NXP Semiconductors Document identifier: LIBUSBSIOUG
User Guide Rev. 0, 27 July 2021

USBSIO Library User's Guide

NXP Semiconductors

Contents

Chapter 1 IntrodUcCtioN...........euuiiiiiii e e 3
Chapter 2 Developing serial 10 application with USBSIO library.........ccccccc...e....... 5
Chapter 3 Library AP reference..........ccccooiiiiiiriiiiicccc e 13
Chapter 4 Revision NIStOry...........uuuiiiiiiniiiii e e 26

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 2/27

NXP Semiconductors

Chapter 1
Introduction

The USB serial I/O library (USBSIO or LIBUSBSIO) is a generic API provided to PC applications programmers to develop
applications communicating with target NXP microcontroller devices using SPI, 12C, and GPIO over a USB bridge.

The library converts its API calls into USB messages which are transferred to a USBSIO bridge device, which in turn
communicates with the target microcontroller using the physical communication interface. The bridge is implemented by LPCLink2
or MCULink debug probes used either as a standalone interface or assembled directly on an evaluation board and connected to
a target microcontroller.

The USBSIO library uses the USB HID class as a transport mechanism, which is widely supported by all common operating
systems. It is provided as a static or dynamic binary library for Microsoft Windows, macOS, and Linux systems, and it is easy to
use in C/C++ applications. The publicly available, open source hidapilow-level library is used internally by USBSIO, because it
simplifies the use of the HID communication class across all supported operating systems. You can find more information about
the hidapi library at https://github.com/signal11/hidapi.

The USBSIO functionality is just an optional additional feature of the LPCLink2 and MCULink Pro devices. Their primary function
is to provide a CMSIS-DAP debugging interface to the target microcontroller and a virtual serial communication using the USB

VCOM class. The SEGGER J-Link firmware option, which is also available for these debug probes, does not support the USB

bridge function for SPI, 12C, and GPIO. All communication options are displayed in Figure 1. All USB classes are implemented
as a composite device and accessed from a PC host over a single USB cable.

Custom PC Host Application Terminal/Console Embedded app. development
MCULink Pro or @
SPIBridge 12CBridge GPIO Bridge on-board
<o <
HID_API low-level library HID Class CDC VCOM CMSIS-DAP
libusbsio.dll / S0 / dylib Bus drivers & I/0 pins protection
SPI bus 12C bus GPIO signals UART JTAG / SWD
SPI Targets |12C Targets GPIO Pins UART Target CPU DAP

Figure 1. Communication options

1.1 History and backward compatibility

The USBSIO library v2.1 (and later) is a successor of an older implementation named LPCUSBSIO, which accompanied the
LPCLink2 interface drivers. The new library API is backward compatible for the whole SPI and GPIO functionality. The key 12C
communication APl is also backward compatible, except for some special transfer options that were dropped in the latest version.

See more details about the removed functionality in the I12C API reference.

Even though the library v2.1 is renamed to LIBUSBSIO, the APl naming remains backward compatible and still uses the
“LPCUSBSIQO_” prefix.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 3/27

https://github.com/signal11/hidapi

NXP Semiconductors

Introduction

1.2 Installation

The library package is available as a ZIP file which includes the binary library files built for all supported platforms, header files
needed to access the library APl in C/C++ applications, example code, and user documentation. Unzip the package to an arbitrary
location and access the files there.

1.3 Python wrapper

The Python wrapper class is provided along with the LIBUSBSIO library and enables all library features to be used also from the
Python scripting language. The Python installable module is available at the https://PyPl.org site. The package contains the binary
libraries for all supported operating systems and the Python wrapper class code. Use the "pip" package manager to download and
install the package as follows:

pip install libusbsio

Using the USBSIO library from Python scripts and applications is a good "platform independent" alternative to developing a C/C++
application and linking it with the library in a native mode.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 4/27

https://PyPI.org

NXP Semiconductors

Chapter 2
Developing serial 10 application with USBSIO library

This section describes the use of the USBSIO library in native C/C++ applications.

2.1 Prerequisites
* A host system supported by the USBSIO library.

» A target NXP microcontroller board with onboard LPCLink2 or MCULink interfaces. Alternatively, a standalone MCULink
Pro device can be used and interconnected with the target microcontroller board.

* The LIBUSBSIO library package.

» The C/C++ compiler toolchain or IDE for the host system.

2.2 Setting up project environment

This section uses the simple C test application code included in the installation package in the test/testapp directory. The test
application demonstrates how to use the library APl in a custom code and how to link the application executable with the library,
either statically or dynamically.

The test application is available as:

» Microsoft Visual Studio project for Windows builds

» Common Makefile for Linux and macOS builds
Use the library in a custom application as follows:

* Include the libusbsio.h header file in the application C or C++ source files.

« Link the application with the library. The official binary libraries are in the bin directory.
In the Windows operating systems:

« Link the application statically with the libusbsio.lib file available in the bin/Win32 or bin/x64 directories. Use bin/$(Platform)
in project settings when building multi-platform applications.

» The executable can also be built using the libusbsio.dILlib file, which is a wrapper library that automatically loads the
libusbsio.dll file after startup. In this case, build the final executable with the LPCUSBSIO_IMPORTS macro defined and
distribute the DLL along with your application.

» The testApp example project has the Debug and Release targets to link with the DLL library wrapper. Use the DebugS
and ReleaseS targets to link with the static library.

On Linux operating systems:

« Link the application statically with the libusbsio.a file available in the bin/linux directory. This is a 64-bit build tested on the
Ubuntu 20.04 operating system. The bin/linux32 directory contains a 32-bit build tested with Ubuntu 16.04.

+ Add the pkg-config libusb-1.0 libudev —libs option to the LIBS makefile variable when linking the final application
executable, so that the libusb and libudev libraries are also linked.

« If the libusb library is missing, install it using the sudo apt-get install -y libusb-1.0-0 command.
« If the libudev library is missing, install it using the sudo apt-get install -y libudev-dev command.
» The executable can also be built using the libusbsio.so dynamic library.

