text in a single file 128
resizing panes in an editor window 96
restarting the debugger 211
resuming program execution 210
running a program 211
saving a copy of a workspace 83

saving a workspace 82
saving projects 36
saving the contents of the Breakpoints

window 225
searching a single file 125
searching for text across multiple files 139
searching for text across multiple

folders 133
searching for text across multiple

projects 135
searching for text across multiple symbolics

files 137
searching with a text selection 144
selecting entire routines 98
selecting item in Code Completion

window 108
selecting lines 98
selecting multiple lines 98
selecting rectangular portions of lines 98
selecting text in editor windows 97
setting a breakpoint 226
setting a conditional breakpoint 230
setting a conditional eventpoint 243
setting a conditional watchpoint 247
setting a Log Point 235
setting a Pause Point 237
setting a Script Point 238
setting a Skip Point 239
setting a Sound Point 240
setting a temporary breakpoint 229
setting a Trace Collection Off

eventpoint 241
setting a Trace Collection On

eventpoint 241
setting a watchpoint 245
showing the classes pane 175
sorting the classes list 175
specifying the default breakpoint

template 233
starting the debugger 208
stepping into a routine 209
stepping out of a routine 209
stepping over a routine 210
stopping program execution 210
suppressing dockable windows 77
toggling automatic punctuation

balancing 101
585IDE 5.6 User’s Guide

toggling the symbol hint 212
triggering code completion by keyboard 104
triggering code completion from IDE menu

bar 104
unapplying file differences 155
undocking a window 75
unfloating a window 77
unindenting text blocks 100
updating data from a logic analyzer 317
using an external editor on the

Macintosh 367
using contextual menus 214
using the default workspace 82
using the document settings pop-up 93
using the Executables pane in the Symbolics

window 281, 282
using the Files pane in the Symbolics

window 281
using the Find Next command 143
using the Find Previous command 143
using the Functions list pop-up 114
using the Functions pane in the Symbolics

window 282
using the Interfaces list pop-up 114
using the symbol hint 212
using the VCS pop-up 94
using virtual space 99
viewing a file path 47
viewing breakpoint properties 227
viewing browser data by contents 184
viewing browser data by inheritance 180
viewing class data from hierarchy

windows 172
viewing eventpoint properties 242
viewing global variables for different

processes 252
viewing registers 270
viewing watchpoint properties 246

template, default for breakpoints 231
template, for breakpoints 231
Templates option 385
Templates tab 225
templates, creating for breakpoints 231
templates, deleting for breakpoints 232
templates, reference (Macintosh) 120
templates, specifying the default for

breakpoints 233

temporary breakpoint, defined 229
temporary breakpoints 222

setting 229
text

changing a find string 144
find by selecting 143
finding 123
overstriking (Windows) 99
replacing 123
searching with a selection 144

text blocks, indenting 100
text blocks, unindenting 100
text boxes

Address 273
Analyzer Configuration File text box 315
Analyzer Slot 316
Bit Value 274
Description File 273, 275
End 297, 308
Flash Memory Base Address 294
Host Name 315
Message 236
Name 315
Offset 297
Passes 309
Result Count 142
Search Criteria 142
Size 301
Start 297, 301, 308
Target Address 305, 307
Target Memory Buffer Address 293
Target Memory Buffer Size 293
Target Scratch Memory End 309
Target Scratch Memory Start 309
Trace Support File 316
Use Selected File 296
Use Target Initialization 293, 304
Value to Write 305, 307

Text Colors panel
options

Activate Browser Coloring 438
Activate Syntax Coloring 438, 441, 453
Foreground 438
Keywords 441
Strings 453

Text Colors preference panel
options
586IDE 5.6 User’s Guide

Activate Browser Coloring 385
Activate Syntax Coloring 384
Background 384
Classes 385
Comments 384
Constants 385
Edit 385
Enums 385
Foreground 384
Functions 385
Globals 385
Keywords 384
Macros 385
Other 385
Set 1, Set 2, Set 3, Set 4 385
Strings 385
Templates 385
TypeDefs 385

text editing area, in editor window 95
Text View list box 275, 276

Auto 276
Text View pop-up menu

Bitfield Description option 276
Register Description option 276
Register Details option 277

text/list boxes
By Type 132
Find 124, 127, 130
Replace With 127, 130
Search in 132
Target Processor 293, 304

text-selection Find 143
THINK Reference 119, 120, 437
third-party editor support 458
third-party text editors

