h

DSP56800 to DSP56800E

Porting Guide

DSP56800ERG
Rev. 1.1
11/2005

freescale.com Z “freescale*

semiconductor






Contents

Chapter 1

Introduction

Chapter 2

Quick Reference

21 Compatibility ISSUES . . . ..o 2-1
211 Intervention Required . . ... ... ot 2-1
21.2 Uncommon Cases: Intervention May BeRequired ......................... 2-4
213 No User Intervention Required. . . . ... e 2-6
214 Mixed 56800 & 56800E INSLrUCtIONS . . . .. oo vt e 2-7
2.2  Coding Recommendations . .. ... ...ttt e 2-8
Chapter 3

Comparing the Two Architectures

3.1  Extending the DSP56800 Architecture. .. ........ ... ..., 31
3.2  Programming Model Comparison . ...... ...ttt 3-2
3.3 Memory MAP COMPAISON . . ottt e ettt ettt e 34
331 DSP56800 MemMOry Map . .. oottt et 34
3.3.2 DSPS6800E Memory Map . . .. oo 35
Chapter 4

AGU Registers

4.1  Initidizing AGU RegISIErS. . .. oot e 4-1
4.2  Issueswith AGU ArthmetiC. . . ... .o e 4-2
4.2.1 Cases Solved by Legacy Instructions—Linear Addressing .. ................. 4-3
4.2.2 Cases Solved by Definitionof Operation. . ........... ... 4-4
4.2.3 Cases Solved by Adding aZero-Extend Instruction. .. ...................... 4-4
4.2.4 Cases Solved by Breaking Into More Than One Instruction . ................. 4-5
Chapter 5

Compatibility Issues

51  New Special Legacy INSIrUCLIONS . . . ... .ot 5-1
5.2  Replacement of (R2+xx) With (RjJ#XXXX). .. ..ot it i i 5-2
5.3  Compatibility Issuewith Modulo Addressing . ..., 5-3
54  Instructions That Produce Code Growth . .......... .. ... ... 5-4
54.1 Pipeine Dependencies . . .. ...t e 5-5
54.2 24-bit Signed Requirement fortheN Register . .. ... . 5-5
54.3 Extending the Reach on Change-of-Flow Instructions. . ..................... 5-6
54.4 AddingaNOPtoaHardware Loop . ...t 5-6
545 Automatic Mappings Requiring an ExtraWord. .. ............. ... .. ... ... 5-7

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide iii



55  Changes Related to the I/O Short AddressingMode ... ...t 5-7
56  Strategy for Loading AGU Registers. . ... 5-8
57 Requirementsfor {RO-R3, N} . ... ... 5-9
571 ASPOINtEr REQISIENS . . ..o 5-9
5.7.2 ASOffSEl REQISIENS. . . ot e 5-9
58 Readingthe LC Register. . ... ..ot e 5-10
59 Numeric Target REferenCes . ... ... e 5-10
510 Hardware LoOp RESIFCIONS. . .. ..ot e e e 5-11
5.10.1 RestrictionsCommonto DO andREP. .. .......... .. i 5-11
5.10.2 Restrictions Specific TOREP . . ... ... e 5-11
5.10.3 Restrictions Specific ToTheDO Instruction. . ................ oo, .. 5-12
5.11 Differenceswhen SaturationisEnabled. ......... ... ... .. ... ... L. 5-12
512 Computingthe Zero ConditionCode. ...t 5-14
5.13 Computingthe Carry ConditionCode . ..., 5-14
514 New Requirementsfor X/IPMode . ... 5-14
514.1 Entering XIPMoOde. . .. ..o 5-14
5.14.2 EXiting XIPMoOde. . . ..o 5-16
5.15 Unsupported DSP56800 Instruction Syntax. . .. ... 5-17
516 Requirementson Context Save/ReSIOre. . .. ... 5-17
517 Legacy ProgramsLargerthan 64K. . ... ... 5-20
5.18 Compatibility IssuesattheChipLevel...... ... ... . ... 5-21
5.18.1 Interrupt Priority Level . . ... 5-21
5.18.2 Interrupt Vector LOCations . . ...t 5-22
5.18.3 Peripheral Space LoCations. . . .. ..ot e 5-22
5.184 Dual Read INStruction. . . . ... ..o e 5-22
5.185 The OMR EX Bit . ..o e e 5-22
519 Delay onlinterrupt Enableand Disable. .......... ... i 5-23
5.19.1 Enabling Interrupts — CCPL St to“0” ... ..o e 5-23
5.19.2 Disabling Interrupts — CCPL setto“3” ... ... e 5-24
Chapter 6

Optimizing Legacy Code

Appendix A

Translation Tables

Al  Register FIeldNOtaion. . . ...t e A-1
Al1l DSP56800 Register Field Notation. ... ...t A-1
A.1l2 DSP56800E Register Field Notation . ... A-3
A.13 Immediate Value NOtation . . .. ...t A-6
A.2 InstructionMapping Tables . ... ... A-6
A.3 Legacy Instruction Summary Tables . ... A-24
A4 DSP56800 INStruction AlIaSES . . . .o oot A-25
A4l LSLL Instruction AliaS. . ..ot e A-25
A.42 ASL INStruCtion AlIaS. . . .ot A-26
A.43 CLRINStruction Alias. . .. ..ot A-26
A.44 POP INStruction Alias. . . ..o e A-26
iv DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



List of Figures

Figure 3-1
Figure 3-2
Figure 3-3

Freescale Semiconductor

Programming Model—DSP56800 vs DSP56800E .. ....................

DSP56800 Memory Spaces .
DSP56800E Memory Spaces

DSP56800 to DSP56800E Porting Guide



Vi

DSP56800 to DSP56800E Porting Guide

Freescale Semiconductor



List of Tables

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 3-1
Table 4-1
Table5-1
Table 5-2
Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table A-7
Table A-8
Table A-9
Table A-10
Table A-11
Table A-12
Table A-13
Table A-14
Table A-15
Table A-16
Table A-17
Table A-18

Freescale Semiconductor

Cases With User-Intervention Requirements. ... ...t 2-1
Uncommon Cases - May Require User-Intervention. . ................... 2-4
Other Cases—No User-Intervention Required. . ... ............ ... ...... 2-6
Mixed DSP56800 & DSP56800E Syntax. . ... ...ovvviiiiiiiiinnen.. 2-7
Size of MEMONY SPaCES .. ..ottt e 34
Demonstrating DSP56800 AGU Overflow and Underflow . ............... 4-2
Mapping the DSP56800 Interrupt Levelsto the DSPS6800E ............. 5-21
Interrupt Mask Bit Definition. .. ... 5-22
DSP56800 Register Fields for General Purpose Move Instructions. . . ... . ... A-2
DSP56800 Address Generation Unit (AGU) Registers . ... ............... A-2
DSP56800 Data ALU RegiStErS. . ..o v v e e A-2
DSP56800 Additional Register Fieldsfor Move Instructions ... ........... A-3
DSP56800E Register Fields for General-Purpose Writesand Reads. . . . . . . .. A-3
DSP56800E Address Generation Unit (AGU) Registers. . ................ A-4
DSP56800E Data ALU RegiSters. . . ..o oo A-4
DSP56800E Additional Register Fieldsfor Move Instructions . . ........... A-5
Immediate Value Notation . . ... A-6
Instruction Mapping: DSP56800to DSP56800E .. ...................... A-8
Tcc Instruction Mapping: DSP56800to DSP56800E . .................. A-21
Single Parallel Move Mapping: DSP56800 to DSP56800E. . . ............ A-21
Dual Parallel Read Mapping: DSP56800 to DSP56800E . ............... A-22
Instruction Alias Mapping: DSP56800 to DSP56800E . ................. A-23
Move Word Instructions— Legacy Code .. ...t A-24
Data ALU Arithmetic Instructions— Legacy Code ... ................. A-24
AGU Arithmetic Instructions— Legacy Code ... .......... ... A-24
Summary of DSP56800 Instruction Aliasesand Mapping. . .............. A-25

DSP56800 to DSP56800E Porting Guide Vi



viii DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



List of Code Examples

Code Example 4-1
Code Example 4-2
Code Example 4-3
Code Example 4-4
Code Example 4-5
Code Example 4-6
Code Example 4-7
Code Example 4-8
Code Example 4-9
Code Example 4-10
Code Example 5-1
Code Example 5-2
Code Example 5-3
Code Example 5-4
Code Example 5-5
Code Example 5-6
Code Example 5-7
Code Example 5-8
Code Example 5-9
Code Example 5-10
Code Example 5-11
Code Example 5-12
Code Example 5-13
Code Example 5-14
Code Example 5-15
Code Example 5-16
Code Example 5-17
Code Example 5-18
Code Example 5-19
Code Example 5-20
Code Example 5-21
Code Example 5-22

Freescale Semiconductor

Original DSP56800 Code. . . .. ..ot
Same Code Mapped to DSP56800E.. . .. .. ... oo
Original DSP56800 Code. . . .. ..ot
Correct Execution on DSP56800E Architecture
Correct DSP56800E Execution if no AGU overflow/underflow
Original DSP56800 Code. . . . ... oot
Correct Execution on DSP56800E Sequence. . ...................
Original DSP56800 Code. . . . ... oot
Original Code Mapped to DSP56800E Syntax. . . .................
Breaking Up the Original Sequence To Correct Overflow. ..........
Original DSP56800 Code. . . .. ..ot
Dependency after a Tcc Instruction with RO Modification
Dependency after a Tcc Instruction with RO Modification
Assembling Sequence with AGU Dependency
Assembling Sequence with AGU Dependency
Loading Pointer with Immediate Data
Loading Pointer with 16-bitVaue. ............. ... .. ... ......
Loading Pointer from Register or Memory
Mixed Instructions & Loading Pointersw/ Offset Value. ...........
Copying a 13-bit Value from the L C Register—DSP56800
Copying a 13-bit Vaue from the L C Register—D SP56800E
Emulating Saturation with ADC Instruction
Emulating Saturation with SBC Instruction

Emulating Saturation with DIV Instruction

Difficult Case—Repeat Looping withSA set. . ..................
Entering Data-Memory Execution Mode, 19-Bit Target Address. . . .
Exiting Data-Memory Execution Mode, 19-Bit Target Address
Unsupported DSP56800 LEA Instruction Syntax
Correct DSP56800 LEA Instruction Syntax. . . ..................
Full Context Savefor DSPS6800E. ... .......coviiiiiin .
Full Context Restorefor DSPS6800E. . ... ........cvvvvivn....
Enabling Interrupts for DSP56800E - Setting CCPL to “0”

DSP56800 to DSP56800E Porting Guide



Code Example 5-23
Code Example 5-24
Code Example 5-25
Code Example 5-26

Enabling Interruptsfor DSP56800. ... ... 5-23
Demonstrating Delay after Enabling Interrupts . .. ............... 5-23
Disabling Interrupts - Setting CCPL t0“3” . .................... 5-24
Demonstrating Delay after Disabling Interrupts. .. ............... 5-24

DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Chapter 1
Introduction

The DSP56800E is designed to enhance the combined MCU/DSC functionality of its predecessor, the
DSP56800. The new architecture has been devel oped to ensure that programs originally written for the
DSP56800 (also referred to as legacy code) will assemble and run correctly through the porting process.
This process can be guaranteed by adopting a number of simple rules described in this guide. The
CodeWarrior Assembler (CW) available from Metrowerks, also provides messages designed to facilitate
the porting process.

The complete instruction set of the DSP56800 is supported by the tool set available for the DSP56800E.
Assembly code developed for the DSP56800 can be directly interpreted by the CW Assembler when the
option to allow legacy instructions is set. When this mode of operation is enabled, the assembler is
configured to recognize the DSP56800 as well as DSP56800E syntax. Consequently, the original source
code generally does not have to be translated to the new DSP56800E syntax unless the user wants to
optimize the code for performance and code density. Debugging assembly files under CodeWarrior is aso
done on the original syntax.

The new architecture also introduces additional addressing modes and instructions for the expressed
purpose of supporting legacy DSP56800 instructions LA, TsTW, and MOVE. This added capability is not
described in the DSP56800E Core Reference Manual; it is only documented in this guide. These special
legacy instructions are only preserved in the 56800E’ s architecture to guarantee exact execution of legacy
code. The legacy instructions appear shaded in Table A-10 page A-8 to specifically highlight their usein
this architecture.

Similarly, there are some differences in instruction syntax between the DSP56800 and DSP56800E
architectures which are shown throughout the guide. The exact mnemonic mapping of each DSP56800
instruction into the corresponding DSP56800E assembly instruction is aso shown in Table A-10 through
Table A-14. In some cases, the mapping requires an adjustment, asis the case when loading the N register,
(see Note 1 at the end of Table A-10), or when replacing REP Lc with the DosLc instruction.

This guide discusses al porting issues between the DSP56800 and the DSP56800E. It illustrates and
examines architectural differences, discusses all compatibility issues between the two architectures, and
provides assembly code segments which demonstrate how compatibility can be achieved with minimal
user intervention on the original legacy code.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 1-1



ntroduction

Using This Document
This document provides aguide for porting legacy DSP56800 code to execute in the DSP56800E core. It is
organized to provide the following information:

*  Quick reference on compatibility issues, page 2-1

* Summary of the architectural extensionsin the DSPS6800E, page 3-1

*  Programming model comparison, page 3-2

e Memory model comparison, page 3-4

* AGU registers, page4-1

e Compatibility issues, page 5-1

» Tuning ported code for performance, page 6-1

» Mapping tables from DSP56800 to DSP56800E architecture, page A-8

Running DSP56800 Code on the DSP56800E

To use this document efficiently, the user should read Chapter 2, “ Quick Reference”. Chapter 2 presents a
summary of all compatibility issues that may arise during the porting process, and provides alist of
recommendations for producing upward-compatible code for the DSP56800.

Understanding Architectural Differences

To understand the architectural differences between the DSP56800 and the DSP56800E, users should
familiarize themselves with Chapter 3, “ Comparing the Two Architectures’. This chapter introduces the
extended features of the DSP56800E that enhance performance and improve program code density.
Further information on DSP56800E architecture can be found in the DSP56800E Core Reference Manual.

Tuning Ported Code

Once the code has been assembled correctly, the user can refer to Chapter 6, “ Optimizing Legacy Code”
for hints on optimizing performance and reducing code density. Chapter 6 does not provide a complete
discussion of thisissue because it is dependent on the application and programming style.

1-2 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Chapter 2
Quick Reference

This chapter summarizes the compatibility issues that can arise between the DSP56800 and DSP56800E
and offers alist of recommendations for producing DSP56800 that is compatible with the DSP56800E.

2.1 Compatibility Issues
This section provides a quick reference list of possible compatibility issues between the DSP56800 and
DSP56800E.

1. Section 2.1.1 listsal cases that require immediate user intervention.

2. Section 2.1.2 on page 2-4 presents uncommon cases where intervention is not immediately
required.

3. Section 2.1.3 on page 2-6 covers cases where intervention is not needed.

4. Section 2.1.4 on page 2-7 describes cases that may arise when both syntax are used
together.

All items are cross-referenced with their detailed discussion in Chapter 5, “Compatibility |ssues.”

2.1.1 Intervention Required

The compatibility issues summarized in Table 2-1 include all cases which may require some intervention
from the user. In some cases the mapping of the assembler will generate the desired behavior. But in cases
where the programming style is incompatible with the new architecture, the user may be required to make
some minor adjustments to the legacy code, e.g. replacing numerical targets with labels, or sign extending
the N register when its actually used as an offset (rather than a pointer).

Table 2-1. Cases With User-Intervention Requirements

Case Descriptions
Ul-1 Jcc <Numerical_Absolute_Address>

JSR <Numerical_Absolute_Address>

JMP <Numerical_Absolute_Address>

DO <Source>,<Numerical_Absolute_Address>

Assembler requires labels for Absolute target addresses. Guarantees correct operation in cases
where code growth occurs and intended target moves. Refer to Section 5.9 on page 5-10.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 2-1



P

Auick Reference

Table 2-1. Cases With User-Intervention Requirements (Continued)

Case Descriptions
ul-2 Bcc *(£)<Numerical_Relative_Offset> (or without the “*”)
BRA *(£)<Numerical_Relative_Offset> (or without the “*”)
BRCLR #Mask8,<Source>,*(+)<Numerical_Relative_Offset> (or w/o “*”)
BRSET #Mask8,<Source>,*(+)<Numerical_Relative_Offset> (or w/o “*”)
Assembler requires labels for target addresses. Guarantees correct operation in cases where code
growth occurs and intended target moves. Refer to Section 5.9 on page 5-10.
ul-3 Bcc <Target_Label>
BRA <Target_Label>
If code growth places the Target_Label beyond the 7-bit offset, a link error will occur; the user must
use the forcing operator “>” on the Target_Label to force the assembler to use a branch with an 18-bit
offset. Refer to Section 5.4.3 on page 5-6.
Ul-4 BRCLR #Mask8,<Source>,<Target_Label>
BRSET #Mask8,<Source>,<Target_Label>
If code growth places the Target_Label beyond the 7-bit offset, a link error will occur. Only 7-bit offset
are available for these instructions. Replace BRCLR with “BFTSTL #MASK16,<Source>" followed
by “BCS ><Target_Label”. For BRSET, use the instruction “BFTSTH” followed by BCS. Refer to
Section 5.4.3 on page 5-6.
ul-5 DO LA, <End_of_Loop_Label>
The LA register is no longer supported for this instruction; use an alternate register. Refer to
Section 5.10.1 on page 5-11.
Ul-6 | REP LC
User must map instruction to DOSLC and insert a single NOP instruction in the loop body to complete
the 2-word minimum requirement for DOSLC instruction. Refer to Section 5.10.1 on page 5-11
Ul-7 | REP LA
The LA register is no longer supported for this instruction; use an alternate register. Refer to
Section 5.10.1 on page 5-11.
Ul-8 | LEA (SP) +N
MOVE X: (SP+N) , 8-HHHHH
MOVE X: (SP+N),8-SSSS
MOVE 8-DDDDD, X: (SP+N)
TSTW X: (SP+N)

For register indirect addressing modes using both the SP and N registers, the instruction
“SXTA.W N” mustimmediately precede any of the instructions listed above, (to preserve the
intended sign). Note: If N is not used as an offset register, no sign extension is required, (the upper
8-bits should be zeroes). Refer to Section 5.4.2 on page 5-5.

DSP56800 to DSP56800E Porting Guide Freescale Semiconductor




Compatibility Issues

Table 2-1. Cases With User-Intervention Requirements (Continued)

Case Descriptions
Ul-9 | MOVE <Source_Register>,X : (R +xxxx) (RO & R1 in modulo addressing only)
MOVE X: (Rj+xxxx) ,<Dest_Register> (RO & R1 in modulo addressing only)
TSTW X: (Rj+xxxx) (RO & R1 in modulo addressing only)
If modulo addressing is active and Rj = {R0,R1} is the base address where xxxx is negative and

represents the offset, above instructions must be mapped to 56800E equivalent, MOVE . W and

TST . W. When the original xxxx is represented in hex, it must be sign extended to 32-bits, (e.g. $FFF8
should be replaced by $FFFF FFF8). If instead, xxxx represents the base address and Rj the offset,
the following sequence must be utilized to remain compatible:

Examples:

LEA (R +xxxX) LEA (R +xxxX)
MOVE X: (Rj),<Dest Registers> TSTW X: (Rj)
LEA (Rj -xxxx) LEA (Rj -xxxx%)

Refer to Section 5.3 on page 5-3.

Ul-10 | New requirements when entering and exiting X/P Mode.

Specific sequence must be followed to switch to (and return from) executing programs from data memory.
Refer to Section 5.14 on page 5-14.

Ul-11 | Compatibility issues at the chip level

* Priority levels have increased from two levels to four levels in the DSP56800E.

e The location of the interrupt vector is not restricted by the core. For exact compatibility, user
must adjust references to the table.

* The location of the peripheral space is not restricted by the core. For exact compatibility, the
location of the memory mapped register should be in the exact locations as the DSP56800
chip implementations.

e The DSP56800E architecture does not restrict the performance of dual read operations on
off-chip data memory.

e The DSP56800E core does not define the exact operation of the OMR’s EX bit. (When this bit
is set on the DSP56800, it forces all accesses to X memory to be from off-chip X data
memory). Refer to Section 5.18 on page 5-21.

Ul-12 | BFCLR #$0300, SR ; Enable Interrupts
BFSET #$0300, SR ; Disable Interrupts

There is a delay which occurs between the execution of the BFCLR instruction and the point where
the interrupt arbiter sees the current core interrupt priority level (CCPL). When interrupts are enabled,
instructions in the following 6 clock cycles will be executed before any pending interrupts recognize
the new CCPL and are taken. Refer to Section 5.19.1 on page 5-23.