On macOS systems:

« Link the application statically with the libusbsio.a file in the bin/osx directory. This is a 64-bit build tested on macOS 11.3.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 5/27

NXP Semiconductors

Developing serial 1O application with USBSIO library

+ Add the -framework IOKit -framework CoreFoundation option to the LIBS makefile variable when linking the final
application executable.

* The executable can also be built using libusbsio.dylib dynamic library.

2.3 Obtaining Serial 10 device handle

The enumeration of all USBSIO bridge devices is combined into a single LPCUSBSIO_GetNumPorts library call. This function
performs an enumeration and returns the number of bridge devices found.

» All applications using the library should call this routine before using any other library API.
» This function takes the Vendor ID and Product ID (VID, PID pair) of the bridge devices to enumerate.

« LPCLink2 and MCULIink use different PID identifiers. Refer to a code section below for the LPCUSBSIO_VID value
(Ox1FC9) and the other PID constants defined (0x90 and 0x143).

» Multiple devices of the same VID/PID class may be connected and they are all enumerated.

 After the debug probe has enumerated and the function call returns a non-zero count, specify a zero-based index of the
selected bridge device in a subsequent call to LPCUSBSIO_Open.

» A device which is already open is not enumerated if LPCUSBSIO_GetNumPorts is called again.
» The SIO handle returned by LPCUSBSIO_Open is used by all consequent calls targeted to the device.

» Call LPCUSBSIO_GetVersion to obtain the string description of the library and the target bridge firmware versions. For
example:

NXP LIBUSBSIO v2.1 (Mar 30 2021 14:41:19)/FW 2.0 (May 18 2021 07:44:09)
» The SIO device handle should be closed by calling LPCUSBSIO_Close when it is no longer required.

The following code shows the use of basic library calls:

#include "lpcusbsio.h"
#include <stdio.h>
#define LPCUSBSIO VID 0x1FC9
#define LPCLINKSIO PID 0x0090
#define MCULINKSIO PID 0x0143
LPC_HANDLE open_usbsio (void)
{
LPC_HANDLE hSIOPort = NULL;
int res;
if ((res = LPCUSBSIO_GetNumPortS(LPCUSBSIO_VID, LPCUSBSIO_PID)) > 0)
{
printf ("Total LPCLink2 devices: %d\r\n", res);
}
else if ((res = LPCUSBSIO GetNumPorts (LPCUSBSIO VID, MCULINKSIO PID)) > O0)
{
printf ("Total MCULink devices: %d\r\n", res);
}
else
{
printf ("No USBSIO bridge device found\r\n");
}
if (res > 0)
{
/* open device at index 0 */
printf ("Using device #0\r\n");
hSIOPort = LPCUSBSIO Open (0) ;
printf ("Device version: %$s \n ", LPCUSBSIO GetVersion (hSIOPort));

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 6/27

NXP Semiconductors

Developing serial 1O application with USBSIO library

return hSIOPort;

2.4 Accessing the SPI, 12C, and GPIO ports

When a valid SIO handle is returned by the LPCUSBSIO_Open call, it can be used to determine the number of SPI, I12C, and GPIO
ports supported by the bridge interface.

» Call LPCUSBSIO_GetNumI2CPorts, LPCUSBSIO_GetNumSPIPorts, and LPCUSBSIO_GetNumGPIOPorts, respectively.
» The GPIO subsystem API can be accessed directly using the SIO library handle returned by LPCUSBSIO_Open.

» The I12C and SPI ports must be open by calling 12C_Open and SPI_Open functions. Handles returned by these calls are
then used in subsequent I12C or SPI API calls.

» Call LPCUSBSIO_GetMaxDataSize to determine the maximum SPI or 12C data length used in a single transaction. The
typical value supported by LPCLink2 and MCU-Link bridge is 1024.

2.5 Initializing and obtaining 12C port handle

When the SIO handle is obtained and the number of 12C ports available on the bridge device is known, then individual 12C ports
can be opened and 12C transfers can be initiated.

To obtain an I2C port handle, the application should call 12C_Open with the SIO device handle, port number, and port configuration
as the parameters. This also initializes the corresponding 12C interface of the bridge device. The port configuration only contains
the 12C clock speed. Use one of the standard 100 kHz or 400 kHz speeds.

When a valid (non-NULL) 12C port handle is obtained, the port is ready for data transfers. The handle should be closed by calling
12C_Close when it is no longer required by the application.

The following code snippet shows the 12C initialization steps.

void open i2c (LPC HANDLE hSIOPort, int port)
{
int err code = LPCUSBSIO_OK;
LPC_HANDLE hI2CPort = NULL;
I2C7PORTCONFIG7T cfgParam;
/* Init the I2C port for standard speed communication */
cfgParam.ClockRate = I2C CLOCK STANDARD MODE;
cfgParam.Options = 0;
/* open I2CO port */
hI2CPort = I2C Open (hSIOPort, &cfgParam, 0);
if (hI2CPort != NULL)
{
printf ("I2C port opened successfully\n", res);
/* communicate over I2C ... */
/* close the port */
I2C Close (hI2CPort) ;

2.6 Reading and writing to 12C target device
The library provides two types of APIs for transferring data to and from 12C target devices connected to the target MCULink bridge.
» Unidirectional: This group contains independent 12C_DeviceWrite and 12C_DeviceRead routines.

 Bidirectional: A single API 12C_FastXfer routine performs write and read-after-write transfers.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 7127

NXP Semiconductors

Developing serial 1O application with USBSIO library

Backward compatibility note: Older library versions (LPCUSBSIO) supported communication options flags enabling override of
the standard behavior of 12C transactions, for example preventing the generation of the START or STOP signals. These flags are
not supported by the MCULink firmware and ignored if used in the USBSIO library calls.

2.6.1 Unidirectional 12C transactions

The maximum data size supported by the transfer routines depends on the transfer size supported by the bridge firmware which
can be found out by calling LPCUSBSIO_GetMaxDataSize. Since this is typically a large number (1024 bytes) and the HID report
size is 64 bytes, larger transfers are split into multiple USB frames. When the data is transferred to the bridge device, it performs
the 12C transfer and returns the result code and any data read. The response may be also split into multiple USB frames for large
data. Data integrity is assured by the USBSIO library.