Emacs 441, 442
Thread window

Breakpoints button 206
current-statement arrow 207
dash 207
debug button 206
Expressions button 206
Functions list box 208
Kill button 206
Line And Column button 208
Pane Collapse box 206
Pane Expand box 206

Pane resize bar 207
Resume button 206
run button 206
Source File button 207
Source list box 208
Source pane 207
Source Pane disclosure triangle 207
Stack pane 207
Step Into button 206
Step Out button 206
Step Over button 206
Stop button 206
Symbolics button 206
Variables pane 207
Variables Pane Listing button 207

thread window 204
thread, breakpoint property 228
threading in IDE 429
__throw() 499
Tile Editor Windows command 528
Tile Editor Windows Vertically command 528
Tile Horizontally command 528
Tile Vertically command 529
times hit, breakpoint property 228
times left, breakpoint property 228
To Smallest Height command in Resize

submenu 531
To Smallest Width command in Resize

submenu 531
toggling

symbol hint 212
toolbar

collapsing in editor window 92
expanding in editor window 92

Toolbar (Editor Window) Elements
Document Settings 349
File Dirty Indicator 349
File Path field 349
Functions 349
Header Files 349
Markers 349
Version Control Menus 349

toolbar buttons
Browser Contents 168
Class Hierarchy 169
Go Back 168
Go Forward 168
587IDE 5.6 User’s Guide

Make 44
Single Class Hierarchy Window 169
Synchronize Modification Dates 44
Target Settings 44

Toolbar Items 335, 348
Toolbar submenu

Anchor Floating Toolbar command 498
Clear Floating Toolbar command 502
Clear Main Toolbar command 502
Clear Window Toolbar command 502
Hide Floating Toolbar command 513
Hide Main Toolbar command 513
Reset Window Toolbar command 49, 521,

522
Show Floating Toolbar command 513, 526
Show Main Toolbar command 513
Show Window Toolbar command 526

Toolbars
Add element 347, 348
Clear Elements 349
Customize 345
Elements 345, 347
Icons 348
Instances of 347
Main (floating) 346
Modify 347
Project and Window 346
Remove single element 347
Toolbar Items tab 347
Types 346

toolbars
editor 92
for Symbols window 187
resetting 350

tools
browser 25
build system 25
debugger 25
editor 25
project manager 25
search engine 25

Tools menu 495
icon 495

tools, for hardware 289
ToolServer menu 458
ToolServer Worksheet command 530
ToolTip 348

touch
defined 46

Touch column 54, 55
in Files view of Project window 46

Touch command 54
touching

all files 54
all groups 54
files 54
groups 54

trace
working with logic analyzer 313

Trace Collection Off 241
Trace Collection Off eventpoint 234
Trace Collection Off eventpoint, clearing 241
Trace Collection Off eventpoint, setting 241
Trace Collection On 241
Trace Collection On eventpoint 234
Trace Collection On eventpoint, clearing 242
Trace Collection On eventpoint, setting 241
Trace Support File text box 316
Trace window 318

opening 318
Treat as Expression checkbox 236
triggering

code completion by keyboard 104
code completion from IDE menu bar 104

turning off
symbol hint 212

turning on
symbol hint 212

Type list box
Absolute Path option 455

Type option
Source Trees panel 455

Type pop-up menu
Environment Variable option 455
Registry Key option 455

type, breakpoint property 227
TypeDefs option 385
types

of documentation 19

U
Unanchor Floating Toolbar command 531
Unapply button 153
Unapply Difference command 155, 531
588IDE 5.6 User’s Guide

unbounded arrays, setting default size for
viewing 431

Uncaught Exceptions Only command 531
Undo button 153
Undo command 531
undocking windows 75
unfloating windows 77
Ungroup command 531
unindenting text blocks 100
Untouch command 55
untouching

a file 55
a group 55
all files 55
all groups 55

Update Data command 317
Update Data Every n Seconds option 455
Use Concurrent Compiles option 447, 455
Use Custom Settings checkbox 292, 303
Use Debugging Monitor option 456
Use Default Workspace option 456
Use External Debugger option 456
Use External Editor option 456
Use Local Project Data Storage option 456
Use modification date caching option 457
Use Multiple Document Interface option 69, 457

turning off 366
turning on 366

Use multiple undo option 531
in Editor Settings panel 458

Use Script menu option 458
Use Scripts Menu option 495
Use Selected File checkbox 296
Use Selected File text box 296
Use Target CPU checkbox 309
Use Target Initialization checkbox 293, 304
Use Target Initialization text box 293, 304
Use Third Party Editor option 458
Use ToolServer Menu option 495
Use ToolServer menu option

