
eTPU RDC and RDC Checker User Guide

NXP Semiconductors Document identifier: eTPURDCCUG
Rev. 0, March 2020

Contents
Chapter 1 Product Description...3

Chapter 2 Integrating and Building the Product... 18

Chapter 3 Configurations... 25

Chapter 4 APIs...28

Chapter 5 Demos and Application Notes...31

Chapter 6 References..32

NXP Semiconductors

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 2 / 33

Chapter 1
Product Description
This user guide provides detailed description of eTPU RDC function implementation as well as host RDC Checker. The user
guide provides complete guidance for configurations and usage of both SW products to ensure safety operation. The SW
described within this manual is applicable to devices containing Enhanced Timer Processing Unit (eTPU, eTPU2 and eTPU2+).

Acronyms and terms used in the document are listed below.

Table 1. Acronym and definition

Acronym Definition

RDC Resolver to Digital Converter

eTPU Enhanced Time Processing Unit

SDADC Sigma-Delta Analog to Digital Converter

ATO Angle-Tracking Observer

SRF Safety Runtime Framework

API Application Interface

PIT Periodic Interrupt Timer

HSR Host Service Request

ISR Interrupt Service Request

PWM Pulse Width Modulation

1.1 Resolver Digital Interface (RESOLVER)
The Resolver Digital Interface eTPU function (RESOLVER) uses one eTPU channel to generate a 50% duty-cycle PWM output
signal to be passed through an external low-pass filter and used as a resolver excitation signal. In the resolver position sensor,
this excitation signal is modulated by sine and cosine of the actual motor angle. The feedback Sine and Cosine signals are
sampled by an on-chip ADC and the conversion results can be transferred to eTPU DATA RAM by eDMA. eTPU function
RESOLVER can then process the digital samples of resolver output signals. Motor angular position, angular speed, a revolution
counter, and diagnostics are results of the Sine and Cosine feedback signal processing.

NXP Semiconductors

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 3 / 33

Figure 1. Resolver Digital Interface block diagram

Processing of the feedback signals is executed on a separate channel. Another channel is used to perform linear extrapolation
of the last updated position from ATO to any other time. Optionally, another eTPU channel can be used to process diagnostics
either on the same eTPU engine after the feedback signal processing is finished (see the channel assignment example in Table
3) or on the other eTPU engine in parallel to the motor angle and speed calculation, see Table 4. This enables the CPU application
to read the new motor angle and, at the same time, check the diagnostic results to ensure the motor angle is correct.

As an alternative to diagnostics running on eTPU Resolver function there is the RDC Checker, an external checker running on
CPU. This option allows eTPU Resolver to be a part of ASIL-D decomposition, where the eTPU Resolver function (QM(D)) runs
in Non-Trusted Environment (NTE) and the RDC Checker (ASIL-D(D)) in Trusted Environment (TE)

Features:

• Generation of excitation signal – a 50% PWM wave to be filtered externally.

• Adaptive phase control of the excitation signal.

• Motor angle and speed tracking

• Extrapolation of the resulting angle to a defined time-position

• Diagnostic measurements (optionally running in parallel on the other eTPU engine)

• Diagnostic flag settings (optionally running in parallel on the other eTPU engine)

1.1.1 Excitation signal generation and adaptive phase control
The Resolver Digital Interface eTPU function generates a square output wave of a defined period which is intended to be filtered
and gained by an external circuitry to get the excitation sine wave. An example of the external circuitry schematic for filtration of

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 4 / 33

10 kHz output square signal to gain sine-wave resolver excitation of the same frequency is shown in the following figure. Note
that this is just a simplified example, not all the connections are shown.

Figure 2. An example schematic of the excitation generation circuitry

The adaptive control of the excitation signal phase is enabled by setting the bit
FS_ETPU_RESOLVER_OPTIONS_EXC_ADAPTATION_ON in resolver_config.options. Using a PI controller (exc_p_gain,
exc_i_gain), the excitation signal phase is adjusted so, that the zero crossings of the Sine and Cosine feedback signals are at
the required position and the signals are phase-aligned in the input signal buffers, see the following figure.

Figure 3. Adaptive phase shift and feedback signals alignment

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 5 / 33

1.1.2 Sine and Cosine feedback signal digitization
The Sine and Cosine analog feedback signals need to be converted to a digital representation and transferred to eTPU DATA
RAM. This should be done independently of the CPU using an on-chip ADC and eDMA. Although any of the ADC modules can
be used, the described configuration adopts the Sigma-Delta ADC (SDADC).

Differential ADC inputs are used, which simplifies the input circuitry. The following figure shows an example of the external circuitry
schematic.

Figure 4. An example schematic of the resolver Sine and Cosine feedback signal circuitry

Two SDADC modules are used to continuously sample the Sine and Cosine signals in parallel. They are configured to obtain 32
samples of each signal per period. The following table shows the configuration for a 10 kHz excitation signal and a 320 kHz
sampling frequency in detail.

Table 2. SDADC Configuration.

Configuration Item Value

SDADC clock 200 MHz / 13 = 15.38 MHz (available range 4 – 16 MHz)

ADC decimation rate 24

Resulting output data rate 200 MHz / 13 / (2 * 24) = 320,512.8 Hz

Input mode differential (recommended)

High-pass filter enabled

Table continues on the next page...

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 6 / 33

Table 2. SDADC Configuration. (continued)

Configuration Item Value

FIFO size 16 words

FIFO threshold 16 words

DMA request on FIFO full selected and enabled

The ADC generates a DMA request every time when 16 samples are ready in the FIFO. These 16 samples correspond to either
the first or the second half-period of the input signal. The DMA transfers those samples to the eTPU DATA RAM, either to the
first or the second half of the signal buffer, and subsequently evokes the eTPU to process the new data. This is done by linking
another DMA channel which transfers a constant value to the eTPU Host Service Request (HSR) register. Then eTPU processes
the HSR. Different HSRs are used for the first and for the second half-period:

• FS_ETPU_RESOLVER_HSR_UPDATE_1ST

• FS_ETPU_RESOLVER_HSR_UPDATE_2ND

Altogether, three DMA channels are used – two channels to transfer the ADC data of Sine and Cosine signals, and one channel
to transfer the HSRs. The following table shows eDMA configuration in detail.