There are two API calls used for unidirectional 12C transactions:
12C_DeviceWrite()
» 12C_DeviceWrite performs a single 12C write operation which consists of:
— START signal
— ADDRESS byte with R/W bit clear denoting the write operation
— DATA payload
— STOP signal
» The 12C_DeviceWrite expects the ADDRESS and DATA bytes to be acknowledged by the target device.

» Special options flags can be used to alter the standard behavior and for example, omit the ADDRESS byte. The flags are
described in the reference section, but it is not typical to use any of them. Also, some options flags are only supported by
an older LPCLink2 device and not by the MCULink.

12C_DeviceRead()
» 12C_DeviceRead performs a single 12C read operation which consists of:
— START signal
— ADDRESS byte with the R/W bit set, denoting the read operation
— Reading the DATA payload and sending the acknowledgment for each byte
— STOP signal

» Special options flags can be used to alter the standard behavior and for example, omit the ADDRESS byte. The flags are
described in the reference section, but it is not typical to use any of them. Some options flags are only supported by the
LPCLink2 and not the MCULink.

2.6.2 Bidirectional transfer routines

Most of the 12C read transactions made with real I2C devices are typically preceded with a write operation defining a register index
or other specification of data to be read. In this scenario, the STOP signal is not generated between the write and read operations.
The repeated START is generated instead.

Such operation would be difficult to achieve with unidirectional transfer routines described above. It would be necessary to use
special option flags to prevent a STOP signal after a write and there would also be an unavoidable round-trip delay between the
write and read parts of the operation. The 12C bus would be held busy for a long time which could cause performance issues in
multi-master scenarios.

The 12C_FastXfer API call is recommended to perform such read-after-write transactions, but it can also be used for write-only
and read-only transactions.

12C_FastXfer()
» [2C_FastXfer performs a combined read-after-write 12C transaction which consists of:

— START signal

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 8/27

NXP Sem

iconductors

Developing serial 1O application with USBSIO library

ADDRESS byte with R/W bit clear denoting the write operation

DATA payload

Repeated START signal

ADDRESS byte with the R/W bit set, denoting the read operation

Reading the DATA payload and sending the acknowledgment for each byte
STOP signal

» The write portion can be skipped if no data are provided and zero is passed as write length.

* The

read portion can be skipped if zero is passed to the expected read length.

« Special options flags can be used to alter the standard behavior of ACK and NAK handling, but it is not typical to use any
of them. Also, some options flags are only supported by the LPCLink2 device but not by MCULink.

The following code snippet shows how to use the 12C_FastXfer call.

int wr

uint8

{

12C

int
if |
{
xf
xf
xf
xf
xf
xf
/*
re
pr
}

retu

ite read i2c(LPC_HANDLE hI2CPort, uint8 t* txData, uintl6 t txLen,
t* rxBuff, uintlé_t rxLen)

FAST XFER T xfer;
result = LPCUSBSIO ERR BAD HANDLE;
hI2CPort != NULL)

er.slaveAddr = 0x10; /* 7-bit I2C target device address */

er.txBuff = txData; /* Pointer to bytes to be transmitted */

er.txSz = txLen; /* Number of bytes to transmit */

er.rxBuff = rxBuff; /* Memory where bytes received are to be stored */
er.txSz = rxLen; /* Number of bytes to receive */

er.options = 0; /* No extra options needed */

Execute transfer */

sult = I2C FastXfer (hI2CPort, &xfer);

intf ("I2C transfer returned %d\n", result);

rn result;

2.7 Initializing and obtaining SPI port handle
When the SIO handle is obtained and the number of SPI ports available on the MCULink bridge is known, then individual SPI ports

can be o

pened and SPI transfers can be initiated.

To obtain an SPI port handle, the application should call SPI_Open with the SIO device handle, port number, and port configuration
as the parameters. This also initializes the corresponding SPI interface of the bridge device. The port configuration contains the
SPI clock speed, data size in bits, clock phase, polarity, and data-to-clock delay parameters.

Once a valid (non-NULL) SPI port handle is obtained, the port is ready for data transfers. The handle should be closed by calling
SPI_Close when it is no longer required by the application.

The following code snippet shows the SPI initialization steps.

void o

{

pen_spi (LPC_HANDLE hSIOPort, int port)

int err code = LPCUSBSIO_OK;

LPC HANDLE hSPIPort = NULL;

SPI_PORTCONFIG T cfgParam;

/* Init the SPI port for standard speed communication */
cfgParam.busSpeed = 1000000;

cfgParam.Options = HID SPI CONFIG OPTION DATA SIZE 8 | /* 8 bits */

USBSIO Library User's Guide, Rev. 0, 27 July 2021

User Guide 9/27

NXP Semiconductors

Developing serial 1O application with USBSIO library

HID SPI CONFIG OPTION POL 0 | /* CPOL=0 */
HID_SPI_CONFIG_OPTION_PHA_O | /* CPHA=0 */

HID SPI CONFIG OPTION PRE DELAY (100); /* 100 us */
/* open SPI0 port */

hSPIPort = SPI Open (hSIOPort, &cfgParam, O0);

if (hSPIPort != NULL)

{
printf ("SPI port opened successfully\n", res);
/* communicate over SPI ... */

/* close the port */
SPI Close (hSPIPort);

2.8 Data transfer with an SPI target device

Since the SPI is a full duplex communication protocol, transmission and reception happen at the same time and both the transmit
and receive lengths are the same. The library provides a single transfer API (SPI_Transfer) to transfer data to and from SPI target
devices connected to the target LPC controller.

The SPI SSEL signal which selects which target SPI device is addressed is specified with the LPCLink2 device. A GPIO port and
pin numbers of the SSEL signal are used in the transfer call as parameters. The MCU Link supports a single target SPI device,
so the SSELDO signal is driven regardless of the port pin parameter values.