IDE Extras panel 458
User Paths list

Framework column 404
Recursive Search column 404
Search Status column 403

User Paths option 459
User Specified option 459

User specified option 420
using

document settings pop-up 93
Executables pane in the Symbolics

window 281, 282
Files pane in the Symbolics window 281
Find Next command 143
Find Previous command 143
Functions list pop-up 114
Functions pane in the Symbolics

window 282
Interfaces list pop-up 114
logic analyzer 316
Register Details window 276
symbol hint 212
VCS pop-up 94
virtual space 99

V
Value to Write text box 305, 307
variable formatting 254
Variable Values Change option

Display Settings panel 459
Variable window 253
variables

^var placeholder 256
adding a constant to 258
making a summation of 258
manipulating formats 254
symbol hint 211

Variables pane 207
Variables Pane Listing button 207
variables, working with 251
VCS 94

list pop-up 170
menu 495
pop-up 94

VCS Commands option
Editor Settings panel 460

VCS menu 178, 460
icon 495

VCS pop-up
using 94

Vectorization 414
Verify button 298
version control 460, 495
Version Control Settings command 532
589IDE 5.6 User’s Guide

Version Control System. See VCS.
Vertical Center command in Align submenu 523,

529, 530, 532
View Array menu command 532
View as implementor 170
View as subclass 170
View As Unsigned Decimal menu command 532,

533, 534
View as user 170
View Disassembly menu command 534
View Memory As command 534
View Memory command 534
View Mixed menu command 534
View Source menu command 534
View Target Memory Writes checkbox 293
View Variable menu command 534
viewing

all symbol implementations 187
breakpoints 225
browser data by contents 184
browser data by inheritance 180
file paths 47
register details 272
registers 270

viewing access breakpoint 246
viewing installed plug-ins 497
viewing installed products 497
virtual

icon for 176
virtual space, using 99

W
Walking 1’s checkbox 308
Walking Ones subtest 310
Walking Ones test

Address Line fault 310
Data Line fault 310
Retention fault 310
subtests

Ones Retention 310
Walking Ones 310
Walking Zeros 310
Zeros Retention 310

Walking Zeros subtest 310
Warnings button 142
Watchpoint Indicator option

Display Settings panel 460

watchpoints
access breakpoint 244
clearing all 247
defined 244
enabled 245
purpose of 221
setting conditional 247

watchpoints, clearing 247
watchpoints, disabling 246
watchpoints, enabling 247
watchpoints, setting 245
watchpoints, viewing properties for 246
what is

a debugger 203
a symbolics file 204

window
Customize IDE Commands 352

Window Follows Insertion Point option 460
Window menu 469, 478, 492

Restore Window command (Windows) 522
Window position and size option

Editor Settings panel 460
Window Settings preference panel 389

options
Close non-debugging windows 390
Collapse non-debugging windows 390
Do nothing 390
Do nothing to project windows 390
Hide non-debugging windows 390
Minimize non-debugging windows 390
Monitor for debugging 390
Move open windows to debugging

monitor when debugging starts 391
Open windows on debugging monitor

during debugging 391
Use Debugging Monitor 390

window types
docked 70
floating 70
MDI child 70

Windowing panel
options

Hide non-debugging windows 439
Minimize non-debugging windows 444
Monitor for debugging 444
Move open windows to debugging