Table 3. eDMA Configuration

Configuration Item Sine ADC FIFO DMA
channel

Cosine ADC FIFO DMA
channel

Linked HSR DMA channel

Source address &SDADC_x.CDR.R &SDADC_y.CDR.R &link_const[0]

const uint32_t link_const[] =
{FS_ETPU_RESOLVER_HSR_

UPDATE_1ST,
FS_ETPU_RESOLVER_HSR_

UPDATE_2ND};

Destination address resolver_instance
signals_pba

resolver_instance
signals_pba + 64

&ETPU.CHAN[resolver_instan
ce.chan_num_exc].HSRR.R

Source transfer size / modulo 32-bits / 0 bytes 32-bits / 0 bytes 32-bits / 0 bytes

Destination transfer size / modulo 32-bits / 64 bytes 32-bits / 64 bytes 32-bits / 0 bytes

Source address offset 0 bytes 0 bytes 4 bytes

Destination address offset 4 bytes 4 bytes 0 bytes

Minor loop byte count 64 bytes 64 bytes 4 bytes

Major loop iteration count 2 2 2

Last source address adjustment 0 bytes 0 bytes -8 bytes

Last destination address
adjustment

-128 bytes -128 bytes 0 bytes

Table continues on the next page...

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 7 / 33

Table 3. eDMA Configuration (continued)

Configuration Item Sine ADC FIFO DMA
channel

Cosine ADC FIFO DMA
channel

Linked HSR DMA channel

Channel to channel linking disabled enabled disabled

Linked channel - HSR DMA channel -

1.1.3 Resolver angle and speed tracking
Having the Sine and Cosine feedback signals in the signal buffer, the actual resolver angle could theoretically be calculated using
the arcustangent function after signal demodulations.

where sin(θ) and cos(θ) are the demodulated resolver feedback signals.

This straightforward way has several disadvantages, as a long calculation time or a low noise immunity. Due to those reasons
the Angle Tracking Observer (ATO) is introduced. The ATO tracks angular motor speed and calculates actual motor angle using
a prediction and correction approach. The following figure shows the block diagram of this algorithm.

Figure 5. Angle tracking observer

The ATO consists of the following blocks:

• Demodulation: The excitation signal is modulated by Sine and Cosine of the motor angle by the resolver. The
Demodulation block extracts the modulation signal out of the excitation (carrying) signal. This is done by oversampling the
modulated excitation signal (sampling rate 320.5128 kHz) and thus obtaining 32 samples per period, 16 samples per half-
period respectively. The half period is being demodulated by factor of the carrier signal (sine) and median filter is used to
determine the modulation signal amplitude (resolver angle sine and cosine). Median filter is suppressing the impulse
noise.

• Position Error Comparator: This block takes the Sine and Cosine of the motor angle measured from the resolver feedback
signals and the Sine and Cosine calculated from the motor angle estimated by the ATO algorithm. Using those inputs, an
angle error is calculated. The calculation is based on the trigonometric identity.

sin(α - β) = sin (α)cos(β) - cos(α)sin(β)

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 8 / 33

For small angles following simplification can be applied.

sin(Ɛ) =≌Ɛ

For bigger angles a convergency of the ATO algorithm can be proofed. As a result, the position error is calculated.

e(θ) = θ - θest ≌ sin(θ)cos(θest) - cos(θ)sin(θest)

Where sin(θ) and cos(θ) are the demodulated resolver feedback signals, cos(θest) and sin(θest) are calculated sine and
cosine values of the ATO motor angle output, and is the resulting motor angle error.

• Regulator: The Regulator takes the position error as an input and returns estimated motor speed as an output. A 24-bit
fractional PI controller is implemented for this task. The Excel file Resolver ATO PI-gains.xlsx, which is included in the
attached software package, might help to set the PI controller gains.

• Angle Tracking: The Angle Tracking block adjusts the actual motor angle using the updated motor speed. As a result, the
estimated motor angle is returned.

There are two Angle Tracking Observer updates per period, separately using the first and the second half-period of the Sine and
Cosine signals.

1.1.4 Extrapolation
The calculated motor angle corresponds to the time position of the half-period center. In a motor control application, the motor
angle reading should correspond in time to the phase current readings. To achieve this, there is a feature to linearly extrapolate
the calculated motor angle to another time position, using the actual motor speed.

The angle and speed are extrapolated to the time when the extrapolation is triggered. It can be triggered by:

• Host service request from application

• Link from other eTPU channel

• Input transition detection (rising/falling edge)

To enable calculation of the extrapolated angle values the FS_ETPU_RESOLVER_OPTIONS_EXTRAPOLATION_ON has to be
configured in resolver_config.options, The API function fs_etpu_resolver_get_outputs_extrapolated() can be called to read the
extrapolated results.

1.1.5 Diagnostics
There are two ways how the operation of the eTPU Resolver can be checked. The first one is to run diagnostics on eTPU as
described in eTPU diagnostics. The second option is to use RDC (Resolver-to-Digital-Converter) checker, see description in
RDC checker.

1.1.5.1 eTPU diagnostics

The Resolver Diagnostics on eTPU can run in parallel to the motor position processing on the other eTPU engine or after the
motor position processing on the same engine. See the following tables.

Table 4. RESOLVER channel assignment – Example 1

Channel Assignment Note

chan_num_exc 9 Excitation signal generation runs on eTPU A channel 9.

chan_num_ATO 8 Motor position processing runs on eTPU A channel 8.

chan_num_diag 10 Diagnostics run after motor position processing on eTPU A channel 10.