There is a delay which occurs between the execution of the BFSET instruction and the point where
the interrupt arbiter masks incoming interrupts. When interrupts are disabled, interrupts can still be
taken after any instruction completing execution during any of the next 5 cycles following the BFSET
instruction. Instruction beginning execution in the 6th clock cycle, form the beginning of a
non-interruptible sequence. Refer to Section 5.19.2 on page 5-24.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 2-3



P

Auick Reference

2.1.2

Uncommon Cases: Intervention May Be Required

Table 2-2 lists compatibility issues that are uncommon in application code but may require some

intervention.
Table 2-2. Uncommon Cases - May Require User-Intervention

Case Descriptions

UC-1 | REP #xx
REP <Register>
A number of instructions that are not commonly used in repeat loops can no longer be repeated due
to code growth. Instead, a DO loop must be used to replace the REP instruction. Refer to
Section 5.10.3 on page 5-12.

UC-2 | MOVE <Source>,L.C
The LC register is 13-bits on the DSP56800, but is 16-bits on the DSP56800E. When reading the
56800’s 13-bit LC register, the upper 3-bits are always zeroed. If this feature is important in an
application, refer to Section 5.8 on page 5-10.

ucC-3 ADC Y,F
SBC Y,F
DIV DD, F
IMPY <Srcl>,<Src2>,FDD (or IMPY16)
These instructions are affected and behave differently when SA = 1. On the DSP56800E, these
instructions do not saturate their results even if SA is set. Refer to Section 5.11 on page 5-12.

uc-4 DEC F (or DECW)
INC F (or INCW)
These instructions are affected and behave differently when CC (or CM in DSP56800E) = 1when the
destination is an accumulator. In the 56800E, the zero condition is calculated using bits [31:16] of the
accumulator, whereas the 56800 calculates the zero condition using [31:0]. Refer to Section 5.12 on
page 5-14.

UC-5 | ADD <Source_Register>,X : aa
ADD <Source_Register>,X : xxxx
ADD <Source_Register>,X: (SP-xx)
These instructions are affected when memory is the destination. In the DSP56800E, the carry
condition is calculated from bit 31 of the result, whereas in the DSP56800, it is calculated from bit 35
of the result. Refer to Section 5.13 on page 5-14.

2-4 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor




Compatibility Issues

Table 2-2. Uncommon Cases - May Require User-Intervention (Continued)

Case Descriptions
UC-6 | Addressing mode, (R2+xx) removed, (where xx is a 6-bit positive offset):
BFCHG #xxxx,X: (R24+XX)
BFCLR #xxxx,X: (R24+XX)
BFSET #xxxx,X: (R24+XX)
BFTSTH #xxxx,X: (R2+xX)
BFTSTL #xxxx,X: (R2+xX)
BRSET #xxxx,X: (R2+4xx) ,<Target_Label>
BRCLR #xxxx,X: (R2+4xx) ,<Target_Label>
MOVE #xxxx,X: (R24+XX)
Assembler will map these instructions with the Standard 56800E (Rn+xxxx) addressing mode. An
additional opcode word is required for these instructions. Address wrapping is not performed. Refer to
Section 5.2 on page 5-2.
UC-7 | Differences in AGU overflow and underflow, e.g. 64K address wrapping.
Address wrapping beyond 64K word boundary is not recommended and it is considered a flawed
non-portable programming style. There are legacy 56800E instructions that guarantees exact
behavior when {R0,R1,R2,R3} are used in linear addressing mode, but the following modes can be
corrected: (Rn) +, (Rn) -, (Rn) +N, (R2+xx), but (SP-xx) is not supported for address
wrapping. Refer to Section 4.2 on page 4-23.
UC-8 | Bit Manipulation operations on SR bits [14:10]
BFCHG #7Cxx, SR
BFCLR #7Cxx, SR
BFSET #7Cxx, SR
BFTSTH #7Cxx, SR
BFTSTL #7Cxx, SR
BRSET #7Cxx, SR, <Target_Label>
BRCLR #7Cxx, SR, <Target_Label>
Bitfield operations on bits [14:10] are not permitted on the DSP56800E architecture. These bits
represent the upper 5-bits of the PC register. These same bits are reserved on the DSP56800.
UC-9 | Legacy programs growing beyond the 64K word boundary.
The use of both DSP56800 and DSP56800E instructions is only supported for applications fitting in
64K word program memory space and 64K word data memory space. Refer to Section 5.17 on page
5-20.
UC-10 | LEA (Rj)+,R1
LEA (Rj)-,Ri
LEA (Rj) +N,Ri
LEA (Rj+xxxx) ,Ri
For Rj = Ri = {RO,R1,R2,R3}
Unsupported DSP56800 LEA Instruction Syntax. This undocumented syntax may be accepted by the
toolset but is not supported by the DSP56800E Specifications. Refer to Section 5.15 on page 5-17.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide



P

Auick Reference

2.1.3

No User Intervention Required

Table 2-3 lists compatibility issues that are handled automatically by the toolset and do not require

intervention.
Table 2-3. Other Cases—No User-Intervention Required
Case Descriptions
NI-1 DO LC,<End_of_Loop_Label>

If the body of the original loop is 1-word of length, the assembler inserts a single NOP instruction in the
loop body to complete the 2-word minimum requirement for the DOSLC instruction. The assembler
also remaps the instruction to DOSLC. Refer to Section 5.10.1 on page 5-11.

NI-2 Addressing mode, (R2+xx) removed, (where xx is a 6-bit positive offset):
MOVE X: (R2+xx) , 8-HHHH
MOVE 8-HHHH, X: (R2+XX)
TSTW X: (R2+xx)
LEA (R2+xX%)
Assembler will map these instructions with the Legacy 56800E (Rn+xxxx) addressing mode. An
additional opcode word is required for these instructions. Address wrapping is performed. Refer to
Section 5.2 on page 5-2.
NI-3 ADD X:aa, FDD
SUB X:aa,FDD
CMP X:aa,FDD
DECW X:aa
INCW X:aa
MOVE X: (SP-xx),F1
MOVE F,X: (SP-xx)
MOVE #xx,Rj (with immediate value between [-64,-1])
MOVE #xx,F1
All Instructions using the (R2 +xx) addressing mode.
These DSP56800 instructions are automatically mapped to the 56800E equivalent with one extra
instruction word. Refer to Section 5.4.5 on page 5-7.
NI-4 LSLL Y1,X0,DD
LSLL Y0,X0,DD
LSLL Y1l,Y0,DD
LSLL Y0,Y0,DD
LSLL Al,Y0,DD
LSLL B1,Y1,DD
ASL DD
CLR {x0, Y1, Yo, A1, B1, RO-R3, or N}
POP 8 -DDDDD
POP

All Instructions above are aliases that were originally mapped to 56800 instructions.

In all the above cases, the DSP56800E assembler will correctly recognize and map the instruction to
its equivalent. Refer to Section A.4, “DSP56800 Instruction Aliases,” on page A-25.

DSP56800 to DSP56800E Porting Guide Freescale Semiconductor




2.1.4

Compatibility Issues

Mixed 56800 & 56800E Instructions

Table 2-4 lists compatibility issues that result from mixing syntax from both architectures in an attempt to
optimize for performance and code density.

Table 2-4. Mixed DSP56800 & DSP56800E Syntax

Case Descriptions

MX-1 | Sign Extension Requirements for {R0-R3, N} when mixing with 56800E instructions
AGU load instructions are mostly mapped to MOVEU . W. This ensures that the upper 8 bits are zeroes,
which correctly maps the nature of address values in the 56800. However, when the value in the
register represents an offset and code is mixed with 56800E instructions, then sign extension may be
required. Refer to Section 5.7 on page 5-9.

MX-2 | MOVE <Source_Register>,X: (SP) +
MOVE X: (SP) -,<Source_Register>
If legacy code is mixed with new DSP56800E instructions and MOVE . L is used to push and pop from
the stack (to optimize for performance and codesize), the SP must always remain odd-aligned. In this
scenario, if a long move is used and SP is even, a misaligned data access non-maskable interrupt is
generated. There is no issue when porting DSP56800 instructions only. Refer to Section 5.16 on page
5-17.

MX-3 | New requirements in stack pointer alignment (in Mixed code only).
Long moves must always point to the even address (where the lower 16-bits are stored), except when
the stack is accessed. If legacy code is upgraded to use long moves, proper care must be taken to
keep SP odd-aligned. Refer to Section 5.16 on page 5-17.

MX-4 | New requirements in context save and restore.
When storing registers in the DSP56800E, care must be taken when storing LC and HWS. The
following rules must be followed:
1. If LC must be stored, store LC2 before LC to guarantee restoration of LC2.
2. If HWS must be stored, store SR and OMR before HWS.
3. When storing HWS, two stores are required to store HWSO followed by HWS1.
4. When storing 36-bits accumulator with MOVE . L, store extension register first. (Rules 2 & 3 are also
recommended in the DSP56800). Refer to Section 5.16 on page 5-17.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide



|
y

'
A

Auick Reference

2.2

Coding Recommendations

Thefollowing isalist of recommendations for writing DSP56800 programs that are compatible with the
DSP56800E

Applications should be written so that thereisno AGU overflow or underflow over 64K boundaries
when accessing data or program memory.

Do not use program memory space above 64K. For applications that need more than 64K words, it
is necessary to use the DSP56800E instruction set only.

Address wrapping with the stack pointer is not permitted.

Interpretation of use for AGU registersisimportant. If an AGU register is used as an offset, it
requires a 24-bit signed value. If it represents a pointer, the upper 8-bits must be zeroes.

Keep the stack pointer odd-aligned when long data elements are stored onto the stack or retrieved
from the stack with the MOVE.L instruction.

Avoid using the DSP56800 instruction aliases (refer to Section A.3 on page A-24).

Don't set the CC bit in the OMR register; the DSP56800E architecture defines all data types, and
condition codes can be set based on the size of the operand.

Use labelsfor all branch and jump instructions rather than numerical targets to protect against
problems due to growth in code size.

Do not use an ENDDO instruction in arepesat loop.

Do not use the information in condition codes updated by the ENDDO instruction.
In arepeat |oop:

— Do not write to the MO1 register.

— Do not accessthe LC register.

— Donotuse a1,vo,A or B1,Y1l,B asoperandsforamultiply, shift, or
multiply-accumulate instruction.

When the recognize-legacy-code switch is set, the assembler automatically selects memory
switches to recognize only 64K words of data space and 64K words of program space.

DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Chapter 3
Comparing the Two Architectures

There are several fundamental changes to the architecture which are useful to understand in the porting

process:

The AGU registers and the AGU arithmetic units have grown from 16 to 24 bits.
The program memory space has expanded to 4MB.
The data memory space has grown to 32MB.

Mapping of some DSP56800 instructions to DSP56800E counterparts require one extrainstruction
word.

There are some changes to the pipeline.

The following sections summarize the new features of the DSP56800E, including comparisons of the
programming model and memory model between the two architectures. For acomplete description of each
performance enhancing feature, refer to the DSP56800E Core Reference Manual.

3.1

Extending the DSP56800 Architecture

The DSP56800E core architecture extends Freescale’'s DSP56800 Family architecture to anew generation.
It remains source-code compatible with DSP56800 devices and adds the following new features:

Byte and long data types, supplementing the DSP56800’'s word data type
24-bit data memory address space
21-bit program memory address space

Three additional 24-bit pointer registers, R4, R5, and N. The N register can function either asan
offset register or a pointer register.

Four shadow registers, including three 24-bit pointer registers and the Modifier register, MO1
A secondary 16-bit offset register to further enhance the dual parallel data ALU instructions
Two additional 36-bit accumulator registers

Full-precision integer multiplication

32-bit logical and shifting operations

The second read in adual read instruction can now access off-chip memory

Loop count (LC) register extended to 16 bits

Full support for nested DO looping through additional |oop address and loop count registers, LA2
and LC2

Loop address and hardware stack extended to 24 bits

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 3-1



~omparing the Two Architectures

» Two additiona interrupt priority levels with a software interrupt trap for each level, plusalow
priority software trap, SWILP

» Eight stageinstruction pipeline, resulting in higher execution throughput

»  Enhanced On-Chip Emulation (Enhanced OnCE) with three debugging modes:
— Non-intrusive real-time debugging
— Minimally intrusive real-time debugging
— Breakpoint and step mode (core is halted)

3.2 Programming Model Comparison

The programming model of the DSP56800E core is a superset of the programming model of the
DSP56800. Figure 3-1 on page 3-3 shows the DSP56800 programming model overlaying the DSP56800E
programming model. The shaded areas indicate the extensions on the DSP56800E architecture. These
extensions are discussed in this section.

There are some differences to note between the two programming models that may affect currently written
legacy code for the DSP56800:

* Theloop counter register, LC, is expanded from 13 bitsto 16 bits,
» Theloop addressregister, LA, is expanded from 16 bitsto 24 bits.
» The pointer registers, RO-R3, are expanded from 16 bitsto 24 bits.

» Theoffset register, N, is expanded from 16 bitsto 24 bits. N can also function as a pointer register
for instructions using indirect addressing modes.

e TheLIFO hardware stack registers, HWS0 and HWSL, (designated as HWS) are expanded from 16
bitsto 24 bits.

e The program counter, PC, is expanded from 16 bitsto 21 bits.
e The upper 5 bits of the program counter reside in the status register, SR.

There are other differences between the two programming models that will not affect legacy code. The
following new resources were not present in the DSP56800 programming model:

* Inthe address generation unit:

— The AGU register file has two new pointer registers—R4, and R5 . In addition, the offset
register N can also be used as a pointer register in the DSP56800E.

— N3isanew offset register that provides additional addressing modes for dual parallel
instructions.

— There are 4 new shadow registers—RO0, R1, N, and MOL1. These registers are used during fast
interrupt operation. For additional information on fast interrupt operation, refer to Chapter 8,
“Program Controller”, in the DSP56800E Core Reference Manual.

* Inthedataarithmetic logic unit:
— TheDALU register file has two new accumulators: C and D.
* Inthe program control unit:

— A second loop counter, LC2 and a second |oop address register, LA 2, have been added to
support nested hardware looping

— TheFIRA and FISR registers are new resources specifically designed to support fast interrupt
operation.

3-2 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Programming Model Comparison

DATA ARITHMETIC LOGIC UNIT

Data Registers

35 32 31 16 15 0
A A2 A1 A0
B B2 B1 BO
C c2 C1 (60]
D D2 D1 DO
15 0
Y1
Y
YO0
X0
ADDRESS GENERATION UNIT
23 0 15 0
RO \ N3
R1
R2 Secondary Offset Register
R3
R4 Mo1 ﬂ
R5 !
‘ N H Modifier Registers
| s |

Pointer Registers

PROGRAM CONTROL UNIT

20 0 15 0
PC OMR
Program COUNTER SR
23 0 Operating Mode and Status
LA Register (OMR, SR)
LA2 12 0
Loop Address FISR
23 0 Fast Interrupt Status Register
HWSO0
HWST 1S 0
LC
Hardware Stack
LC2
20 0
FIRA | Loop Counter

Fast Interrupt Return Address

Figure 3-1. Programming Model—DSP56800 vs DSP56800E

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 3-3



P

~omparing the Two Architectures

3.3

Memory MAP Comparison

The DSP56800 and DSP56800E both contain dual Harvard architectures with separate program and data
memory spaces. The amount of addressable program and data memory is different in each device, as
shown in sTable 3-1.

Table 3-1. Size of Memory Spaces

Architecture

Program Memory

Data Memory

DSP56800

216

216

DSP56800E

221

224

64K (128 Kbyte)
Optimized for

Peripherals
P (64K - 64)

3.3.1 DSP56800 Memory Map
The DSP56800 memory map is shown in Figure 3-2.
$FFFF 64K (128 Kbyte) $FFFF
Program $FFCO
Memory
Space
$7F Interrupt 127
$0 Vectors 0 $0

\
Data \

Memory Memory Mapped
Space Peripherals

Figure 3-2. DSP56800 Memory Spaces

The DSP56800 program memory map includes the following characteristics:

3-4

Program sizeis limited to 64K words.

Data memory spaceis limited to 64K words.
The interrupt vector tableisfixed (location and size are defined by chip implementation).

A special peripheral space accessible using the X : <<pp addressing mode is fixed at address
$FFCO-$FFFF, islimited to 64 words, and is controlled by the chip implementation. (However,
peripherals can be located anywhere in the data memory space.)

The first 64-word block of data memory is accessible using the absolute short addressing mode,

X:aa (Or X:<aa).

No data memory address can be calculated that islarger than 64K.

DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Memory MAP Comparison

3.3.2 DSP56800E Memory Map

The DSP56800E memory map is shown in Figure 3-3.

$FFFFFF 16M (32 Mbyte)
$1FFFFF 2M (4 Mbyte)
Data
Memory
Space
Program
$xxFFFF 64K
Memory Optimized For
Space $xFFCO Peripherals (64K - 64)
Memory Mapped
(Relocatable) Peripherals
(Relocatable)
Interrupt
$0 Vectors 0 $0 0

Figure 3-3. DSP56800E Memory Spaces

The DSP56800E program memory map includes the following characteristics:
e Program size is expanded to 2M words (4MB).
» Dataspaceisexpanded to 16M words (32MB).
» Theinterrupt vector tableis relocatable (location and size are defined by chip implementation).

* The special peripheral spaceisrelocatable. It isstill limited to 64 contiguous words, with location
defined by chip implementation.

» Thefirst 64-word block of data memory is accessible using absolute short addressing mode: x : aa
(or x:<aa).

When an application written in DSP56800 program code is translated to the DSP56800E, the new
application must fit in the first 64K words of program memory and must only access data memory in the
first 64K words of the data memory space. Any growth in program code size must not increase the size of
the application above 64K in DSP56800E code. If an application uses both DSP56800 and DSP56800E
instructions and no longer fits within 64K, the user must translate the application to the 56800E syntax.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 3-5



~omparing the Two Architectures

Two exceptions are alowed in the data space. Both the system stack and the peripheral space can be
located anywhere within the 24-bit data space range, with peripheral space defined by the chip
implementation.

NOTE:
— A compiler can only access the lower 16MB (22%) of Data Memory Space.
— The upper 16MB of data memory cannot be accessed with the following instructions:
— dl MovE. BP instructions

— any MOVE. B that uses addressing mode X : (Rn+xxxxxx) Where xxxxxx represents a base
address in the upper 16MB.

3-6 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Chapter 4
AGU Registers

To trandate a program from the DSP56800 to the DSP56800E, special consideration must be given to the
initialization and arithmetic operations of the AGU registers.

41

Initializing AGU Registers

There are several rulesthat must be followed to ensure compatibility of DSP56800 programs when writing
to the Program Control and AGU registers.

Registers RO—R3, HWS, and LA must be zero extended in bits [23:16] and are written using the
MOVEU . W instruction when writing from another register or from memory.

AGU register N iswritten using MOVEU . W, zero extending in bits[23:16]. If N is used as an offset
register inthe (rj+N) addressing mode, it must be sign extended to 24-bits. (Refer to Section 5.4.2
on page 5-5).

When legacy and new instructions are mixed, for any AGU register loaded with a 56800 instruction
and used in a 56800E instruction, it isimperative to use either sxTa . w or zxTA . W to get the
intended sign extension. Whenever an AGU is used as an offset, the upper 8 bits must be loaded
with the sign value using sxTa . w. When an AGU is used as a pointer, the upper 8 bits must be
zeroes. This can be done using zxTa . w. Refer to Section 5.7 on page 5-9.

When immediate data is written to AGU registers RO-R3 and N:
— Use“MOVE.W #xx,HHHH” to destination RO-R3, for values xx inside the range [0, 63].

— Use“MOVEU.W #xxxx,SSSS” to destination RO-R3, for values xxxx outside the range
[0, 63].

— Use“MOVE.W #xx,HHHH" to destination N, for values of xx inside the range [-64, 63].

— Use“MOVEU.W #xxxx,SSSS” to destination N, for values of xxxx outside the range
[-64, 63]. If N isused as an offset, follow thisinstruction with “sxTa.w N” to preserve the
intended 24-hit sign value.

When immediate data is written to the HWS and LA registers:
— Use“MOVEU.W #xxxx,S$5ss” for al values of xxxx

For register field definitions HuHH and ssss, refer to Table A-5 on page A-3 and Table A-8 on page A-5.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 4-1



h -

AGU Registers

4.2

Issues with AGU Arithmetic

NOTE:

It is very rare that a program is written in a manner where the AGU
registers are expected to overflow (or underflow). If it is necessary to
guarantee correctness even for this unusual coding style, then this section
will be useful; otherwise, this section can be bypassed.