monitor when debugging starts 445
590IDE 5.6 User’s Guide

Open windows on debugging monitor
during debugging 445

Use Debugging Monitor 456
Windows

creating files 59
windows 222

Array 266
Browser Contents 183
Cache 319
Class Browser 167
Code Completion 105
Command 321
Compare Files Setup 149
Customize IDE Commands 143
dock bars in dockable windows 78
dockable 69
dockable, about 69
dockable, turning off 77
dockable, working with 72
docking the same kind of 74
docking with a contextual menu 72
docking with drag and drop 73
editor 89
editor, other 94
Expressions 256
File Compare Results 152
Find (single-file) 123
Find and Replace (multiple-file) 129
Find and Replace (single-file) 126
Flash Programmer 289
floating 76
Folder Compare Results 155
Global Variables 251
Hardware Diagnostics 301
hierarchy 180
IDE Preferences 246, 359
Log 285
making MDI children of 77
Memory 261
New C++ Class 191
New C++ Data Member 198
New C++ Member Function 196
Processes 282
project window 43
Registers 269
remembering size and position of 524
Remove Markers 117

saving default size and position of 524
Search results 141
Symbolics 279
Target Settings 397
Trace 318
undocking 75
unfloating 77
variable 253

Windows menu layout 465
WinHelp (Windows) 119
Wizards

Browser 189
wizards

New Class 174, 189, 190
New Data Member 177, 197
New Member Function 194, 195
New Member Functions 176

Word option button 305, 307, 309
working

with IDE preferences 359
with IDE target settings 397

Working Directory option
Runtime Settings panel 460

working with 72
browser 161
class browser windows 167
class hierarchy windows 179
IDE hardware tools 289
logic analyzer 313, 316

working with breakpoint templates 231
working with breakpoints 226
working with debugger data 279
working with dockable windows 72
working with eventpoints 242
working with files 59
working with memory 261
working with projects 29
working with variables 251
workspace, defined 81
workspaces 81

closing 83
opening 83
opening recent 84
saving 82
saving copies of 83
using default 82

Workspaces option
591IDE 5.6 User’s Guide

IDE Extras panel 461
workspaces, about 81
Write button 275
Write option button 305, 306

X
XML

exporting projects 38
importing projects 38

Z
Zeros Retention subtest 310
Zoom Window menu command 535
Zoom windows to full screen option

IDE Extras panel 461
592IDE 5.6 User’s Guide

	Introduction
	IDE User’s Guide Overview
	Release Notes
	Licensing
	CodeWarriorU.com
	Documentation Structure
	Documentation Formats
	Documentation Types

	Manual Conventions
	Figure Conventions
	Keyboard Conventions
	Special note for Solaris and Linux users

	CodeWarrior IDE Overview
	Development Cycle
	CodeWarrior IDE Advantages
	IDE Tools Overview

	Projects
	Working with Projects
	About Projects
	Project Manager
	Build Targets

	Managing Projects
	Advanced Projects
	Custom Project Stationery
	Subprojects
	Strategies

	Project Window
	About the Project Window
	Project Window Pages
	Files Page
	Link Order Page
	Targets Page

	File, Group, Layout, and Target Management
	Build-Target Management

	Working with Files
	Managing Files

	Editor
	Dockable Windows
	About Dockable Windows
	Working with Dockable Windows
	Dock Bars

	Workspaces
	About Workspaces
	Using Workspaces

	Creating Console Applications
	About Console Applications
	Creating Console Applications

	The CodeWarrior Editor
	Editor Window
	Editor Toolbar
	Interfaces Menu
	Functions Menu
	Markers Menu
	Document Settings Menu
	Version Control System Menu

	Other Editor Window Components
	Path Caption
	File Modification Icon
	Breakpoints Column
	Text Editing Area
	Line and Column Indicator
	Pane Splitter Controls

	Editing Source Code
	Text Manipulation
	Symbol Editing Shortcuts

	Punctuation Balancing
	Code Completion
	Code Completion Configuration
	Code Completion Window

	Navigating Source Code
	Finding Interface Files, Functions, and Lines
	Finding Interface Files
	Locating Functions

	Going Back and Forward
	Using Markers
	Remove Markers Window

	Symbol Definitions
	Reference Templates (Macintosh)

	Finding and Replacing Text
	Single-File Find
	Single-File Find and Replace
	Multiple-File Find and Replace
	In Folders
	In Projects
	In Symbolics
	In Files

	Search Results Window
	Text-Selection Find
	Regular-Expression Find
	Using the Find String in the Replace String
	Remembering Sub-expressions