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 9 / 33

Table 5. RESOLVER channel assignment – Example 2

Channel Assignment Note

chan_num_exc 9 Excitation signal generation runs on eTPU A channel 9.

chan_num_ATO 8 Motor position processing runs on eTPU A channel 8.

chan_num_diag 3+64 Diagnostics run in parallel to motor position processing on eTPU B channel 3.

The Resolver Diagnostics are enabled by setting following bits in resolver_config.options

• FS_ETPU_RESOLVER_OPTIONS_DIAG_MEASURES_ON

• FS_ETPU_RESOLVER_OPTIONS_DIAG_FLAGS_ON.

The diagnostics processing is handled partly by the eTPU function and partly by the CPU API. On the eTPU site, the Sine and
Cosine feedback signals are diagnosed in two phases:

• Diagnostic Measurements - signal properties are measured

• Diagnostic Flags - flags are set upon comparing the measured values against the thresholds

On the CPU site, additional flag decoding can be done. This part is somewhat dependent on the external circuitry (excitation
amplifier, input filters) and that is why this part is done within API, so that the user can easily modify the code according to the need.

Figure 6. Resolver diagnostics overview

The diagnostic thresholds can be provided by the CPU application as manually configured constants, or thresholds can be
determined from the measured signal properties by a call of fs_etpu_resolver_diag_calibrate() API function. Passing at least one
full motor revolution guaranties enough data for that automatic calibration. The application also needs to make sure the input
signals are not corrupted before calling the calibration.

Both the diagnostic measurements and diagnostic flags include some actual and some cumulative values. In order to reset and
restart the measurement and the flag setting, the API function fs_etpu_resolver_diag_reset() can be called. The diagnostic
measures are shown in the following figure and RESOLVER diagnostic flags lists all the values which are computed by the
diagnostic measurements.

Figure 7. Resolver diagnostic measures

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 10 / 33

The resolver feedback signals have to be conditioned so that the amplitudes being displayed on the unitary circle
of both sine and cosine are within the range from ±0.3 to ±0.8. The upper limit should not be exceeded in case
diagnostics are planned to be used to allow the excursion of the signals to be detected when the unitary circle is
distorted due to shortcuts and signal losses.

 NOTE

Table 6. RESOLVER diagnostic measures

resolver_diag_measures_t structure
member

Description

sin_ampl_1 cos_ampl_1 Amplitude of the first, positive, half period

sin_ampl_2 cos_ampl_2 Amplitude of the second, negative, half period

sin_ampl_min cos_ampl_min The lowest amplitude ever detected

sin_ampl_max cos_ampl_max The highest amplitude ever detected

sin_mean cos_mean The signal mean value (DC component)

sin_mean_min cos_mean_min The lowest mean value ever detected

sin_mean_max cos_mean_max The highest mean value ever detected

vec Square value of a vector formed by sin and cos amplitudes as its orthogonal
components

vec_min The lowest value of the square vector value ever detected

vec_max The highest value of the square vector value ever detected

ampl_diff The difference between the highest amplitude ever detected of one signal and the
lowest amplitude ever detected of the other signal – unit circle deformation

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 11 / 33

The following table lists all the thresholds against which the diagnostic measures are compared.

Table 7. RESOLVER diagnostic thresholds

resolver_diag_thresholds_t
structure member

Description

ampl_thrs The highest absolute amplitude value threshold

mean_thrs The highest absolute mean value threshold

vec_min_thrs The lowest square vector threshold

vec_max_thrs The highest square vector threshold

ampl_diff_thrs The highest sin/cos amplitude difference threshold

ato_angle_err_thrs The highest ATO angle error threshold

ato_speed_thrs The highest ATO speed threshold

The following table lists all diagnostic flags and conditions under which the flags are set.

Table 8. RESOLVER diagnostic flags

resolver_diag_flags_t structure
member bits

Condition Description

SIN_AMPL COS_AMPL |ampl_1/2| > ampl_thrs The amplitude is higher than the threshold

SIN_MEAN COS_MEAN |mean| > mean_thrs The signal mean value is higher than the
threshold

VEC_MIN vec < vec_min_thrs The square vector is lower than the threshold

VEC_MAX vec > vec_max_thrs The square vector is higher than the threshold

AMPL_DIFF ampl_diff > ampl_diff_thrs The sin/cos amplitude difference is higher than
the threshold

ATO_ANGLE_ERR |ato.angle_err| > ato_angle_err_thrs The ATO angle error is higher than the threshold

ATO_SPEED |ato.speed| > ato_speed_thrs The ATO speed is higher than the threshold

The eTPU runs the diagnostics every time when the new inputs are available (on every update). The CPU can run the flag
decoding on a lower frequency, based on the application needs. No diagnostic flag can be missed, because any time a flag is
detected, it remains to be set within the cumulative value.

Table 9. RESOLVER actual and cumulative diagnostic flags

resolver_diag_flags_t
structure member

Description

actual Field of flags detected on the last update from the last diagnostic_measures data.

Table continues on the next page...

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 12 / 33

Table 9. RESOLVER actual and cumulative diagnostic flags (continued)

resolver_diag_flags_t
structure member

Description

cumulative Field of cumulated flags. The actual flags are OR-ed to the cumulative flags on every update. The
cumulative flags are cleared by reset of diagnostics.

The CPU can take the diagnostic flags provided by the eTPU function and use them to decode a higher level of diagnostics,
Basic diagnostic flags and Advanced diagnostic flags. The following tables list those flags and describes the flag setting
conditions. Note that these conditions might not be generally applicable for all types of external hardware circuitry. You can easily
modify the flag setting condition in the API code according to the application specifics.

Table 10. Basic diagnostic flags

resolver_diag_flags_basic bits Condition Description

LOS VEC_MIN Loss of Signal

DOS VEC_MAX or AMPL_DIFF Degradation of Signal

LOT ATO_ANGLE_ERR or ATO_SPEED Loss of Tracking

Table 11. Advanced diagnostic flags

resolver_diag_flags_
advanced bits

Condition – decoded in this order: Description

SIN_DISCONNECT SIN_MEAN and AMPL_DIFF and ATO_ANGLE_ERR A wire of the SIN signal is disconnected.