A compatibility issue can arise due to the 16-bit width of the DSP56800's AGU registers, address buses,
and datapath. The problem occurs when an AGU computation overflows the DSP56800’ s highest possible
address ($00FFFF) or underflows the lowest possible address ($000000). This can occur during an
effective address cal culation or address register update via one of the post-update addressing modes for
any of the following DSP56800 instructions:

Data ALU arithmetic or bit manipulation instructions with one operand in memory
Move instructions

Single and dual paralel move instructions

TSTW (not mapped to the legacy 56800E instruction)

The problem also occurs for AGU cal culations using the DSP56800’ s L.EA instruction. Two exampl es of
AGU caculationsin Table 4-1 demonstrate this problem.

Table 4-1. Demonstrating DSP56800 AGU Overflow and Underflow

Example Calculation DSP56800 Result DSP56800E Result Comments
P (16-bit AGU Arithmetic) (24-bit AGU Arithmetic)
$00FFFC + $000010 $00000C $01000C AGU Overflow
$000003 - $000007 $00FFFC $FFFFFC AGU Underflow
NOTE:

Itisnot good programming practice to write application code that depends
on the wrapping effect of an overflow from 64K to 0 or an underflow from
0 to 64K (i.e, the natural modulo effect on 16-bit AGU registers).
Neverthel ess, most code written in this matter is covered by specia legacy
instructions that are defined to emulate the wrapping behavior from the
DSP56800 architecture (see Section 5.1 on page 5-1). However, a few
cases are not covered by these legacy instructions. Refer to Section 4.2.4
on page 4-5.

Four different techniques discussed in the following sections are used on the DSP56800E architecture to
address this problem:

4-2

Cases solved with legacy instructions when using linear addressing
Cases solved by careful instruction definition
Cases solved by adding a zero-extend instruction

Cases not handled by special legacy instructions that can be broken into more than one instruction
sequence

DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Issues with AGU Arithmetic

4.2.1 Cases Solved by Legacy Instructions—Linear
Addressing

When linear addressing is used, address wrapping on the DSP56800 16-bit AGU registers RO-R3 is
exactly reproduced on the DSP56800E by using the following special legacy instructions:

e MOVE X: (Rj+xxxx) , DDDDD
e MOVE DDDDD, X: (R +XXXX)
e MOVE X: (Rj+N) ,DDDDD

e MOVE DDDDD, X: (Rj+N)

e LEA (R +xxxx%)

e LEA (Rj)+N

e TSTW X: (Rj+xxxx)

e TSTW X: (Rj+N)

Consider the DSP56800 code shown in Code Example 4-1.

Code Example 4-1. Original DSP56800 Code

MOVE #$SC000, RO ; Load 16-bit pointer with $C000
LEA (RO+$8000) ; Add $8000 to this wvalue

The calculated effective address is $4000. When this code is directly executed on the DSP56800E
architecture, it is executed as the two instructions in Code Example 4-2.

Code Example 4-2. Same Code Mapped to DSP56800E

MOVEU.W #$C000, RO ; Load 24-bit pointer with $00C000
LEA (RO+$8000) ; Add $8000 to this wvalue

If the effective address were calculated using the normal 24-bit modulo arithmetic of the DSP56800E, the
result would be $014000 rather than the original result of $4000. However, the calculated result is actually
$004000, the same value generated on the DSP56800. Thisis because the legacy instructions LEA, MOVE,
and TsTw utilize special addressing modes that perform 16-bit AGU arithmetic by zeroing the upper 8 bits
of the 24-hit result. These special instructions are shown in the shaded areas in Table A-10 on page A-8.

NOTE:

The DSP56800E architecture doesnot support addresswrapping for the SP
register, which only uses 24-bit arithmetic. Thus, the legacy instructions
do not apply to the stack pointer.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 4-3



h -

AGU Registers

4.2.2 Cases Solved by Definition of Operation

In some cases, the definition of an operation helps ensure DSP56800 compatibility. In this case thereisno
compatibility issue.

Consider the DSP56800 code shown in Code Example 4-3.

Code Example 4-3. Original DSP56800 Code

MOVE #$1004,R0 ; Load 16-bit pointer with $1004

MOVE #$-4,X0 ; Load negative 16-bit value in X0 (SFFFQC)
MOVE X0,N ; Load N with negative value from X0 reg
MOVE X:(RO)+N,X0 ; Updates RO with -4 (SFFFC)

On the DSP56800 architecture, the result in the RO register after this code sequence is $1000 due to its
16-bit AGU unit. The ‘1’ located in bit 17 on DSP56800E is not available on the DSP56800 architecture
due to its 16-bit datapath. Thisis shown in Code Example 4-4.

Code Example 4-4. Correct Execution on DSP56800E Architecture

MOVEU.W #$1004, RO ; Load 16-bit pointer with $001004
MOVEU.W #$-4,X0 ; Load negative wvalue into X0 (SFFFC)
MOVEU.W X0, N ; Loads N w/ positive value ($S00FFFC)

; (MOVEU.W instruction zero extends value)
MOVE.W X: (RO)+N,X0 ; Updates RO with $FFFFFC, not S$OOFFFC

; (due to the defn of (Rn)+N addr mode)

On the DSP56800E architecture, there should be a problem because the 24-bit N register does not contain
anegative value but instead contains alarge positive value, $00FFFC). The result in the RO register after
this code sequence, however, is also $1000, identical to the result calculated on the DSP56800. The reason
that the DSP56800 provides the correct answer is due to the fact that the (rn) +N addressing modeis
defined as a 16-bit address computation. This addressing mode ignores the upper 8 bits of the N register
and sign extends from bit 15 before performing the addition. Thus, both architectures update RO using the
vaue $FFFFFC and both calculate identical results.

4.2.3 Cases Solved by Adding a Zero-Extend Instruction

In most cases, AGU overflow and underflow compatibility issues are directly handled by the assembler by
mapping these instructions with their legacy counterparts in the DSP56800E instruction set.
Code Example 4-6 demonstrates DSP56800 code where thisis the case.

Code Example 4-5. Correct DSP56800E Execution if no AGU overflow/underflow

MOVEU.W #SF000, RO ; Load 16-bit pointer with S$FO000
MOVEU.W #$0004,N ; Load $0004 into the N register
NOP

ADD XO0,A X:(RO)+N,X0 ; RO = SF000 + $0004 = SF004

; on the DSP56800E
; (no AGU overflow occurs)

Compatibility issues arise for the x: (Rn) +N addressing mode if it is used in amanner where it overflows
the value $00FFFF or underflows the value $0000 boundary, such asin Code Example 4-6.

4-4 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Issues with AGU Arithmetic

Code Example 4-6. Original DSP56800 Code

MOVE #$F000,RO ; Load 16-bit pointer with $F000

MOVE #$2000,N ; Load $2000 into the N register

NOP ;

ADD X0,A X:(RO)+N,X0; RO = SF000 + $2000 = $1000 on DSP56800

; (AGU overflow occurred — 16-bit ALU)

One solution to this problem is to correct the AGU register after the post update with the zero extension
instruction zxTa . w, as shown in Code Example 4-7.

Code Example 4-7. Correct Execution on DSP56800E Sequence

MOVEU.W #$SF000, RO ; Load 16-bit pointer with $FO000
MOVEU.W #$2000,N ; Load $2000 into the N register
NOP ;

ADD XO0,A X: (RO) +N, X0 ; RO = $O00F000 + $002000 = $011000
ZXTA.W RO ; RO is corrected by zero extending

; the upper 8-bits on RO

Another solution is to break the original DSP56800 parallel instruction into separate DSP56800E
instructions, as discussed in the next section. Breaking the instruction avoids the overflow (or underflow),
while the zero-extension method corrects the result after the overflow.

The following addressing mode cases are not handled by special legacy instructions. They can also be
corrected after the overflow (or underflow) takes place by adding the zero-extension instruction,
“ZXTA.W Rk” after the post-update of rRk.

° (Rk) +
e (Rk)-
° (Rk) +N

If it isknown that thereisno AGU overflow or underflow in an application and it isimportant to maintain
peak performance, it is not necessary to zero extend or break the original DSP56800 instruction.

4.2.4 Cases Solved by Breaking Into More Than One
Instruction
There are some cases of AGU overflow or underflow that are not solved by the legacy instructions or the

definitions of the operations. The following addressing modes are subject to compatibility mismatch on
overflow or underflow:

» Casesthat can also be corrected by adding the zero-extension instruction, “zxTa.w Rk” (see
Section 4.2.3 on page 4-4):

— (Rk) +
— (Rk) -
— (Rk) +N

»  Cases mapped to the DSP56800E standard (Rk+xxxx) addressing mode, (see Section 5.2 on page
5-2 for acomplete list of instructions with this addressing mode):

— (R2+xx), When this addressing mode is mapped to the standard mode

Code Example 4-8 demonstrates addressing modes that are subject to compatibility mismatches when the
DSP56800' s 16-bit AGU register width overflows or underflows.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 4-5



h -

AGU Registers

Code Example 4-8. Original DSP56800 Code

MOVE #SFFFF,R2 ; Load 16-bit pointer with $FFFF
MOVE #$2000,X: (R243) ; Write $2000 to location $0002
NOP ;

BFSET #SFF00,X: (R245) ; Set SFF00 on location $0004

When the user does not correct this sequence, overflow occurs as shown in Code Example 4-9.

Code Example 4-9. Original Code Mapped to DSP56800E Syntax

MOVEU.W #SFFFF,R2 ; Load 16-bit pointer with S$OOFFFF

MOVE.W #$2000,X: (R2+3) ; Write $2000 to location $010002
; (AGU overflow occurs — 16-bit ALU)

NOP ;

BFSET #SFF00,X: (R2+45) ; Set S$SFF00 on location $010004

; (AGU overflow occurs — 16-bit ALU)

By partitioning the instruction into two parts, the AGU register can be safely post-updated to avoid the
overflow by using the LEA instruction. Thisis shown in Code Example 4-10.

Code Example 4-10. Breaking Up the Original Sequence To Correct Overflow

MOVE #SFFFF,R2 ; Load 16-bit pointer with $FFFF
;NEW SEQUENCE

LEA (R2+3) ; Update R2 with value $0002

MOVE #$2000,X: (R2) ; Write $2000 to location $0002

LEA (R2-3) ; Update R2 with value S$FFFF

NOP i

;NEW SEQUENCE

LEA (R2+5) ; Update R2 with value $0004
BFSET #SFF00,X: (R2) ; Set SFF00 on location $0004
LEA (R2-5) ; Update R2 with value S$FFFF

The (sp-xx) addressing mode is also subject to mismatch on overflow or underflow. The DSP56800E
architecture does not support wrapping the stack pointer at the $FFFF boundary. Refer to Section 5.4.2 on
page 5-5.

4-6 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Chapter 5
Compatibility Issues

This section outlines potential assembly language incompatibilities between the DSP56800 and the
DSP56800E and provides reference to other placesin the document where these cases are discussed in
detail. The assembler is designed to select the correct mapping and resolve most of the issues that arise
when porting DSP56800 assembly code to the DSPS6800E architecture. In other cases, the coding style
used on legacy code can affect this process and may require user to map the instruction (or sequence of
instructions) manually to ensure correct execution. This document currently covers assembly language
issues only; afuture revision will also include a section on issues pertaining to porting C-language
programs from the DSP56800 to the DSP56800E architecture.

5.1 New Special Legacy Instructions

Two new addressing modes are provided for the expressed purpose of matching the 16-bit AGU register
widths exactly with key addressing modes found on the DSP56800:

e X:(Rj+N) Indexed by Offset Register N—Legacy Version
e  X: (Rj+xxxX) Indexed by 16-Bit Displacement—L egacy Version

These addressing modes share a common trait—the upper 8-bits of the address value are forced to zeroes.
Thisrefers to the effective address computed by the instruction.

NOTE:

It is recommended that the addressing modes in this class not be used in
new applications written for the DSP56800E.

This section lists the instructions that make use of these addressing modes. These instructions are found
only in this guide and are highlighted in Table A-10 on page A-8. Details on these instructions can be
found in section Section A.3, “Legacy Instruction Summary Tables,” on page A-24. With no exceptions,
thefollowing list is only applicable for AGU registers RO, R1, R2 and R3. In cases where the original
instruction uses these two modes with the stack pointer, SP, the mapping table utilizes the standard
DSP56800E trandation. To illustrate this, Code Example 5-1 shows how “LEA (R0) +N” and “LEA
(SP) +N" are mapped.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-1



~ompatibility Issues

Code Example 5-1. Original DSP56800 Code
;Demonstrating Legacy Mapping on LEA for RO and SP

8420 LEA (RO) +N ; mapped to LEA (RO)+N
89BB LEA (SP) +N ; mapped to ADDA N, SP
89BB ADDA N, SP

The following instructions, which appear only in this guide, are characterized by the unique way in which
address arithmetic is performed—the upper 8-bits of the 24-bit AGU register are forced to zeroesto form
the effective address of the instruction.

e LEA (RF) +N —updaterj by N
(v treated as a 16-bit register)
e LEA (RJ +xxxx) —updaterj by #xxxx
e MOVE X:(Rj+xxxx),DDDDD - read value from memory location R +xxxx
e MOVE X:(Rj+N),DDDDD —read value from memory location R +N
e MOVE  DDDDD,X: (Rj+xxxx) —write reg value to memory location R +xxxx
e MOVE  DDDDD,X: (Rj+N) —write reg value to memory location Rj +N
e TSTW  X: (Rj+xxxx) —test value from memory location Rj +xxxx
e TSTW  X:(Rj+N) —test value from memory location Rj +N

5.2 Replacement of (R2+xx) with (Rj+xxxXx)

The(rR2+xx) addressing mode was included in the DSP56800 to provide an opcode with optimal size for
an indirect addressing mode using a 6-bit positive offset. This addressing mode has been removed from the
DSP56800E architecture to preserve opcode space. Instructions using this addressing mode are mapped by
the DSP56800E assembler to instructions using one of the following two DSP56800E addressing modes:

* Standard (Rn+xxxx) Address Mode. This addressing mode uses 24-bit arithmetic to compute the
effective address, and requires an additional word for thefinal opcode. Thisistruefor thefollowing

instructions:

— BFCHG HxXxxX,X: (R2+XX)
— BFCLR HxXxxX,X: (R2+XX)
— BFSET #xxxX,X: (R2+XX)

— BFTSTH #xxxX,X: (R2+XX)

— BFTSTL #xxxX,X: (R2+XX)

— BRCLR #xxxx,X: (R2+xX) ,AA
— BRSET #xxxx,X: (R2+xX) ,AA
— MOVE HxXxxX,X: (R2+XX)

5-2 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Compatibility Issue with Modulo Addressing

* Legacy (Rn+xxxx) Address Mode (see Section 5.1.) This addressing mode uses 16-bit arithmetic
to compute the effective address, and also requires an additional word for the final opcode. Thisis
true for the following instructions;

— TSTW X: (R2+xx)

— LEA (R2+xx)

— MOVE X: (R2+xx) , 8-HHHH
— MOVE 8-HHHH, X: (R2+xX)

The mapping of all the above cases generates an additional program opcode word in the 56800E
instruction syntax. Note that wherever code growth is generated, some target labels in change-of-flow
instructions may not be reachable, resulting in alink error (due to the unresolved reference). This affects
only those change-of-flow instructions which utilize a signed, 7-bit, PC-relative offset to represent the
location of thetarget label from the program counter. When segments of code increasein program size, the
location of these references may fall beyond the 7-bit offset boundary and thus become unresolved.

Another instance where growth in code size affects an instruction sequence occurs when the REP
instruction is followed by one of these instructions. Instructions that produce code growth are highlighted
in Section 5.4 on page 54.

5.3 Compatibility Issue with Modulo Addressing

The following list of special legacy instructions using (Ri+xxxx) for Ri ={R0 or R1} may not behave
correctly when modulo addressing is active. If modulo addressing is active and offset xxxx is negative, the
CW Assembler generates awarning message indicating that the instruction may operate incorrectly (for RO
and R1 only).

e MOVE X: (Ri+xxxx) ,DDDDD (RO or r1)
e MOVE DDDDD, X: (Ri+xxxx) (RO oOr Rr1)
e TSTW X: (Ri+xxxx) (Ro or Rr1)

The user should select a mapping which provides exact behavior. The selection of the mapping has
dependency on the interpretation for the immediate value, xxxx. Two possible interpretations are possible
for xxxx:

« “offset value’ represented by the signed value in xxxx,
» “base address pointer” represented by the lower 16-bitsin the RO or R1 register.

Thefirst interpretation, where the value of xxxx represents the offset, is more typical. In this case, the user
must manually modify the legacy instructions listed above using the following syntax:

¢ MOVE.W  X:(Ri+ Sxt32:xxxx),DDDDD (RO Or R1)
e MOVE.W  DDDDD,X: (Ri+ Sxt32:xxxx) (RO oOr r1)
e TST.W X: (Ri+ Sxt32:xxxx) (RO oOr rR1)

In these instructions, sxt 32 : xxxx defines a 32-bit sign extended value. When the value xxxx isa
negative offset and is represented as a hexadecimal number, the sign must be extended to 32 bits, e.g.,
$FFF8 should be replaced by $FFFF FFF8.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-3



| g

~ompatibility Issues

When xxxx isinterpreted as the base address of amemory location, the value of xxxx must remain a
16-bit unsigned value, asisthe case for every AGU register representing a pointer. In this case, the AGU
register represents the offset and must be sign extended to 24 bitswith“sxTa.w  {R0 or R1}” (See
Section 4.1, “Initializing AGU Registers,” on page 4-1). In order to remain compatible, the following
sequence must be used for each affected instruction:

e For MOVE.W X: (RO+xxxx),DDDDD (Or usingR1)

SXTA.W RO —sign extend ro to 32-bits

LEA (RO+xxxXX) —adjust rRo using modulo arithmetic
MOVE X: (RO) , DDDDD — move data from memory to register
LEA (RO-xxxX) —restore rRo to itsoriginal value

e For MOVE.W DDDDD,X: (RO+xxxx) (Or usingRr1)

SXTA.W RO —sign extend ro to 32-bits

LEA (RO+xxxX) —adjust RO using modulo arithmetic
MOVE DDDDD, X : (RO) — move data from register to memory
LEA (RO-xxxx) —restorero toits original value

e For TSTW X: (RO+xxxx) (or using R1)

SXTA.W RO —sign extend ro to 32-bits

LEA (RO+XXXX) —adjust ro using modulo arithmetic
TSTW X: (RO) —test datain memory location

LEA (RO-xXXX) —restore RO toitsoriginal value

5.4 Instructions That Produce Code Growth

After assembling legacy code, the user may observe that code size hasincreased. There is no guarantee that
code size will remain the same after legacy code is assembled with the DSP56800E assembler. The source
of code growth can be divided into five main categories. Code growth can be observed as aresult of the
following factors:

Pipeline dependencies

Sign requirements for the N register
Change-of-flow instructions
Hardware loops

a > w D

Automatic mappings requiring an extraword

5-4 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Instructions That Produce Code Growth

5.4.1 Pipeline Dependencies

Code growth can result from automatic insertions of NOPs (software stalls) by the DSP56800E assembler
due to pipeline dependencies.

In Code Example 5-2 and Code Example 5-3, there is a pipeline dependency that occurs when the RO
register is copied to R1 by the Tcc instruction and the immediately following instruction modifies the RO
register contentsin an addressing mode or in an AGU calculation.

Code Example 5-2. Dependency after a Tcc Instruction with RO Modification

TEQ A,B RO,R1 ; RO copied to Rl by Tcc instruction
MOVE.W X:(RO)+,Yl ; RO contents modified in AGU calculation

Code Example 5-3. Dependency after a Tcc Instruction with RO Modification

TEQ A,B RO,R1 ; RO copied to R1 by Tcc instruction
ADDA R2,R0 ; RO contents modified in AGU calculation

If either of these instruction sequencesis detected, the assembler generates awarning and inserts one NOP
between the two instructions as shown in Example 1-14 and 1-15.

Code Example 5-4. Assembling Sequence with AGU Dependency

TEQ A,B RO,R1 ; RO copied to Rl by Tcc instruction
NOP ; Assembler inserts NOP - removes dependency
MOVE.W X:(RO)+,Yl ; RO contents modified in AGU calculation

Code Example 5-5. Assembling Sequence with AGU Dependency

TEQ A,B RO,R1 ; RO copied to R1 by Tcc instruction
NOP ; Assembler inserts NOP - removes dependency
ADDA R2,R0O ; RO contents modified in AGU calculation

Due to the DSP56800E pipeline, the value moved to R1 by the first instruction in the last two examplesis
the value of RO after it is updated by the second instruction in the sequence. This behavior is consistent
even with interrupts, primarily because interrupts are not permitted after a Tcc with an AGU transfer and
the instruction immediately following it. Refer to the section titled “Non-Interruptible Instruction
Sequences’ in the DSP56800E Core Reference Manual.