	Comparing Files and Folders
	Comparison Setup
	File Comparison
	Folder Comparison

	Browser
	Using the Browser
	Browser Database
	Browser Data

	Browser Symbols
	Browser Contextual Menu

	Using Class Browser Windows
	Class Browser window
	Classes pane
	Member Functions pane
	Data Members pane
	Source pane
	Status Area

	Using Other Browser Windows
	Multiple-Class Hierarchy Window
	Single-Class Hierarchy Window
	Browser Contents window
	Symbols window
	Symbols toolbar
	Symbols pane
	Source pane

	Using Browser Wizards
	The New Class Wizard
	The New Member Function Wizard
	The New Data Member Wizard

	Debugger
	Working with the Debugger
	About the CodeWarrior Debugger
	About Symbolics Files
	Thread Window
	Common Debugging Actions
	Symbol Hint
	Contextual Menus
	Multi-core Debugging
	Data Viewer Plug-ins
	External Builds Support
	External Build Wizard

	Manipulating Program Execution
	Breakpoints
	Breakpoints Window
	Working with Breakpoints
	Working with Breakpoint Templates

	Eventpoints
	Log Point
	Pause Point
	Script Point
	Skip Point
	Sound Point (Windows OS)
	Trace Collection Off
	Trace Collection On
	Working with Eventpoints

	Watchpoints
	Special Breakpoints

	Working with Variables
	Global Variables Window
	Variable Window
	Expressions Window

	Working with Memory
	Memory Window
	Array Window
	Registers Window
	General Registers
	FPU Registers
	Host-specific Registers

	Register Details Window (Windows OS)
	Description File
	Register Display
	Text View

	Working with Debugger Data
	Symbolics Window
	System Browser Window
	Log Window

	Working with Hardware Tools
	Flash Programmer Window
	Target Configuration
	Flash Configuration
	Program / Verify
	Erase / Blank Check
	Checksum

	Hardware Diagnostics Window
	Configuration
	Memory Read / Write
	Scope Loop
	Memory Tests

	Working with a Logic Analyzer
	Configuring the Project
	Using the Logic Analyzer

	Trace Window
	Cache Window
	Profile Window
	Command Window

	Compilers and Linkers
	Compilers
	Choosing a Compiler
	Compiling Projects

	Linkers
	Choosing Linkers
	Linking Projects

	Preferences and Target Settings
	Customizing the IDE
	Customizing IDE Commands
	Commands Tab
	Pre-defined Variables in Command Definitions

	Customize Toolbars
	Kinds of Toolbars
	Toolbar Elements
	Modify a Toolbar

	Customize Key Bindings

	Working with IDE Preferences
	IDE Preferences Window
	General Panels
	Build Settings
	Concurrent Compiles
	IDE Extras
	Help Preferences
	Plugin Settings
	Shielded Folders
	Source Trees

	Editor Panels
	Code Completion
	Code Formatting
	Editor Settings
	Font & Tabs
	Text Colors

	Debugger Panels
	Display Settings
	Window Settings
	Global Settings
	Remote Connections

	Working with Target Settings
	Target Settings Window
	Target Panels
	Target Settings
	Access Paths
	Build Extras
	Runtime Settings
	File Mappings
	Source Trees

	Code Generation Panels
	Global Optimizations

	Editor Panels
	Custom Keywords

	Debugger Panels
	Other Executables
	Debugger Settings
	Remote Debugging

	Preference and Target Settings Options
	A
	B
	C
	D
	E
	F
	G-I
	K-L
	M
	O
	P
	R
	S
	T
	U
	V
	W-Z

	Menus
	IDE Menus
	Windows Menu Layout
	File Menu
	Edit Menu
	View Menu
	Search Menu
	Project Menu
	Debug Menu
	Data Menu
	Window Menu
	Help Menu

	Macintosh Menu Layout
	Apple Menu
	CodeWarrior Menu
	File Menu
	Edit Menu
	Search Menu
	Project Menu
	Debug Menu
	Data Menu
	Window Menu
	VCS Menu
	Tools Menu
	Scripts Menu
	Help Menu

	Menu Commands
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K-L
	M-N
	O
	P-Q
	R
	S
	T-U
	V-Z

	Index