COS_DISCONNECT COS_MEAN and AMPL_DIFF and ATO_ANGLE_ERR A wire of the COS signal is disconnected.

EXC_DISCONNECT VEC_MIN and ATO_SPEED A wire of the EXC signal is disconnected.

SIN_SHORT SIN_MEAN and ATO_ANGLE_ERR A shortcut on the SIN signal wire.

COS_SHORT COS_MEAN and ATO_ANGLE_ERR A shortcut on the COS signal wire.

EXC_SHORT VEC_MIN A shortcut on the EXC signal wire.

1.2 RDC checker
RDC checker provides an alternative way of detecting eTPU Resolver functionality or input signals failure. The key difference is
that the diagnostics are moved to CPU. eTPU Resolver function optionally records data for the external (meaning external to
eTPU) checker. This functionality is enabled by setting following bits in resolver_config.options:

• FS_ETPU_RESOLVER_OPTIONS_RDC_CHECKER_ON

This option enables to Resolver function to log following data into a structure which is then transferred by DMA into a system
RAM, where data are taken care of by RDC Checker. The structure of logged data at eTPU side is as follows:

• int24_t sin_8; /* Sine sample on 8th position from signal buffer corresponding to peak of 1st half
period*/

• int24_t sin_24; /* Sine sample on 24th position from signal buffer corresponding to peak of 2nd half
period*/

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 13 / 33

• int24_t cos_8; /* Cosine sample on 8th position from signal buffer corresponding to peak of 1st half
period*/

• int24_t cos_24; /* Cosine sample on 24th position from signal buffer corresponding to peak of 2nd
half period*/

• int24_t sin_16; /* Sine sample on 16th position from signal buffer corresponding to zero crossing*/

• int24_t cos_16; /* Cosine sample on 16th position from signal buffer corresponding to zero crossing*/

• fract24_t ATO_angle_8; /* ATO angle from 1st update*/

• int24_t timestamp_8; /* Timestamp for 1st update*/

• fract24_t ATO_angle_24; /* ATO angle from 2nd update */

• int24_t timestamp_24; /* Timestamp for 2nd update*/

• fract24_t extrapolated_angle; /* Last Extrapolated angle value */

The block diagram of the RDC Checker and eTPU can be seen in the following figure. The RDC Checker can run either as a
standalone checker or as a part of Safety Runtime Framework.

Figure 8. RDC checker and eTPU block diagram

RDC Checker consists of four main parts, the detailed block diagram can be seen in the following figure:

• Input signal checker

• ATO checker

• Extrapolation checker

• Timing checker

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 14 / 33

Figure 9. RDC checker detailed diagram

1.2.1 Input signal checker
Input signal checker inspects the Resolver feedback signals that are to be processed by eTPU Resolver function. It checks the
samples that are assumed to be the maximum amplitude points: sin[8], cos[8], sin[24] and cos [24] out of 32 point sample buffers.
Also for the purpose of phase shift checks the samples of assumed zero crossings: sin[16] and cos[16]. See the following figure.

Figure 10. Input signal checker samples

The checks that are performed within input signal checker part are listed in the following table. Test #1 ensures the SDADC and
eDMA are not stucked. Amplitude range check is watching the amplitude does not over-cross the given threshold. Mean value
check tests if there is any unwanted DC shift present in the feedback signals. Zero crossing check watches if the signal in the
buffer is phase-shifted. Plausibility check ensures the samples fits into the unitary circle.

Table 12. Input signal checks

1. Check the sample values are
changing.

cos[8](n)<>cos[8](n-1) cos[24](n)<>cos[24](n-1)

sin[8](n)<>sin[8](n-1) sin[24](n)<>sin[24](n-1)

Table continues on the next page...

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 15 / 33

Table 12. Input signal checks (continued)

2. Check amplitude range. |sin[8]| < AMPLMAX |sin[24]| < AMPLMAX

|cos[8]| < AMPLMAX |cos[24]| < AMPLMAX

3. Check signal mean value (DC shift). |sin[8] + sin[24]| < MEANMAX

|cos[8] + cos[24]| < MEANMAX

4. Check signal zero-crossing (phase
shift)

|sin[16]| < ZCMAX

|cos[16]| < ZCMAX

5. Check plausibility of samples (unit
circle).

sin2[8] + cos2[8] ≌ const

sin2[24] + cos2[24] ≌ const

1.2.2 ATO checker
ATO checker uses the same samples as Input signal checker. It calculates the angle using an alternate method in order to avoid
a systematic error. The angle is evaluated as arcus tangent of sine and cosine sample ratio for both half periods.

The samples sin[24] and cos[24] are negated to get correct angle value. The arcus tangent function is implemented as simplified
polynomial approximation. The maximum error is 0.22deg. All four quadrands are handled. The resulting angle is then compared
with eTPU ATO result.

1.2.3 Extrapolation checker
Extrapolation checker reads and stores ATO outputs, angle updates per half period plus one extrapolated value. Checker use
these samples and with a small delay checks whether the extrapolated angle fits between preceding and following ATO angle
outputs. The acceptance range is extended for the case of small or zero speed when the preceding and the following ATO angles
are almost the same.

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 16 / 33

Figure 11. Extrapolation checker timing

1.2.4 Timing checker
The timing checker has two tasks, to check whether the timestapms corresponding to ATO angle updates are changing. This
ensures that the ATO activity is not stucked.

timestamp[8](n) <> timestamp[8](n - 1)

timestamp[24](n) <> timestamp[24](n - 1)

The second task is to check whether the ATO updates are coming within expected time and thus samples are plausible.

NXP Semiconductors
Product Description

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 17 / 33

Chapter 2
Integrating and Building the Product
The development environment includes:

• MPC5777C EVB

• S32 Design Studio (S32DS)

• Optionaly Safety Runtime Framework (SRF)

To successfully run the RDC Checker the following steps needs to be performed:

1. Run eTPU Resolver function. The recommended channel usage is to run ATO channel on different engine than
Extrapolation channel.