5.4.2 24-bit Signed Requirement for the N Register

There are several caseswhere N isrequired to be a 24-bit sign extended offset register. Thisis achieved by
preceding the following instructions with “sxTa.w N”, which correctly sign extends the N register to
24-bits (refer to Section 5.7 on page 5-9).

e LEA (SP) +N

e MOVE X: (SP+N) , 8-HHHHH
e MOVE X: (SP+N) , 8-SSSS
e MOVE 8-DDDDD, X: (SP+N)
e TSTW X: (SP+N)

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-5



P

~ompatibility Issues

5.4.3 Extending the Reach on Change-of-Flow Instructions

L ocalized code growth may place target |abels outside the reach of the linker and generate link errors. User
intervention is required to clear errors resulting from localized code growth. These cases occur when target
|abels become unresolved references because they fall beyond the 7-bit offset boundary during the porting
process to the DSP56800E. They occur only in the following four instructions:

e Bcc <OFFSET7>
e BRA <OFFSET7>
e BRCLR #MASKS8, <source>, <OFFSET7>
e DBRSET #MASKS8, <source>, <OFFSET7>

When code growth has produced cases where labels fall beyond the 7-bit offset, the forcing operator “>"
must be applied to the operand for the Bcc and BRra instructionsto force the assembler to use <OFFSET1 8>
instead of <oFFSET7>. When the BRCLR Or BRSET instruction is responsible for the unresolved reference,
the user must break up the instruction in the following manner:

e For BRCLR #MASKS8, <source>, <OFFSET7> USE:

BFTSTL #MASK16, <sources>

BCS ><OFFSET18> — note use of forcing operator “>”
* FOr BRSET #MASKS, <source>, <OFFSET7> USEl

BFTSTH #MASK16, <sources>

BCS ><OFFSET18> — note use of forcing operator “>”

In the latter two cases, code growth isincreased by two words.

5.4.4 Adding a NOP to a Hardware Loop

The hardware do loops Do and REP must be mapped to the pbosLc instruction when the LC register is used
as an operand. The Do instruction is automatically mapped by the assembler, while the REP instruction
reguires the user to complete the translation and add the target label (last address). This occurrenceis
uncommon and limited to the following two cases:

e DO LC,xxxx —Where xxxx represents a 16-bit absolute address

The assembler maps the Do instruction to the new instruction, post.c. If the body of the original
loop is 1 word inlength, the assembler inserts asingle Nop instruction in the loop body to complete
the 2-word minimum requirement for the bosLc instruction.

e REP LC — The next single word instruction is repeated L C times

When the REP instruction uses L.c as the operand, the assembler flags an error message. The user
must map this case to the bosL.C instruction. A NoP instruction must be added to the body of the
loop to satisfy the 2-word minimum requirement, and a label must be added to complete the
structure of the loop instruction. Note that unlike REP, the DOSLC instruction can be interrupted.

Restrictions on hardware loops are described in more detail in Section 5.10 on page 5-11.

5-6 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Changes Related to the 1/0 Short Addressing Mode

5.4.5 Automatic Mappings Requiring an Extra Word

The following instructions are automatically recognized and mapped by the assembler using an additional
word in the new opcode:

— ADD X:aa, FDD —add value in short address loc X : aa to reg

— SUB X:aa, FDD — subtract value in short address|oc X : aa to reg

— CMP X:aa, FDD —compare value in short addressloc X : aa to reg

— DECW X:aa — decr value in short address location X : aa

— INCW X:aa —incr value in short address location X : aa

— MOVE X: (SP-xx),F1  —read stack indexed by xx: [1,64] to{a1 or B1}
— MOVE F,X: (SP-xx) —move{a or B} to stack indexed by xx: [1,64]
— MOVE #xx,Rj —move signed 7-bit integer to AGU register

— MOVE #xx,F1 —move signed 7-bit integer to { A1 or B1}

— All instructions using the (rR2+xx) addressing mode (see Section 5.2 on page 5-2).

5.5 Changes Related to the I/O Short Addressing
Mode

Another compatibility issue to consider isthe X : <<pp addressing mode. In the current DSP56800E
implementation, the I/O short address (or peripheral address) is generated by concatenating two objects—
an 18-bit value (obtained from 18 input terminals to the core), and a 6-bit value extracted from the
instruction opcode. This concatenation forms the complete 24-bit data address reference. On the
DSP56800, the peripheral portion of the memory map islocated between addresses X:$FFCO and
X:$FFFF. The following notations are accepted by the DSP56800 assembler as one-word instructions
using this addressing mode:

e MOVE X:$FFC1,X0 — upper 10 bits hardwired to $3FF
e MOVEP X:$FFC1,X0 — upper 10 bits hardwired to $3FF
e MOVE X:<<$FFC1,x0  —usesl/O short forcing operator
e MOVEP X:<<$FFC1,X0  —usesl/O short forcing operator

For exact DSP56800 compatibility, the value on the 18-bit input bus must be $003FF when the processor
exits the Reset processing state. This ensures that all instructions accessing the peripheral space access the
same physical location in peripheral memory ranging from location $00FFCO to $00FFFF. The user must
be aware of the rules described in Section 4.1 on page 4-1 when initializing pointer registers, especially
when these registers are used with indirect addressing modes to access the peripheral space.

NOTE:

The CodeWarrior IDE has a switch that allows the assembler to accept
both DSP56800 and DSP56800E syntax in the target code. It also
configures the data memory map to reside within 64K of memory space.
In order to provide added flexibility in legacy applications, two exceptions
are allowed—the peripheral space and the system stack space. These areas
can reside anywhere within the 24-bit range of data memory space.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-7



P

~ompatibility Issues

5.6 Strategy for Loading AGU Registers

This section describes the strategy followed when AGU registers used by the toolset are loaded during
DSP56800 program assembly. Thisinformation can also be useful when mixing instructions from both
architectures.

For exact operation of existing DSP56800 code, the user must be aware of some basic rules when writing
to the AGU or Program Controller registers. In the DSP56800, these registers are 16 bits, but are 24 bitsin
the DSP56800E. When legacy code writes avalueto SP, RO-R3, N, HWSor LA, it must be guaranteed
that the code still runs correctly on the DSP56800E.

To prevent compatibility problems with legacy code during the loading of pointer values, the DSP56800E
provides several unsigned word load instructions to the AGU pointer registers. When AGU registers are
loaded with an offset, the 24-bit signed value must be preserved.

The following examplesillustrate potential compatibility issues that the user must be aware of in order to
avoid incorrect behavior in the DSP56800E. These cases are automatically handled by the assembler, but
the user must be aware of these issuesin order to avoid hidden problems due to coding style.

e MOVE #xx,Rj —initialize AGU registers with a 7-bit short value

When thisinstruction is used to initialize RO, R1, R2 or R3 with a negative short immediate value (-1 to
—64), and the register is used as a pointer to represent an address ($FFFF to $FFCO), the unsigned move
instruction must be used to ensure that the upper 8-bits of the address be zero. In the DSP56800E this
operation is performed with aMOVEU. w instruction to ensure that the upper 8-bits are zero. This caseis
illustrated in Code Example 5-6.

Code Example 5-6. Loading Pointer with Inmediate Data

MOVE #-1,R0 ; Load 16-bit pointer with (SOOFFFF)
; (1 word DSP56800 instruction)
NOP ; Assembler maps to 2 word MOVEU.W #-1,R0
MOVE X:(RO),XO ; Move value from X:SO00FFFF to XO
e MOVE #xxxx,RJ —initialize AGU reg with 16-bit immediate values

The RO-R3, HWS, and LA registers on the DSP56800 are used directly or indirectly for addressing
memory. In order to maintain compatibility, it is necessary that 16-bit values from legacy programs be
written to these registers with zero extension. This ensures that the address values stored in these registers
access memory locations within the first 64K of the memory map. Thisis not always the case for the N
register, as described in Section 5.7 on page 5-9. In Code Example 5-7, the incorrect value $FF9001
would be loaded in RO were it not for the MOVEU . w instruction that automatically replaces the MOVE.

Code Example 5-7. Loading Pointer with 16-bit Value

MOVE #$9001, RO ; Load $009001 to RO
; Assembler maps to MOVEU.W #$9001,R0

e MOVE Y1,Rj —initialize AGU reg from other registers or from memory

Loading valuesto AGU registers from other registers or from memory must also be written with zero
extension. This ensures that the values stored in these registers represent the same absolute magnitude
intended in the original code, and maintain the integrity of the original program. This caseisillustrated in
Code Example 5-8.

Code Example 5-8. Loading Pointer from Register or Memory

MOVE X:8C300,R0 Load value in X:$00C300 to RO
Assembler maps to MOVEU.W X:$C300,RO0
Move value in Y1 to R1

Assembler maps to MOVEU.W Y1,R1

MOVE Y1l,R1

Ne Ne N~

5-8 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Requirements for {R0-R3, N}

5.7 Requirements for {R0-R3, N}

5.7.1 As Pointer Registers

Registers RO—R3 are most commonly used to represent pointer values. Because the DSP56800 memory
model islimited to 64K words, these registers are always initialized with the mapped instruction MOVEU . w
to ensure that the upper 8-bits of these registers contain zeroes. Instructionsthat initialize the N register are
commonly mapped to MOVEU . W with one exception. When N isinitialized with an immediate number
within the range [-64,-63], MOVE . W is used instead of the unsigned moveto sign extend N to 24 bits.

When RO-R3 or N are used to represent a base address in mixed mode with instructions defined in the
DSP56800E instruction set, the upper 8-bits must be zeroes to guarantee compatibility with the 56800.

5.7.2 As Offset Registers

The N register ismost commonly used as an offset register. When registers RO—R3 and N are used as offset
registers, it isimportant that the upper 8-bits contain signed information. This is done automatically only
when the register N isinitialized with an immediate number within the range [-64,-63], in which case a
MOVE . W instruction is used.

Correct sign extension is specifically important when the AGU registers are used in mixed mode with
instructions defined in the DSP56800E instruction set, asillustrated in Code Example 5-9. In these cases
the instruction using these registers must be preceded by the AGU sign extend instruction SXTA . W to
guarantee that the upper 8 bits contain sign information and the 24-bit arithmetic correctly reproduces the
same effective address as the 16-bit computation.

Code Example 5-9. Mixed Instructions & Loading Pointers w/ Offset Value

MOVE #$8000, RO ; Load 16-bit ($008000)

MOVE #-1,X0 ; Load 16-bit (SFFFF)

MOVE X0,N ; Mapped to MOVEU.W ($OOFFFF)
MOVE X0,R1 ; Mapped to MOVEU.W ($OOFFFF)
SXTA.W N ; Sign Extend to 24-bits (SFFFFFF)

; (mixing from DSP56800E instr. set)
; If N not sign extended, the wrong
; location, X:017FFF, is used

MOVE.W X: (RO+N),b X0 ; Move value from X:$007FFF to XO
SXTA.W R1 ; Sign Extend to 24-bits (SFFFFFF)

; (mixing from DSP56800E instr. set)
ADDA R1,RO ; Move value from X:$007FFF to XO
MOVE.W X: (R1+BASE),bXO ; Rl acting as an offset

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-9



P

~ompatibility Issues

5.8 Reading the LC Register

The LC register in the DSP56800 is only 13 bits, but has been expanded to 16 bits in the DSP56800E. Bits
15:13 of the DSP56800 L C register are always read as zeroes, whereas on DSP56800E all 16 bits of the
register are read. There may be an unusual case where the user’s original intention was to strip the upper
three bits of a 16 bit value. Consider the case where a given value has dual use—the upper 3-bits and lower
13-bits are packed into one 16-bit value. In the DSP56800 architecture, the user can take advantage of the
width of LC to strip the upper 3 bits and use the resulting 13-bit value to initialize aregister, as shown in
Code Example 5-10.

Code Example 5-10. Copying a 13-bit Value from the LC Register—DSP56800

MOVE #SC1FF, X0 ; X0 set to $C1FF - Upper 3 bits are not 0
MOVE X0, LC ; Info in upper 3 bits lost, 13-bit LC
MOVE LC,N ; N loaded: $01FF - Information stripped

If exact compatibility in this situation is required, the alternative shown in Code Example 5-11 solvesthis
problem. The solution is simply to clear the upper 3 bits of the LC register using an ANDC instruction alias
whenever it iswritten from aregister or memory location.

Code Example 5-11. Copying a 13-bit Value from the LC Register—DSP56800E

MOVE.W #S$C1FF, X0 ; X0 set to $C1FF - Upper 3 bits are not 0
MOVE.W XO0,LC ; Info in upper 3 bits not lost

ANDC #S1FFF,LC ; <=== Clear upper 3 bits of LC reg ***x*xxx
MOVEU.W LC,N ; N loaded with S$SO1FF

Now on both architectures, the value loaded into N is $01FF. This technique can be used for both rREP and
Do loops.

5.9 Numeric Target References

The DSP56800 assembler accepts the use of numeric values for targets instead of the traditional labelsin
change-of-flow instructions (Jcc, JMp, JSR, BCC, BRA, BRCLR, BRSET and DO). However, the
DSP56800E assembler can only accept targets defined as traditional 1abels, and rejects all numeric
referencesin change-of-flow instructions. Thisis because of the many factorsthat can lead to code growth
(see Section 5.4 on page 5-4), particularly the insertion of NoPs to remove pipeline dependencies.

These cases and examples are as follows:

e <Jcc, JMP, JSR> <Numeric Absolute Address>

— JMP  $2000 —can't rely on numerical absolute target
— JSR  AbsValue —where Absvalue is defined as anumeric value
e <Bcc, BRA> <Numeric Relative Offsets>
— Bne  *-7 —can't rely on numerical offset
— Beqg  $C100 —can't rely on absolute target
— BRA  *+Value —can't rely on numerical offset
e <BRCLR, BRSET> #MASK8, <source>, <Numeric Relative Offset>
— BRSET #001F,A,*-10  —can't rely on numerical offset
e DO <source>, <Numeric Absolute Address>
— DO #3,$1000 —the body of the loop may have grown

5-10 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Hardware Loop Restrictions

Another compatibility issue can arise when a gsr instruction is executed, even when a proper label is used.
When the target of aJgsr isadifferent program address than in the original code, the return address will
aso be different. This can lead to a compatibility problem in the unusual case where the return addressis
used (or examined), and the exact value is expected based on the original location of the Jsr instruction.

5.10 Hardware Loop Restrictions

Hardware loops can be implemented in the DSP56800 architecture with two instructions, REp and Do. The
following sections illustrate the ways in which hardware loops are affected during porting.

5.10.1 Restrictions Common to DO and REP

» Using the LC register asthe loop count is not allowed. The DSP56800E assembler remaps the DO
instruction aDOSL C loop. The user must manually map the REP to aDOSL C and insert the target
(last address) label. Note that the REP instruction is not interruptible, while DOSL Cisinterruptible.
A NoP instruction can be inserted in the loop body to compl ete the 2-word minimum regquirement
of the posL.c instruction.

» UsingtheLA register astheloop count isnot allowed. Thiscaseis not supported in the DSP56800E
architecture and an error is generated.

» Using aregister operand as the loop count with an unsigned value greater than $1FFF resultsin a
different value loaded to the L C register in the DSP56800E architecture because the LC isregister
16 bits, whereasin the DSP56800 it is 13-bits. (Refer to section Section 5.8 on page 5-10 for more
information.)

» Using an extension register (A2 or B2) astheloop count with a negative value resultsin adifferent
value loaded to the L C register in the DSP56800E architecture because after the 4 bitsare sign
extended to 16-bitsand loaded tothe L C, only 13-bitsare used in the DSP56800. | n the DSP56800E
architecture, no truncation is performed.

5.10.2 Restrictions Specific To REP

* Only single word instruction can follow the REP instruction

» Accessing the LC register isnot permitted inside arepeat loop. A DO or DOSLC loop must be used
instead.

* Writing to the MO1 register is not permitted inside a repeat loop.
* TheENDDO instruction is not permitted inside a repeat 1oop.

* A 1-word, 3-operand instruction in which a portion of the destination register isaso used asa
source register is not allowed inside a repeat loop.

The rEP instruction is affected when it is followed by an instruction that exhibits growth in opcode. The
REP instruction can only be followed by one-word instructions. Section 5.4 on page 54 lists al
instructions that generate code growth. Some of these instructions can be assembled with awarning and
others are rejected.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-11



P

~ompatibility Issues

» Thefollowing instructions are assembled with awarning and axop isinserted in the body of the

loop:

— TSTW X: (R2+xx)

— MOVE X: (R2+xx) , 8-HHHH
— MOVE 8-HHHH, X: (R2+XX)
— MOVE X: (SP-xx),F1

— MOVE F,X: (SP-xx)

— MOVE #xx, R

— MOVE #xx,F1

» Thefollowing instructions are rejected with an error because the sequence cannot not be assembled
using a REP instruction. These cases are considered unusual.

— ADD X:aa, FDD
— SUB X:aa, FDD
— CMP X:aa, FDD
— DECW X:aa

— INCW X:aa

— LEA (R2+xx%)

5.10.3 Restrictions Specific To The DO Instruction

» Accessesto SR, OMR and LC registers are not permitted in the last address, LA, and LA-1 of the
DO loop.

»  Computation of the condition codes for ENDDO is different between the two architectures. In the
DSP56800E, condition codes are not modified and in the DSP56800, N, Z, V and C are updated.

»  Specification of aregister asthe loop count with value zero, will execute the loop 213 timesin the
DSP56800. In the DSP56800E, execution beginswith the instruction immediately after the body of
the loop.

* On nested loops, reading either LA or LC register after the inner loop

5.11 Differences when Saturation is Enabled

There is a difference in the behavior between the two architectures when saturation is enabled (the SA bit
in the OMR is set). The two architectures operate identically when the SA bit is not set.

Saturation can occur on the DSP56800 for the following instructions when SA bit was set:

e ADC
e SBC
e DIV

e IMPY1l6 (Or IMPY)

5-12 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Differences when Saturation is Enabled

On DSP56800E, these instructions do not saturate their results even if SA is set.

NOTE:

The DSP56824 manual statesthat saturation isnot enabled for the IMPY16
instruction. The chip, however, does have saturation enabled for this
instruction.

For DSP56800 applications where SA is set, the saturating nature of Abc, sB¢, and DIV can be achieved on
the DSP56800E as shown in Code Example 5-12, 13, and 14 respectively.

Code Example 5-12. Emulating Saturation with ADC Instruction

ADC Y,F ; ADC performed ignoring SA on 56800E
BRCLR #50010, SR, OVR ; check if SA == 1
SAT F ; saturate if SA == 1
OVR
Code Example 5-13. Emulating Saturation with SBC Instruction
SBC Y,F ; SBC performed ignoring SA on 56800E
BRCLR #%$0010, SR, OVR ; check if SA == 1
SAT F ; saturate if SA ==
OVR
Code Example 5-14. Emulating Saturation with DIV Instruction
DIV YO0, F ; DIV performed ignoring SA on 56800E
BRCLR #50010, SR, OVR ; check if SA ==
SAT F ; saturate if SA ==
OVR

Note that these cases are not exact emulations because condition codes are set differently when saturation
truly does occur in any of the above sequences. Another case which cannot be exactly emulated is
illustrated in Code Example 5-15.

Code Example 5-15. Difficult Case—Repeat Looping with SA set

;Difficult DSP56800 Code Sequence (assumes SA is set)
REP #3 ; Repeat next instruction 3 times
DIV X0,A ; performed ignoring SA on DSP56800E

Exact replication of DSP56800 operation requires that a SAT instruction is executed immediately after
each DIV instruction. Thisis not possible, however, because REP can only be performed on asingle
instruction, not on apair of instructions. A hardware po loop isrequired instead. Thisisalso trueif an Abc
or sBC instruction is used within arepeat loop.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-13



P

~ompatibility Issues

5.12 Computing the Zero Condition Code
Thereisadifference in the manner in which the zero condition code bit, Z, is cal culated when the CC bitin
the OMR (called the “CM” bit in the DSP56800E) is set for the following instructions:

e TINCW (or INC)

e DECW (or DEC)

The difference occurs when the CC bit is set and the operand is an accumulator. On the DSP56800, the Z
bit is calculated using the lowest 32 bits of the accumulator. On DSP56800E, the Z bit is calculated using
the 16 bits in the MSP portion of the accumulator, bits[31:16].

NOTE:

Thisisonly isanissue for DSP56800 applications where the CC bit is set.
The two architectures operate identically when the CC bit is cleared.