The maximum data transfer size supported by the transfer routines depends on the transfer size supported by the bridge firmware
which is found out by calling LPCUSBSIO_GetMaxDataSize.

SPI_Transfer()
The following are the SPI_Transfer library function details:
« It performs a single bidirectional transfer over an SPI bus.
» The function accepts the open SPI port handle and a single SPI_XFER_T structure pointer as parameters.

» The transfer structure contains the SSEL target device selection, data length specification, and a pair of data buffers which
must be at least “length” bytes long.

* The data of the transmit buffer are sent. The receive buffer is filled with the data received. The function returns the number
of bytes transferred.

The following code snippet is the SPI_Transfer call:

int write read spi (LPC_HANDLE hSPIPort, uint8 t* txData, uint8 t* rxBuff, uintlé t len)
{

SPI_XFER T xfer;

int result = LPCUSBSIO ERR BAD HANDLE;

if (hSPIPort != NULL)

{
xfer.length = len; /* Number of bytes to transmit and receive */
xfer.options = 0; /* No extra options currently supported */

xfer.device = LPCUSBSIO GEN_SPI DEVICE NUM(0, 1); /* SPI SSEL port and pin*/
xfer.txBuff = txData; /* Pointer to bytes to be transmitted */
xfer.rxBuff = rxBuff; /* Memory where bytes received are to be stored */

/* Execute transfer */

result = SPI Transfer (hSPIPort, &xfer);

printf ("SPI transfer returned %d\n", result);
}

return result;

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 10/27

NXP Semiconductors

Developing serial 1O application with USBSIO library

2.9 Accessing GPIO ports and pins

The USBSIO library provides an API to control GPIO signals of the SIO bridge device either as individual pins or as an entire port
group. The ports and pins are identified with respect to the central CPU of the bridge device.

» The LPCLink2 device available on NXP evaluation boards provides one pin at port=0 and pin=15.

» The MCU Link available on NXP evaluation boards provides up to six pins at port=1, pins=[1, 7, 9, 20, 21, 31]. The
number of pins provided depends on the particular evaluation board design.

» The MCU Link Pro standalone interface does not provide any GPIO pins.

» Some of the pins used for 12C and SPI communication may also be redefined for a direct GPIO control by calling
GPIO_ConfiglOPin() with a proper argument:

— Mode value of 0x100 configures a pin for GPIO push-pull function. Use it for SPI pins.
— Mode value of 0x300 configures a pin for GPIO open-drain function. Use it for 12C pins.

» Hardware bus drivers and optional level shifters define the signal direction. There is a possible signal collision with other
SPIs and I12Cs that are on the board.

— The port and pin identification of communication pins can be found in the related hardware documentation and
schematics.

— SPI.MISO may only be redefined to a GPIO input.
— SPI.SCK, SSEL, and MOSI may only be redefined as GPIO outputs.
— [2C.SDA, and SCL may be used as an input or an open-drain output. A pull-up resistor is assembled on the board.

— When the SPI or 12C communication takes place, the GPIO functionality is de-activated and all related signals return
to the original operation mode.

Use LPCUSBSIO_GetNumGPIOPorts to determine whether the GPIO functionality is available. When enabled, the returned value
is typically higher than 1, because it reflects the total number of GPIO ports of the main bridge CPU. Each port consists of 32 pins.
However, only some ports and some pins are usable as GPIO, as mentioned above.

2.10 Error propagation

Most APIs return zero or a positive number on success and negative numbers in the case of an error. The error types are defined
by the LPCUSBSIO_ERR_T enumeration type. The library also provides the LPCUSBSIO_GetLastError and LPCUSBSIO_Error
routines to obtain the last error as a numeric code or as a unicode string.

2.11 Deploying LPCUSBSIO applications

2.11.1 Microsoft Windows OS

The deployment depends on what library is used to build the final application executable. If the application was linked with a static
libusbsio.lib library, the executable contains all required code and it can be deployed standalone. If libusbsio.dllLlib or a different
method of dynamic linking is used, then the libusbsio.dll file should be always included with the final executable in the distribution
and it should be in the same directory as the executable.

2.11.2 Linux OS and macOS

Both static and dynamic libraries are also available for Linux OS and macOS applications. Static linking to libusbsio.a is the
preferred way of using the library.

The dynamic linking library is provided mainly for compatibility with the Python wrapper.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 11/27

NXP Semiconductors

Developing serial 1O application with USBSIO library

2.11.3 Python

A Python application may leverage the pip package manager to resolve the dependency on the libusbsio module and install all
required files. The Python module contains dynamic linking libraries for all platforms and it loads the correct one automatically as
soon as the first instance of the LIBUSBSIO class is created.

The LIBUSBSIO class enables Python scripts to use the whole functionality of the USBSIO library. The class instance wraps
the SIO device handle, so its methods do not need to specify the handle again. The class destructor closes the handle
automatically. Similarly, the I2C_Open and SPI_Open methods return Python class instances, which also wrap the underlying port
handles. Many class methods use keyword arguments and arguments with default values, which makes the final Python code
well readable.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 12/27

NXP Semiconductors

Chapter 3
Library API reference

3.1 General library functions
This section describes the general library functions.

* int32_t LPCUSBSIO_GetNumPorts (uint32_t vid, uint32_t pid)
gets the number of USBSIO ports implemented by the connected bridge devices.

+ LPC_HANDLE LPCUSBSIO_Open (uint32_t index)
opens the indexed Serial 10 port.

+ int32_t LPCUSBSIO_Close (LPC_HANDLE hUsbSio)
closes the Serial 10 port.

+ const char* LPCUSBSIO_GetVersion (LPC_HANDLE hUsbSio)
gets the version string of the USBSIO library.

+ uint32_t LPCUSBSIO_GetNumI2CPorts (LPC_HANDLE hUsbSio)
returns the number of 12C ports supported by the Serial 10 device.

+ uint32_t LPCUSBSIO_GetNumSPIPorts (LPC_HANDLE hUsbSio)
returns the number of SPI ports supported by the Serial IO device.