2. Enable RDC Checker functionality by configuring following option in resolver_config_t structure,
FS_ETPU_RESOLVER_OPTIONS_RDC_CHECKER_ON

3. Include the RDC Checker source (rdc_checker.c/.h) code into your project

4. Configure DMA to transfer data from eTPU RAM (located on checker_signal_pba) to Rdc_InputData structure used by
RDC Checker.

5. Configure the thresholds of RDC Checker in rdc_checker.h

6. Enable DMA request from eTPU ATO channel and run RDC_Checker_LL() on IRQ from eDMA channel.

7. Use either RDC_Checker_FaultStatus() to read the RDC Checker results, or use the Safety Runtime Framwork (SRF) to
integrate RDC Checker into a safety environment of application checkers and reactions.

The above mentioned steps are described in detail later in the sections.

2.1 How to get eTPU Resolver function up and running within CPU application
User has two options to get the eTPU Resolver binary, either download the compiled binary from NXP website (http://
www.nxp.com/etpu) or use eTPU source code and eTPU compiler. AN5374 describes in detail how to integrate the eTPU binary
into the CPU application.

To configure the resolver function you have to modify etpu_gct.c and etpu_gct.h files.

2.1.1 Configuration of etpu_gct.h
• Channel assignment is performed as per the following steps. Resolver excitation and ATO function is running on engine A,

Extrapolation feature (SAMPLE_CHAN) is running on engine B. Diagnostics were set to engine B as well, but they are not
used within this project.

/*===
DEFINE FUNCTIONS TO CHANNELS
===*/
#define ETPU_RESOLVER_EXC_CHAN ETPU_ENGINE_A_CHANNEL(0)
#define ETPU_RESOLVER_ATO_CHAN ETPU_ENGINE_A_CHANNEL(1)
#define ETPU_RESOLVER_DIAG_CHAN ETPU_ENGINE_B_CHANNEL(0)
#define ETPU_RESOLVER_SAMPLE_CHAN ETPU_ENGINE_B_CHANNEL(27)

• Configure both IRQ and DMA so both can be generated from ATO channel. DMA request is to transfer data from structure
in eTPU data RAM to system RAM. IRQ is not essential for the RDC Checker functionality, it is used here within this

NXP Semiconductors

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 18 / 33

http://www.nxp.com/etpu
http://www.nxp.com/etpu
https://www.nxp.com/docs/en/application-note/AN5374.pdf

example application to read calculated outputs and states from resolver function as well as update data from config
structure to the eTPU Resolver.

/
===
DEFINE INTERRUPT ENABLE, DMA ENABLE AND OUTPUT DISABLE
==
*/
#define ETPU_CIE_A (1<<ETPU_RESOLVER_ATO_CHAN) /* enable interrupt on ETPU_RESOLVER_ATO_CHAN */
#define ETPU_DTRE_A (1<<ETPU_RESOLVER_ATO_CHAN) /* enable DMA request on ETPU_RESOLVER_ATO_CHAN */
#define ETPU_ODIS_A 0x00000000
#define ETPU_OPOL_A 0x00000000
#define ETPU_CIE_B 0x00000000
#define ETPU_DTRE_B 0x00000000
#define ETPU_ODIS_B 0x00000000
#define ETPU_OPOL_B 0x00000000

• Enable global variable access to make the eTPU structures being visible outside the gct files to be accessible from main
function.

/
===
GLOBAL VARIABLE ACCESS
==
*/
/* Global RESOLVER structures defined in etpu_gct.c */
extern struct resolver_instance_t resolver_instance;
extern struct resolver_config_t resolver_config;
extern struct resolver_outputs_t resolver_outputs_calculated;
extern struct resolver_outputs_t resolver_outputs_extrapolated;
extern struct resolver_outputs_t resolver_outputs_mechanical;
extern struct resolver_diag_measures_t resolver_diag_measures;
extern struct resolver_diag_thresholds_t resolver_diag_thresholds;
extern struct resolver_diag_flags_t resolver_diag_flags;
extern struct resolver_states_t resolver_states;

• Declare function prototypes.

/
==

FUNCTION PROTOTYPES
==
*/
int32_t my_system_etpu_init (void);
void my_system_etpu_start(void);

2.1.2 Resolver function configuration etpu_gct.c
The Resolver function configuration itself is performed within etpu_gct.c together with general engine configuration which is
already part of etpu_gct.c/h template files. This example configuration can be used as it is or you can modify as per your needs.

• Apart from the files that are already present in template files include device specific file to specify eTPU data RAM frame
plus Resolver API header file.

/*===*
INCLUDE FILES
===*/
#include "etpu_gct.h" /* private header file */

NXP Semiconductors
Integrating and Building the Product

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 19 / 33

#include "etpu_utils\etpu_util.h" /* General C Functions for the eTPU */
#include "etpu_etpu_set\etpu_set.h" /* eTPU function set code binary image */
#include "etpu\resolver\etpu_resolver.h" /* eTPU Resolver function API */
#include "include/mpc5777c_vars.h" /* Device specific header file */

• eTPU engine configuration: Modify the predefined structure including parameters to configure eTPU engine. For a detailed
of the eTPU engine configuration please refer to eTPU Reference manual.