5.13 Computing the Carry Condition Code

There isadifference in the manner in which the carry condition code bit, C, is calculated for the following
instructions:

e ADD <reg>, X:XXXX
e ADD <reg>,X: (SP-xx)

The difference occurs in the bit location where the carry is detected. On the DSP56800, the C bit is
caculated from bit 35 of the result. On DSP56800E, the C bit is calculated from bit 31 of the result.

This difference applies regardless of the values of the OMR’s SA or CM hits.

5.14 New Requirements for X/P Mode

A specific set of instructions must be executed both to enter X/P mode (i.e., execute instructions from data
memory rather than program memory) and exit X/P mode (return to executing instructions from program
memory.

In the code sequences presented in this section, it is very important that the instruction segment between
setting or clearing the XP bit and the gmp instruction should not be single-stepped due to the sensitive
nature of these operations. (These code sequences also appear in the “Program Controller” chapter in the
DSP56800E Core Reference Manual.)

5.14.1 Entering X/P Mode

To enter X/P mode, the following sequence of operations must be performed:

1. Download the desired program—including interrupt vectors, interrupt service routines, and
data constants—into data memory.

Disable interrupts in the status register (SR).
Set the XP bit in the operating mode register (OMR).
Jump to the first instruction in data memory.

a b w DN

Re-enable interrupts from code in data memory (if required).

5-14 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



New Requirements for X/P Mode

The code sequence to implement these steps varies slightly depending on the size of the target address
specified in the gmp to instructions in data memory. Code Example 5-16 shows the code for a 19-bit target
address.

Code Example 5-16. Entering Data-Memory Execution Mode, 19-Bit Target Address

BEGIN X EQU $1000 ; Beginning address of program in data memory

ORG P: ; (indicates code located in program memory)

; Exact Sequence for Steps 3 through 5

BFSET #$0300, SR ; Disable Interrupts

NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
BFSET #$S0080,0MR ; Enable data memory instruction fetches
NOP ; (wait for mode to switch)

NOP ; (wait for mode to switch)

; NOTE: Must Use Assembler Forcing Operator - Forces 19-bit Address
JMP >XMEM_TARGET ; Jump to 1lst instruction in data memory
NOP ; (fetched but not executed)

NOP ; (fetched but not executed)
NOP ; (fetched but not executed)
ORG P:BEGIN_ X, X:BEGIN X ; (both must be the same value)

XMEM_ TARGET
; Remember to RE-Enable Interrupts

If a21-bit target addressis specified, the code sequence differs dightly as follows:

* Onenop instruction only (rather than two) must beinserted between the BFSET instruction that sets
the XP bit and the Jmp instruction

* The*>>" assembler forcing operator (rather than *>") is specified in the gvp instruction.

Regular interrupt processing is supported in data-memory execution mode. The interrupt vector table and
al interrupt service routines must be copied to data memory because program memory is completely
disabled when data-memory execution mode is active. It is only necessary to provide the particular
interrupt vectors and service routines for interrupts that actually occur during data memory execution.

During the transition in and out of data-memory execution mode, interrupts must be disabled.
The following restrictions apply when programs are executed from data memory:
* Instructions that perform two reads from data memory are not permitted.
* Instructions that access program memory are not permitted.
* Interrupts must be disabled when data-memory execution mode is entered or exited.
Instructions that perform one parallel move operation are allowed in this mode.
NOTE:

The code that is used to enter data-memory execution mode must contain
the exact number of Nop instructions shown in Code Example 5-16. There
can be no jumps or branches to instructions within this sequence.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-15



P

~ompatibility Issues

5.14.2 Exiting X/P Mode

To exit X/P mode and switch back to executing instructions program memory, the following sequence of
operations must be performed:

1. Disableinterruptsin the status register.

2. Clear the XP hit in the operating mode register.

3. Jump to the return location in the program memory space.

4. Re-enableinterrupts from code that islocated in program memory space.

For a 19-hit target address, the code sequence given in Code Example 5-17 must be used to exit
data-memory execution mode. For a 21-bit target address, the code differsin similar fashion to entering
X/P mode—a single Nop instructions must follow the BFCLR instruction, and the ‘>>" assembler forcing
operator must be used in the amp instruction.

Code Example 5-17. Exiting Data-Memory Execution Mode, 19-Bit Target Address

BEGIN X EQU $1000 ; Beginning address of program in data memory

ORG P:BEGIN X,X:BEGIN X ; (code located in data memory)

; Exact Sequence for Steps 1 through 3

BFSET #$0300, SR ; Disable Interrupts

NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
NOP ; (wait for interrupts to be disabled)
BFCLR #$0080,0MR ; Disable data memory instruction fetches
NOP ; (wait for mode to switch)

NOP ; (wait for mode to switch)

; NOTE: Must Use Assembler Forcing Operator - Forces 19-bit Address
JMP >PMEM TARGET ; Jump to 1lst instruction in program memory
NOP ; (fetched but not executed)

NOP ; (fetched but not executed)
NOP ; (fetched but not executed)
ORG P:; (indicates code located in program memory)

PMEM_TARGET
; Remember to RE-Enable Interrupts

NOTE:

The code that is used to exit data-memory execution mode must contain
the exact number of Nop instructionsthat is shown in Code Example 5-17.
There can be no jumps or branches to instructions within this sequence.

5-16 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Unsupported DSP56800 Instruction Syntax

5.15 Unsupported DSP56800 Instruction Syntax

An undocumented and unsupported syntax for the LEA instruction is accepted by the DSP56800 assembler,
but rejected by the DSP56800E assembler with an error message indicating that the DSP56800E only
accepts supported DSP56800 syntax. In this syntax, an effective addressis specified, followed by acomma
and a destination register that is the same as the effective address. Examples of this unsupported syntax are
listed in Code Example 5-18.

Code Example 5-18. Unsupported DSP56800 LEA Instruction Syntax

LEA (R2) +,R2 ; effective addr and dest are the same reg
LEA (R1)-,R1 ; effective addr and dest are the same reg
LEA (RO) +N, RO ; effective addr and dest are the same reg
LEA (R2+7) ,R2 ; effective addr and dest are the same reg
LEA (R3+987) ,R3 ; effective addr and dest are the same reg

These same instructions are rewritten with the supported and correct DSP56800 instruction syntax in
Code Example 5-19. The DSP56800E assembler accepts these corrected versions.

Code Example 5-19. Correct DSP56800 LEA Instruction Syntax

LEA (R2) + ; no destination register specified
LEA (R1) - ; no destination register specified
LEA (RO) +N ; no destination register specified
LEA (R2+7) ; no destination register specified
LEA (R3+987) ; no destination register specified

5.16 Requirements on Context Save/Restore

NOTE:

This section only applies to code that mixes 56800 and 56800E
instructions and makes use of the MOVE . L instruction to store or retrieve
values to or from the stack.

Context switching can occur at the start of an interrupt service routine or when afunctionis called. In the
DSP56800 architecture, if the SR or OMR register plus the hardware stack must be saved, the SR or OMR
must be saved before the HWS is saved. This requirement is necessary because any value written to the
hardware stack, either through apo (or DosLC) instruction or aMOVE instruction, causes the core to
preserve the looping state, which means that the SR’s LF bit is copied to the OMR’s NL bit, and the LF bit
isthen set. This sequenceis prescribed in the implementation of hardware loops for both architectures.

Additional resources are introduced in the DSP56800E architecture to support nested loop capability.
When avalue is written to the primary loop counter register, the core writes the original value to the
second loop counter register, LC2. Therefore, LC2 must be saved before L C to guarantee proper
restoration.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-17



~ompatibility Issues

Typicaly, afull context switch isnot required in most applications, but in the DSP56800E architecture the
following rules must always be followed:

e For Full or Partial Context Save:

— If theMoVE. L instruction is used to save registers in the stack, the stack pointer SP, must be
odd-aligned. For example, if SPis $1001, the lower 16-bits of the pointed element residesin
address $1000, and the upper 16-bits residesin address $1001.

— If LC must be preserved, LC2 must be saved before LC is saved.

— |If the HWS must be preserved, the SR and OMR registers must be saved before the HWS is
saved.

— If the hardware LIFO stack must be preserved, the HWS must be saved twice in order to save
HWSO followed by HWSL.

— When the complete accumulator is saved with MOVE . 1, the following sequence must be

followed:
MOVE.L A2,X:(SP)+ ; Save 4-bit extension register A2
MOVE.L Al0,X:(SP)+ ; Save 32-bit Al0

* In Context Restore:
— When LC ispreserved, LC2 must be restored after LC is restored.
— If HWSiis preserved, the SR and OMR registers must be restored after HWS is restored.
— If the hardware LIFO stack is preserved, the HWS must be restored twice in order to restore

HWS0 and HWSL.
— When the complete accumulator is saved with MOVE.L, the following sequence must be
followed:
MOVE.L X:(SP)-,A ;Load 32 bits Al0 with sign extension
MOVE.L X: (SP)-,A2 ;Load 4-bit extension register A2

Code Example 5-20 and Code Example 5-21 present code for full context save and full context restore
respectively in the DPS56800E architecture.

5-18 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Requirements on Context Save/Restore

Code Example 5-20. Full Context Save for DSP56800E

; Exact Sequence for Full Context Save

FContext FullSave:

ADDA

MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.
MOVE.

[ o e o o o O e o o o e o o o o e o o o e e o e L o

; Body

#2,SP

7

of called ISR

Point to Empty Location

LC2 must be saved before LC

OMR must be saved before HWS

SR must be saved before HWS

HWSO0 is saved and HWS1 is written to HWSO
HWS1 is saved

(or subroutine)

Freescale Semiconductor

DSP56800 to DSP56800E Porting Guide

5-19



~ompatibility Issues

Code Example 5-21. Full Context Restore for DSP56800E

; Exact Sequence for Full Context Restore

FContext FullRestore:

MOVE.L X:(SP)-,Y ;

MOVE.L X: (SP)-,X0 ;

MOVE.L X:(SP)-,HWS ; Value written to HWSO

MOVE.L X: (SP)-,HWS ; HWSO written to HWS1l, HWSO restored
MOVE.L X:(SP)-,D ;

MOVE.L X: (SP)-,N3 ;

MOVE.L X: (SP)-,D2 ;

MOVE.L X:(Sp)-,C ;

MOVE.L X: (SP)-,M01 ;

MOVE.L X: (SP)-,C2 ;

MOVE.L X:(SP)-,B ;

MOVE.L X:(SP)-,SR ; SR restored after restoring HWS
MOVE.L X: (SP)-,B2 ;

MOVE.L X:(SP)-,A ;

MOVE.L X:(SP)-,0OMR ; OMR restored after restoring HWS
MOVE.L X: (SP)-,A2 ;

MOVE.L X: (SP)-,LC ;

MOVE.L X: (SP)-,LC2 ;

MOVE.L X: (SP)-,LA2 ;

MOVE.L X:(SP)-,LA ;

MOVE.L X: (SP)-,R5 ;

MOVE.L X:(SP)-,R4 ;

MOVE.L X:(SP)-,R3 ;

MOVE.L X: (SP)-,R2 ;

MOVE.L X:(SP)-,R1 ;

MOVE.L X: (SP)-,RO ;

MOVE.L X: (SP)-,N ; SP points to last location used

; before context save

; End Of FullRestore

5.17 Legacy Programs Larger than 64K

Legacy programs that grow beyond the 64K word boundary are not supported by the CodeWarrior
assembler. In order to port these programs, the user must transl ate the application to the new instruction set
and re-assembl e the new file without the use of the legacy switch.

5-20 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Compatibility Issues at the Chip Level

5.18 Compatibility Issues at the Chip Level

There are other issues that can also affect compatibility which appear at the chip level. These are related to
the Interrupt Priority Levels, where the DSP56800E has 2 extralevels in addition to the LP level, the
lowest priority level. Compatibility issues at the Chip Level will also appear in the Interrupt V ector
Locations and Peripheral Space Locations which are controlled by the chip implementations. The
DSP56800 restricted simultaneous accesses from the XAB2 nd XDB2 buses when such accesses were
done to off-chip data memory. There is no such restriction in the new DSP56800E architecture.

5.18.1 Interrupt Priority Level

The number of interrupt priority levels has increased from two levels on the DSP56800 to four levels on
the DSP56800E. To guarantee exact compatibility between the two architectures, there is an exact
mapping between the DSP56800’ s priority levels to those on DSP56800E:

» DSP56800 Priority Level 0 mapsto Level 1 on DSP56800E
» DSP56800 Priority Level 1 mapsto Level 3 on DSP56800E
The second mapping from level 1 to level 3 isanon-maskable priority level on both architectures.

Theinterrupt mask bits11 and 10 (SR bits 9 and 8) reflect the current priority level of the DSC core and
indicate the interrupt priority level (IPL) required for an interrupt source to interrupt the processor.
Table 5-1 illustrates the mapping between the DSP56800 and the DSP56800E:

Table 5-1. Mapping the DSP56800 Interrupt Levels to the DSP56800E

DSP56800 Corresponding
1 10 Interrupt Priority DSP56800E
Levels Interrupt Priority Levels

SWILP instr. (maskable)

0 0 (Reserved)
Level 0 (maskable)
0 1 Level 0 (maskable) Level 1 (maskable)
1 0 (Reserved) Level 2 (maskable)
1 1 Level 1 (nonmaskable) Level 3 (nonmaskable)

NOTE:

In the DSP56800E, the lowest priority level, LP, can only be generated by
the SWILP instruction. The highest priority, level 3 interrupts can only be
generated by the core and are nonmaskable. When an exception or
interrupt is recognized and the current core priority level (CCPL) islower
than the incoming level, the CCPL is automatically updated to be one
higher than the level of the incoming interrupt (except for the case of
SWILP, which does not update the CCPL, or the case of level 3 interrupts,
which leave the priority level at level 3).

Table 5-2 shows which levels of interrupts are accepted and which are masked for the four different
DSP56800E current core priority levels (CCPL).

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-21



P

~ompatibility Issues

Table 5-2. Interrupt Mask Bit Definition
DSP56800 DSP56800E
1 10 CCPL Exceptions Exceptions Exceptions Exceptions
Permitted Masked Permitted Masked
0 0 0 (Reserved) (Reserved) IPLO, 1,2, 3and None
SWILP

0 1 1 IPLO, 1 None IPL1,2,3 IPL 0 and SWILP

1 0 2 (Reserved) (Reserved) IPL2,3 IPLO, 1 and
SWILP

1 1 3 IPL 1 IPL O IPL 3 IPLO, 1,2 and
SWILP

5.18.2 Interrupt Vector Locations

The DSP56800E architecture does not restrict the location of interrupt vectors. If exact compatibility is
required at the chip level, the interrupt vectors should be in the exact same locations as for DSP56800 chip
implementations.

5.18.3 Peripheral Space Locations

The DSP56800E architecture does not restrict the locations of on-chip peripherals memory mapped into
datamemory. If exact compatibility isrequired at the chip level, these registers should be in the exact same
locations as for DSP56800 chip implementations.

5.18.4 Dual Read Instruction

The DSP56800E core does not restrict the memory access performed on the XAB2 and XDB2 buses, i.e.,
the memory accessed performed as the second read in a dual read instruction. Thisis defined by the
implementation of the particular DSP56800E core-based chip.

The DSP56800 architecture specifies that the second read in a Dual Parallel Read instruction is always
done to on-chip memory, and can never access on-chip peripherals or off-chip data memory.

A potential compatibility issue can occur when an address outside the data memory range is accessed using
the XAB2/ XDB2 buses. If compatibility in this areais required for a specific DSP56800E-based chip,
that chip should be designed with the DSP56800 restrictions—no accesses are permitted to on-chip
peripherals or off-chip data memory. Thisis not an issue for DSP56800 applications where the address of a
second read of a Dual Read instruction always accesses on-chip data memory.

5.18.5 The OMR EX Bit

The DSP56800E core does not define the precise operation of the EX bit in the OMR. The exact behavior
of the EX bit for a given device depends on the device implementation. Consult the appropriate device's
user’s manual for more information on the EX bit.

The DSP56800 architecture usesthe EX bit to remap on-chip datamemory to off-chip data memory except
for locations accessed with the X:<<pp addressing mode.

5-22 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Delay on Interrupt Enable and Disable

A potential compatibility issue can occur if a DSP56800E chip does not configure the EX bit to remap data
memory and the original DSP56800 application usesthe EX bit. If compatibility inthisareaisrequired for
a specific DSP56800E-based chip, that chip should be designed with DSP56800 behavior—data memory
can be remapped to off-chip using the EX bit.

5.19 Delay on Interrupt Enable and Disable

5.19.1 Enabling Interrupts — CCPL set to “0”

It is always recommended in both architectures that MOVE instructions not be used to change the Status
Register’s11 and 10 bits. Instead, interrupts are typically enabled using the BFCLR instruction. In
Section 5.18.1 on page 5-21, it was shown that IPL O (the lowest priority level in the DSP56800
architecture), is mapped to IPL 1 in the DSP56800E architecture. Interrupt enabling in the DSP56800 is
performed by setting { 11,10} in the SR register to {0,1}, (interrupt mask bit 10 was required to always be
written with a“1” to ensure future compatibility with future family members). Note that this would
correspond to IPL 1 in the DSP56800E architecture. As shown below, IPL 0 is programmed in the
DSP56800E architecture by setting { 11,10} in the SR register to { 0,0}, i.e. CCPL to “0”.

Code Example 5-22. Enabling Interrupts for DSP56800E - Setting CCPL to “0”

BFCLR #$0300, SR ; Clear I1, IO bits in SR (bits 9,8) - To IPL O
; DSP56800E: all interrupt levels:
; ---- IPL 0, 1, 2, 3 and SWILP are permitted

Code Example 5-23. Enabling Interrupts for DSP56800

BFSET #30300,SR ; Modify I1, I0 bits in SR (bits 9,8)
BFCLR #$0200, SR ; I0 must be 1 (bit 8) - To IPL O

; DSP56800: all interrupt levels:

; ---- IPL 0 and 1 are permitted

In the DSP56800E architecture, there is a delay which occurs between the execution of the BFCLR
instruction and the point where the interrupt arbiter sees the CCPL with the value “0”. Instructions in the
following six clock cycles (any hardware stall cycles are also counted) will be executed before any pending
interrupts; after the new CCPL isrecognized, the interrupt is serviced. If the 6th clock cycle occurs during
amulti-cycle instruction, interrupts can only be serviced after the completion of thisinstruction. Thisis
demonstrated in Code Example 5-24. In the DSP56800, the delay istypically one or two cycles.

Code Example 5-24. Demonstrating Delay after Enabling Interrupts

; SWI #1 interrupt will remain pending until 6 cycles after enabling

BFSET #$0300,SR ; Interrupts initially disabled

NOP ;

NOP ;

SWI #1 ; Generate Interrupt Request at Level 1

; -- not yet taken because interrupts disabled

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 5-23



P

~ompatibility Issues

; -- SWI #1 interrupt remains pending

NOP H

NOP ;

NOP ;

; (other instructions)

BFCLR #$0300, SR ; Enable Interrupts

INC.W A ; -> 1lst one cycle instruction
INC.W A ; -> 2nd one cycle instruction
INC.W A ; -> 3rd one cycle instruction
INC.W A ; -> 4th one cycle instruction
INC.W A ; -> 5th one cycle instruction

W A

; -> 6th instruction, or any number of cycles
; SWI #1 Interrupt Taken Here

; -> 7th instruction (executed after

; returning from interrupt handler)

>
n
[
w

5.19.2 Disabling Interrupts — CCPL set to “3”

Interrupts are typically enabled using the BFSET instruction as shown below. In both architectures, this can
be achieved with the single instruction, BFSET. In the DSP56800E, setting CCPL to “3” masks all Level
0, 1, 2 and L P exceptions. Disabling interrupts can be achieved in both architectures by setting {11,10} in
the SR register to {1,1} .

Code Example 5-25. Disabling Interrupts - Setting CCPL to “3”

BFSET #$0300, SR ; Set I1, IO bits in SR (bits 9,8)
; DSP56800E: only IPL 3 (non-maskable) permitted
; DSP56800: only IPL 1 (non-maskable) permitted

In the DSP56800E architecture, there is a delay which occurs between the execution of the BFSET
instruction and the point where the interrupt arbiter masks incoming interrupts. Even though interrupts are
disabled using BFSET, interrupts can still be taken after any instruction completing execution anytime
during the next five clock cycles (any hardware stall cycles are also counted) following the BFSET
instruction. Instructions beginning execution in the 6th clock cycle and beyond will form the beginning of
the non-interruptible sequence. Thisis demonstrated in Code Example 5-26. In the DSP56800, the delay is
typically one or two cycles.