+ uint32_t LPCUSBSIO_GetNumGPIOPorts (LPC_HANDLE hUsbSio)
returns the number of GPIO ports supported by the Serial IO device.

+ uint32_t LPCUSBSIO_GetMaxDataSize (LPC_HANDLE hUsbSio)
returns the maximum number of bytes supported for I2C/SPI transfers by the Serial 10 device.

» const wchar_t* LPCUSBSIO_Error (LPC_HANDLE hUsbSio)
gets a string describing the last error that occurred.

+ int32_t LPCUSBSIO_GetLastError (void)

returns the last error seen by the library.

3.1.1 LPCUSBSIO_GetNumPorts
Prototype
int32 t LPCUSBSIO GetNumPorts (uint32 t vid, uint32 t pid)
Parameters
+ vid ... USB Vendor ID (VID)
* pid ... USB Product ID (PID)
Return
The number of SIO ports implemented by one or more USB SIO bridge devices specified by the VID and PID identification values.
Remarks

This function enumerates the USB bus and searches for the USBSIO devices specified by the VID and PID pairs. The following
VID and PID pairs are currently supported:

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 13/27

NXP Semiconductors

Library API reference

+ LPCLIink2: VID=0x1FC9, PID=0x0090
« MCULink: VID=0x1FC9, PID=0x0143

This function also performs an internal device list initialization, so it must be called before opening any SIO port, even if the VID,
PID, and SIO device indexes are known.

3.1.2 LPCUSBSIO_Open
Prototype
LPC_HANDLE LPCUSBSIO Open (uint32 t index)
Parameters
* index ... index of SIO port device to open
Return
The handle of the SIO port.
Remarks

Call this function after enumerating the bridge devices by the LPCUSBSIO_GetNumPorts function. This function opens the
specified SIO port by a numeric index.

3.1.3 LPCUSBSIO_Close
Prototype
int32 t LPCUSBSIO Close (LPC_HANDLE hUsbSio)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
Return
Zero if successful, error codes are defined in the LPCUSBSIO_ERR_T enumeration.
Remarks

Always close a serial |0 port handle when it is no longer needed.

3.1.4 LPCUSBSIO_GetVersion
Prototype
const char* LPCUSBSIO GetVersion (LPC_HANDLE hUsbSio)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
Return
Version string which consists of the USBSIO library version and a bridge device firmware version separated by a slash.
Remarks

Get the version string of the USBSIO library and the bridge device firmware.

3.1.5 LPCUSBSIO_GetNumI2CPorts
Prototype

uint32 t LPCUSBSIO GetNumI2CPorts (LPC HANDLE hUsbSio)

Parameters

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 14/27

NXP Semiconductors

Library API reference

* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
Return
The number of available 12C ports.
Remarks

Use the 12C_Open call to open one of the available 12C ports.

3.1.6 LPCUSBSIO_GetNumSPIPorts
Prototype
uint32 t LPCUSBSIO GetNumSPIPorts (LPC HANDLE hUsbSio)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
Return
The number of the available SPI ports.
Remarks

Use the SPI_Open call to open one of the available SPI ports.

3.1.7 LPCUSBSIO_GetNumGPIOPorts
Prototype
uint32 t LPCUSBSIO GetNumGPIOPorts (LPC_ HANDLE hUsbSio)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
Return
The number of the available GPIO ports.
Remarks

Returns the number of GPIO ports supported by the Serial IO device. Not all GPIO ports are available for the input or output on
the bridge device pins. The returned value reflects the total number of GPIO ports, but there are typically just a few pins of a single
GPIO port available externally.See Accessing GPIO Ports and Pins for more information about the GPIO ports and pins.

3.1.8 LPCUSBSIO_GetMaxDataSize
Prototype
uint32 t LPCUSBSIO GetMaxDataSize (LPC_HANDLE hUsbSio)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
Return
The maximum size of one SPI or I2C data transfer made by a single library call.
Remarks

The return value is 1024 bytes in all currently known implementations. Because the USB HID report size is 64 bytes, larger
transfers are split into multiple USB frames. When the data is transferred to the bridge device, it performs the SPI or 12C transfer
and returns the result code and any data read. The response may be also split into multiple USB frames for large data. The data
integrity is assured by the USBSIO library.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 15/27

NXP Semiconductors

Library API reference

3.1.9 LPCUSBSIO_Error
Prototype
const wchar t* LPCUSBSIO Error (LPC HANDLE hUsbSio)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
Return
A wide character string with the last error description.
Remarks

An empty string is returned when no error has occurred.

3.1.10 LPCUSBSIO_GetLastError
Prototype
LPCUSBSIO API int32 t LPCUSBSIO GetLastError (void)
Parameters

* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
Return

Zero if the last operation was successful. All error codes are defined in the LPCUSBSIO_ERR_T enumeration.

3.2 12C communication functions
This section describes the functions used for the 12C communication.
* LPC_HANDLE I12C_Open (LPC_HANDLE hUsbSio, I2C_PORTCONFIG_T config, uint8_t portNum)
initializes an 12C port.
* int32_t 12C_Close (LPC_HANDLE hI2C)
closes an 12C port.
* int32_t 12C_Reset (LPC_HANDLE hI2C)
resets an 12C controller.

* int32_t 12C_DeviceRead (LPC_HANDLE hI2C, uint8_t deviceAddress, uint8_t *buffer, uint16_t sizeToTransfer, uint8_t
options)

reads from an addressed 12C target device.

* int32_t 12C_DeviceWrite (LPC_HANDLE hI2C, uint8_t deviceAddress, uint8_t *buffer,
uint16_t sizeToTransfer, uint8_t options)
writes to the addressed 12C target device.

+ int32_t 12C_FastXfer (LPC_HANDLE hiI2C, 12C_FAST_XFER_T *xfer)

transmits and receives the data in the 12C master mode.