/*===*
Global eTPU settings - etpu_config structure
===*/
/** @brief Structure handling configuration of all global settings */
struct etpu_config_t my_etpu_config =
 {
 …
 };

• Define Resolver instance structure: Uses definitions of particular channels from etpu_gct.h for particular functionality
assignment. Configure the Resolver function priority. Start offset parameter determines the first rising edge time of the
Excitation signal – it is scheduled start_offset number of TCR1 cycles after Resolver initialization. ADC delay is the
parameter used to adjust the timestamp of ATO update. Start offset and ADC delay will be described in more detail in
chapter Configurations. Channel parameter base address cpba can be configured for a particular address within the eTPU
data memory (like in this case) or can be configured as 0, in that case cpba will be allocated automatically. The similar
case applies for signals_pba which stands for feedback signals parameter base address, a place within eTPU data RAM
where sampled feedback signals are transferred from Sigma-delta ADCs FIFO using DMA requests. Parameter
checker_signals_pba is address of structure where particular signals are stored for the purpose of RDC Checker. This
should be configured as 0 and if RDC Checker option is enabled the address is automatically allocated on initialization.

The resolver_instance_t structure can be modified only once at initialization. It is not a subject of change during
the function runtime.

 NOTE

/*===*
eTPU channel settings - RESOLVER
===*/
/** @brief Initialization of RESOLVER structures */
struct resolver_instance_t resolver_instance =
{
 ETPU_RESOLVER_EXC_CHAN, /* chan_num_exc */
 ETPU_RESOLVER_ATO_CHAN, /* chan_num_ato */
 ETPU_RESOLVER_DIAG_CHAN, /* chan_num_diag */
 ETPU_RESOLVER_SAMPLE_CHAN,/* chan_num_sample */
 ETPU_RESOLVER_ATO_CHAN, /* chan_num_dma - etpuA1 generate dma request on channel DMA_A 28 */
 FS_ETPU_PRIORITY_HIGH, /* priority */USEC2TCR1(100), /*
 start_offset */USEC2TCR1(19), /* adc_delay */
 0xC3FC8300, /* *cpba */ /* 0 for automatic allocation */
 0xC3FC8600, /* *signals_pba */ /* 0 for automatic allocation */
 0 /* *checker_signals_pba - will be allocated automatically */
};

• Define Resolver configuration structure: Use parameter options to configure intended functionality. Excitaiton_period is
configured to 99,84 µs – this is configured with respect to SDADC output data rate. Refer to chapter Configurations for
more details. Parameters ato_p_gain and ato_i_gain are constants of ATO PI controller, refer to Resolver ATO PI-
gains.xlsx for the particular configurations. Excitation signal phase shift adjustment is controlled by PI controller with
parameters exc_p_gain and exc_i_gain that are configured empirically. The configuration used in this example is

NXP Semiconductors
Integrating and Building the Product

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 20 / 33

recommended. Last parameter q_ewma_speed is an EWMA filter coefficient used to filter ATO speed updates. Is should
be ~0.9 meaning the 0.9 weight is applied on previous filtered speed value.

struct resolver_config_t resolver_config =
{
 FS_ETPU_RESOLVER_SEMAPHORE_0, /* smpr_id */
 FS_ETPU_RESOLVER_OPTIONS_CALCULATION_ON +
 FS_ETPU_RESOLVER_OPTIONS_DIAG_MEASURES_ON +
 FS_ETPU_RESOLVER_OPTIONS_DIAG_FLAGS_ON +
 FS_ETPU_RESOLVER_OPTIONS_EXC_ADAPTATION_ON +
 FS_ETPU_RESOLVER_OPTIONS_EXC_GENERATION_ON+
 FS_ETPU_RESOLVER_OPTIONS_RDC_CHECKER_ON, /* options */
 NSEC2TCR1(99840), /* excitation_period */
 SFRACT24(0.070597541), /* ato_p_gain */
 SFRACT24(0.002492006), /* ato_i_gain */
 SFRACT24(0.00000), /* exc_p_gain */
 SFRACT24(0.00012), /* exc_i_gain */
 SFRACT24(0.99) /* q_ewma_speed */
};

• Define Resolver Diag thresholds structure: This is used when diagnostics running on eTPU are enabled. This structure
contains thresholds that are compared against the diagnostic measures and diagnostic flags are set upon that
comparison. For detailed description of each threshold and diagnostic measures please refer to chapter eTPU
diagnostics.

struct resolver_diag_thresholds_t resolver_diag_thresholds =
{
 SFRACT24(0.6), /* ampl_thrs */
 SFRACT24(0.15), /* low_ampl_thrs */
 SFRACT24(0.05), /* mean_thrs */
 SFRACT24(0.4*0.4), /* vec_min_thrs */
 SFRACT24(0.6*0.6), /* vec_max_thrs */
 SFRACT24(0.1), /* ampl_diff_thrs */
 SFRACT24(5.0/360), /* ato_angle_err_thrs */
 RPM2FRACT(10000, 99840) /* ato_speed_max_thrs */
};

• Define rest of the structures containing ATO and diagnostics and states.

struct resolver_outputs_t resolver_outputs_calculated;
struct resolver_outputs_t resolver_outputs_extrapolated;
struct resolver_outputs_t resolver_outputs_mechanical;
struct resolver_diag_measures_t resolver_diag_measures;
struct resolver_diag_flags_t resolver_diag_flags;
struct resolver_states_t resolver_states;

• Implement the eTPU initialization – modify my_system_etpu_init() function with adding Resolver initialization from Resolver
API. This function call comes after global eTPU initialization as follows.

/* Initialization of eTPU channel settings */
err_code = fs_etpu_resolver_init(&resolver_instance, &resolver_config);
if(err_code != FS_ETPU_ERROR_NONE) return(err_code + (ETPU_RESOLVER_EXC_CHAN<<16));

• Call the my_system_etpu_init() and my_system_etpu_start() in main function to get the configuration done and start eTPU.
Note that also for proper Resolver operation it requires to configure and start DMA and SDADC as well. See the correct
sequence of calling the routines below.

/* initialize eTPU */
my_system_etpu_init();

NXP Semiconductors
Integrating and Building the Product

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 21 / 33

/* Initialize eDMA */
edma_init();
/* SDADC init*/
sdadc_init();
/* run the eTPU */
my_system_etpu_start();
/* start the DMA */
edma_start();
/* start the SDADC */
sdadc_start();

• Use the functions from Resolver API (etpu_resolver.c/.h) to interface Resolver function in runtime.