Code Example 5-26. Demonstrating Delay after Disabling Interrupts

BFSET #$0300,SR ; Disable interrupts

NOP ; -> 1lst clock cycle - can still be interrupted
NOP ; -> 2nd clock cycle - can still be interrupted
NOP ; -> 3rd clock cycle - can still be interrupted
NOP ; -> 4th clock cycle - can still be interrupted
NOP ; -> 5th clock cycle - can still be interrupted

;o ----- Instructions after this point form a non-interruptible sequence

INC.W A ; -> lst NON-INTERRUPTIBLE instruction
INC.W A ; -> 2nd NON-INTERRUPTIBLE instruction
INC.W A ; -> 3rd NON-INTERRUPTIBLE instruction

; (other instructions)

5-24 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Chapter 6
Optimizing Legacy Code

Thetwo primary criteriafor optimizing code are codes size and cycle count. In the DSP56800 architecture,
each instruction cycle requires two clock cycles. In the DSP56800E, thisis reduced by half—each
instruction cycle takes only one clock cycle. In general, porting an assembly program from the DSP56800
to the DSP56800E reduces the cycle count of the program. Direct translation of an assembly program does
not generate immediate code reduction.

Several features which differentiate the DSP56800E from the DSP56800 can be used to reduce code size,
including

» Highleve abstraction in some new instructions, e.g. ASL16, ASR16 and arithmetic parallel
instructions

o A full set of datatypes—nbyte, 16-bit words and 32-bit long words

* Moreregistersin theregister file for the AGU and DALU blocks

* A more extensive instruction set, with added flexibility for each datatype

* 19 new AGU instructions that can operate directly on the AGU register file
* A larger set of arithmetic parallel instructions, with inverted input on MAC

The most measurabl e effect on codesize and cycle count can be generated from adapting a given agorithm
to the new architecture. However, several simple optimizations can easily be implemented without having
to change a program or algorithm. The following list of optimizations, though not comprehensive, offers
several methods that are easy to implement.

1. Usethetwo new C and D accumulatorsto perform spilling. The TFr instruction can copy
one accumulator to another with saturation when the SA bit in the OMR is set.

2. Take advantage of the larger set of AGU registers, RO—R5 and N. N can also be used asa
pointer register.
Example MOVE.W X0,X: (N)+

3. Save an accumulator with a single long move rather than two 16-bit writes.
Example MovE.L A10,X:(RO)+ Wherero iseven aigned.

All long moves must conform with alignment rules specified in the DSP56800E Core Reference
Manual. These rulesinclude the following:

— Thelower 16-bits of along is aways stored in an even location.
— All pointers (except SP) must be even aligned when used to point to 32-bit locations.

— When the stack is used to store long data types, SP must always contain the odd value of the
32-bit address, i.e., point to the upper 16-hits of the long word.

4. Usetheasrie instruction to cast integersto longs.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide 6-1



Jptimizing Legacy Code

6-2

5.

10.

11.

Usethe ast1s instruction to cast longsto integers.

Do not use DALU instructions to perform AGU arithmetic. There are 19 additional
instructions in the 56800E that greatly facilitate address computations and compares.

Usetheinstruction TsT.w <accs> toclear thecarry (C) bit inthe SR. Thisinstruction
clears the C bit with no pipeline dependencies.

The DSP56800E architecture contains several delay instructions with 2 or 3 delay slots.
These slots can be replaced with useful instructions that perform branches, function
returns and interrupt returns, including BrRAD, JMPD, RTSD, RTID. FOr a comprehensive set
of rules governing the use of delay dots, refer to the DSP56800E Core Reference Manual.

Use the shadow registers when fast interrupt processing is not used.

Take advantage of the expanded set of arithmetic parallel instructions available in the
instruction set.

Hardware po loops can be nested up to two deep, accelerating complex algorithms. This
avoids having to save the LC and LA registers before entering the inner loop.

DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Appendix A
Translation Tables

This appendix contains a complete set of tables showing how each DSP56800 instruction and instruction
aliasis mapped to a counterpart in the DSP56800E instruction set, as well as tables of legacy instructions
and aliases. These detailed tables include every addressing mode available on the DSP56800. The
CodeWarrior IDE switch to accept legacy instructions must be set in order for the assembler to recognize
DSP56800 syntax.

First, a description of the register field notation used in the tables is presented. Thisisfollowed by the
instruction mapping tables, the summary of Legacy instructions and instruction aliases.

A.1 Register Field Notation

The register field notations for the DSP56800 and DSP56800E architectures are very similar. This section
presents both notations in order to correctly interpret the mapping, legacy, and alias tables. The tables for
the DSP56800E presented here are a subset of those defined in the DSP56800E Core Reference Manual.

In some cases, the notation used to specify an accumulator determines whether or not saturation is enabled
when the accumulator is being used as a source in amove or parallel move instruction. Thisis explained
more fully in the sectionsin the DSP56800E Cor e Reference Manual titled “Data Limiter” and “ Accessing
the Accumulator Registers.”

Several kinds of register sets are used in the instruction summary tables. These sets are categorized for
clarity asfollows:

»  General purpose writes and reads

 AGU registers

 DALU registers

» Additional register setsfor Move instructions

A.1.1 DSP56800 Register Field Notation

Table A-1 shows the register sets available in the DSP56800 for the most important move instructions.
Sometimes aregister field is broken into two different fields, one where the register is used as a source
(src), and the other where it is used as a destination (dst). Thisisimportant because different notations are
used to store an accumulator value depending on saturation. In addition, the register fieldsin Table A-2 are
used in Move instructions as sources and destinations within the AGU.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide A-1



Table A-1. DSP56800 Register Fields for General Purpose Move Instructions

Register Field

Registers in this Field

Comments

8-HHHH

A, B, A1, B1
Y1, YO, X0
RO-R3, N

Two ways to access the accumulator registers. All Data ALU and
AGU registers are used as sources (or destinations) in MOVE
instructions.

Table A-2 showstheregister set available for use as pointers in address register indirect addressing modes.
The most common fields used in this table are Rn and RRR. This table also shows the notation used for
AGU registersin AGU arithmetic operations.

Table A-2. DSP56800 Address Generation Unit (AGU) Registers

Register Field | Registers in this Field Comments
Rk R0O-R3 Five AGU Registers available as pointers for addressing and
SP address calculations.
Rj RO, R1, R2, R3 Four Pointer Registers available as pointers for addressing. SP is
excluded from this group.
N N Offset Register available for “Indexed by Offset” addressing mode
and post-update.
MO1 MO1 Modifier register. Specifies whether linear or modulo arithmetic
when a new address is calculated on RO and R1.

Table A-3 shows the register set available for use in Data ALU arithmetic operations. The most common
field used in thistableis FDD.

Table A-3. DSP56800 Data ALU Registers
Register Field | Registers in this Field Comments
FDD A B Five data ALU registers—two 36-bit accumulators and three 16-bit
Y1, YO, X0 data registers accessible during data ALU operations
Contains the contents of the F and DD register fields.
F1DD A1, B1 Two 16-bit MSP portions of the accumulators, three 16-bit data
Y1, YO, X0 registers.
Contains the contents of the F1 and DD register fields.
DD Y1, YO, X0 Three 16-bit data registers
F A B Two 36-bit accumulators accessible during parallel move instruc-
tions and some data ALU operations.
F1 A1, B1 The 16-bit MSP portion of two accumulators accessible as source
operands.
Fj A2, A1, AO The 4-bit and 16-bit portions of the two accumulators
B2, B1, BO
~F B, A Specifies that the source operand is one of the two 36-bit accumu-
lators and is not the same as the destination accumulator.
If the destination register is the A accumulator,
the source ~F is the B accumulator.
If the destination register is the B accumulator,
the source ~F is the A accumulator.

DSP56800 to DSP56800E Porting Guide

Freescale Semiconductor



Table A-4 shows additional register fields definitions available for move and other classes of instructions.

Table A-4. DSP56800 Additional Register Fields for Move Instructions

Register Field | Registers in this Field Comments
8-DDDDD A, A2, A1, AO This table contains all of the DSP56800 CPU registers.
B, B2, B1, BO
It contains the contents of the 8-HHHHH and 8-SSSS register
Y1, Y0, X0 fields.
RO, R1, R2, R3 This is a subset of the complete set of register in the DSP56800E,
N, SP designated as DDDDD.
MO1
LA, LC, HWS
OMR, SR
8-HHHHH A, A2, A1, AO This set designates registers which are written with signed values
B, B2, B1, BO when written with word values.
Y1, YO, X0 This set is a subset of those registers designated as HHHHH is the
DSP56800E.

This table lists the CPU registers excluding the registers in the
8-SSSSfield: RO-R3, N, M01, SP, LA, LC, OMR, SR, HWS.

The registers in this field and 8-SSSS combine to make the
8-DDDDD register field.

8-SSSS RO, R1, R2, R3 This set designates registers which are written with unsigned val-
N, SP ues when written with word values.
MO1
This set is a subset of those registers designated as SSSS in the
LA, LC, HWS DSP56800E.
OMR, SR

The registers in this field and 8-HHHHH combine to make the
8-DDDDD register field.

A.1.2 DSP56800E Register Field Notation

Thetablesin this sections present the notation used to specify legal DSP56800E registers. These tables
show only the subset of the DSP56800E instructions necessary to identify legacy mappings. For the
complete notation, refer to the DSP56800E Core Reference Manual.

Table A-5 shows the register fields available for the most important move instructions. |n some cases the
supported set of registers varies depending on whether they are the source or destination of an operation.
Register fields used in conjunction with AGU move instructions are listed in Table A-6.

Table A-5. DSP56800E Register Fields for General-Purpose Writes and Reads

Register Field Reglste_rs in This Comments
Field
HHH A B C,D Seven data ALU registers—four 16-bit MSP portions of the accumula-
(destination) Y tors and three 16-bit data registers used as destination registers. Note
Y1, YO, X0 the usage of A, B, C, and D. Writing word data to the 32-bit Y register
clears the YO portion.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide A-3



Table A-5. DSP56800E Register Fields for General-Purpose Writes and Reads (Continued)

Register Field Reglste_rs in This Comments
Field
HHHH A1, B1, C1, D1 Seven data ALU and seven AGU registers used as source registers.
(source) Y1, YO, X0 Note the usage of Al, B1, C1, and D1.
RO-R5, N
HHHH A B,C,D Seven data ALU and seven AGU registers used as destination regis-
(destination) Y ters. Note the usage of A, B, C, and D. Writing word data to the 32-bit
Y1, YO, X0 Y register clears the YO portion.
RO-R5, N

Table A-6 shows the register sets available for use as pointers in address-register-indirect addressing
modes. The most commonly used fields in thistable are Rn and RRR. This table also shows the notation
used for AGU registersin AGU arithmetic operations.

Table A-6. DSP56800E Address Generation Unit (AGU) Registers

Register Registers in This
Field Field Comments
Rn RO-R5 Eight AGU registers available as pointers for addressing and address
N calculations
SP
RRR RO-R5 Seven AGU registers available as pointers for addressing and as
N sources and destinations for move instructions
Rj RO, R1, R2, R3 Four pointer registers available as pointers for addressing
N3 N3 One offset register available only for post-update in the second access
of dual parallel read instructions
MO1 MO1 Address modifier register
FIRA FIRA Fast interrupt return register

Table A-7 showstheregister setsavailablefor usein data ALU arithmetic operations. The most commonly
used fields in this table are EEE and FFF.

Table A-7. DSP56800E Data ALU Registers

Register Registers in This
Field Field Comments
FFF A,B,C,D Eight data ALU registers—four 36-bit accumulators, one 32-bit long register
Y Y, and three 16-bit data registers accessible during data ALU operations.
Y1, YO, X0
FFF1 A1, B1, C1, D1 Seven data ALU registers—four 16-bit MSP portions of the accumulators
Y1, YO, X0 and three 16-bit data registers accessible during data ALU operations.
This field is identical to the HHH (source) field. It is very similar to FFF, but
indicates that the MSP portion of the accumulator is in use. Note the usage
of Al, B1, C1, and D1.
EEE A B C,D Seven data ALU registers—four accumulators and three 16-bit data regis-
Y1, YO, X0 ters accessible during data ALU operations.
This field is similar to FFF but is missing the 32-bit Y register. Used for
instructions where Y is not a useful operand (use Y1 instead).

DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Table A-7.

DSP56800E Data ALU Registers (Continued)

Register Registers in This
Field Field Comments

fff AB C DY Four 36-bit accumulators and one 32-hit long register accessible during
data ALU operations.

FF A B,C D Four 36-bit accumulators accessible during data ALU operations.

DD Y1, YO, X0 Three 16-bit data registers.

FF A, B Two 36-bit accumulators accessible during parallel move instructions and
some data ALU operations.

F1 A1, B1 The 16-bit MSP portion of two accumulators accessible as source oper-
ands in parallel move instructions.

~F B, A Specifies that the source operand is one of the two 36-bit accumulators, A
or B, and is not the same as the destination accumulator. (This register
notation is only used for Tcc in the DSP56800E architecture).
If the destination register is the A accumulator,
the source ~F is the B accumulator.
If the destination register is the B accumulator,
the source ~F is the A accumulator.

Table A-8 shows additional register fields that are available for Move instructions.

Table A-8. DSP56800E Additional Register Fields for Move Instructions

Register Field

Registers in This

Comments

Field
DDDDD A, A2, A1, AO This table lists the CPU registers. It contains the contents of the
B, B2, B1, BO HHHHH and SSSS register fields.
C,C1
D, D1 Y is permitted only as a destination, not as a source.
Y Writing word data to the 32-bit Y register clears the YO portion.
Y1, YO, X0
Note that the C2, CO, D2, and DO registers are not available within this
RO, R1, R2, R3 field. See the dd register field for these registers
R4, R5, N, SP
MO1, N3
LA, LC, HWS
OMR, SR
HHHHH A, A2, A1, AO This set designates registers that are written with signed values when
B, B2, B1, BO written with word values.
C, Ci
D, D1 Y is permitted only as a destination, not as a source register.
Y
Y1, YO, X0 The registers in this field and SSSS combine to make the DDDDD reg-

ister field.

Freescale Semiconductor

DSP56800 to DSP56800E Porting Guide



Table A-8. DSP56800E Additional Register Fields for Move Instructions (Continued)

Register Field

Registers in This

Comments

Field
SSSS RO, R1, R2, R3 This set designates registers that are written with unsigned values
R4, R5, N, SP when written with word values.
MO1, N3
The registers in this field and HHHHH combine to make the DDDDD
LA, LC, HWS register field.
OMR, SR

A.1.3 Immediate Value Notation

Immediate values, including absolute and offset addresses, are presented in the instruction set summary
using the notation shown in Table A-9. These fields are used in “bit manipulation” and “change of flow”

instructions.

Table A-9. Immediate Value Notation

Immediate Value Field Description
<MASK16> 16-bit mask value
<MASK8> 8-bit mask value
<OFFSET18> 18-bit signed PC-relative offset
<OFFSET7> 7-bit signed PC-relative offset
<ABS16> 16-bit absolute address
<ABS19> 19-bit absolute address

A.2 Instruction Mapping Tables
This section provides a complete mapping of the entire instruction set of the DSP56800 into DSP56800E
instructions. The mapping is organized in the following five tables:
» Table A-10 on page A-8—All DSP56800 instructions excluding Tcc, parallel moves, and aliases.
e Table A-11 on page A-21—The Tcc Instruction
e Table A-12 on page A-21—Single parallel move instructions
e Table A-13 on page A-22—Dual paralel read instructions
» Table A-14 on page A-23—Instruction aliases

NOTE:

The mapping tables do not contain new DSP56800E instructions which
were not included in the DSP56800, such asMovE . B and ASLA. Thetables
contain only the subset of DSP56800E instructions required to map from
the DSP56800 architecture. In order for the assembler to recognize the
DSP56800 syntax, the CodeWarrior IDE switch to accept legacy

instructions must be set.

A-6

DSP56800 to DSP56800E Porting Guide

Freescale Semiconductor



In certain instructions the name of the source accumulator changes from A1 (or B1) in the DSP56800 to A
(or B) in the DSP56800E. For example, the aND instructions changes as follows:

e DSP56800 — AND Al, X0
e DSP56800E — AND.W A, X0

Thefollowing is a complete list of instructions in which F1 is mapped to F without changing the behavior
of the operation on the DSP56800E:

e AND F1,DD
e EOR F1,DD
e OR F1,DD
e ADD F1,DD
e SUB F1,DD
e CMP F1,DD

The right-hand column of the mapping tables provides information regarding aspects of the translation to
the DSP56800E architecture. The phrase “ code growth” in this column indicates that the mapped opcode
reguires one additional program word in the new architecture. Thisistruein all cases except the branch
instructions BRSET and BRCLR, where user intervention is required if the target label falls beyond the
signed 7-bit offset representation, in which case the mapping requires two words.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide A-7



Table A-10. Instruction Mapping: DSP56800 to DSP56800E

DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
ABS ABS FFF
ADC Y F ADC Y F
ADD DD FDD ADD FFF FFF F1 as source register
F1 DD maps to F in conversion.
~F F
Y
#XX FDD ADD.W #<0-31> EEE xx: [0,31]
HFXXXX H#XXXX
X:aa or XIXXXX Code growth
X:<aa
XIXXXX  or XIXXXX
X:>XX
X:(SP-xx) X:(SP-xx) xx: [1,64]
FDD X:aa or X:<aa EEE XIXXXX “ADD FDD,X:aa” no
XX or longer exis_ts. _
Xoxx No growth in code size.
X:(SP-xx) X:(SP-xx) xX: [1,64]
AND DD FDD AND.W EEE EEE F1 as source register
F1 oD maps to F in conversion.
ANDC | (operands) (see Table A-14 on page A-23 Alias
ASL F ASL fff
DD LSL.W EEE Note: Not “ASL.W “as
expected.
ASLL Y0,YO0 FDD ASLL.W Y0,YO0 FFF
Y1,YO Y1,YO
A1Y0 Al,Y0
B1,Y1 B1,Y1
Y1,X0 Y1,X0
Y0,X0 Y0,X0
ASR FDD ASR FFF
ASRAC |YO0,YO0 F ASRAC Y0,Y0 FF
Y1,YO Y1,Y0
A1Y0 Al,Y0
B1,Y1 B1,Y1
Y1,X0 Y1,X0
Y0,X0 Y0,X0
A-8 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor




Table A-10. Instruction Mapping: DSP56800 to DSP56800E (Continued)
DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
ASRR |YO0,YO0 FDD ASRR.W |YO0,YO FFF
Y1,YO Y1,Y0
A1,YO0 A1,YO
B1,Y1 B1,Y1
Y1,X0 Y1,X0
Y0,X0 Y0,X0
Bcc aa or <aa Bcc <OFFSET7> Default option
><OFFSET18> Use this option if link
error encountered.
(Selected by user if an
unresolved reference
encountered due to code
growth; use the “>” forc-
ing operator)
BFCHG | #xxxx X:aa or X:<aa BFCHG #<MASK16> | X:aa Same ID
Xipp or X:<<pp
X:<<pp
XIXXXX  or XIXXXX
X:>xx
X:(R2+xx) X:(Rn+xxxx) xx: [0,63]: code growth
X:(SP-xx) X:(SP-xx) xX: [1,64]
8-DDDDD DDDDD
BFCLR | #xxxx X:aa or X:<aa BFCLR #<MASK16> | X:aa Same ID
Xpp or X:<<pp
X:<<pp
XIXXXX  or XIXXXX
X:i>XX
X:(R2+xx) X:(RN+XXxXX) xx: [0,63]: code growth
X:(SP-xx) X:(SP-xx) xx: [1,64]
8-DDDDD DDDDD
BFSET | #xxxx X:aa or X:<aa BFSET #<MASK16> | X:aa Same ID
Xipp or Xi<<pp
X:<<pp
XIXXXX  or XIXXXX
X:>Xx
X:(R2+xx) X:(RN+xxxX) xx: [0,63]: code growth
X:(SP-xx) X:(SP-xx) xx: [1,64]
8-DDDDD DDDDD

Freescale Semiconductor

DSP56800 to DSP56800E Porting Guide




Table A-10. Instruction Mapping: DSP56800 to DSP56800E (Continued)
DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
BFTSTH | #xxxx X:aa or X:<aa BFTSTH |#<MASK16> | X:aa Same ID
X:pp or X:<<pp
X:<<pp
XIXXXX  or XIXXXX
X:>Xx
X:(R2+xx) X:(Rn+xxxx) xx: [0,63]: code growth
X:(SP-xx) X:(SP-xx) xx: [1,64]
8-DDDDD DDDDD
BFTSTL | #xxxx X:aa or X:<aa BFTSTL |#<MASK16> | X:aa Same ID
X:pp or X:<<pp
X:<<pp
XIXXXX  or XIXXXX
X:>xx
X:(R2+xx) X:(RN+xxxx) xx: [0,63]: code growth
X:(SP-xx) X:(SP-xx) xX: [1,64]
8-DDDDD DDDDD
BRA aa or <aa BRA <OFFSET7> Default option
><OFFSET18> Use this option if an unre-
solved reference is gen-
erated due to code
growth; use the “>”
forcing operator.
A-10 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor




Table A-10. Instruction Mapping: DSP56800 to DSP56800E (Continued)
DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
BRCLR |#MASK8 X:aa,AA or BRCLR #<MASKS8> | X:aa, 7-Bit Offset Destination
X:<aa,AA <OFFSET7>
X:pp,AA or X:<<pp, 7-Bit Offset Destination
X:<<pp,AA <OFFSET7>
Xixxxx,AA or XIXXXX, 7-Bit Offset Destination
X>xX,AA <OFFSET7>
X:(R2+xx),AA X:(Rn+xxxx), xx: [0,63]: code growth
<OFFSET7> || 7-Bit Offset Destination
X:(SP-xx),AA X:(SP-xx), xX: [1,64]
<OFFSET7> ||7-Bit Offset Destination
8-DDDDD,AA DDDDD, 7-Bit Offset Destination
<OFFSET7>
Note: For all addressing modes of BRCLR, if the location of the target label AA requires more than a 7-bit offset,

“BRCLR #MASKS8, <source>,AA”

to prevent an

<OFFSET7>, the following instruction pair must replace
unresolved reference. The user must make use of forcing operator “>” on target label AA (in BCS) to generate the
larger 18-bit target offset, <OFFSET18>. Code growth of two words always results from this mapping.