3.2.1 12C_Open
Prototype

LPC_HANDLE I2C Open (LPC HANDLE hUsbSio, I2C PORTCONFIG T config, uint8 t portNum)

Parameters

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 16/27

NXP Semiconductors

Library API reference

* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
« config ... Pointer to the 12C configuration structure
* portNum ... I12C port number in the limit defined by LPCUSBSIO_GetNumI2CPorts
12C_PORTCONFIG_T structure
» ClockRate ... 12C bus clock rate. Use one of the constants pre-defined in the 12C_ClockRate_t enumeration:
— |12C_CLOCK_STANDARD_MODE ... 100 kbit/s
— 12C_CLOCK_FAST_MODE ... 400 kbit/s
— |2C_CLOCK_FAST_MODE_PLUS ... 1 Mbit/s
» Options... additional configuration options. Currently unused.
Return
12C port handle when successful. NULL in case of an error.
Remarks

The handle returned by this function is used in all subsequent calls to any 12C functions when accessing this 12C port.

3.2.2 12C_Close
Prototype
int32 t I2C Close (LPC_HANDLE hI2C)
Parameters
* hi2C ... 12C port handle returned by 12C_Open
Return
Zero if successful. The error codes are defined in the LPCUSBSIO_ERR_T enumeration.
Remarks

Always close an 12C port handle when it is no longer needed

3.2.3 12C_Reset
Prototype
int32 t I2C Reset (LPC_HANDLE hI2C)
Parameters
* hl2C ... I12C port handle returned by 12C_Open
Return
Zero if successful. The error codes are defined in the LPCUSBSIO_ERR_T enumeration.
Remarks

Reset the 12C controller. Use this function when the communication gets stuck or when the target nodes become unresponsive.

3.2.4 12C_DeviceRead

Prototype

int32 t I2C DeviceRead (LPC HANDLE hI2C, uint8 t deviceAddress, uint8 t *buffer,
uintl6 t sizeToTransfer, uint8 t options)

Parameters

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 17127

NXP Semiconductors

Library API reference

* hl2C ... 12C port handle returned by 12C_Open
 deviceAddress ... 7-bit value of the target device address
« buffer ... pointer to the memory buffer that receives the data
« sizeToTransfer ... number of bytes to read
» options ... additional option flags

Return

The number of bytes read from the 12C target device.

Remarks

Perform a uni-directional 12C read operation. For more information about uni-directional and bidirectional I12C operations, see
Reading and Writing to 12C slave device. The last version of the USBSIO library does not support the communication options.

3.2.5 12C_DeviceWrite
Prototype
int32 t I2C DeviceWrite (LPC_HANDLE hI2C, uint8 t deviceAddress, uint8 t *buffer,
uintl6 t sizeToTransfer, uint8 t options)
Parameters
» hi2C ... 12C port handle returned by 12C_Open
» deviceAddress ... 7-bit value of the target device address
« buffer ... pointer to the data to be transmitted
« sizeToTransfer ... number of bytes to write
» options ... additional option flags
Return
Number of bytes written to the 12C target device.
Remarks

Perform a uni-directional 12C write operation. For more information about uni-directional and bidirectional I12C operations, see
Reading and Writing to 12C slave device. The last version of the USBSIO library does not support the communication options.

3.2.6 12C_FastXfer
Prototype
int32 t I2C FastXfer (LPC_HANDLE hI2C, I2C FAST XFER T *xfer)
Parameters
* hi2C ... 12C port handle returned by 12C_Open
» xfer ... the transfer structure containing the target address memory buffer pointers and sizes
I2C_FAST_XFER_T structure
+ slaveAddr ... 7-bit value of the target device address
» txSz ... number of bytes prepared in the txBuff buffer to write to the I12C target device
» rxSz ... size of the rxBuff buffer to receive the characters read from the 12C target device
» txBuff ... bytes to write

» rxBuff ... receive data buffer

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 18/27

NXP Semiconductors

Library API reference

+ options ... additional transfer option flags, currently unused
Return
Negative status code in case of a failure.
Remarks

Perform a bidirectional I12C write and read transaction without releasing the 12C bus. For more information about uni-directional
and bidirectional I12C operations, see Reading and Writing to 12C slave device. The last version of the USBSIO library does not
support the communication options.

3.3 SPI communication functions
This section describes the functions used for the 12C communication.
« LPC_HANDLE SPI_Open (LPC_HANDLE hUsbSio, SPI_PORTCONFIG_T *config, uint8_t portNum)
initializes an SPI port.
« int32_t SPI_Close (LPC_HANDLE hSPI)
closes an SPI port.
« int32_t SPI_Reset (LPC_HANDLE hSPI)
resets an SPI controller.
+ int32_t SPI_Transfer (LPC_HANDLE hSPI, SPI_XFER_T *xfer)

transmits and receives the data in the SPI master mode.

3.3.1 SPI_Open
Prototype
LPC_HANDLE SPI Open (LPC_ HANDLE hUsbSio, SPI_PORTCONFIG T *config, uint8 t portNum)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
« config ... pointer to the SPI configuration structure
» portNum ... SPI port number in the limit defined by LPCUSBSIO_GetNumSPIPorts
SPI_PORTCONFIG_T structure

* busSpeed ... SPI clock rate. Use an unsigned long integer specifying the clock frequency. A typical value is 1000000UL for
1 Mbit/s.

» Options... additional configuration options. Use a bitwise OR combination of the following constants:
— SPI_CONFIG_OPTION_POL_0/ SPI_CONFIG_OPTION_POL_1 ... clock polarity low/high
— SPI_CONFIG_OPTION_PHA_0/ SPI_CONFIG_OPTION_PHA_1 ... clock phase
— SPI_CONFIG_OPTION_DATA_SIZE_8 or _16 ... data size in bits
— SPI_CONFIG_OPTION_PRE_DELAY(x) ... 0-255 micro seconds of data delay after the SSEL assertion
— SPI_CONFIG_OPTION_POST_DELAY(x) ... 0-255 micro seconds of SSEL de-assertion after the end of data transfer
Return
SPI port handle when successful. NULL in case of an error.
Remarks

The handle returned by this function is used in all subsequent calls to any SPI functions when accessing this SPI port.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 19/27

NXP Semiconductors

Library API reference

3.3.2 SPI_Close
Prototype
int32 t SPI Close (LPC_HANDLE hSPI)
Parameters
» hSPI ... SPI port handle returned by SPI_Open
Return
Zero if successful. The error codes are defined in the LPCUSBSIO_ERR_T enumeration.
Remarks

Always close an SPI port handle when it is no longer needed.