2.2 How to include RDC Checker into application
To correctly run the RDC Checker user has to get the Resolver function up and running (as described in previous chapter How
to get eTPU Resolver function up and running within CPU application) at first. Then you have to include rdc_checker.c/.h files
into the project and perform threshold configuration. Also DMA has to be configured to transfer data upon ATO Resolver eTPU
channel request. All the necessary steps are further described in detail.

• Include RDC Checker files. The files should be included into the main.c.

• Configure DMA: The configuration of particular DMA channel that is triggered by eTPU ATO channel has to be performed
to transfer data from eTPU data RAM into Rdc_InputData structure that is defined as a global variable within the
rdc_checker.c file. For more details please refer to chapter DMA configuration for RDC Checker.

• Modify the RDC Checker thresholds that are defined in rdc_checker.h and can be modified by user according to
application needs. The thresholds are equivalent to resolver diagnostic thresholds

/* RDC Checker fault thresholds */
#define RDC_THR_SIG_MAX_AMPL RDC_FRACT16(0.8)
#define RDC_THR_SIG_DC_SHFT RDC_FRACT16(0.05)
#define RDC_THR_SIG_ZC_AMPL RDC_FRACT16(0.05)
#define RDC_THR_VEC_MIN_SQR RDC_FRACT16(0.6 * 0.6)
#define RDC_THR_VEC_MAX_SQR RDC_FRACT16(0.8 * 0.8)
#define RDC_THR_ATO_ERR RDC_FRACT24(2.0/360.0)
#define RDC_THR_EXT RDC_FRACT24(1.0/360.0)
#define RDC_THR_TIMING (1997)
#define RDC_PERIOD_TCR1 (19968)

2.3 How to run RDC checker within application
There are two options how to use the RDC Checker within the application:

• Stand-alone checker: After RDC_Checker_LL() call RDC_Checker_FaultStatus() to get all detected fault flags and process
them using accumulation, delay, decoupling and other techniques. The following figure shows the timing diagram.

NXP Semiconductors
Integrating and Building the Product

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 22 / 33

Figure 12. RDC checker standalone usage

The example can be found within the testing application MPC5777C_RDC_Checker attached to this document where the
interrupt routine on DMA channel transfer completion is used to run the RDC Checker.

void DMA_Isr(void)
{
 …
 /* low level RDC Checker performs input data check and */
 RDC_Checker_LL();
 /* Read the fault status from LL RDC checker */
 RDC_fault = RDC_Checker_FaultStatus();

 if(RDC_fault == 0)
 {
 /* no fault - normal operation */
 }
 else
 {

 if(first_fault) /* First fault state detected - capture the transient fault */
 {
 first_fault = RDC_fault;
 }
 else
 {
 accumulated_faults |= RDC_fault;
 fault_cnt++;

 if(fault_cnt > 100)
 {
 /* Report to Safety manager */
 RDC_Checker();
 /* Clear counters and fault variables */
 fault_cnt = 0;
 first_fault = 0;
 accumulated_faults = 0;
 }
 }
 }
 /* Clear the interrupt flag */
 DMA_A.CINT.B.CINT = 28;
}

NXP Semiconductors
Integrating and Building the Product

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 23 / 33

• RDC Checker used within the SRF: RDC_Checker_LL() runs on DMA interrupt request. The RDC_Checker() runs
periodically as one of the 100µsec tasks and reports to SRF Safety Manager (see the following figure). The Safety
Manager handles the reported faults, their decoupling and execution of safety reaction.

Figure 13. RDC checker usage within the Safety Runtime Framework

NXP Semiconductors
Integrating and Building the Product

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 24 / 33

Chapter 3
Configurations

3.1 DMA configuration for RDC checker
Configuration of DMA channel that is triggered by Resolver ATO channel to transfer data from eTPU memory (resolver_instance.
checker_signals_pba) to Rdc_InputData structure that is used by RDC Checker is described in the folloing table.

Table 13. DMA configuration for RDC checker

Configuration Item RDC Checker DMA channel

Source address resolver_instance.checker_signals_pba+ 0x4000

(reading from PSE memory region)

Destination address &Rdc_InputData.sin08

(first member of Rdc_InputData structure)

Source transfer size / modulo 32-bits / 0 bytes

Destination transfer size / modulo 32-bits / 44 bytes

Source address offset 4 bytes

Destination address offset 4 bytes

Minor loop byte count 44 bytes

Major loop iteration count 1

Last source address adjustment -44 bytes

Last destination address adjustment -44 bytes

Channel to channel linking disabled

Linked channel -

Interrupt on major loop complete enabled

3.2 SDADC config
Reffer to the description in chapter Sine and Cosine feedack signal digitization for the reference.

3.3 ADC delay parameter
The parameter adc_delay is evaluated based on SDADC group delay as well as ATO updated calculation time together with
delay caused by transferring the samples from SDADC result FIFO into eTPU data memory using DMA. Another important
information taken into account is that angle value calculated from sin/cos half-period N, corresponds to the time position of the
next, N+1st, half-period center, because the ATO output is actually prediction of the angle for next half-period. The ADC delay is
then evaluated as time difference between the ATO N end of update and the center of N+1 half-period. The evaluation is
described in ATO timing and ADC delay parameter evaluation.

NXP Semiconductors

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 25 / 33

The SDADC group delay can be evaluated according to SDADC electrical specifications as follows.

Figure 14. ATO timing and ADC delay parameter evaluation

3.4 Start offset configuration
Start_offset parameter determines the time when the generation of excitation signal starts after first ATO 1st host service request
is received. It is important to evaluate this parameter since RDC function generates excitation signal as a PWM signal with 50 %
duty cycle. This is then supposed to be fed into analog filters and further to resolver sensor excitation input. This HW chain causes
a certain phase shift which is propagated into sine and cosine feedback signals. For the eTPU RDC it is crutial to have the
feedback signals aligned in the buffers so the first-half period of the buffer contains the part of the signal corresponding to first
half-period of excitation signal. At the eTPU RDC function startup the excitation signal phase shift is adjusted so the feedback
signals are aligned in the signal buffers and zero-crossing error is minimized. The start_offset parameter has to be handled
carefully to prevent locking the feedback signals into buffers with 180 degree error. The start_offset parameter and its relation to
the excitation signal and feedback signals is illustrated in the following figure.