BFTSTL #<MASK16>,<source> ; test masked bits and set carry bit
; if all bits are set
BCS ><OFFSET18> ; branch on condition of carry bit set
BRSET |#MASK8 X:.aa,AA or BRSET #<MASK8> |X:aa, 7-Bit Offset Destination
X:<aa,AA <OFFSET7>
X:pp,AA or X:<<pp, 7-Bit Offset Destination
X:<<pp,AA <OFFSET7>
XiXxxx,AA or XIXXXX, 7-Bit Offset Destination
X:>xx,AA <OFFSET7>
X:(R2+xx),AA X:(Rn+XxxX), xx: [0,63]: code growth
<OFFSET7> || 7-Bit Offset Destination
X:(SP-xx),AA X:(SP-xx), xX: [1,64]
<OFFSET7> || 7-Bit Offset Destination
8-DDDDD,AA DDDDD, 7-Bit Offset Destination
<OFFSET7>
Note: For all addressing modes of BRSET, if the location of the target label AA requires more than a 7-bit offset,

<OFFSET7>, the following instruction pair must replace “BRSET #MASKS8, <source>,AA” to preventan
unresolved reference. The user must make use of forcing operator “>” on target label AA (in BCS) to generate the
larger 18-bit target offset, <OFFSET18>. Code growth of two words always results from this mapping.

BFTSTH #<MASK16>, <source> ; test masked bits and set carry bit
; if all bits are set
BCS ><OFFSET18> ; branch on condition of carry bit set

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide




Table A-10.

Instruction Mapping: DSP56800 to DSP56800E (Continued)

DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
CLR F CLR F
{DD,Rj,N} CLR.W DDDDD Alias
CMP ~F F CMP EEE EEE
DD
#XX #<0-31> FF xx: [0,31]
HXXXX HXXXX
X:aa or XIXXXX Code growth
X:<aa
XIXXXX  or XIXXXX
X:>XxX
X:(SP-xx) X:(SP-xx) xx: [1,64]
DD DD CMP EEE EEE F1 as source register
= maps to F in conversion.
#XX CMP.W #<0-31> xx: [0,31]
HXXXX HXXXX
X:aa or XIXXXX Code growth
X:<aa
XIXXXX  or XIXXXX
X:>Xx
X:(SP-xx) X:(SP-xx) xx: [1,64]
DEBUG DEBUGEV
DEC FDD DEC.W EEE
or - - -
DECW X:aa or X:i<aa XIXXXX Code growth
XIXXXX or  X:i>XX XIXXXX
X:(SP-xx) X:(SP-xx) xx: [1,64]
DIV DD F DIV FFF1 fff
DO #XX XXXX DO #<1-63> <ABS16> xx: [1,63]
FDD DDDDD
Fi
Rj
N
LC DOSLC <ABS16> Body of DOSLC Loop
requires 2 instruction
words; if required, a NOP
instruction will be added
by assembler to comply.
LA (NOT SUPPORTED)
ENDDO ENDDO
A-12 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Table A-10. Instruction Mapping: DSP56800 to DSP56800E (Continued)
DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
EOR DD FDD EOR.W EEE EEE F1 as source register
F1 DD maps to F in conversion.
EORC | (operands) (see Table A-14 on page A-23 Alias
ILLEGAL ILLEGAL
IMPY Y0,YO0 FDD IMPY.W Y0,YO0 FFF
MPYis | YLYO YL,Y0
A1Y0 Al1,YO
B1,Y1 B1,Y1
Y1,X0 Y1,X0
Y0,X0 Y0,X0
INC FDD INC.W EEE
INCgW X:aa or X<aa XIXXXX Code Growth
XIXXXX or  X:>XX XIXXXX
X:(SP-xx) X:(SP-xx) xX: [1,64]
Jce XXXXX Jee <ABS19>
JMP XXXXX JMP <ABS19>
JSR XXXXX JSR <ABS19>
LEA (Rk)+N Note: This sequence may be required: For Rk=SP only.
SXTA.W N (See NOTE 1) ||Code growth
ADDA N,Rn
LEA (Rj))+N For Rk= R0-R3 only.
(Rk+xxxx) ADDA HXXXX Rn For Rk=SP only.
#<0-15>,Rn (if possible) For Rk=SP only.
xxxx: [0,15]
LEA (Rj+xxxx) For Rk= RO-R3 only.
(R2+xx) LEA (Rj+Xxxx) xx: [0,63]: code growth
(Rk)+ ADDA #<0-15> ‘ Rn AGU reg increment by 1.
(RK)- DECA Rn AGU reg decrement by 1.
(SP-xx) SUBA  |#<1-64> | SP xx: [1,64]
LSL FDD LSL.W EEE
LSLL (operands) (see Table A-14 on page A-23 Alias
LSR FDD LSR.W EEE

Freescale Semiconductor

DSP56800 to DSP56800E Porting Guide




Table A-10. Instruction Mapping: DSP56800 to DSP56800E (Continued)

DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination

LSRAC |YO,YO F LSRAC YO0,YO FF
Y1,YO Y1,Y0
Al1,YO A1,YO
B1,Y1 B1,Y1
Y1,X0 Y1,X0
Y0,X0 Y0,X0

LSRR Y0,YO0 FDD LSRR.W YO0,YO FFF
Y1,YO Y1,Y0
Al1,YO A1,YO
B1,Y1 B1,Y1
Y1,X0 Y1,X0
Y0,X0 Y0,X0

MAC |(#¥)Y0,YO FDD MAC (£)YO,Y0 FFF

(+)Y1,YO0 (+)Y1,YO0
(+)A1,Y0 (+)A1,Y0
(+)B1,Y1 (+)B1,Y1
(+)Y1,X0 (+)Y1,X0
(+)Y0,X0 (+)Y0,X0

MACR | (¥)Y0,YO FDD MACR (£)YO,Y0 FFF
(+)Y1,YO0 (+)Y1,YO
(+)A1,Y0 (+)A1,Y0
(+)B1,Y1 (+)B1,Y1
(+)Y1,X0 (+)Y1,X0
(+)Y0,X0 (+)Y0,X0

MACSU |YO0,YO FDD MACSU YO0,YO EEE
YO0,Y1 YO0, Y1l
Y0,Al Y0,Al
Y1,B1 Y1,B1
X0,Y1 X0,Y1
X0,Y0 X0,Y0

A-14 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor




Table A-10.

Instruction Mapping: DSP56800 to DSP56800E (Continued)

DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
MOVE | X:(Rk+xxxx) |8-HHHHH MOVE.W | X:(Rn+xxxx) | HHHHH For Rk=SP only.
or - -
MOVEC X:(SP-xx)HHH  (if possible) ||For Rk=SP only,xx: [1,64]
8-SSSS MOVEU.W | X:(Rn+xxxx) ‘SSSS For Rk=SP only.
X:(SP-xx),RRR (if possible) ||For Rk=SP only,xx: [1,64]
8-DDDDD MOVE X:(Rj+xxxXx) ‘ DDDDD For Rk= R0O-R3 only.
X:(Rk+N) 8-HHHHH Note: This sequence may be required: For Rk=SP only.
SXTA.W N (See NOTE 1) ||Code growth
MOVE.W X: (Rn+N) , HHHHH
8-SSSS Note: This sequence may be required: For Rk=SP only.
SXTA.W N (See NOTE 1) ||Code growth
MOVEU.W X: (Rn+N) , SSSS
8-DDDDD MOVE X:(Rj+N) DDDDD For Rk= RO-R3 only.
X:(R2+xx) 8-HHHH MOVE X:(Rj+xxxx) | DDDDD xx: [0,63]: code growth
X:(Rk) 8-HHHHH MOVE.W | X:(Rn) HHHHH
X:(RK)- X:(Rn)-
X:(RK)+ X:(Rn)+
X:(Rk)+N X:(Rn)+N
XIXXXX  or XIXXXX
X:>XX

Freescale Semiconductor

DSP56800 to DSP56800E Porting Guide




Table A-10.

Instruction Mapping: DSP56800 to DSP56800E (Continued)

DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
MOVE | X:(RK) 8-SSSS MOVEU.W | X:(Rn) SSSS
or
MOVEGC X:(Rk)- X:(Rn)-
X:(RK)+ X:(Rn)+
X:(Rk)+N X:(Rn)+N
XIXXXX  or XIXXXX
X:>XX
X:(SP-xx) FDD MOVE.W | X:(SP-xx) HHH xx: [1,64]
F1 X:(Rn+xxxx) | DDDDD xx: [1,64]: code growth
Rj MOVEU.W | X:(SP-xx) RRR xX: [1,64]
N
8-DDDDD X:(RK+xXXX) MOVE.W | DDDDD X:(RN+Xxxx) For Rk=SP only.
HHHH,X:(SP-xx) (if possible) ||For Rk=SP only,xx: [1,64]

MOVE DDDDD X:(Rj+Xxxxx) For Rk=R0-R3 only.

8-DDDDD X:(Rk+N) Note: This sequence may be required: For Rk=SP only.
SXTA.W N (See NOTE 1) ||Code growth
MOVE.W DDDDD, X: (Rn+N)

MOVE DDDDD X:(Rj+N) For Rk=R0-R3 only.
8-HHHH X:(R2+xx) MOVE DDDDD X:(Rj+xxxXx) xx: [0,63]: code growth
8-DDDDD X:(Rk) MOVE.W |DDDDD X:(Rn)

X:(Rk)- X:(Rn)-
X:(Rk)+ X:(Rn)+
X:(Rk)+N X:(Rn)+N
XIXXXX  or XIXXXX
X >XX
MOVE |F X:(SP-xx) MOVE.W |DDDDD X:(RN+Xxxx) xx: [1,64]: code growth
or - -
MOVEC F_lDD HHHH X:(SP-xx) xx: [1,64]
Rj (source)
N
8-DDDDD 8-HHHHH MOVE.W |DDDDD HHHHH Register to register move
8-SSSS MOVEU.W |DDDDD SSSS Can not use MOVE.W
instruction here, to avoid
sign extension and
incompatibility.
A-16 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Table A-10. Instruction Mapping: DSP56800 to DSP56800E (Continued)
DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) Destination Source(s) Destination
MOVE | #xx N MOVE.W  |#<-64-63> |HHHH xx: [-64,63]
or - -
MOVEI Rj #<0-63> HHHH xx: [0,63]
MOVEU.W | #xxxx SSSS xX: [-64,-1]: code growth
F1 MOVE.W | #xxxx HHHHH xx: [-64,63]: code growth
FDD #<-64-63> HHHH xx: [-64,63]
H#XXXX Or 8-SSSS MOVEU.W | #xxxx SSSS
XX 8-HHHHH MOVE.W HHHHH
X:XXXX  or HXXXX XiXXXX If constant within
X:>xx - - . [-64,63] range,
#<-64-63>,X:xxxx (if possible) use optimal selection.
X:(R2+xx) HXXXX X:(RN+XxXX) xx: [0,63]: code growth
X:(SP-xx) X:(SP-xx) xx: [1,64]
MOVE | P:(Rj)+ {Rj,N} MOVEU.W | P:(Rj)+ RRR
or MOVEM
P:(Rj)+N P:(Rj)+N
P:(Rj)+ {DD,F,F1} MOVE.W |P:(Rj)+ {Y1,Y0, X0,
P:(Rj)+N P:(Rj)+N AB.CALBL}
8-HHHH P:(Rj)+ {Y1,Y0, X0, |P:(Rj)+
- AB,CA1Bl ——.
P:(Rj)+N RO-R5,N} P:(Rj)+N
MOVE |8-HHHH X:pp or MOVE.W |{Y1,Y0, X0, |X:<<pp
or MOVEP X:<<pp A,B,C,Al1,B1
RO-R5,N}
HXXXX HXXXX
X:pp or {DD,F,F1} X:i<<pp {Y1,Y0, X0,
X:<<pp AB,C,Al1,B1}
{Rj,N} MOVEU.W RRR
MOVE 8-HHHH X:aa or X:<aa MOVE.W |{Y1,Y0, X0, |X:aa
or MOVES AB,C,A1,B1
RO-R5,N}
HXXXX HXXXX
X:aa or {DD,F,F1} X:aa {Y1,Y0, X0,
X:<aa AB,C,Al1,B1}
{Rj,N} MOVEU.W RRR

Freescale Semiconductor

DSP56800 to DSP56800E Porting Guide




Table A-10. Instruction Mapping: DSP56800 to DSP56800E (Continued)
DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
MPY [(#¥)Y0,YO FDD MPY (+)YO,YO FFF
(£)Y1,Y0 (+)Y1,YO
(+)A1,YO0 (+)A1,Y0
(+)B1,Y1 (+)B1,Y1
(£)Y1,X0 (£)Y1,X0
(£)Y0,X0 (+)YO,X0
MPYR |(#)Y0,YO FDD MPYR (+)YO,YO FFF
(£)Y1,Y0 (+)Y1,YO
(+)A1,YO0 (+)A1,Y0
(+)B1,Y1 (+)B1,Y1
(#)Y1,X0 (£)Y1,X0
(£)Y0,X0 (+)YO,X0
MPYSU |Y0,YO FDD MPYSU YO0,YO EEE
YO0,Y1 YO0, Y1l
Y0,Al Y0,Al
Y1,B1 Y1,B1
X0,Y1 X0,Y1
X0,Y0 X0,Y0
NEG F NEG FFF
NOP NOP
NORM |RO F NORM RO F
NOT FDD NOT.W EEE
NOTC | (operands) (see Table A-14 on page A-23) Alias
OR DD FDD OR.W EEE EEE F1 as source register
F1 DD maps to F in conversion.
ORC (operands) (see Table A-14 on page A-23) Alias
POP (operands) (see Table A-14 on page A-23 Alias
A-18 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Table A-10. Instruction Mapping: DSP56800 to DSP56800E (Continued)
DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
REP #XX REP #<0-63> xx: [0,63]
FDD DDDDD
Fi
Rj
N
LC DOSLC <ABS16> Code growth.
Body of DOSLC Loop
requires 2 instruction
words; a NOP instruction
will be added by assem-
bler to comply.
LA (NOT SUPPORTED)
RND F RND fff
ROL FDD ROL.W EEE
ROR FDD ROR.W EEE
RTI RTI
RTS RTS
SBC Y F SBC Y F
STOP STOP
SuB DD FDD SuB FFF FFF F1 as source register
F1 DD maps to F in conversion.
~F F
Y
#xX FDD SUB.W #<0-31> EEE xx: [0,31]
HXXXX HXXXX
X:aa or XIXXXX Code growth
X:<aa
XIXXXX  or XIXXXX
X:>XxX
X:(SP-xx) X:(SP-xx) xX: [1,64]
SwWi SWiI
Tec (operands) Tcc (See Table A-11 on page A-21
TFR DD F TFR FFF fff
~F
TST F TST FF

Freescale Semiconductor

DSP56800 to DSP56800E Porting Guide




Table A-10. Instruction Mapping: DSP56800 to DSP56800E (Continued)
DSP56800 DSP56800E
Operands Operands Comments
Oper’n Oper’n
Source(s) | Destination Source(s) Destination
TSTW | X:(Rk+xxxx) TST.W X:(Rn+xxxX) For Rk=SP only.
X:(SP-xx) (used if possible) ||For Rk=SP only,xx: [1,64]
TSTW X:(Rj+xxxXx) For Rk= R0-R3 only.
X:(Rk+N) Note: This sequence may be required: For Rk=SP only.
SXTA.W N (See NOTE 1) ||Code growth
TST.W X: (Rn+N)
TSTW X:(Rj+N) For Rk= R0-R3 only.
X:(R2+xx) TSTW X:(Rj+XXXX) xx: [0,63]: code growth
X:aa or X:i<aa TST.W X:aa Same ID
X:pp or X:i<<pp X:<<pp
XIXXXX or X:>XX XIXXXX
X:(RK) X:(Rn)
X:(Rk)- X:(Rn)-
X:(RK)+ TST.W X:(Rn)+
X:(RK)+N X:(Rn)+N
X:(SP-xx) X:(SP-xx) xx: [1,64]
8-DDDDD (except F,HWS) DDDDD
F TSTW F Sets L bit; CC based on
saturated value of F.
(Rk)- TSTDECA.W | Rn
WAIT WAIT

1. When N is used (or loaded) as an offset register, the value and sign information must be preserved as a
24-bit signed value to guarantee compatibility. There are a few legacy cases where N is required to be a
24-bit sign-extended offset register. Sign extension is correctly generated by immediately preceding the
instructions listed below with SXTA.W N, which extends the sign of the N register to 24-bits. This in-
struction (one extra program word) is only required when N is loaded as an offset register in the original
legacy code. Conversely, if the N register is loaded temporarily with an AGU pointer, i.e. not representing
an offset register, sign extension is not recommended. In this case, the upper 8 bits must be zeroes; oth-
erwise, it may generate the wrong effective address when used. The following DSP56800 instructions de-
picted below, uses N as the offset register and SP as the pointer to the stack. These legacy instructions
are mapped to the DSP56800E instructions listed below. In all of these cases, the N register is always
expected to be a true 24-bit signed value, (representing offset):

e LEA (SP) +N mapped to  ADDA N, SP

e MOVE X: (SP+N) , 8-HHHHH mapped to MOVE.W X: (SP+N) , HHHHH
e MOVE X: (SP+N),8-SSSS mappedto MOVEU.W  X: (SP+N),b SSSS
e MOVE 8-DDDDD, X: (SP+N) mapped to MOVE.W DDDDD, X: (SP+N)
e TSTW X: (SP+N) mappedto TST.W X: (SP+N)

A-20 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Table A-11. Tcc Instruction Mapping: DSP56800 to DSP56800E

DSP56800 DSP56800E
Oper'n Operands Oper'n Operands Cmts
1st Move 2nd Move 1st Move 2nd Move
Tce ~F,F Tce ~F,F no AGU register move
RO,R1 RO,R1
DD,F DD,F no AGU register move
RO,R1 RO,R1

Table A-12. Single Parallel Move Mapping: DSP56800 to DSP56800E

DSP56800 DSP56800E
DALU Operation Parallel Move DALU Operation Parallel Move
Operation Opcodes Source |Destination||Operation | Opcodes Source | Destination
MAC Y1,X0,F X: (Rj)+ A MAC Y1,X0,F X: (Rj)+ A
YO0,X0,F X:(Rj)+N B YO0,X0,F X:(Rj)+N B
MPY Y1,YOF A1 MPY | Y1,yoF A1
MACR YO0,YO,F B1 MACR Y0,YO,F B1
A1YO,F X0 A1,YO,F X0
MPYR B1,Y1F YO MPYR | B1,Y1,F YO
Y1 Y1
ADD XO0,F ADD XO0,F
Y1,F Y1,F
SUB YO,F SUB YO,F
CMP A.B CMP AB
B,A B,A
TFR TFR
ABS F ABS F
ASL ASL
ASR ASR
CLR CLR
RND RND
TST TST
DEC or DECW DEC.W
INC or INCW INC.W
NEG NEG
Freescale Semiconductor DSP56800 to DSP56800E Porting Guide A-21




Table A-12. Single Parallel Move Mapping: DSP56800 to DSP56800E (Continued)