3.3.3 SPI_Reset
Prototype
int32 t SPI _Reset (LPC_HANDLE hSPI)
Parameters
* hSPI ... SPI port handle returned by SPI_Open
Return
Zero if successful. The error codes are defined in the LPCUSBSIO_ERR_T enumeration.
Remarks

Reset the SPI controller.

3.3.4 SPI_Transfer
Prototype
int32 t SPI Transfer (LPC HANDLE hSPI, SPI XFER T *xfer)
Parameters

* hSPI ... SPI port handle returned by SPI_Open

« xfer ... transfer structure containing the target address memory buffer pointers and sizes
SPI_XFER_T structure

« device ... index SSEL signal activated during the transmission

* length ... number of bytes to transmit and receive

» txBuff ... bytes to be transmitted

» rxBuff ... receive data buffer

» options ... additional transfer option flags, currently unused
Return
The number of bytes physically transferred. Negative status code in case of a failure.
Remarks

Perform a bidirectional SPI transaction. For more information about SPI data transfers, see Data transfer with a SPI target device.
The last version of the USBSIO library does not support the communication options.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 20/27

NXP Semiconductors

Library API reference

3.4 GPIO configuration and control functions
This section describes the functions used for the GPIO port and pin control.

* int32_t GPIO_ReadPort (LPC_HANDLE hUsbSio, uint8_t port, uint32_t *status)
reads a GPIO port.

+ int32_t GPIO_WritePort (LPC_HANDLE hUsbSio, uint8_t port, uint32_t *status)
writes to a GPIO port.

+ int32_t GPIO_SetPort (LPC_HANDLE hUsbSio, uint8_t port, uint32_t pins)
sets the GPIO port bits.

+ int32_t GPIO_ClearPort (LPC_HANDLE hUsbSio, uint8_t port, uint32_t pins)
clears the GPIO port bits.

+ int32_t GPIO_GetPortDir (LPC_HANDLE hUsbSio, uint8_t port, uint32_t *pins)
reads the GPIO port direction bits.

+ int32_t GPIO_SetPortOutDir (LPC_HANDLE hUsbSio, uint8_t port, uint32_t pins)
sets the GPIO port pins direction to output.

* int32_t GPIO_SetPortInDir (LPC_HANDLE hUsbSio, uint8_t port, uint32_t pins)
sets the GPIO port pins direction to input.

+ int32_t GPIO_SetPin (LPC_HANDLE hUsbSio, uint8_t port, uint8_t pin)
sets a specific GPIO port pin value to high.

+ int32_t GPIO_GetPin (LPC_HANDLE hUsbSio, uint8_t port, uint8_t pin)
reads the state of a specific GPIO port pin.

+ int32_t GPIO_ClearPin (LPC_HANDLE hUsbSio, uint8_t port, uint8_t pin)
clears a specific GPIO port pin.

* int32_t GPIO_TogglePin (LPC_HANDLE hUsbSio, uint8_t port, uint8_t pin)
toggles the state of a specific GPIO port pin.

+ int32_t GPIO_ConfiglOPin (LPC_HANDLE hUsbSio, uint8_t port, uint8_t pin, uint32_t mode)
configures the IO mode for a specific GPIO port pin.

3.4.1 GPIO_ReadPort
Prototype
int32 t GPIO ReadPort (LPC_HANDLE hUsbSio, uint8 t port, uint32 t *status)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
* port ... GPIO port number
« status ... pointer to a variable that receives the GPIO port value
Return
Number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

Read the GPIO port. Use the status variable to return the state of all port pins as a single 32-bit value.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 21/27

NXP Semiconductors

Library API reference

3.4.2 GPIO_WritePort
Prototype
int32 t GPIO WritePort (LPC HANDLE hUsbSio, uint8 t port, uint32 t *status)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
 port ... GPIO port number

« status ... pointer to a variable which contains the GPIO port value to be written. This variable is updated with the new port
value after it is updated.

Return
The number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

Write the GPIO port and update the state of all port pins configured as output. Use the status variable to return the new state of
all port pins as a single 32-bit value.

3.4.3 GPIO_SetPort
Prototype
int32 t GPIO SetPort (LPC_HANDLE hUsbSio, uint8 t port, uint32 t pins)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
* port ... GPIO port number
» pins ... mask of pins to set to a logical high state
Return
The number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

Set all pins that match the bits set in the mask value to a high logical state. Other pins are not modified.

3.4.4 GPIO_ClearPort
Prototype
int32 t GPIO ClearPort (LPC HANDLE hUsbSio, uint8 t port, uint32 t pins)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
» port ... GPIO port number
* pins ... mask of pins to clear to a logical low state
Return
The number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

Clear all pins that match the bits set in the mask value to a low logical state. The other pins are not modified.

3.4.5 GPIO_GetPortDir
Prototype

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 22/27

NXP Semiconductors

Library API reference

int32 t GPIO GetPortDir (LPC_HANDLE hUsbSio, uint8 t port, uint32 t *pins)
Parameters

* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open

* port ... GPIO port number

» pins ... pointer to a variable which receives the pin direction value. The bit set to 0 refers to the input, the bit set to 1 refers
to the output direction.

Return
The number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

Use this function to determine the current port input or output direction of all pins.

3.4.6 GPIO_SetPortOutDir
Prototype
int32_t GPIO_SetPortOutDir (LPC_HANDLE hUsbSio, uint8_t port, uint32_t pins)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
* port ... GPIO port number
* pins ... mask of pins to set as output direction
Return
The number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

Use this function to set the selected pins as the GPIO output. The other pins are not modified.

3.4.7 GPIO_SetPortInDir
Prototype
int32 t GPIO_SetPortInDir (LPC_HANDLE hUsbSio, uint8 t port, uint32 t pins)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
» port ... GPIO port number
+ pins ... mask of pins to set as input direction
Return
The number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

Use this function to set the selected pins as the GPIO input. The other pins are not modified.