NXP Semiconductors
Configurations

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 26 / 33

Figure 15. Resolver start_offset parameter setting

NXP Semiconductors
Configurations

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 27 / 33

Chapter 4
APIs

4.1 eTPU Resolver API
The Resolver Digital Interface API is used to control and monitor the eTPU function using the following routines:

• fs_etpu_resolver_init()

• fs_etpu_resolver_config()

• fs_etpu_resolver_get_states()

• fs_etpu_resolver_get_outputs_calculated()

• fs_etpu_resolver_get_outputs_extrapolated()

• fs_etpu_resolver_trans_outputs_el_to_mech()

• fs_etpu_resolver_sample()

• fs_etpu_resolver_get_diag_measures()

• fs_etpu_resolver_get_diag_flags()

• fs_etpu_resolver_decode_diag_flags_basic()

• fs_etpu_resolver_decode_diag_flags_advanced()

• fs_etpu_resolver_diag_reset()

• fs_etpu_resolver_set_thresholds()

• fs_etpu_resolver_diag_calibrate()

These API functions handle the following data structures:

• resolver_instance

• resolver_config

• resolver_outputs

• resolver_diag_measures

• resolver_diag_thresholds

• resolver_diag_flags

• resolver_states

The data structures include the following fields:

For a detailed API description refer to RESOLVER-DoxyDoc.chm or RESOLVER-DoxyDoc.zip which are included
in AN5335SW.

 NOTE

Interaction among the API routines and data structures is shown in the following figure.

NXP Semiconductors

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 28 / 33

Figure 16. Resolver API functions and data structures

4.2 RDC Checker API
The RDC Checker API includes the following routines:

void Rdc_Checker_LL(void)
uint32_t Rdc_Checker_FaultStatus(void)
void Rdc_Checker(void)
uint32_t Rdc_FaultInj(void)

• Rdc_Checker_LL is the low-level checker routine which, on DMA IRQ, checks the eTPU data and set fault flags

• Rdc_Checker_FaultStatus returns the detected fault flags and cleans them. The fault flags are cumulated until cleaned by
Rdc_Checker_FaultStatus or Rdc_Checker.

• Rdc_Checker is intended to report cumulated flags to SRF Safety Manager and clean them.

• Rdc_FaultInj is intended to be used within the SRF as part of a self-check by fault injection.

The RDC Checker detects the following fault flags (fault status).

/* RDC Checker fault flags */
#define RDC_FAULT_SIN_STUCK (0x0001UL)
#define RDC_FAULT_COS_STUCK (0x0002UL)
#define RDC_FAULT_SIN_AMPL_OOR (0x0004UL)
#define RDC_FAULT_COS_AMPL_OOR (0x0008UL)
#define RDC_FAULT_SIN_DC_SHFT (0x0010UL)
#define RDC_FAULT_COS_DC_SHFT (0x0020UL)

NXP Semiconductors
APIs

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 29 / 33

#define RDC_FAULT_SIG_PHS_SHFT (0x0040UL)
#define RDC_FAULT_VEC_OOR (0x0100UL)
#define RDC_FAULT_ATO_ERR (0x0200UL)
#define RDC_FAULT_EXT_ERR (0x0400UL)
#define RDC_FAULT_TIME_STUCK (0x1000UL)
#define RDC_FAULT_TIMIMNG (0x2000UL)

NXP Semiconductors
APIs

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 30 / 33

Chapter 5
Demos and Application Notes

5.1 RDC Checker testing application
The RDC Checker testing application MPC5777C_RDC_Checker is showing the use of Resolver function together with RDC
Checker in stand-alone option. Note that in this application no real Resolver HW is used, the feedback signals are emulated
within the PIT Timer interrupt routine and placed into eTPU data RAM on signal_pba address. Also the DMA together with
SDADCs are not used here, HSR request are written into the Resolver ATO channel at the end of PIT Timer ISR by using Resolver
API function. Within this appolication several test-cases are defined to demonstrate the RDC Checker functionality.

NXP Semiconductors

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 31 / 33

Chapter 6
References
Table 14. References

S. No. Description Location

1. SRF_PIM_MPC5775E_BETA_0.9.0

(January 2019)

Includes SRF, RDC Checker, and more.

www.nxp.com

NXP Semiconductors

eTPU RDC and RDC Checker User Guide, Rev. 0, March 2020
Supporting Information 32 / 33

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: March 2020
Document identifier: eTPURDCCUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Product Description
	1.1 Resolver Digital Interface (RESOLVER)
	1.1.1 Excitation signal generation and adaptive phase control
	1.1.2 Sine and Cosine feedback signal digitization
	1.1.3 Resolver angle and speed tracking
	1.1.4 Extrapolation
	1.1.5 Diagnostics
	1.1.5.1 eTPU diagnostics

	1.2 RDC checker
	1.2.1 Input signal checker
	1.2.2 ATO checker
	1.2.3 Extrapolation checker
	1.2.4 Timing checker

	2 Integrating and Building the Product
	2.1 How to get eTPU Resolver function up and running within CPU application
	2.1.1 Configuration of etpu_gct.h
	2.1.2 Resolver function configuration etpu_gct.c

	2.2 How to include RDC Checker into application
	2.3 How to run RDC checker within application

	3 Configurations
	3.1 DMA configuration for RDC checker
	3.2 SDADC config
	3.3 ADC delay parameter
	3.4 Start offset configuration

	4 APIs
	4.1 eTPU Resolver API
	4.2 RDC Checker API

	5 Demos and Application Notes
	5.1 RDC Checker testing application

	6 References