DSP56800 DSP56800E
DALU Operation Parallel Move DALU Operation Parallel Move
Operation Opcodes Source |Destination||Operation | Opcodes Source |Destination
MAC Y1,X0,F A X: (Rj)+ MAC Y1,X0,F A X:(Rj)+
Y0,X0,F B X:(Rj)+N YO0,X0,F B X:(Rj)+N
MPY Y1,YO,F A1 MPY | viyoF A1
MACR Y0,YO,F B1 MACR YO0,YO,F B1
A1,YO,F X0 A1,YO,F X0
MPYR B1,Y1,F YO MPYR | B1y1F YO
ADD XO0,F v ADD XO0,F i
Y1,F Y1,F
SuB YO.F SuB YO.F
CMP AB CMP A.B
B.A B,A
TFR TFR
ABS F ABS F
ASL ASL
ASR ASR
CLR CLR
RND RND
TST TST
DEC or DECW DEC.W
INC or INCW INC.W
NEG NEG

Table A-13. Dual Parallel Read Mapping: DSP56800 to DSP56800E

DSP56800 DSP56800E

DALU Operation 1st Pll Read 2nd PIl Read DALU operation 1st Pll Read 2nd PIl Read

Oper’n | Op’nds Src 1 Dst Src 2 Dst || Opern | Op’nds Src 1 Dst Src 2 Dst
MAC | XOY1,F | X:(R0)+ | YO | X:(R3)x | X0 || MAC | XO.Y1,F | X:(R0)+ | YO | X:(R3)+ | X0
X0,YO,F | X:(RO)}+N | Y1 | X:(R3)- XO,YO.F | X:(RO}+N | Y1 | X:(R3)-

MPY | vivorF MPY" | v1yo.F
MACR MACR
X:(R1)+ X:(R1)+
MPYR X:(R1)+N MPYR X:(R1)+N
ADD | XOF ADD | XOF
Y1.F Y1.F
SUB | voF SUB YO.F
MOVE MOVE.W

A-22 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Table A-14. Instruction Alias Mapping: DSP56800 to DSP56800E

DSP56800 DSP56800E
Operands Operands Comments
Operation Operation
Op1 Op2 Op1 Op2
ANDC | #xxxx X:aa or X:i<aa ANDC #<MASK16> |X:aa ANDC's alias uses
X:pp or X:i<<pp X:<<pp BFCLR
XIXXXX or X:>XX XIXXXX
X:(R2+xx) X:(Rn+xxxx) ||xx: [0,63]: code growth
X:(SP-xx) X:(SP-xx) xX: [1,64]
8-DDDDD DDDDD
EORC | #xxxx X:aa or X:i<aa EORC #<MASK16> |X:aa EORC's alias uses
X:pp or X:i<<pp X:<<pp BFCHG
XIXXXX or X:>XX XIXXXX
X:(R2+xx) X:(Rn+xxxx) ||xx: [0,63]: code growth
X:(SP-xx) X:(SP-xx) xX: [1,64]
8-DDDDD DDDDD
LSLL Y0,YO DD ASLLW |YO,YO FFF alias uses
Y1.Y0 YLYO0 ASLL in DSP56800.
Al1,YO Al1,YO LSLL is legacy only
B1,Y1 B1,Y1
Y1,X0 Y1,X0
Y0,X0 Y0,X0
NOTC |X:aa or X:i<aa NOTC X:aa NOTC'’s alias uses
X:pp or X:i<<pp X:<<pp BFCHG
XIXXXX or X:>XX XIXXXX
X:(R2+xx) X:(RN+xxxX) xx: [0,63]: code growth
X:(SP-xx) X:(SP-xx) xX: [1,64]
8-DDDDD DDDDD
ORC HXXXX X:aa or X:i<aa ORC #<MASK16> |X:aa ORC'’s alias uses
X:pp or X:i<<pp X:<<pp BFSET
XIXXXX or X:>XX XIXXXX
X:(R2+xx) X:(Rn+xxxx) ||xx: [0,63]: code growth
X:(SP-xx) X:(SP-xx) xX: [1,64]
8-DDDDD DDDDD
POP DECA SP Not a supported alias
8-DDDDD MOVEW | X:(SP)- HHHHH on 56800E
MOVEU.W | X:(SP)- SSSS

Freescale Semiconductor

DSP56800 to DSP56800E Porting Guide

A-23




A.3 Legacy Instruction Summary Tables

Tables A-15 through A-17 list the instruction summary tables for the legacy instructions LEa, MOVE, and
TSTW. Theinformation in this section supplements the information found in the DSP56800E Core
Reference Manual.

Asexplained in Section 5.1 on page 5-1, these instructions are intended to access memory locations only
within the first 64K of data memory. For instructions that generate an address, the upper 8 bits of the
address are forced to all zeros. The move of immediate data also follows the rule of placing zero extended
16-bit valuesinto the AGU registers.

Note that each move instruction uses the MoveE mnemonic. This differentiates the instructions from their
MOVE . W counterparts, which operate differently. Similarly, the TsTw mnemonic is used to differentiate
these instructions from Tst. w, the standard counterpart in the DSP56800E instruction set.

NOTE:

These instructions are intended only for compatibility with existing
DSP56800 code. They are only allowed when the legacy switch is set.
They are not allowed for new applications that use only DSP56800E

syntax.
Table A-15. Move Word Instructions — Legacy Code
Operation Source Dest cC|w Comments
MOVE X:(Rj+N) DDDDD 2 | 1 |Forces 16-bit AGU arithmetic.
— Only for RO,R1,R2,R3.
X(RI+XxXX) DDDDD 2|2 The SP register is not allowed.
DDDDD X:(Rj+N) 2|1
DDDDD X:(Rj+XXXX) 2|2
Table A-16. Data ALU Arithmetic Instructions — Legacy Code
Operation Operands cC|w Comments
TSTW F 1 1 | Test 16-bit word in register. Limiting occurs
when reading the accumulator before the test
operation if the extension register is in use.
X:(Rj+N) 2 1 | Forces 16-bit AGU arithmetic.
e Only for RO,R1,R2,R3.
XARIHx0xx) 2 2 The SP register is not allowed.
Table A-17. AGU Arithmetic Instructions — Legacy Code
Operation Operands cC|w Comments
LEA (R)+N 1 1 | Add Rjto N, zero extend the upper 8 bits of the
result, and place the result in Rj.
Forces 16-bit AGU arithmetic.
Only for RO,R1,R2 and R3.
SP register is not allowed.
(Rj+Xxxx) 2 2 | Add Rj to xxxx, zero extend the upper 8 bits of the
result, and place the result in Rj.
Forces 16-bit AGU arithmetic.
Only for RO,R1,R2,R3.
The SP register is not allowed.

A-24

DSP56800 to DSP56800E Porting Guide

Freescale Semiconductor



A.4 DSP56800 Instruction Aliases

The DSP56800 assembly language contains several instruction aliases. Aninstruction aliasis an
instruction that is accepted by the assembler, but is actually assembled as another DSP56800 instruction
and is also disassembled as this second instruction. These aliases are listed in Table A-14 on page A-23.
Each of these instructions is also mapped in Table A-10 on page A-8.

Theinstruction aliases ANDC, EORC, NOTC, and OrcC in the DSP56800 map to identical instructionsin the
DSP56800E. The remaining DSP56800 instruction aliases—LSLL, ASL, CLR, and pop—map to different
instructions in the DSP56800E. These differences are summarized in Table A-18.

Table A-18. Summary of DSP56800 Instruction Aliases and Mapping

Actual Actual
IDSP568.°° Operands DSP56800 Operands DSP56800E Operands
nstruction . .
Instruction Instruction
LSLL Y1.X0.0D ASLL Y1.X0.FFF ASLLW Y1.X0.0D
Y0.X0,DD YO0.X0,FFF Y0.X0,DD
Y1.Y0.DD Y1.Y0,FFF Y1.Y0,DD
Y0.Y0.DD Y0.Y0 FFF Y0.Y0.DD
A1.Y0.DD A1.YO FFF A1.YO.DD
B1Y1.DD B1Y1.FFE B1.Y1.DD
ASL DD LSL DD LSLW DD
CLR X0, Y1, YO, MOVE #0, X0, Y1, YO, CLRW DDDDD
A1, B, A1, B,
RO-R3, N RO-R3, N
POP DDDDD MOVE X(SP)-,DDDDD MOVE.W X-(SP)-,DDDDD
(none) LEA (SP)- DECA sp
NOTE:

The LsLL, CLR, and POP instructions are not recommended for new
applications. Instead, use the corresponding DSP56800E instructions
listed in Table A-18.

A.4.1 LSLL Instruction Alias

The LsLL instruction operates identically to an arithmetic left shift, so thisinstruction is assembled as an
ASLL instruction on the DSP56800. When the DSP56800E assembler encounters the LSLL instruction in
DSP56800 legacy code, it is assembled and disassembled using the DSP56800E’ s ASLL . W instruction.

NOTE:

This instruction alias is not recommended for use in new applications.
Instead, use the DSP56800E instruction, ASLL . W.

Freescale Semiconductor DSP56800 to DSP56800E Porting Guide A-25



A.4.2 ASL Instruction Alias

The ASL instruction operation is similar to alogical left shift for the Y1, YO, and X0 registers, so this
instruction is assembled as an LSL on the DSP56800. 2s1. and LsL perform identical shifting but set the
condition codes differently. When the DSP56800E assembler encounters the AsL instruction in DSP56800
legacy code, it is assembled and disassembled using the DSPS6800E’ s LsL . w instruction.

The ASL instruction is not remapped when the operand is one of the accumulator registers or the Y
register.

NOTE:

The DSP56800 As1. DD instruction maps to .sL..w on the DSP56800E
rather than ast...w DD as expected. Two differences characterize the
operation of these two instructions: the way condition codes are set, and
the effect of the result when the saturation bit (SA) isset in OMR register.
TheLsL.w instruction is affected by the SA bit, but LsL. w is not affected.
If saturation isdesired in anew application using “ arithmetic shift left,” the
ASL.W instruction must be used.

A.4.3 CLR Instruction Alias

The CLR instruction operates identically to an immediate move instruction using the value $0, so this
instruction is assembled as a move instruction on the DSP56800 architecture. When encountering the CLR
<register> instruction in DSP56800 legacy code, it is assembled and disassembled using the DSP56800E’ s
CLR.W instruction.

NOTE:

This case does not apply to the cLr instruction when performed on the A
or B accumulator. In the DSP56800 architecture, the condition codes are
affected if the destination of the cLr instruction is one of the two 36-bit
accumulators (A or B).

This instruction alias is not recommended for use in new applications.
Instead, use the appropriate DSP56800E instruction, CLR . w. The condition
codes are not affected by thisinstruction.

A.4.4 POP Instruction Alias

The pop instruction operatesidentically to amove from the stack with post-decrement. It isassembled asa
MOVE instruction on the DSP56800 if an operand is specified, and as a LEA instruction if no operand is
specified. When the DSP56800E assembler encounters the pop instruction in DSP56800 legacy code, it is
assembled and disassembled as

e MOVE.W X:(SP)-,<registers operand specified
e DECA SP no operand specified.
NOTE:

This instruction aias is not recommended for use in new applications.
Instead, use the appropriate DSP56800E instructions, MOVE . W Or DECA.

A-26 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor



Index

Symbols

~F o A-2
Numerics

8DDDDD ...t A-3
8HHHH ... ... . A-2
8HHHHH ....... ... A-3
8-SSSS . A-3
8-SSSSS L. A-3
A

ABS ... ... A-8, A-21, A-22
ADC A-8
ADD ... . A-8, A-21, A-22
ADDMW .. A-8
ADDA ... A-13, A-20
AGU . 32
AGU Arithmetic Instructions - Legacy Code . . .A-24
dias(instruction) ........................ A-25
AND . o A-8
ANDW .. A-8
ANDC ... ... A-8, A-23
ASL ... ...l A-8, A-21, A-22, A-25, A-26
ASLW . A-8, A-26
ASLL oo A-8, A-25
ASLLW ... A-23, A-25
ASR ... A-8, A-21, A-22
ASRAC .. A-8
ASRR . A-9
ASRRW ... A-9
B

BCC .. A-9
BFCHG ........ .. A-9
BFCLR ... ... A-9
BFSET ... A-9
BFTSTH ... .. A-10
BFTSTL ... A-10
BRA . A-10
BRCLR ... . A-11
BRSET ... A-11
C

CLR............. A-12, A-21, A-22, A-25, A-26
CLRW ... ... ..., A-12, A-25, A-26
CMP ... A-12, A-21, A-22

Freescale Semiconductor

CMPW A-12
Context Save (Restore) .................... 5-17
D
Data ALU Arithmetic

Instructions- Legacy Code . ... ......... A-24
dataarithmeticlogicunit .................... 32
DD A-2
DDDDD ...t A-5
DEBUG . ...t A-12
DEBUGEV ...t A-12
debugging .. ... 3-2
DEC ... A-12, A-21, A-22
DECW ... ... A-12, A-21, A-22
DECA ... .. i A-13, A-25, A-26
DECW .......coiiiiiiiin... A-12, A-21, A-22
DIV A-12
DO . A-12
DOSLC .. A-12
DSP56800 Register Field Notation ........... A-1
DSP56800E Register Field Notation .......... A-3
E
EEE ... A-4
ENDDO . ... A-12
Enhanced On-Chip Emulation

(Enhanced OnCE) module ............... 3-2
EOR ... A-13
EORW .. A-13
EORC ... A-13, A-23
F
F o A-2
Fl o A-2
FIDD ..o A-2
FDD oot A-2
P o A-5
FRE A-4
L1 A-5
FRRL . oo A-4
FIRA o 3-2,A-4
FISR .o 3-2
T A-2
H
HHH ... A-3
HHHH ... A-4

Index Index-1



HHHHH ... A-5

HWSO0-1 (hardware stack registers) ........... 3-2
|
[land 10 ... ... e 5-21
ILLEGAL ... A-13
IMPY A-13
IMPY.W . A-13
IMPY16 .. ..o A-13
INC .. A-13, A-21, A-22
INCW ... o A-13, A-21, A-22
INCW ... A-13, A-21, A-22
ingtructionaias ........... ... ... ... A-25
interrupt mask (I1and10) .................. 5-21
interrupts . ... 5-14, 5-15, 5-16
J
JCC o A-13
JMP A-13
JOR . A-13
L
LA (loop addressregister) ................... 32
LC (loop counter register) ................... 32
LEA ... ........... 4-2, A-13, A-20, A-24, A-25
LSL .o A-13, A-25, A-26
LSLW .. A-8, A-25, A-26
LSLL oo A-13, A-23, A-25
LSR o A-13
LSRW .. A-13
LSRAC ... A-14
LSRR .. A-14
LSRRW ... A-14
M
MOL ... A-2
MAC ... A-14, A-21, A-22
MACR ...t A-14, A-21, A-22
MACSU ... A-14
Memory MAP Comparison .................. 34
MOVE ........... A-15, A-20, A-22, A-24, A-25
Move Word Instructions - Legacy Code . . . ... A-24
MOVEB ....... ... 3-6
MOVEBP ...... ... . 3-6
MOVEW ..A-15, A-16, A-17, A-20, A-22, A-23,
A-25, A-26
MOVEC ...... ... . A-15
MOVEI ...... ... A-17
MOVEM ....... ... .. . A-17
MOVEP ...... ... A-17
MOVES ....... ... A-17
MOVEUW ............ A-15, A-16, A-17, A-23
MPY A-18, A-21, A-22
Index-2

DSP56800 to DSP56800E Porting Guide

MPYR ... ... .. A-18, A-21, A-22
MPYSU .. A-18
N

N (offsetregister) ..................... 32, A-2
N3 (offsetregister) ....... .ot 3-2
NEG ... A-18, A-21, A-22
NOP .. A-18
NORM ... i A-18
NOT o A-18
NOTW e A-18
NOTC .. i A-18, A-23
o

operating mode register (OMR) ......... 5-14, 5-16
optimizing . ...ovieii 6-1
OR A-18
ORW . A-18
ORC ... A-18, A-23
P

PC (programcounter) ...................... 3-2
POP .................. A-18, A-23, A-25, A-26
programcontrol unit ....................... 3-2
Programming Model Comparison ............. 3-2
R

RO-R3 (pointer registers) . ...t 3-2
real-timedebugging . ......... ... s, 3-2
REP ... A-19
Ri A-2
RK .o A-2
RN A-4
RND ...t A-19, A-21, A-22
ROL ... A-19
ROLW ... A-19
ROR ... A-19
RORW ... . . . A-19
RRR ... A-4
RTl . A-19
RTS A-19
S

SBC . A-19
shadow registers . .. ...oov i 3-2
signextension ................ ... 4-1, A-20
SR (statusregister) ... 3-2
SSSS A-6
statusregister (SR) . ... .oiiii i 5-14, 5-16
STOP A-19
SUB ... A-19, A-21, A-22
SUBW .. A-19
SUBA . A-13

Freescale Semiconductor



SWI A-19
SXTAMW L 4-1
T
TCC oot A-19, A-21
TER . A-21, A-22
TST o A-19, A-21, A-22
TST W A-20
TSTDECA.W ... A-20
TSTW A-20, A-24
w
WAIT o e A-20
X
XIPMode ............ oo, 5-14, 5-16
XRAM execution mode
exiting ... 5-16
Fetrictions . ....ov i 5-15
Z
ZXTAW . 4-1

Freescale Semiconductor

DSP56800 to DSP56800E Porting Guide

Index-3



Index-4 DSP56800 to DSP56800E Porting Guide Freescale Semiconductor






How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

DSP56800ERG
Rev. 1.1, 11/2005

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical’ parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

<@

Z " freescaler

semiconductor



	Contents
	List of Figures
	List of Tables
	List of Code Examples
	Chapter 1 Introduction
	Chapter 2 Quick Reference
	2.1 Compatibility Issues
	2.1.1 Intervention Required
	2.1.2 Uncommon Cases: Intervention May Be Required
	2.1.3 No User Intervention Required
	2.1.4 Mixed 56800 & 56800E Instructions

	2.2 Coding Recommendations

	Chapter 3 Comparing the Two Architectures
	3.1 Extending the DSP56800 Architecture
	3.2 Programming Model Comparison
	3.3 Memory MAP Comparison
	3.3.1 DSP56800 Memory Map
	3.3.2 DSP56800E Memory Map


	Chapter 4 AGU Registers
	4.1 Initializing AGU Registers
	4.2 Issues with AGU Arithmetic
	4.2.1 Cases Solved by Legacy Instructions-Linear Addressing
	4.2.2 Cases Solved by Definition of Operation
	4.2.3 Cases Solved by Adding a Zero-Extend Instruction
	4.2.4 Cases Solved by Breaking Into More Than One Instruction


	Chapter 5 Compatibility Issues
	5.1 New Special Legacy Instructions
	5.2 Replacement of (R2+xx) with (Rj+xxxx)
	5.3 Compatibility Issue with Modulo Addressing
	5.4 Instructions That Produce Code Growth
	5.4.1 Pipeline Dependencies
	5.4.2 24-bit Signed Requirement for the N Register
	5.4.3 Extending the Reach on Change-of-Flow Instructions
	5.4.4 Adding a NOP to a Hardware Loop
	5.4.5 Automatic Mappings Requiring an Extra Word

	5.5 Changes Related to the I/O Short Addressing Mode
	5.6 Strategy for Loading AGU Registers
	5.7 Requirements for {R0-R3, N}
	5.7.1 As Pointer Registers
	5.7.2 As Offset Registers

	5.8 Reading the LC Register
	5.9 Numeric Target References
	5.10 Hardware Loop Restrictions
	5.10.1 Restrictions Common to DO and REP
	5.10.2 Restrictions Specific To REP
	5.10.3 Restrictions Specific To The DO Instruction

	5.11 Differences when Saturation is Enabled
	5.12 Computing the Zero Condition Code
	5.13 Computing the Carry Condition Code
	5.14 New Requirements for X/P Mode
	5.14.1 Entering X/P Mode
	5.14.2 Exiting X/P Mode

	5.15 Unsupported DSP56800 Instruction Syntax
	5.16 Requirements on Context Save/Restore
	5.17 Legacy Programs Larger than 64K
	5.18 Compatibility Issues at the Chip Level
	5.18.1 Interrupt Priority Level
	5.18.2 Interrupt Vector Locations
	5.18.3 Peripheral Space Locations
	5.18.4 Dual Read Instruction
	5.18.5 The OMR EX Bit

	5.19 Delay on Interrupt Enable and Disable
	5.19.1 Enabling Interrupts - CCPL set to “0”
	5.19.2 Disabling Interrupts - CCPL set to “3”


	Chapter 6 Optimizing Legacy Code
	Appendix A Translation Tables