3.4.8 GPIO_SetPin
Prototype
int32 t GPIO SetPin (LPC HANDLE hUsbSio, uint8 t port, uint8 t pin)

Parameters

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 23/27

NXP Semiconductors

Library API reference

* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open

* port ... GPIO port number

* pin ... index of a pin (0..31) to set
Return
The number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

Use this function to set a single selected pin to a logical high state.

3.4.9 GPIO_ClearPin
Prototype
int32 t GPIO ClearPin (LPC_HANDLE hUsbSio, uint8 t port, uint8 t pin)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
* port ... GPIO port number
* pin ... index of a pin (0..31) to clear
Return
Number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

Use this function to clear a single selected pin to a logical low state.

3.4.10 GPIO_TogglePin
Prototype
int32 t GPIO TogglePin (LPC HANDLE hUsbSio, uint8 t port, uint8 t pin)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
» port ... GPIO port number
+ pin ... index of a pin (0..31) to toggle
Return
Number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

Use this function to toggle a logical value of a single selected pin.

3.4.11 GPIO_GetPin
Prototype
int32 t GPIO GetPin (LPC HANDLE hUsbSio, uint8 t port, uint8 t pin)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
* port ... GPIO port number
* pin ... index of a pin (0..31) to get

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 24127

NXP Semiconductors

Library API reference

Return
Pin value of 0 or 1. This function does not return an operation error code.
Remarks

Use this function to read a value of a single selected pin.

3.4.12 GPIO_ConfiglOPin
Prototype
int32 t GPIO ConfigIOPin (LPC HANDLE hUsbSio, uint8 t port, uint8 t pin, uint32 t mode)
Parameters
* hUsbSio ... SIO port handle returned by LPCUSBSIO_Open
» port ... GPIO port number
» pin ... index of a pin (0..31) to configure
* mode ... pin mode as a PIO register value
Return
Number of bytes physically transferred. In this case, it is equal to 4 when successful. Negative status code in case of a failure.
Remarks

This function sets the pin IOCON configuration register (PIO register) to a specified value. This operation enables you to
reconfigure the pin function, set the open-drain mode, and enable internal pull-up or pull-down resistors connected to the pin.This
is an advanced function and it is not used in typical scenarios. Use it to reconfigure a pin normally used as SPI or 12C to a GPIO
function. A value of 0x100 sets the pin to the Digital GPIO mode. A value of 0x300 also enables the open-drain mode, which

is needed to work correctly with the 12C bidirectional level shifters.Using a library function that causes an SPI or 12C operation
reconfigures all related pins back to the communication mode (MCU Link bridge only).See Accessing GPIO Ports and Pins for
more information.

IMPORTANT: Use this function with caution. A wrong mode value may set the pin to an invalid state and lead to physical hardware
damage in extreme cases. Always consult the mode change with the board schematic and check for potential hardware conflicts.

USBSIO Library User's Guide, Rev. 0, 27 July 2021
User Guide 25/27

NXP Semiconductors

Chapter 4
Revision history

Table 1. Revision history

Revision number Date

Substantive changes

27 July 2021

Initial release

USBSIO Library User's Guide, Rev. 0, 27 July 2021

User Guide

26/27

How To Reach
Us

Home Page:
nxp.com
Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under its
patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the
following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer

is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that
best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless
of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, Dynaml|Q, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 27 July 2021
Document identifier: LIBUSBSIOUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 History and backward compatibility
	1.2 Installation
	1.3 Python wrapper

	2 Developing serial IO application with USBSIO library
	2.1 Prerequisites
	2.2 Setting up project environment
	2.3 Obtaining Serial IO device handle
	2.4 Accessing the SPI, I2C, and GPIO ports
	2.5 Initializing and obtaining I2C port handle
	2.6 Reading and writing to I2C target device
	2.6.1 Unidirectional I2C transactions
	2.6.2 Bidirectional transfer routines

	2.7 Initializing and obtaining SPI port handle
	2.8 Data transfer with an SPI target device
	2.9 Accessing GPIO ports and pins
	2.10 Error propagation
	2.11 Deploying LPCUSBSIO applications
	2.11.1 Microsoft Windows OS
	2.11.2 Linux OS and macOS
	2.11.3 Python

	3 Library API reference
	3.1 General library functions
	3.1.1 LPCUSBSIO_GetNumPorts
	3.1.2 LPCUSBSIO_Open
	3.1.3 LPCUSBSIO_Close
	3.1.4 LPCUSBSIO_GetVersion
	3.1.5 LPCUSBSIO_GetNumI2CPorts
	3.1.6 LPCUSBSIO_GetNumSPIPorts
	3.1.7 LPCUSBSIO_GetNumGPIOPorts
	3.1.8 LPCUSBSIO_GetMaxDataSize
	3.1.9 LPCUSBSIO_Error
	3.1.10 LPCUSBSIO_GetLastError

	3.2 I2C communication functions
	3.2.1 I2C_Open
	3.2.2 I2C_Close
	3.2.3 I2C_Reset
	3.2.4 I2C_DeviceRead
	3.2.5 I2C_DeviceWrite
	3.2.6 I2C_FastXfer

	3.3 SPI communication functions
	3.3.1 SPI_Open
	3.3.2 SPI_Close
	3.3.3 SPI_Reset
	3.3.4 SPI_Transfer

	3.4 GPIO configuration and control functions
	3.4.1 GPIO_ReadPort
	3.4.2 GPIO_WritePort
	3.4.3 GPIO_SetPort
	3.4.4 GPIO_ClearPort
	3.4.5 GPIO_GetPortDir
	3.4.6 GPIO_SetPortOutDir
	3.4.7 GPIO_SetPortInDir
	3.4.8 GPIO_SetPin
	3.4.9 GPIO_ClearPin
	3.4.10 GPIO_TogglePin
	3.4.11 GPIO_GetPin
	3.4.12 GPIO_ConfigIOPin

	4 Revision history

